
SENSITIVITY ANALYSIS FOR UNMEASURED CONFOUNDING IN 
COARSE STRUCTURAL NESTED MEAN MODELS

Shu Yang and
Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA. 
syang24@ncsu.edu

Judith J. Lok
Department of Biostatistics, Harvard University, Massachusetts, MA 02115, USA. 
jlok@hsph.harvard.edu

Abstract
Coarse Structural Nested Mean Models (SNMMs, Robins (2000)) and G-estimation can be used to 
estimate the causal effect of a time-varying treatment from longitudinal observational studies. 
However, they rely on an untestable assumption of no unmeasured confounding. In the presence of 
unmeasured confounders, the unobserved potential outcomes are not missing at random, and 
standard G-estimation leads to biased effect estimates. To remedy this, we investigate the 
sensitivity of G-estimators of coarse SNMMs to unmeasured confounding, assuming a 
nonidentifiable bias function which quantifies the impact of unmeasured confounding on the 
average potential outcome. We present adjusted G-estimators of coarse SNMM parameters and 
prove their consistency, under the bias modeling for unmeasured confounding. We apply this to a 
sensitivity analysis for the effect of the ART initiation time on the mean CD4 count at year 2 after 
infection in HIV-positive patients, based on the prospective Acute and Early Disease Research 
Program.
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1. Introduction
Randomized control trials have been regarded as the gold standard for treatment 
comparison; however, they may not be feasible due to ethical issues, cost restrictions, 
implementation difficulty, etcetera. In such cases, observational studies can be useful. Since 
individuals are not randomly assigned to treatments, the observed association between 
treatment and outcome may be due to confounders that predict both treatment assignment 
and outcome. Therefore, it is important to control for all the confounders in order to obtain a 
valid causal conclusion about the treatment effect.

We consider the potential outcomes framework (Rubin (1974); Robins et al. (1992)). This 
has been commonly adopted in the causal inference literature. For illustration, consider a 
single-time-point setting where we have pre-treatment variables L, a binary treatment A with 
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0 indicating the control treatment and 1 indicating the active treatment, and lastly an 
outcome at the end of the study, Y. In this setting, each patient has two potential outcomes: 
Y(0), the outcome that would be realized if the patient received the control treatment, and 
Y(1), the outcome that would be realized if the patient received the active treatment. We 
assume that the observed outcome is equal to the potential outcome under the actual 
treatment, Y = Y(A) (the consistency assumption, Rubin (1974)). Therefore, causal inference 
can be conceptualized as a missing data problem in which only one potential outcome is 
observed for each patient. Rubin (1974) described the condition for estimating average 
causal effects in this setting, which assumes that there is no unmeasured confounders,

Y a ∐A ∣ L, (1.1)

for a = 0, 1. Under (1.1), the potential outcomes are missing at random (Rubin (1976)) and 
selection bias can be removed by adjusting for the measured covariates. However, if there 
are unmeasured confounders, potential outcomes are not missing at random conditional on 
the measured covariates, which renders the effect estimates unidentifiable.

For observational studies with a time-varying treatment, Robins (1986; 1987) established the 
conditions for estimating causal effects, and proposed two classes of models: Marginal 
Structural Models (MSMs, Robins (2000)) and SNMMs (Robins (1994, 2000); Lok et al. 
(2004); Lok, Hérnan and Robins (2007)), which adjust for selection bias due to measured 
time-varying confounders. In a recent assessment of the dependence of the effect of ART on 
its initiation time, Lok and DeGruttola (2012) developed a new class of coarse SNMMs and 
applied it to the observational AIEDRP (Acute Infection and Early Disease Research 
Program) database. The validity of G-estimation of the SNMMs analyses relies on two key 
assumptions: (i) the treatment effect model is well-specified, and (ii) there are no 
unmeasured treatment-outcome confounders. In practice, both assumptions are rather strong 
and can be violated. Yang and Lok (2016) developed a goodness-of-fit test procedure to 
assess the model fit (assumption (i)). This paper addresses sensitivity to unmeasured 
confounding (assumption (ii)).

The existing literature on sensitivity analyses to unmeasured confounders is large, including 
Schlesselman (1978), Lin, Psaty and Kronmal (1998), Greenland (2003, 2005), McCandless, 
Gustafson and Levy (2007), Cornfield et al. (2009), and Rosenbaum (2009). Cornfield et al. 
(2009) used sensitivity analyses formally to assess the association between smoking and 
lung cancer; Rosenbaum (2009) has done extensive modeling of how unmeasured 
confounders affect the treatment assignment and outcome; and McCandless, Gustafson and 
Levy (2007) proposed a Bayesian approach to conducting sensitivity analyses where the 
prior distribution models beliefs about unknown and unmeasured confounding. Many 
existing methods are limited to simple settings, e.g., most of these works consider settings 
with a single time-point treatment, or rely on external sources of information on the 
unmeasured confounders. In a longitudinal setting with time-dependent treatments, the 
literature is scarce. The exceptions include Robins, Rotnitzky and Scharfstein (2000) and 
Brumback et al. (2004). Brumback et al. (2004) implemented a sensitivity analysis to 
unmeasured confounding of inverse-probability-of-treatment-weighting estimators for 
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MSMs. SNMMs have more desirable features than MSMs (Robins (2000)). For example, 
SNMMs do not require the positivity assumption which assumes the probability of all 
patients receiving each treatment regimen is positivity, which may be questionable in 
practice; SNMMs can handle continuous-valued treatments, but MSMs cannot; SNMMs are 
able to model time-varying interaction between covariates and treatment in the outcome 
model. Despite these advantages, their applications in practice are still limited (Vansteelandt 
and Joffe (2014)). We aim to provide a suitable methodology to deal with unmeasured 
confounding for SNMMs.

As in the single-time-point setting, in the presence of unmeasured confounders, the 
unobserved potential outcomes are not missing at random, and standard G-estimation lead to 
biased effect estimates. We investigate the sensitivity of G-estimation of coarse SNMMs to 
unmeasured confounding, assuming a nonidentifiable bias function quantifying the impact 
of unmeasured confounding on the average potential outcome. We propose adjusted G-
estimators of coarse SNMMs parameters, and prove their consistency under the bias 
modeling for unmeasured confounding. In Section 2, we present a motivating data set and 
the coarse SNMMs analysis. In Section 3, we present the sensitivity analysis for coarse 
SNMMs in a time-varying treatment setting. In Section 4, we present the inverse-
probability-of-censoring-weighting technique to accommodate patients loss to follow up. In 
Section 5, we apply the proposed method to the motivating data set. Section 6 concludes.

