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Abstract

Coarse Structural Nested Mean Models (SNMMs, Robins (2000)) and G-estimation can be used to
estimate the causal effect of a time-varying treatment from longitudinal observational studies.
However, they rely on an untestable assumption of no unmeasured confounding. In the presence of
unmeasured confounders, the unobserved potential outcomes are not missing at random, and
standard G-estimation leads to biased effect estimates. To remedy this, we investigate the
sensitivity of G-estimators of coarse SNMMs to unmeasured confounding, assuming a
nonidentifiable bias function which quantifies the impact of unmeasured confounding on the
average potential outcome. We present adjusted G-estimators of coarse SNMM parameters and
prove their consistency, under the bias modeling for unmeasured confounding. We apply this to a
sensitivity analysis for the effect of the ART initiation time on the mean CD4 count at year 2 after
infection in HIV-positive patients, based on the prospective Acute and Early Disease Research
Program.
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1. Introduction

Randomized control trials have been regarded as the gold standard for treatment
comparison; however, they may not be feasible due to ethical issues, cost restrictions,
implementation difficulty, etcetera. In such cases, observational studies can be useful. Since
individuals are not randomly assigned to treatments, the observed association between
treatment and outcome may be due to confounders that predict both treatment assignment
and outcome. Therefore, it is important to control for all the confounders in order to obtain a
valid causal conclusion about the treatment effect.

We consider the potential outcomes framework (Rubin (1974); Robins et al. (1992)). This
has been commonly adopted in the causal inference literature. For illustration, consider a
single-time-point setting where we have pre-treatment variables L, a binary treatment A with
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0 indicating the control treatment and 1 indicating the active treatment, and lastly an
outcome at the end of the study, Y. In this setting, each patient has two potential outcomes:
Y0, the outcome that would be realized if the patient received the control treatment, and
YD, the outcome that would be realized if the patient received the active treatment. We
assume that the observed outcome is equal to the potential outcome under the actual
treatment, Y= ¥4 (the consistency assumption, Rubin (1974)). Therefore, causal inference
can be conceptualized as a missing data problem in which only one potential outcome is
observed for each patient. Rubin (1974) described the condition for estimating average
causal effects in this setting, which assumes that there is no unmeasured confounders,

yYOTJalL. @

for a=0, 1. Under (1.1), the potential outcomes are missing at random (Rubin (1976)) and
selection bias can be removed by adjusting for the measured covariates. However, if there
are unmeasured confounders, potential outcomes are not missing at random conditional on
the measured covariates, which renders the effect estimates unidentifiable.

For observational studies with a time-varying treatment, Robins (1986; 1987) established the
conditions for estimating causal effects, and proposed two classes of models: Marginal
Structural Models (MSMs, Robins (2000)) and SNMM:s (Robins (1994, 2000); Lok et al.
(2004); Lok, Hérnan and Robins (2007)), which adjust for selection bias due to measured
time-varying confounders. In a recent assessment of the dependence of the effect of ART on
its initiation time, Lok and DeGruttola (2012) developed a new class of coarse SNMMs and
applied it to the observational AIEDRP (Acute Infection and Early Disease Research
Program) database. The validity of G-estimation of the SNMMs analyses relies on two key
assumptions: (i) the treatment effect model is well-specified, and (ii) there are no
unmeasured treatment-outcome confounders. In practice, both assumptions are rather strong
and can be violated. Yang and Lok (2016) developed a goodness-of-fit test procedure to
assess the model fit (assumption (i)). This paper addresses sensitivity to unmeasured
confounding (assumption (ii)).

The existing literature on sensitivity analyses to unmeasured confounders is large, including
Schlesselman (1978), Lin, Psaty and Kronmal (1998), Greenland (2003, 2005), McCandless,
Gustafson and Levy (2007), Cornfield et al. (2009), and Rosenbaum (2009). Cornfield et al.
(2009) used sensitivity analyses formally to assess the association between smoking and
lung cancer; Rosenbaum (2009) has done extensive modeling of how unmeasured
confounders affect the treatment assignment and outcome; and McCandless, Gustafson and
Levy (2007) proposed a Bayesian approach to conducting sensitivity analyses where the
prior distribution models beliefs about unknown and unmeasured confounding. Many
existing methods are limited to simple settings, e.g., most of these works consider settings
with a single time-point treatment, or rely on external sources of information on the
unmeasured confounders. In a longitudinal setting with time-dependent treatments, the
literature is scarce. The exceptions include Robins, Rotnitzky and Scharfstein (2000) and
Brumback et al. (2004). Brumback et al. (2004) implemented a sensitivity analysis to
unmeasured confounding of inverse-probability-of-treatment-weighting estimators for
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MSMs. SNMMs have more desirable features than MSMs (Robins (2000)). For example,
SNMMs do not require the positivity assumption which assumes the probability of all
patients receiving each treatment regimen is positivity, which may be questionable in
practice; SNMMs can handle continuous-valued treatments, but MSMs cannot; SNMMs are
able to model time-varying interaction between covariates and treatment in the outcome
model. Despite these advantages, their applications in practice are still limited (Vansteelandt
and Joffe (2014)). We aim to provide a suitable methodology to deal with unmeasured
confounding for SNMMs.