2. Coarse Structural Nested Mean Models
2.1. The AIEDRP dataset

ART (Antiretroviral Treatment) is a standard initial treatment for HIV-positive patients, and 
has considerably reduced the morbidity and mortality in them. However, there is no strong 
evidence to support when to start ART in patients in the acute and early stages of infection. 
For this investigation, we use the observational AIEDRP (Acute Infection and Early Disease 
Research Program), which consists of 1762 HIV-positive patients diagnosed during acute 
and early infection (Hecht et al (2006)). Dates of infection were estimated based on a 
stepwise algorithm using clinical and laboratory data (Hecht et al (2006); Smith et al. 
(2006)).

Lok and DeGruttola (2012) explored this data set and argued that the data show time-varying 
confounding by indication, and applied coarse SNMMs to estimate how the time between 
infection and ART initiation affects the effect of one year of ART on immune reconstitution 
as measured by CD4 count. They adjusted for selection bias due to observed time-varying 
confounders. Their analysis showed that ART is beneficial in acute and early infection, with 
a possibly increased beneficial effect of earlier ART initiation. Although several measured 
confounders were censored, including age, gender, race, injection drug use, CD4 count, and 
viral load, the adjusted effect estimate may be biased due to unmeasured confounders. For 
example, psychosocial factors (Villes et al. (2007)) and comorbidities (Abara et al. (2014)) 
are important confounders of the association between the ART initiation time and the CD4 
count outcome. These confounders were not available.
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We estimate the averaged causal relationship between the ART initiation time and the mean 
CD4 counts two years after infection. We adjust for both measured confounders and possibly 
unmeasured confounding. To do this, we use sensitivity analyses to estimate the potential 
impact of unmeasured confounders on the estimated causal parameters.

2.2. Data structure
Suppose all participants, in a random sample of size n, are followed monthly at months 0, 
…, K + 1, where 0 is the estimated date of infection, and K + 1 is the last month of interest 
(month 24 in our application). For each individual, we observe a treatment regimen (A0, …, 
AK) with Ak the treatment determined at month k, and a covariate process (L0, …, LK+1). Ak 
= 1 if the treatment is started at month k and 0 otherwise, and Lk is a set of observed 
covariates at month k, which is measured after Ak−1 and before Ak. The data are represented 
as n i.i.d. realizations of L0, A0, L1, A1,…, LK, AK, LK + 1 = A‒K, L

‒
K + 1 , where we use 

overbars to denote the histories of time-dependent treatments and covariates. and for 
notational simplicity we drop the subscript i for patients. We denote the outcome of interest 
by Y and we have Y = LK+1, the CD4 count measured at the end of the study. We assume 
that treatment is monotone in the sense that once the treatment is initiated, it never stops 
under follow-up. Thus, the treatment regimen is determined by the treatment initiation time 
m. Let T be the actual month of treatment initiation. If treatment was never initiated during 
the study period, let T = ∞.

2.3. The potential outcomes
Let Y(∞) be the outcome CD4 count at month K + 1 after infection had the patient never 
initiated treatment. This is a counterfactual outcome. It is only observed if the patient did not 
initiate the treatment. Let Y(m) be the CD4 count at month K + 1 had the patient started 
treatment at month m. Under this potential outcome framework, we need the consistency 
assumption, which links the counterfactual data to the observed data, Y = Y(T).

2.4. Coarse SNMMs
Following Robins (2000) and Lok and DeGruttola (2012), we define the treatment effect 
model as conditional treatment contrasts, for 0 ≤ m ≤ K,

γm l‒m = E Y m − Y ∞ ∣ L‒m = l‒m,T = m .

We assume a parametric model for γ, γm,ψ l‒m = ψ0 + ψ1m K + 1 − m , since arguably the 

average treatment effect is proportional to the treatment duration (K + 1 − m), and the 
coefficients can depend on the treatment initiation time m. If ψ0 + ψ1m > 0 and ψ1 < 0, the 
treatment is beneficial with increased gain if it was started earlier.

2.5. The conditional probabilities of treatment initiation
Unlike in randomized control trials, the treatment assignment mechanism is unknown in 
observational studies. We assume that we have a correctly specified parametric model for 
treatment initiation given the observed covariate history:
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Pr Am = 1 ∣ L‒m, A
‒
m − 1 = 0‒ = Pr Am = 1 ∣ L‒m, A

‒
m − 1 = 0‒; α . (2.1)

This could be a pooled logistic regression model. Since treatment is monotone, 
Pr Am = 1 ∣ L‒m, Am − 1 = 1 = 1.

2.6. G-estimation under no unmeasured confounding
The parameters in γψ cannot be estimated by regression methods since the dependent 
variable involves the potential outcome. For parameter identification, we require the 
assumption of no unmeasured confounding (Robins et al. (1992); Robins (1998a,b); Robins 
(2000)): for 0 ≤ m ≤ K,

Am∐ Y ∞ ∣ L‒m, A
‒
m − 1, (2.2)

where A ∐ B means “A is independent of B” (Dawid (1979)).

To facilitate estimation, take

Hψ = Y − γT ,ψ L‒T , (2.3)

which mimics the potential outcome Y(∞) since by blipping o the average treatment effect 
from the observed outcome, we obtain a quantity that has the same conditional distribution 
as the outcome that would have been observed (Lok and DeGruttola (2012)):

E Hψ ∣ L‒m, A
‒
m − 1 = 0‒, Am = E Y ∞ ∣ L‒m, A

‒
m − 1 = 0‒, Am , (2.4)

where by convention, E ⋅ ∣ L‒0, A
‒
−1 = 0‒, A0 = E ⋅ ∣ L‒0, A0 . (2.2) does not require (2.4). 

Together, (2.2) and (2.4) imply that

E Hψ ∣ L‒m, A
‒
m − 1 = 0‒, Am = E Hψ ∣ L‒m, A

‒
m − 1 = 0‒ . (2.5)

G-estimators solves unbiased estimating equations constructed based on (2.5) (Robins et al. 
(1992); Robins (1994, 2000); Lok and DeGruttola (2012)).

3. Evaluating the Impact of Unmeasured Confounding
Assumption (2.2) cannot be tested empirically from the data. If it fails, the treatment 
assignment is non-ignorable or, equivalently, there is selection bias on unmeasured 
confounders. For 0 ≤ m ≤ K, define the selection bias function due to unmeasured 
confounders (Robins, Rotnitzky and Scharfstein (2000)) as
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g L‒m = E Y ∞ ∣ L‒m, A
‒
m − 1 = 0‒, Am = 1 − E Y ∞ ∣ L‒m, A

‒
m − 1 = 0‒, Am = 0 .

If Am is given not just based on ( L‒m, A
‒
m − 1 ), this represents the average difference in the 

potential outcome Y(∞) between those with Am = 1 and those with Am = 0 for the subgroup 
of patients with L‒m and A‒m − 1 = 0‒. Thus, the selection bias function measures the impact of 

unmeasured confounders of Am on the difference in the potential outcome between the 
treated and untreated patients at each month, given the past treatment and covariate history. 
Under the assumption of No Unmeasured Confounding, g L‒m = 0.

The observed data carry no information about selection bias on unmeasured confounders. Its 
presence, direction, and magnitude are important for modeling, but the data at hand cannot 
determine them. Therefore, the selection bias on unmeasured confounders should be pre-
specified based on the modeler’s belief, and its magnitude should be explored over a wide 
range in a sensitivity analysis. Let g L‒m; η  be a correct model of g L‒m , where η is regarded 

as the sensitivity parameter. We parametrize g so that g L‒m; 0 = 0, η = 0 indicating the 

absence of unmeasured confounders. The functional form of the nuisance models can be 
selected on the basis of the observed data, as well as the literature and subject knowledge 
specific to the application setting. Later, we provide a more specific illustration in the 
context of our example.

Equation (2.5) is the key for estimation under the assumption of No Unmeasured 
Confounders. Since this assumption may not hold, (2.5) is not necessarily true. We would 
like to adjust the previously defined mimicking outcome Hψ so that a similar relationship to 
(2.5) holds for the adjustments.

Definition 1 (Adjustments). For 0 ≤ m ≤ K,

Hm, ψ , η
a = Hψ − ∑

k = m

K − 1
Pr 1 − Ak ∣ L

‒
k, A
‒
k − 1 = 0‒ 2Ak − 1 g L‒k; η 1A‒k − 1 = 0‒ . (3.1)

The superscript “a” stands for the adjustment. The proof of the following theorem is 
presented in the Appendix, showing that (3.1) replaces the role of (2.5) for estimation.

Theorem 1. Under the Consistency assumption, if γψ is a correctly specified model for the 
treatment effect γ, g L‒m, Am; η  is a correctly specified selection bias function due to 

unmeasured confounding with pre-determined value for η; for Hm
a  in (3.1), and 0 ≤ l ≤ m ≤ 

K,

E Hl, ψ , η
a ∣ L‒m, A

‒
m − 1 = 0‒, Am = E Hl, ψ , η

a ∣ L‒m, A
‒
m − 1 = 0‒ . (3.2)
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Theorem 2 (Unbiased Estimating Equation Under Unmeasured Confounding). Under the 
Consistency assumption, if γψ is a correct model for the treatment effect γ, g L‒m, A

‒
m; η  is a 

correctly-specified selection bias function due to unmeasured confounding with pre-
determined value for η; for Hm

a  in (3.1), the estimating function

U ψ = PnG ψ , η, q , (3.3)

with

G ψ , η, q = ∑
m = 0

K
q L‒m Hm, ψ , η

a − E Hm, ψ , η
a ∣ L‒m, A

‒
m − 1 = 0‒

× Am − Pr Am = 1 ∣ L‒m, A
‒
m − 1 = 0‒ 1A‒m − 1 = 0‒,

(3.4)

is an unbiased estimating equation for any q L‒m .

The proof of Theorem 2 is given in the Appendix. It leads to a large number of unbiased 
estimating equations for ψ. To facilitate optimal estimation, we identify the optimal set of q, 
qopt, that satisfies

E
∂G ψ , η, q

∂ψT = E G ψ , η, q G ψ , η, qopt
T (3.5)

for any q. With this qopt, the resulting estimator from (3.3) is most efficient among the class 
(Newey and McFadden (1994)).

Theorem 3 (Optimal estimation). If for 0 ≤ l ≤ m ≤ K, E Hm, ψ , η
a Hl, ψ , η

a ∣ L‒m, A
‒
m  does not 

depend on Am, then,

qopt L‒m
T = Var Hm, ψ , η

a ∣ L‒m, A
‒
m − 1 = 0‒ −1

× E ∂
∂ψT Hψ ∣ L‒m, A

‒
m − 1 = 0, Am = 1 − E ∂

∂ψT Hψ ∣ L‒m, A
‒
m = 0‒ ,

(3.6)

where Hψ is defined in (2.3) and Hm, ψ , η
a  is defined in (3.1).

Proof of Theorem 3 is given in the Appendix. The assumption here is an organic extension 
of (3.2). It affects not the consistency of the estimator, but the effciency.

Yang and Lok Page 7

Stat Sin. Author manuscript; available in PMC 2019 March 08.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



Remark 1. Estimating equations (3.3) with (3.6) are not well posed for estimation since they 
involve unknown population quantities through E Hm, ψ , η

a ∣ L‒m, A
‒
m − 1 = 0‒ , 

E ∂Hψ ∂ψ ∣ L‒m, A
‒
m − 1 = 0‒, Am , and Var Hm, ψ , η

q ∣ L‒m, A
‒
m − 1 = 0‒ . If Hψ is linear in 

ψ ,E ∂Hψ ∂ψ ∣ L‒m, A
‒
m − 1 = 0‒, Am = 1 − E ∂Hψ ∂ψ ∣ L‒m, A

‒
m = 0‒  does not depend on ψ; 

however, one still needs the true unknown distribution to compute the conditional 
expectations. To obtain estimators with good efficiency properties we approximate the 
unknown functions with estimators of them under some working model. We propose the 
following algorithm: (i) obtain a consistent preliminary estimator of ψ, denote it by ψ p (ii) 

approximate E ∂Hψ ∂ψ ∣ L‒m, A
‒
m  by regression models E ∂Hψ ∂ψ ∣ L‒m, A

‒
m; ξ , where ξ  is 

the estimated parameters in the regression models; (iii) approximate 

E Hm, ψ , η
a ∣ L‒m, A

‒
m − 1 = 0‒  by regression outcome models E H

m, ψ p, η
a ∣ L‒m, A

‒
m − 1 = 0‒; ξ ; 

and (iv) replace nuisance regression outcome models with estimators of them under the 
regression models, and solve the resulting estimating equation for ψ. The resulting estimator 
is locally optimal under these nuisance regression outcome models. The 95% bootstrap 
confidence intervals of ψ  can be constructed using the 2.5% and 97.5% percentiles of 500 
bootstrap realizations of ψ .