As in the single-time-point setting, in the presence of unmeasured confounders, the
unobserved potential outcomes are not missing at random, and standard G-estimation lead to
biased effect estimates. We investigate the sensitivity of G-estimation of coarse SNMMs to
unmeasured confounding, assuming a nonidentifiable bias function quantifying the impact
of unmeasured confounding on the average potential outcome. We propose adjusted G-
estimators of coarse SNMMs parameters, and prove their consistency under the bias
modeling for unmeasured confounding. In Section 2, we present a motivating data set and
the coarse SNMMs analysis. In Section 3, we present the sensitivity analysis for coarse
SNMMs in a time-varying treatment setting. In Section 4, we present the inverse-
probability-of-censoring-weighting technique to accommodate patients loss to follow up. In
Section 5, we apply the proposed method to the motivating data set. Section 6 concludes.

2. Coarse Structural Nested Mean Models

2.1. The AIEDRP dataset

ART (Antiretroviral Treatment) is a standard initial treatment for HIV-positive patients, and
has considerably reduced the morbidity and mortality in them. However, there is no strong
evidence to support when to start ART in patients in the acute and early stages of infection.
For this investigation, we use the observational AIEDRP (Acute Infection and Early Disease
Research Program), which consists of 1762 HIV-positive patients diagnosed during acute
and early infection (Hecht et al (2006)). Dates of infection were estimated based on a
stepwise algorithm using clinical and laboratory data (Hecht et al (2006); Smith et al.
(2006)).

Lok and DeGruttola (2012) explored this data set and argued that the data show time-varying
confounding by indication, and applied coarse SNMMs to estimate how the time between
infection and ART initiation affects the effect of one year of ART on immune reconstitution
as measured by CD4 count. They adjusted for selection bias due to observed time-varying
confounders. Their analysis showed that ART is beneficial in acute and early infection, with
a possibly increased beneficial effect of earlier ART initiation. Although several measured
confounders were censored, including age, gender, race, injection drug use, CD4 count, and
viral load, the adjusted effect estimate may be biased due to unmeasured confounders. For
example, psychosocial factors (Villes et al. (2007)) and comorbidities (Abara et al. (2014))
are important confounders of the association between the ART initiation time and the CD4
count outcome. These confounders were not available.
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We estimate the averaged causal relationship between the ART initiation time and the mean
CD4 counts two years after infection. We adjust for both measured confounders and possibly
unmeasured confounding. To do this, we use sensitivity analyses to estimate the potential
impact of unmeasured confounders on the estimated causal parameters.

2.2. Data structure

Suppose all participants, in a random sample of size n, are followed monthly at months 0,

..., K+ 1, where 0 is the estimated date of infection, and K + 1 is the last month of interest
(month 24 in our application). For each individual, we observe a treatment regimen (A, ...,
Ag) with Ay the treatment determined at month &; and a covariate process (Lo, ..., Lg+1). Ag
= 1 if the treatment is started at month & and 0 otherwise, and L is a set of observed
covariates at month &, which is measured after A;_; and before A;. The data are represented
as ni.i.d. realizations of (LO, ApLpAp oo L Ags L 1) = (ZK, Ly, 1), where we use

overbars to denote the histories of time-dependent treatments and covariates. and for
notational simplicity we drop the subscript 7 for patients. We denote the outcome of interest
by Yand we have Y= Lk, the CD4 count measured at the end of the study. We assume
that treatment is monotone in the sense that once the treatment is initiated, it never stops
under follow-up. Thus, the treatment regimen is determined by the treatment initiation time
m. Let Tbe the actual month of treatment initiation. If treatment was never initiated during
the study period, let 7= co,

2.3. The potential outcomes

Let ¥(®) be the outcome CD4 count at month K + 1 after infection had the patient never
initiated treatment. This is a counterfactual outcome. It is only observed if the patient did not
initiate the treatment. Let ¥{™ be the CD4 count at month K + 1 had the patient started
treatment at month m. Under this potential outcome framework, we need the consistency
assumption, which links the counterfactual data to the observed data, Y= D,

2.4. Coarse SNMMs

Following Robins (2000) and Lok and DeGruttola (2012), we define the treatment effect
model as conditional treatment contrasts, for 0 < m< K

ym(l_m) = E(Y(m) ~yNEL =T T= m) .

We assume a parametric model for y,y l m) = (1//0 + u/lm)(K +1- m), since arguably the

m, y/(
average treatment effect is proportional to the treatment duration (K + 1 — m), and the
coefficients can depend on the treatment initiation time m. If gy + yym> 0 and yy <0, the
treatment is beneficial with increased gain if it was started earlier.

2.5. The conditional probabilities of treatment initiation

Unlike in randomized control trials, the treatment assignment mechanism is unknown in
observational studies. We assume that we have a correctly specified parametric model for
treatment initiation given the observed covariate history:
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Pr(A,=11L,.A,_,=0)=Pr(A,=1|L,.A, _,=0a). (2.1)

m

This could be a pooled logistic regression model. Since treatment is monotone,
Pr(A, =1]L, A _ =1)=1

2.6. G-estimation under no unmeasured confounding

The parameters in y,, cannot be estimated by regression methods since the dependent
variable involves the potential outcome. For parameter identification, we require the
assumption of no unmeasured confounding (Robins et al. (1992); Robins (1998a,b); Robins
(2000)): for0 < m< K,

A YN ELA, . @2

where A || Bmeans “A is independent of B (Dawid (1979)).