Remark 2 (Double robustness). In the estimating equations (3.3), the true treatment 
initiation model is unknown. We replace it with Pr Am = 1 ∣ L‒m, A

‒
m − 1 = 0‒; α , where α is the 

maximum likelihood estimator of α. The resulting estimator of ψ solves (3.3) with this 
replacement equivalent to the estimator of ψ solving (3.3) and the estimating equation for α. 
Although (3.3) depends on two sets of nuisance models, E Hm, ψ , η

a ∣ L‒m, A
‒
m − 1 = 0‒; ξ  and 

Pr Am = 1 ∣ L‒m, A
‒
m − 1 = 0‒; α , it does not require both specifications to be correct, which 

renders the estimator doubly robust. See the Appendix for the proof.

4. Censoring
Because of the time-dependent nature of longitudinal data, the data are often subject to 
censoring due to loss to follow up. When the censoring mechanism is informative in the 
sense that censoring may depend on time-varying covariates, e.g. sicker patients drop out of 
the study with higher probability than healthier patients, the patients remaining in the study 
are a biased sample of the full population.

Following Robins, Rotnitzky and Zhao (1995) and Lok and DeGruttola (2012), we use 
inverse probability of censoring weighting (IPCW) to accommodate patients lost to follow 
up. We assume that the censoring process is ignorable in the sense that censoring only 
depends on the past observed covariate history but not the future unobserved covariates and 
outcomes. Its heuristic idea is to redistribute the weight of censored patients among the 
“similar” remaining uncensored patients. Let Cm be the censoring indicator at month m: Cm 
= 1 if the patient is censored at month m and 0 otherwise. We assume a parametric model for 
the censoring process given the observed covariates history as 
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Pr Cm + 1 = 0 ∣ L‒m, A
‒
m − 1,Cm = 0 = Pr Cm + 1 = 0 ∣ L‒m, A

‒
m − 1,Cm = 0; β , e.g. a pooled 

logistic regression model.

Define the IPCW version of estimating functions as

G ψ , η, q
IPCW = ∑

m = 0

K
q L‒m Hm, ψ , η

a − E Hm, ψ , η
a ∣ L‒m, A

‒
m − 1 = 0‒

× Am − Pr Am = 1 ∣ L‒m, A
‒
m − 1 = 0‒; α 1C‒K + 1 = 0‒

Wm,

with eqnarray Wm = 1 ∏p = m + 1
K + 1 Pr Cp = 0 ∣ L‒p − 1, A

‒
p − 1,C

‒
p − 1 = 0‒; β . Here, 

PnG ψ , η, q
IPCW = 0 is an unbiased estimating equation if the censoring model is correct.

5. Application to Initiating ART in HIV-Positive Patients
We conducted a sensitivity analysis of estimating the effect of ART initiation time on mean 
CD4 count at year 2 after estimated date of infection in HIV-positive patients, based on the 
AIEDRP database described in Section .

We considered the true treatment effect model to be γm,ψ I‒m = ψ1 + ψ2m K + 1 − m . Yang 

and Lok (2016) showed that this model may be adequate using an overidentification 
restrictions test. In the estimation procedure, the treatment initiation model and the 
censoring model were fitted by pooled logistic regression models, and the nuisance 
regression outcome models were fitted by linear models, adjusting for a rich set of covariates 
based on the HIV literature and clinical knowledge (Lok and Griner (2014)).

In the sensitivity analysis, we considered three scenarios for specification of g L‒m; η : (i) η0; 

(ii) η0 + η1 × m; and (iii) η0 + η1 × CD4m. Table 1 shows the results of the sensitivity 
analysis. In scenario (i), g L‒m; η = η0 with η0 ∈ {−100, −75, …, 75, 100}. For interpretation, 

for example with η0 < 0, the untreated individuals tend to be healthier than the treated at 
month m, uniformly across months, even after controlling for measured confounders. As the 
magnitude of η increases, ψ1 and ψ2 increase, which makes sense since the more the un-

controlled confounding is assumed, the further the adjusted estimator increases. Moreover, 
the confidence intervals of ψ1 and ψ2 are larger with larger η, which suggests that more 

unmeasured confounding would further obscure the treatment effect. In scenario (ii), 
g L‒m; η = η0 + η1 × m, the effect of uncontrolled confounding changes linearly with m. We 

considered η0 ∈ {−100, −75, …, 75, 100} and η2 ∈ {−5, 5}. For interpretation, consider for 
example g L‒m; η = − 100 − 5m, the untreated individuals tend to be healthier than the treated 

at month m, and the effect of uncontrolled confounding increases with m. For η2 = 5, as η1 
increases from −100 to 100, ψ1 and ψ2 decrease, and ψ2 remains negative but statistically 

insignificant. For η2 = −5, as η1 increases from −100 to 100, ψ1 and ψ2 decrease, and ψ2
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remains positive but statistically insignificant. In scenarios (iii), g L‒m; η = η0 + η1 × CD4m, 

the effect of uncontrolled confounding changes linearly with CD4, we considered η0 ∈ 
{−100, −75, …, 75, 100} and η2 ∈ {−0.02, 0.02}. As η1 increases from −100 to 100, ψ1 and 

ψ2 decrease. ψ2 remains negative; however, the 95% bootstrap confidence interval of ψ2
remains statistically insignificant. In summary, we conducted a comprehensive sensitivity 
analysis for the AIEDRP study considering different forms of the selection bias function and 
different values of the coefficients. After accounting for possible uncontrolled confounding, 
treatment is beneficial under a wide range of plausible scenarios, and the effect of the 
initiation time is insignificant.

6. Discussion
We have introduced a new sensitivity analysis method that uses modified G-estimators to 
assess the effect of possible uncontrolled confounding in longitudinal observational studies. 
If strong prior information is available, appropriate functional forms for the selection bias 
function due to unmeasured confounding can be directly imposed. We suggest varying the 
coefficients over a set of plausible values, determined on the basis of observed data, 
literature, and subject matter knowledge. As with its application to HIV research, the new 
method can easily be adopted to provide valuable insight on the impact of uncontrolled 
confounding.

An extensive literature has assumed that there is one binary unmeasured confounder U, and 
the association of U and Y has been considered as the sensitivity parameter (see e.g. 
Schlesselman (1978) and Rosenbaum and Rubin (1983)). The advantage of this approach is 
that the sensitivity parameter is easy to interpret; however, this approach can be restrictive, 
since in practice the unmeasured confounder can be of any type and may be multi-
dimensional. Modeling the association of a multivariate U with Y is not straightforward. A 
major advantage of our approach is that it can be used to explore sensitivity to multiple 
unmeasured confounders simultaneously. The connection between the two approaches has 
not been established. In simple cases where there is one unmeasured confounder, modeling 
the relationship between the unmeasured confounder and the observed variables can provide 
insight for specifying the selection bias function and interpreting the sensitivity parameters. 
In the Appendix, we explore the connection between the two approaches in the context of 
our application to initiating ART in HIV-positive patients. In future work, we plan to 
evaluate and compare the performance of the two modeling approaches under various 
scenarios. We will also extend the work to longitudinal settings with repeated measurements, 
survival data, continuous treatments, and dynamic optimal treatments.
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Appendix

Appendix A. Proof of Theorem 1
First we show that

E Y ∞ ∣ L‒m, A
‒
m − 1 = 0‒, Am − E Y ∞ ∣ L‒m, A

‒
m − 1 = 0‒

= Pr 1 − Am ∣ L‒m, A
‒
m − 1 = 0‒ 2Am − 1 g L‒m; η

= Pr 1 − Am ∣ L‒m, A
‒
m − 1 = 0‒ E Y ∞ ∣ L‒m, A

‒
m − 1 = 0‒, Am

−E Y ∞ ∣ L‒m, A
‒
m − 1 = 0‒, 1 − Am .

(A.1)

To do so, we need to show (A.1) holds for both Am = 0 and 1. Consider (A.1) for Am = 0,

LHS = E Y ∞ ∣ L‒m, A
‒
m − 1 = 0‒, Am = 0 − E Y ∞ ∣ L‒m, A

‒
m − 1 = 0‒

= E Y ∞ ∣ L‒m, A
‒
m − 1 = 0‒, Am = 0

−E Y ∞ ∣ L‒m, A
‒
m − 1 = 0‒, Am = 0 Pr Am = 0 ∣ L‒m, A

‒
m − 1 = 0‒

−E Y ∞ ∣ L‒m, A
‒
m − 1 = 0‒, Am = 1 Pr Am = 1 ∣ L‒m, A

‒
m − 1 = 0‒

= Pr Am = 1 ∣ L‒m, A
‒
m − 1 = 0‒ × E Y ∞ ∣ L‒m, A

‒
m − 1 = 0‒, Am = 0

−E Y ∞ ∣ L‒m, A
‒
m − 1 = 0‒, Am = 1 = RHS .

Consider (A.1) for Am = 1,

LHS = E Y ∞ ∣ L‒m, A
‒
m − 1 = 0‒, Am = 1 − E Y ∞ ∣ L‒m, A

‒
m − 1 = 0‒

= E Y ∞ ∣ L‒m, A
‒
m − 1 = 0‒, Am = 1

−E Y ∞ ∣ L‒m, A
‒
m − 1 = 0‒, Am = 0 Pr Am = 0 ∣ L‒m, A

‒
m − 1 = 0‒

−E Y ∞ ∣ L‒m, A
‒
m − 1 = 0‒, Am = 1 Pr Am = 1 ∣ L‒m, A

‒
m − 1 = 0‒

= Pr Am = 0 ∣ L‒m, A
‒
m − 1 = 0‒ × E Y ∞ ∣ L‒m, A

‒
m − 1 = 0‒, Am = 1

−E Y ∞ ∣ L‒m, A
‒
m − 1 = 0‒, Am = 0 = RHS .

Therefore, (A.1) follows. For k > m, since
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E Pr 1 − Ak ∣ L
‒
k, A

‒
k − 1 = 0‒ 2Ak − 1 1A‒k − 1 = 0‒g L‒k; η ∣ L‒m, A

‒
m − 1 = 0‒, Am = 1 = 0,

E Pr 1 − Ak ∣ L
‒
k, A

‒
k − 1 = 0‒ 2Ak − 1 1A‒k − 1 = 0‒g L‒k; η ∣ L‒m, A

‒
m − 1 = 0‒, Am = 0

= E E Pr 1 − Ak ∣ L
‒
k, A

‒
k − 1 = 0‒ 2Ak − 1 ∣ L‒k, A

‒
k − 1 = 0‒

× 1A‒k − 1 = 0‒g L‒k; η ∣ L‒m, A
‒
m = 0‒

= E E Pr Ak = 1 ∣ L‒k, A
‒
k − 1 = 0‒ Pr Ak = 0 ∣ L‒k, A

‒
k − 1 = 0‒

+Pr Ak = 0 ∣ L‒k, A
‒
k − 1 = 0‒ Pr Ak = 1 ∣ L‒k, A

‒
k − 1 = 0‒

× − 1 1A‒k − 1 = 0‒g L‒k; η ∣ L‒m, A
‒
m = 0‒ = 0,

we have

E Pr 1 − Ak ∣ L
‒
k, A
‒
k − 1 = 0‒ 2Ak − 1 1A‒k − 1 = 0‒g L‒k; η ∣ L‒m, A

‒
m − 1 = 0‒, Am

= E Pr 1 − Ak ∣ L
‒
k, A
‒
k − 1 = 0‒ 2Ak − 1 1A‒k − 1 = 0‒g L‒k; η ∣ L‒m, A

‒
m − 1 = 0‒ = 0 .

(A.2)

For l < m, since

E Pr 1 − Al ∣ L
‒
l, A
‒
l − 1 = 0‒ 2Al − 1 1A‒l − 1 = 0‒g L‒l; η ∣ L‒m, A

‒
m − 1 = 0‒, Am

= Pr Al = 0 ∣ L‒l, A
‒
l − 1 = 0‒ − 1 1A‒l − 1 = 0‒g L‒l; η ,

which does not depend on Am, we have

E Pr 1 − Al ∣ L
‒
l, A
‒
l − 1 = 0‒ 2Al − 1 1A‒l − 1 = 0‒g L‒l; η ∣ L‒m, A

‒
m − 1 = 0‒, Am

= E Pr 1 − Al ∣ L
‒
l, A
‒
l − 1 = 0‒ 2Al − 1 1A‒l − 1 = 0‒g L‒l; η ∣ L‒m, A

‒
m − 1 = 0‒ .