To facilitate estimation, take

H,=Y-y; W(ZT), (2.3)

which mimics the potential outcome ¥(°) since by blipping o the average treatment effect
from the observed outcome, we obtain a quantity that has the same conditional distribution
as the outcome that would have been observed (Lok and DeGruttola (2012)):

E(H,|L,.A,_ =0,4,)=E(Y®|L A4 =04, @4

where by convention, E(- | Ly, A_; =0,Ay) = E(- | Ly Ap)- (2.2) does not require (2.4).
Together, (2.2) and (2.4) imply that

EH,|L,.A,_=0,A,)=E(H,|L,A,_;=0). (25

G-estimators solves unbiased estimating equations constructed based on (2.5) (Robins et al.
(1992); Robins (1994, 2000); Lok and DeGruttola (2012)).

3. Evaluating the Impact of Unmeasured Confounding

Assumption (2.2) cannot be tested empirically from the data. If it fails, the treatment
assignment is non-ignorable or, equivalently, there is selection bias on unmeasured
confounders. For 0 < m < K, define the selection bias function due to unmeasured
confounders (Robins, Rotnitzky and Scharfstein (2000)) as
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oLy = E(V L, A, _ =0, =1)-E(y LA | =0.4,=0).
m mm—1 m m m—1 m

If A, is given not just based on ((Zm, Km _ 1)), this represents the average difference in the

potential outcome Y{® between those with A,, = 1 and those with A4, = 0 for the subgroup
of patients with Zm and Zm 1= 0. Thus, the selection bias function measures the impact of

unmeasured confounders of A4, on the difference in the potential outcome between the
treated and untreated patients at each month, given the past treatment and covariate history.
Under the assumption of No Unmeasured Confounding, g(Z,,) = 0.

The observed data carry no information about selection bias on unmeasured confounders. Its
presence, direction, and magnitude are important for modeling, but the data at hand cannot
determine them. Therefore, the selection bias on unmeasured confounders should be pre-
specified based on the modeler’s belief, and its magnitude should be explored over a wide
range in a sensitivity analysis. Let g(Z b ;7) be a correct model of g(Z m), where 71s regarded

as the sensitivity parameter. We parametrize g so that g(Zm; 0) =0, =0 indicating the

absence of unmeasured confounders. The functional form of the nuisance models can be
selected on the basis of the observed data, as well as the literature and subject knowledge
specific to the application setting. Later, we provide a more specific illustration in the
context of our example.

Equation (2.5) is the key for estimation under the assumption of No Unmeasured
Confounders. Since this assumption may not hold, (2.5) is not necessarily true. We would
like to adjust the previously defined mimicking outcome ), so that a similar relationship to
(2.5) holds for the adjustments.

Definition 1 (Adjustments). For0 < m< K,

K-1

H:ln,(w,n):Hw_kZ Pril=Ap | Ly Ay =024, = 1|g|Lisn
=m

The superscript “a” stands for the adjustment. The proof of the following theorem is
presented in the Appendix, showing that (3.1) replaces the role of (2.5) for estimation.

Theorem 1. Under the Consistency assumption, if y, is a correctly specified model for the
treatment effect v, g(fm, A 11) is a correctly specified selection bias function due to

unmeasured confounding with pre-determined value for n; for Hfil m(3.1),and0</1<m<

K,

E( Z(!//,ﬂ)ll‘_m’gm—lzasAm):E( Z(,,,,q)”jm,A_m_l:a). (3.2)
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Theorem 2 (Unbiased Estimating Equation Under Unmeasured Confounding). Under the
Consistency assumption, if Yy 1s a correct model for the treatment effect vy, g(L_ - A s n) isa
correctly-specified selection bias function due fo unmeasured confounding with pre-
determined value for n, for H, in(3.1), the estimating function

(3.3)

U(V/) =PG4y, nqr

with

K
Gy = Z q

T a
Ly Hm,(l//,ﬂ) —E

an,(u/,n) I Lm’Am—l = 0)]
(3.4)

x[Am—Pr(Am= VLA _, =0)]

1. -
Am—1=0

1s an unbiased estimating equation for anyq(Lm).

The proof of Theorem 2 is given in the Appendix. It leads to a large number of unbiased
estimating equations for . To facilitate optimal estimation, we identify the optimal set of g,
¢°P', that satisfies

aG(w’ 1,9)

E
01//T

=FE

T
G(w, B q)G(W’ 7 QOPt)] (-5

for any g. With this ¢°P', the resulting estimator from (3.3) is most efficient among the class
(Newey and McFadden (1994)).

Theorem 3 (Optimal estimation). /£ for0 < /< m< K, E{H“ W n)H7 W | L, Km} does not

m,

depend on A, then,

where H,, is defined in (2.3) and an, is defined in (3.1).

(w,m)

Proof of Theorem 3 is given in the Appendix. The assumption here is an organic extension
of (3.2). It affects not the consistency of the estimator, but the effciency.

Stat Sin. Author manuscript; available in PMC 2019 March 08.