(A.3)

Now we consider, for l ≤ m,
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E Hl, ψ , η
a ∣ L‒m, A

‒
m − 1 = 0‒, Am

= E Hψ ∣ L‒m, A
‒
m − 1 = 0‒, Am − Pr 1 − Am ∣ L‒m, A

‒
m − 1 = 0‒ 2Am − 1 g L‒m; η

−E ∑
k = m + 1

K − 1
Pr 1 − Ak ∣ L

‒
k, A

‒
k − 1 = 0‒ 2Ak − 1 1A‒k − 1 = 0‒g L‒k; η ∣ L‒m, A

‒
m − 1 = 0‒, Am

−E ∑
k = 1

m − 1
Pr 1 − Ak ∣ L

‒
k, A

‒
k − 1 = 0‒ 2Ak − 1 1A‒k − 1 = 0‒g L‒k; η ∣ L‒m, A

‒
m − 1 = 0‒, Am

= E Y ∞ ∣ L‒m, A
‒
m − 1 = 0‒, Am − E Y ∞ ∣ L‒m, A

‒
m − 1 = 0‒, Am

+E Y ∞ ∣ L‒m, A
‒
m − 1 = 0‒ − 0

= E Y ∞ ∣ L‒m, A
‒
m − 1 = 0‒ − E ∑

k = l

m − 1
Pr 1 − Ak ∣ L

‒
k, A

‒
k − 1 = 0‒ 2Ak − 1

× 1A‒k − 1 = 0‒g L‒k; η ∣ L‒m, A
‒
m − 1 = 0‒ ,

where by convention ∑k = s
t X = 0 for t < s, the first equality follows from the definition of 

Hl, ψ , η
a , and the second equality follows from equations (2.4) and (A.1), (A.2), and (A.3). 

Therefore, E Hl, ψ , η
a ∣ L‒m, A

‒
m − 1 = 0‒, Am  does not depend on Am and (3.2) in Theorem 1 

follows.

Appendix B. Proof of Theorem 2
For each 0 ≤ m ≤ K − 1,

E q L‒m Hm, ψ , η
a − E Hm, ψ , η

a ∣ L‒m, A
‒
m − 1 = 0‒

× Am − Pr Am = 1 ∣ L‒m, A
‒
m − 1 = 0‒ 1A‒m − 1 = 0‒

= E q L‒m E Hm, ψ , η
a ∣ L‒m, A

‒
m − 1 = 0‒, Am − E Hm, ψ , η

a ∣ L‒m, A
‒
m − 1 = 0‒

× Am − Pr Am = 1 ∣ L‒m, A
‒
m − 1 = 0‒ 1A‒m − 1 = 0‒

= E q L‒m E Hm, ψ , η
a ∣ L‒m, A

‒
m − 1 = 0‒ − E Hm, ψ , η

a ∣ L‒m, A
‒
m − 1 = 0‒

× Am − Pr Am = 1 ∣ L‒m, A
‒
m − 1 = 0‒ 1A‒m − 1 = 0‒ = 0,

where the second equality follows from (3.2). Therefore, E(G(ψ,η,q)) = 0, proving the result.

Appendix C. proof of double robustness
If Pr Am = 1 ∣ L‒m, A

‒
m − 1 = 0‒; θ  is correct,
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E G ψ , η, q

= E ∑
m = 0

K
q L‒m E Hm, ψ , η

a ∣ L‒m, A
‒
m − 1 = 0‒, Am − E Hm, ψ , η

a ∣ L‒m, A
‒
m − 1 = 0‒; ξ

× Am − Pr Am = 1 ∣ L‒m, A
‒
m − 1 = 0‒; θ 1A‒m − 1 = 0‒

= E ∑
m = 0

K
q L‒m E Hm, ψ , η

a ∣ L‒m, A
‒
m − 1 = 0‒ − E Hm, ψ , η

a ∣ L‒m, A
‒
m − 1 = 0‒; ξ

× Am − Pr Am = 1 ∣ L‒m, A
‒
m − 1 = 0‒; θ 1A‒m − 1 = 0‒

= E ∑
m = 0

K
q L‒m E Hm, ψ , η

a ∣ L‒m, A
‒
m − 1 = 0‒ − E Hm, ψ , η

a ∣ L‒m, A
‒
m − 1 = 0‒; ξ

× E Am ∣ L‒m, A
‒
m − 1 = 0‒ − Pr Am = 1 ∣ L‒m, A

‒
m − 1 = 0‒; θ 1A‒m − 1 = 0‒

= E ∑
m = 0

K
q L‒m E Hm, ψ , η

a ∣ L‒m, A
‒
m − 1 = 0‒ − E Hm, ψ , η

a ∣ L‒m, A
‒
m − 1 = 0‒; ξ ×

0 × 1A‒m − 1 = 0‒ = 0,

where the second equality follows from (3.2) and the forth equality follows from the 
assumption that Pr Am = 1 ∣ L‒m, A

‒
m − 1 = 0‒; θ  is correct. E Hm, ψ , η

a ∣ L‒m, A
‒
m − 1 = 0‒; ξ  is 

correct,

E G ψ , η, q

= E ∑
m = 0

K
q L‒m E Hm, ψ , η

a ∣ L‒m, A
‒
m − 1 = 0‒, Am − E Hm, ψ , η

a ∣ L‒m, A
‒
m − 1 = 0‒; ξ

× Am − Pr Am = 1 ∣ L‒m, A
‒
m − 1 = 0‒; θ 1A‒m − 1 = 0‒

= E ∑
m = 0

K
q L‒m E Hm, ψ , η

a ∣ L‒m, A
‒
m − 1 = 0‒ − E Hm, ψ , η

a ∣ L‒m, A
‒
m − 1 = 0‒; ξ

× Am − Pr Am = 1 ∣ L‒m, A
‒
m − 1 = 0‒; θ 1A‒m − 1 = 0‒

= E ∑
m = 0

K
q L‒m E Hm, ψ , η

a ∣ L‒m, A
‒
m − 1 = 0‒ − E Hm, ψ , η

a ∣ L‒m, A
‒
m − 1 = 0‒; ξ

× E Am ∣ L‒m, A
‒
m − 1 = 0‒ − Pr Am = 1 ∣ L‒m, A

‒
m − 1 = 0‒; θ 1A‒m − 1 = 0‒

= E ∑
m = 0

K
q L‒m × 0 × E Am ∣ L‒m, A

‒
m − 1 = 0‒ − Pr Am = 1 ∣ L‒m, A

‒
m − 1 = 0‒; θ

× 1A‒m − 1 = 0‒ = 0,
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where the second equality follows from (3.2) and the forth equality follows from the 
assumption that E Hm, ψ , η