1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Yang and Lok

Page 8

Remark 1. Estimating equations (3.3) with (3.6) are not well posed for estimation since they

involve unknown population quantities through E(Ham won | LA, _ = 6),

E(()HW [owIL,.A, ;=0 A,)and Var(an, (w.n

y/,E(aHW/ ow|L, A _ =04 = 1) —E(an/ oy|L,.A = 6) does not depend on y;

)|Zm,Km_1=(_)). If H, is linear in

however, one still needs the true unknown distribution to compute the conditional
expectations. To obtain estimators with good efficiency properties we approximate the
unknown functions with estimators of them under some working model. We propose the
following algorithm: (i) obtain a consistent preliminary estimator of y;, denote it by If/p (i1)

approximate E(aHW / oy |L,, Xm) by regression models E(aHW / op|L,,A,; 3 ), where £ is

the estimated parameters in the regression models; (iii) approximate

a L A = 0 1 a T A j— _. P .
E(Hm’ W) LA, _ = 0) by regression outcome models E Hm (y? ﬂ) IL,.A =0;¢|;
AWy

and (iv) replace nuisance regression outcome models with estimators of them under the

m—1

regression models, and solve the resulting estimating equation for . The resulting estimator
is locally optimal under these nuisance regression outcome models. The 95% bootstrap
confidence intervals of  can be constructed using the 2.5% and 97.5% percentiles of 500

bootstrap realizations of .

Remark 2 (Double robustness). In the estimating equations (3.3), the true treatment
initiation model is unknown. We replace it with Pr(Am =1] Zm, Km = 0: &), where & is the
maximum likelihood estimator of a. The resulting estimator of y solves (3.3) with this
replacement equivalent to the estimator of - solving (3.3) and the estimating equation for a.

Although (3.3) depends on two sets of nuisance models, E(H“ |L LA . =0; 5) and
m,(p,n) ' Tmm—1
Pr(A, =1|L A =0;a),it does not require both specifications to be correct, which

renders the estimator doubly robust. See the Appendix for the proof.

4. Censoring

Because of the time-dependent nature of longitudinal data, the data are often subject to
censoring due to loss to follow up. When the censoring mechanism is informative in the
sense that censoring may depend on time-varying covariates, e.g. sicker patients drop out of
the study with higher probability than healthier patients, the patients remaining in the study
are a biased sample of the full population.

Following Robins, Rotnitzky and Zhao (1995) and Lok and DeGruttola (2012), we use
inverse probability of censoring weighting (IPCW) to accommodate patients lost to follow
up. We assume that the censoring process is ignorable in the sense that censoring only
depends on the past observed covariate history but not the future unobserved covariates and
outcomes. Its heuristic idea is to redistribute the weight of censored patients among the
“similar” remaining uncensored patients. Let Cy;, be the censoring indicator at month m: Cp,
= 1 if the patient is censored at month m and 0 otherwise. We assume a parametric model for
the censoring process given the observed covariates history as
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prc, ., =0L,.A, _.C,=0)=PrC, =0|L,.A, _,C,=0:p)eg apooled

logistic regression model.

Define the IPCW version of estimating functions as

K
IPCW - a a 5T 5
G = L |H —E|H L ,A =0
(w.1.9) m2=:0q m|| " m, (w,n) m,(w,n)l mm—1 ]’
x{A —PrlA =1|L A =0;a|{1= W,
m m m m—1 C _'m
K+1=0

with eqnarray W, =1 / {HK +1 Pr(Cp =0 Zp

p=m+1 Kp_l,ép_lzﬁ;ﬁ)}.Here,

-1
IPCW

PuCiyng) =

0 is an unbiased estimating equation if the censoring model is correct.

5. Application to Initiating ART in HIV-Positive Patients

We conducted a sensitivity analysis of estimating the effect of ART initiation time on mean
CD4 count at year 2 after estimated date of infection in HIV-positive patients, based on the
AIEDRP database described in Section .

We considered the true treatment effect model to be y,, W(T m) = (l//l + Wzm)(K +1- m) Yang

and Lok (2016) showed that this model may be adequate using an overidentification
restrictions test. In the estimation procedure, the treatment initiation model and the
censoring model were fitted by pooled logistic regression models, and the nuisance
regression outcome models were fitted by linear models, adjusting for a rich set of covariates
based on the HIV literature and clinical knowledge (Lok and Griner (2014)).

In the sensitivity analysis, we considered three scenarios for specification of g(L_ s ;1): (1) ng

(1) mo + 7y x m; and (iii) 7y + m * C4 ;. Table 1 shows the results of the sensitivity
analysis. In scenario (i), g(L,;n) = n, with 79 € {100, =75, ..., 75, 100}. For interpretation,

for example with 7 <0, the untreated individuals tend to be healthier than the treated at
month m, uniformly across months, even after controlling for measured confounders. As the
magnitude of 7 increases, y; and y/, increase, which makes sense since the more the un-

controlled confounding is assumed, the further the adjusted estimator increases. Moreover,
the confidence intervals of 7, and , are larger with larger 7, which suggests that more

unmeasured confounding would further obscure the treatment effect. In scenario (ii),
g(Zm; q) =1 + 1, X m, the effect of uncontrolled confounding changes linearly with m. We

considered 7y € {—100, =75, ..., 75, 100} and 7 € {5, 5}. For interpretation, consider for
example g(fm; ;1) = — 100 — 5m, the untreated individuals tend to be healthier than the treated

at month m, and the effect of uncontrolled confounding increases with m. For 7, =5, as 7
increases from —100 to 100, ¥, and , decrease, and y/, remains negative but statistically

insignificant. For 7, = =5, as 7; increases from —100 to 100, 7, and y, decrease, and i,
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remains positive but statistically insignificant. In scenarios (iii), g(Zm; 17) =1y+n, X CD4,,

the effect of uncontrolled confounding changes linearly with C4, we considered 7y €
{~100, =75, ..., 75, 100} and 7, € {-0.02, 0.02}. As n; increases from —100 to 100, y, and

W, decrease. y, remains negative; however, the 95% bootstrap confidence interval of i,

remains statistically insignificant. In summary, we conducted a comprehensive sensitivity
analysis for the AIEDRP study considering different forms of the selection bias function and
different values of the coefficients. After accounting for possible uncontrolled confounding,
treatment is beneficial under a wide range of plausible scenarios, and the effect of the
initiation time is insignificant.

6. Discussion

We have introduced a new sensitivity analysis method that uses modified G-estimators to
assess the effect of possible uncontrolled confounding in longitudinal observational studies.
If strong prior information is available, appropriate functional forms for the selection bias
function due to unmeasured confounding can be directly imposed. We suggest varying the
coefficients over a set of plausible values, determined on the basis of observed data,
literature, and subject matter knowledge. As with its application to HIV research, the new
method can easily be adopted to provide valuable insight on the impact of uncontrolled
confounding.

An extensive literature has assumed that there is one binary unmeasured confounder U, and
the association of U/and Y has been considered as the sensitivity parameter (see e.g.
Schlesselman (1978) and Rosenbaum and Rubin (1983)). The advantage of this approach is
that the sensitivity parameter is easy to interpret; however, this approach can be restrictive,
since in practice the unmeasured confounder can be of any type and may be multi-
dimensional. Modeling the association of a multivariate U/ with Y'is not straightforward. A
major advantage of our approach is that it can be used to explore sensitivity to multiple
unmeasured confounders simultaneously. The connection between the two approaches has
not been established. In simple cases where there is one unmeasured confounder, modeling
the relationship between the unmeasured confounder and the observed variables can provide
insight for specifying the selection bias function and interpreting the sensitivity parameters.
In the Appendix, we explore the connection between the two approaches in the context of
our application to initiating ART in HIV-positive patients. In future work, we plan to
evaluate and compare the performance of the two modeling approaches under various
scenarios. We will also extend the work to longitudinal settings with repeated measurements,
survival data, continuous treatments, and dynamic optimal treatments.
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Appendix A. Proof of Theorem 1

First we show that

E(Y*|L,.A,_,=04,)-EY™|L,A,_,

=Pr(1-A,I|L,A, =024, -1)(L,:n)

=P1-A,|L,.A,_=0)E(Y™|L,A,_ =04,
E(Y®|L,.A,_,=01-A4,))

s =gV LA, =04, =0)-EY™)L A _ =0
mm—1 m mm—1
—E(Y(°°)|L A =04 =0)
m-—1 m
E(Y(oo)lL A =04 :O)Pr(A —0|L A :6)
m m—1 m m m m—1
E(Y(°°)|Z A =0,A —I)Pr(A =1L A =6)
m m—1 m m—1
=Pr{A, =1L, A, _ =0)x e[V L, A, _ =04,=0)
m mm—1 -1 m
E(Y(°°)|L A =04 = )}:RHS
m m—1
Consider (A.1) for A,,=1,
LHS:E(Y(°°)|L_ A . =0A =l)—E(Y(°°)|L A =6)
m m—1 m 1
—E(Y(°°)|L A =0,A =1)
m-—1 m
E(Y(oo)lL A =04 :O)Pr(A —0|L A :6)
m m—1 m m m m—1
YL, A, =04, =1)pda, =11L,.4, =0
m m—1 m m—1
= Pr{A,, =01, A, _ =0)x[E(V'|L, A, _ =0a4,=1
m m m-—1
E(Y(°°)|L A . =0A =0)}:RHS
m—1

Therefore, (A.1) follows. For k> m, since
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E\Prl1-4,|L,,A, _,=0|24, —1|l- __g(Z ;7)|Z A =0,A =1[=0,
k'Tk k-1 kAk—l_Ok m m—1 m
E\Pl1-A |L,A, _,=0|24,-1]1- __g(Z ;1)|Z A =0A =0
k'Tk k-1 kAk—l_Ok m m—1 m
= E[E{Pr(1 - A | L, A, _ | =0)24, 1)L, 4, _, =0}
XIZ =6gl_,k;11 |l_,m,gm:6
k—1
= E[E{Pr(a =11 L A, _ =0)Pr(A, =0|L,, A _,=0)
+Pr(A, =0 | LA, | =0)PH{A, =1|L,A _ =0)
x| = 1filg =6gzk;q |Zm,Km=6 =0,
k-1
we have
E(Pr(l —A LA = 6)(2Ak— 1)15 _6g(ik;n) |L,. A, _ = 6,Am]
k=17
=E[Pr(1 —A LA, = 6)(2Ak— 1)1- _6g(Zk;n) |L,.A, _ = 6] =0
k=17
For /< m, since
E\Pr{1-A;| LA, 1=6 24,-1 151_1_6g(ilq |Zm,Zm_1=6,Am
=PrAl_O|L_lAl_lzﬁ](—l)lgl_ _ngl;q
which does not depend on A,,,, we have
E’Pr(l —A L A,_ = 6)(2Al - 1)1 =6g(L_l; ;7) |L,.A, _ = 6,Am]
(A3)