a ∣ L‒m, A
‒
m − 1 = 0‒; ξ  is correct. Therefore, G(ψ,η,q) is an unbiased 

estimating function if either Pr Am = 1 ∣ L‒m, A
‒
m − 1 = 0‒; θ  is correct or 

E Hm, ψ , η
a ∣ L‒m, A

‒
m − 1 = 0‒; ξ  is correct.

Appendix D. Proof of Theorem 3
The left hand side of (3.5) is

E ∂
∂ψ G ψ , η, q

= E ∑
m = 0

K
q L‒m

∂
∂ψ Hψ − E ∂

∂ψ Hψ ∣ L‒m, A
‒
m − 1 = 0‒

× Am − Pr Am = 1 ∣ L‒m, A
‒
m − 1 = 0‒ 1A‒m − 1 = 0‒

= E ∑
m = 0

K
q L‒m E ∂

∂ψ Hψ ∣ L‒m, A
‒
m − 1 = 0‒, Am − E ∂

∂ψ Hψ ∣ L‒m, A
‒
m − 1 = 0‒

× Am − Pr Am = 1 ∣ L‒m, A
‒
m − 1 = 0‒ 1A‒m − 1 = 0‒

= E ∑
m = 0

K
q L‒m E ∂

∂ψ Hψ ∣ L‒m, A
‒
m − 1 = 0‒, Am = 1 − E ∂

∂ψ Hψ ∣ L‒m, A
‒
m = 0‒

× Am − Pr Am = 1 ∣ L‒m, A
‒
m − 1 = 0‒ 21A‒m − 1 = 0‒

= E ∑
m = 0

K
q L‒m E ∂

∂ψ Hψ ∣ L‒m, A
‒
m − 1 = 0‒, Am = 1 − E ∂

∂ψ Hψ ∣ L‒m, A
‒
m = 0‒

× 1 − Pr Am = 1 ∣ L‒m, A
‒
m − 1 = 0‒ Pr Am = 1 ∣ L‒m, A

‒
m − 1 = 0‒ 1A‒m − 1 = 0‒ ,

where the last equality follows by applying E(Y|A) = {(E(Y|A = 1) − E(Y|A = 0)}{A − Pr(A 
= 1)} to E ∂Hψ ∂ψ ∣ L‒m, A

‒
m − 1 = 0‒, Am . The right hand side of (3.5) is
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E G ψ , η, q G ψ , η, qopt
T

= E ∑
m = 0

K
∑
l = 0

K
q L‒m Hm, ψ , η

a − E Hm, ψ , η
a ∣ L‒m, A

‒
m − 1 = 0‒

× Am − Pr Am = 1 ∣ L‒m, A
‒
m − 1 = 0‒ 1A‒m − 1 = 0‒

× qopt L‒l
T Hl, ψ , η

a − E Hl, ψ , η
a ∣ L‒l, A

‒
l − 1 = 0‒

× Al − Pr Al = 1 ∣ L‒l, A
‒
l − 1 = 0‒ 1A‒l − 1 = 0‒

= E ∑
m = 0

K
q L‒m qopt L‒m

TVar Hm, ψ , η
a ∣ L‒m, A

‒
m − 1 = 0‒, Am

2

× Am − Pr Am = 1 ∣ L‒m, A
‒
m − 1 = 0‒ 21A‒m − 1 = 0‒

= E ∑
m = 0

K
q L‒m qopt L‒m

TVar Hm, ψ , η
a ∣ L‒m, A

‒
m − 1 = 0‒ 2

× Am − Pr Am = 1 ∣ L‒m, A
‒
m − 1 = 0‒ 21A‒m − 1 = 0‒

= E ∑
m = 0

K
q L‒m qopt L‒m

TVar Hm, ψ , η
a ∣ L‒m, A

‒
m − 1 = 0‒ 2

× E Am − Pr Am = 1 ∣ L‒m, A
‒
m − 1 = 0‒ 21A‒m − 1 = 0‒ ∣ L

‒
m, A

‒
m − 1 = 0‒

= E ∑
m = 0

K
q L‒m qopt L‒m

TVar Hm, ψ , η
a ∣ L‒m, A

‒
m − 1 = 0‒ 2 1A‒m − 1 = 0‒

× 1 − Pr Am = 1 ∣ L‒m, A
‒
m − 1 = 0‒ Pr Am = 1 ∣ L‒m, A

‒
m − 1 = 0‒ ,

(A.4)

where the expectations of the cross terms in the first equality are zero by the following 
argument. It suffices to show that for m > l,
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E q L‒m qopt L‒l
TE Hm, ψ , η