;l—l
:E{Pr(l —A L A =6)(2A,— )151_1:6(?([1;,1) |L.A _, =5],

Now we consider, for /< m,
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4 _ =
E(Hl, o em Am—1=0 Am)
:E(H |L A =0,A )—Pr(l—A |L A :6)(2A —1)g(i ;n)
w' Tm m—1 m m'“m m—1 m m
K-1 o ~ _ _
-E Z Pl =A LA =0)24, — 1)1 ¥ L1 LA, =0.4,
k=m+1 k-1
m—1 o _ _ _ _
-E kZIPrl—Alek,Ak_l=O 24, -1 1Ek_1=(_)ng;q LA, _1=0A,
:E(Y(oo)lf A =04 )—E(Y(°°)|Z A . =0A )
m m—1 m m m-—1 m
+E(y<°°>|z A =6)—0
m m-—1
(o) m—1
—_— o T A __ — — T n __ —
=gy L A =0 EkZlPrl A LA =0]24, -1
X lA—k_lzang;q)|Lm,Am_1=0],

where by convention Z;{ — (X =0for £<s, the first equality follows from the definition of
H? (w.ny and the second equality follows from equations (2.4) and (A.1), (A.2), and (A.3).
Therefore, E(H? w.n| L.A =0, Am) does not depend on A, and (3.2) in Theorem 1

follows.

Appendix B. Proof of Theorem 2

Foreach0<m<K-1,

E[q(zm){an, w.m) ™~ E(

A =1|L A
m

TS
~i
2|
|
|

=L

X{A — Pr
m

>(Am_PrAmzlle’Am—lzo) IZ =0
m—1
_ 7 a = - _5 a - o
= £l T Bl 6y Ei 1 =0) = B )| B A1 =)
x Am—PrAm=1|Lm,Am_1=0] iz _g|=®

where the second equality follows from (3.2). Therefore, Gy, 5,¢) = 0, proving the result.

Appendix C. proof of double robustness

IfPr(A =1|L A | =0;0)is correct,
m m

m
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£G4y,
(w.n,9)
K
— T a T A __ — a T A __.
_Emgoqu E\Hy iV DAy =O0A | =E(H LA =0i
X Am_PrAmzl|Lm’Am—1:O;0]’1Zm_1=6]
K
— T a T __ — a T A __.
_Emgoqu E o Vo Am = 1= ) = BV oy V o A =1 = 056
X Am_PrAmzl|Lm’Am—1:0;0”1§m_l_6
K
— T T A __ — a A
_Emz;‘oqu E\Hy oy B Ay — 1 =O| = E[H (LA, =056
X \E\A, LA, =0|=PrA, =1L A _ =0:0)1+ =6]
m—1
K
_ = a T _al_ a =
_Emgoqu E\Hy iy D Ay =O| = E[HL (VLA =05E]) X
0x 1A— =6]=0’
m—1

where the second equality follows from (3.2) and the forth equality follows from the
assumption that Pr(A, =1|L A, =0:6)is correct. E(H” L A, _ =0 5)} is

m, (y,n)
correct,
£{Gy 0]
(w.n,9)
K
— T a T A __ — a T A __.
_Emgoqu E\Hy iV DAy =O0A | =E(H LA =0
x Am—PrAm:I|Lm,Am_1:O;0]’1K =6]
m—1
K
— T a T A __ — a T A __.
_Emgoqu E\Hy iy DAy =O| = E[Hy (LA, =0i¢
X Am_PrAmzl|Lm’Am—1:O;0”1Z =0
m—1
K
— T a T A __ — a T A __.
_Emgoqu E\Hy iy B Ay =O| = E[Hy (LA, =0i¢
X \E\A, LA, _=0|-pPrA, =1L A _ =001+ =6]
m—1
K — p—
=E Y gL, |x0x\E|A, L, A _ =0|-PlA, =1L A _ =00
m=0
X 11— —]:O,
m—1=O
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where the second equality follows from (3.2) and the forth equality follows from the

assumption that E(an won | L.A _ =0 5)} is correct. Therefore, Gy, o) is an unbiased

estimating function if either Pr(A, = 1|L, ,A, _ =0;6)is correct or

E(sz won | LA _ =0 5)} is correct.

Appendix D. Proof of Theorem 3
The left hand side of (3.5) is

E [%G(w, ", q)]

K
a a S =
- £ e 1)
-1
=0 m|| oy W oy Ty Tm T m
X[Am—PrAm=1|Lm,Am_1= Iz =6]
m—1
K[ ) - ) S =
=E ZOqu[E(()WHWMmAm_l_oAm)—E(WHWum m—l_O)}
m=
X{A, ~Pr|A =1L A =01z :6}
m—1
K[ ] I = ] = - =
D> qu‘ (WleLm m_1=0Am_1)— (WHWLm m:o)]
m=0
= N2
X{Am_Pr(Amzlle’Am—l_())} I3 :6]
m—1
X[ ] —_— = ] —
=E ) qu[ (aWleLm m_1=0Am—1)—E(WHW|Lm m—o)]
m=0
x {1-PA =1|L A _ =0 PrAm=1|Lm,Am_1=01;m_1:6]

where the last equality follows by applying £(Y]A) = {(Z(Y][A=1)— H(Y|[A=0)} {A— Pr(A
=1)} to E(()HW [owIL,.A4, =0 Am). The right hand side of (3.5) is
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T
E G(w,n,q)G(u,’m qOPt)]
K K _ _ _
= E| X > d|Lu|{Hn oy~ E| o (m)'Lm’Am—l:O)l
m=0[=0
X(Am—Pr(Amzl|Ijm,Zm_1=6)]lg _35
m—1"
7\ 5 ox =
x ¢™(L) " (H] .~ E(H] ) | LAy = 0)

X |Al—Pr(A1= VLA, =0) Iz =6]

K
= 8| Y | (E,) Var(HE, ) | B Ay = 0.4,)
lm=0

x {A,=Pr(4,=1|L,.A,_,;=0)}"1; 1=5]
-
K [ . i
= E| Y q|L,|¢™(L,) Var(HzL(W’nﬂLm,Am 1_0)
m=0
x {A,-Pr(A, =1L A, _ =01 _6]
m—1"
K _ T _ —\2
= E[ Y q|L,,|a™(L,) Var(H, ) | Ly A~y =0)
m=0
xE[{Am—Pr(Am=1|Zm,Km_1=6)}21K 1=6|zm,zm_l_6])
-
K
= B Y o\ LT, Var(HE, (o | B Ay =0) 15 5
m=0 m—1
x {1-Pr(A,=1|L,.A,_,=0)|Pr(A,=1|L,A, _,=0),

Page 16

(A.4)

where the expectations of the cross terms in the first equality are zero by the following

argument. It suffices to show that for m> /,
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E (ol )P () B ) B A= 1 = OJE(HE, )V Ep By 1 =)

x{Am—Pr(A =1|L,.A, _ = )}
x{A;=PrlA;=1|L,A _ ;=0 lZm_l=6]
= Bl C ™ E) Bt )V E B - 1= O)E(H ] gy By =
>({EAmlzm’Km—l:6)_Pr(Am:1lzm’gm—l_a)}
xlgm 1 6Al—PrAl_l|Zl,§l_1=6) =0,
Ele\Ent ™ (E) H, | Hl oy BB 1 = 6)1/Km =0
(A, —pra, =110, .& _ =0)}{a-Pla=11L,4 _, =0)}|

xE(A, IL A | =0)-PrA =1|L ,Am_l_O)}
X1 _olA=Prla, =110, _ =0]j| =0,
m—1
- opt(7\T' q - 5
El6| Lo ) iy A =1 =05 =
x4, —pPa, =110, & =0)}{a-Pla=110.4 _,=0))|
_ opt(7\T -( ;a = a =
- Y, Ty =T 1 =0,
x1A —PlA =1|L A | =0 1Em_1:6Al—PrAl_1|Ll,Al_l=0
_ T OPt_ T a T T _n a T e _n
= oo ) B, iy Ee A= 1 = O)ELHE, ) B Ay~ 1 =)
><{EAmle’Am 1—0)—Pr(Am=1| m’Am—lzo)}
><1Zm_l_6Al—PrAl_1|Ll,Al 1=0)‘=0,

where the second equality follows from (3.2).
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Elo| L, |oP(L,) m, o)L () =0
X {Am_Pr(Am =11 Lm’Am -1- 0)}{Al Pr(Al =1 Zl’gl = 6)}]
= E|q|L,,|i(L,)" E{HE, o oy o A 1 i =D

x{a,, = Pr{a, = V1L, A,y =0)}{a,=Pra =11 L4, =0)}]
= Elq|L,, | ()" EN\F, oL oy e Ao = 1 m_1=_
X{Am_Pr(Am=llzm’gm—lza)}{Al_Pr(Al=llzl’gl_lza)}]
=Eq(Z qopt(zl)TE m, (y,n) l(l//,ﬂ)le’ _’"_1 lgm_1=6
XE\A —PrAm=1|Zm,Km_1=6 lgm_lzalzm’gm_l}
X{Al—Pr(Al=1|Zl,gl_1=6)} =0,

where the third equality follows assuming

a a 2 a a
E{Hm, (w, W)Hl, (w,m) I Ly Am} - E{Hm (w, rl)Hl, (w.n

any g, the solution of g° is (3.6), proving Theorem 3.

)| LA, _ 1}. Since (A.4) equals (A.4) for

Appendix E. Exploring the connection between the two approaches to

sensitivity analysis

The approach of Schlesselman (1978) and Rosenbaum and Rubin (1983) can be used to
motivate the specification of the selection bias function. Assume that there is one
unmeasured confounder U, and we have no unmeasured confounding if U/is taken into
account. For 0 < m< K,

which implies that

(Y(°°)|L U_,A =
m " m m—1

To motivate the selection bias function g( ) due to the unmeasured confounder U,
. ()7 7 T A T
assuming that we have E(Y L, U,A, _ = O) =po+ B L, +ByU, + W(K - m), note

that in this case,
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g(Lm> = E(Y(OO) | Zm’ gm -1

=E{E(Y(°°)|Z U A =0,A
m " m m—1

Il

ol

> 3
3

—E{E(Y(co)ll_, U A
m m m—
=E{E(y<°°>|z U A =6)|Z A
m " m m-—1
_E{E(y<°°>|z U LA =6)|z A
m " m m—1

W
|
=
)
~
.
I
ol
>
1]
=

ﬁU{E(Um | Zm"zm— 1 =6’Am= 1

Considering U'to be a variable like a measured confounder inspires the specification of
Ew,IL A =0A =1)-EU, |L A  =0,A =0),and therefore of ¢(L ). For
m m m m m m m m m

example, in our application, it could be that
E(U, LA, _=0A, =1)-EU,I|L,.A, =04 =0)=a,+aCD4  which

corresponds to the third scenario for specification of g(Zm) in Section 5.
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Results of the sensitivity analysis in AIEDRP: optimal estimates and 95% confidence intervals (CIs).

Table 1

(L) m

=S

v,(C1)

w,(C1)

—100
=75
=50
-25

no 0
25
50
75
100

S  © O ©O o o o o o

4333 (39.35, 47.39)
38.33 (34.79, 43.08)
36.42 (27.13,39.11)
31.06 (25.54, 33.46)
2471 (21.37, 28.47)
20.64 (16.37, 25.10)
1630 (12.75, 20.78)
11.86 (7.82, 16.54)
7.43 (2.66, 11.29)

~0.305 (~1.973, 0.883)
~0.340 (~1.635, 0.826)
~0.396 (~1.771, 0.795)
~0.411 (~1.856, 0.785)
~0.426 (~1.944, 0.654)
~0.617 (2.071, 1.190)
~0.727 (~2.131, 0.401)
~0.814 (~2.296, 0.519)
~0.891 (-2.277, 0.833)

—-100

100

[ Y Y Y Y Y NV N

4272 (37.36, 49.17)
38.42 (31.86, 42.71)
35.51 (28.67, 38.00)
29.17 (25.07, 33.89)
25.20 (18.87, 30.67)
21.34 (14.68,27.25)
17.76 (12.17, 24.13)
12.40 (6.42, 19.78)
7.92 (157, 19.96)

~1.243 (-3.763, 1.729)
~1.408 (-3.317, 1.648)
~1.481 (-3.642, 1.215)
~1.512 (-3.381, 0.950)
~1.846 (-3.977, 0.932)
~2.157 (-4.272, 1.351)
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~2.606 (~9.637, 0.587)

ot mm
—-100

=50
-25

25
50
75
100

42.03 (32.37, 53.61)
37.82 (29.47, 47.70)
33.63 (27.58, 42.98)
29.36 (22.89, 37.24)
24.82 (19.11, 30.19)
20.61 (16.07, 26.51)
16.27 (12.76, 20.85)
11.91 (8.62, 16.03)
7.54 (345, 11.60)

1.660 (~5.197, 6.836)
1.465 (~1.896, 6.007)
1.218 (-3.831, 3.908)
1.000 (~2.444, 4.158)
0.806 (~1.333, 3.453)
0.564 (~2.486, 2.538)
0.432 (~1.861, 1.504)
0316 (~1.187, 1.454)
0.202 (~1.249, 1.703)

—-100

=50
-25

o+ m CD4y, 25
50
75
100

0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02

4123 (36.85,45.51)
36.54 (31.35, 40.42)
31.97 (26.12, 36.99)
27.65 (23.74, 30.96)
22.54 (18.74, 27.05)
18.54 (14.92, 21.90)
14.20 (8.61, 18.77)
9.76 (3.98, 13.87)
5.24(0.55,9.54)

~0.341 (~1.950, 0.697)
~0.375 (~2.115, 0.779)
~0.429 (~2.751, 1.158)
~0.544 (-2.253,0.531)
~0.419 (~1.938, 0.845)
~0.629 (~1.659, 0.415)
~0.741 (~2.444, 1.452)
~0.833 (~2.046, 1.101)
~0.916 (~3.100, 0.630)

—-100

—0.02  45.71 (41.11, 49.71)
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g(L,:n)

Mo

71

(1)

¥,(C1)

100

—0.02
—0.02
—0.02
—0.02
—0.02
—0.02
—0.02
—0.02

40.95 (37.06, 44.83)
36.35 (32.25, 39.68)
32.28 (28.20, 35.18)
26.87 (23.62, 32.52)
22.74 (19.55, 26.74)
18.40 (14.34, 22.95)
13.97 (9.93, 17.47)
9.47 (3.99, 14.50)

~0.335 (~1.406, 0.683)
~0.415 (~1.633, 0.706)
~0.635 (~1.764, 0.526)
~0.428 (~2.876, 0.617)
~0.607 (~2.779, 0.284)
~0.716 (~1.929, 0.628)
~0.799 (~1.950, 0.497)
~0.869 (~2.487, 1.033)
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