a ∣ L‒m, A
‒
m − 1 = 0‒ E Hl, ψ , η

a ∣ L‒l, A
‒
l − 1 = 0‒

× Am − Pr Am = 1 ∣ L‒m, A
‒
m − 1 = 0‒

× Al − Pr Al = 1 ∣ L‒l, A
‒
l − 1 = 0‒ 1A‒m − 1 = 0‒

= E q L‒m qopt L‒l
TE Hm, ψ , η

a ∣ L‒m, A
‒
m − 1 = 0‒ E Hl, ψ , η

a ∣ L‒l, A
‒
l − 1 = 0‒

× E Am ∣ L‒m, A
‒
m − 1 = 0‒ − Pr Am = 1 ∣ L‒m, A

‒
m − 1 = 0‒

× 1A‒m − 1 = 0‒ Al − Pr Al = 1 ∣ L‒l, A
‒
l − 1 = 0‒ = 0,

E q L‒m qopt L‒l
THm, ψ , η

a E Hl, ψ , η
a ∣ L‒l, A

‒
l − 1 = 0‒ 1A‒m − 1 = 0‒

× Am − Pr Am = 1 ∣ L‒m, A
‒
m − 1 = 0‒ Al − Pr Al = 1 ∣ L‒l, A

‒
l − 1 = 0‒

= E q L‒m qopt L‒l
TE Hm, ψ , η

a ∣ L‒m, A
‒
m − 1 = 0‒ E Hl, ψ , η

a ∣ L‒l, A
‒
l − 1 = 0‒

× E Am ∣ L‒m, A
‒
m − 1 = 0‒ − Pr Am = 1 ∣ L‒m, A

‒
m − 1 = 0‒

× 1A‒m − 1 = 0‒ Al − Pr Al = 1 ∣ L‒l, A
‒
l − 1 = 0‒ = 0,

E q L‒m qopt L‒l
TE Hm, ψ , η

q ∣ L‒m, A
‒
m − 1 = 0‒ Hl, ψ , η

a 1A‒m − 1 = 0‒

× Am − Pr Am = 1 ∣ L‒m, A
‒
m − 1 = 0‒ Al − Pr Al = 1 ∣ L‒l, A

‒
l − 1 = 0‒

= E q L‒m qopt L‒l
TE Hm, ψ , η

a ∣ L‒m, A
‒
m − 1 = 0‒ E Hl, ψ , η

a ∣ L‒m, A
‒
m − 1 = 0‒, Am

× Am − Pr Am = 1 ∣ L‒m, A
‒
m − 1 = 0‒ 1A‒m − 1 = 0‒ Al − Pr Al = 1 ∣ L‒l, A

‒
l − 1 = 0‒

= E q L‒m qopt L‒l
TE Hm, ψ , η

a ∣ L‒m, A
‒
m − 1 = 0‒ E Hl, ψ , η

a ∣ L‒m, A
‒
m − 1 = 0‒

× E Am ∣ L‒m, A
‒
m − 1 = 0‒ − Pr Am = 1 ∣ L‒m, A

‒
m − 1 = 0‒

× 1A‒m − 1 = 0‒ Al − Pr Al = 1 ∣ L‒l, A
‒
l − 1 = 0‒ = 0,

where the second equality follows from (3.2).
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E q L‒m qopt L‒l
THm, ψ , η

a Hl, ψ , η
a 1A‒m − 1 = 0‒

× Am − Pr Am = 1 ∣ L‒m, A
‒
m − 1 = 0‒ Al − Pr Al = 1 ∣ L‒l, A

‒
l − 1 = 0‒

= E q L‒m qopt L‒l
TE Hm, ψ , η

a Hl, ψ , η
a ∣ L‒m, A

‒
m 1A‒m − 1 = 0‒

× Am − Pr Am = 1 ∣ L‒m, A
‒
m − 1 = 0‒ Al − Pr Al = 1 ∣ L‒l, A

‒
l − 1 = 0‒

= E q L‒m qopt L‒l
TE Hm, ψ , η

a Hl, ψ , η
a ∣ L‒m, A

‒
m − 1 1A‒m − 1 = 0‒

× Am − Pr Am = 1 ∣ L‒m, A
‒
m − 1 = 0‒ Al − Pr Al = 1 ∣ L‒l, A

‒
l − 1 = 0‒

= E q L‒m qopt L‒l
TE Hm, ψ , η

a Hl, ψ , η
a ∣ L‒m, A

‒
m − 1 1A‒m − 1 = 0‒

× E Am − Pr Am = 1 ∣ L‒m, A
‒
m − 1 = 0‒ 1A‒m − 1 = 0‒ ∣ L‒m, A

‒
m − 1

× Al − Pr Al = 1 ∣ L‒l, A
‒
l − 1 = 0‒ = 0,

where the third equality follows assuming 
E Hm, ψ , η

a Hl, ψ , η
a ∣ L‒m, A

‒
m = E Hm, ψ , η

a Hl, ψ , η
a ∣ L‒m, A

‒
m − 1 . Since (A.4) equals (A.4) for 

any q, the solution of qopt is (3.6), proving Theorem 3.

Appendix E. Exploring the connection between the two approaches to 
sensitivity analysis

The approach of Schlesselman (1978) and Rosenbaum and Rubin (1983) can be used to 
motivate the specification of the selection bias function. Assume that there is one 
unmeasured confounder U, and we have no unmeasured confounding if U is taken into 
account. For 0 ≤ m ≤ K,

Am∐Y ∞ ∣ L‒m,U
‒
m, A

‒
m − 1,

which implies that

E Y ∞ ∣ L‒m,U
‒
m, A

‒
m − 1 = 0‒, Am = 1 = E Y ∞ ∣ L‒m,U

‒
m, A

‒
m = 0‒ .

To motivate the selection bias function g L‒m  due to the unmeasured confounder U, 

assuming that we have E Y ∞ ∣ L‒m,U
‒
m, A

‒
m − 1 = 0‒ = β0 + βL

TLm + βUUm + ψ K − m , note 

that in this case,
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g L‒m = E Y ∞ ∣ L‒m, A
‒
m − 1 = 0‒, Am = 1 − E Y ∞ ∣ L‒m, A

‒
m = 0‒

= E E Y ∞ ∣ L‒m,U
‒
m, A

‒
m − 1 = 0‒, Am = 1 ∣ L‒m, A

‒
m − 1 = 0‒, Am = 1

−E E Y ∞ ∣ L‒m,U
‒
m, A

‒
m − 1 = 0‒, Am = 0 ∣ L‒m, A

‒
m − 1 = 0‒, Am = 0

= E E Y ∞ ∣ L‒m,U
‒
m, A

‒
m − 1 = 0‒ ∣ L‒m, A

‒
m − 1 = 0‒, Am = 1

−E E Y ∞ ∣ L‒m,U
‒
m, A

‒
m − 1 = 0‒ ∣ L‒m, A

‒
m − 1 = 0‒, Am = 0

= βU E Um ∣ L‒m, A
‒
m − 1 = 0‒, Am = 1 − E Um ∣ L‒m, A

‒
m − 1 = 0‒, Am = 0 .

Considering U to be a variable like a measured confounder inspires the specification of 
E Um ∣ L‒m, A

‒
m − 1 = 0‒, Am = 1 − E Um ∣ L‒m, A

‒
m − 1 = 0‒, Am = 0 , and therefore of g L‒m . For 

example, in our application, it could be that 
E Um ∣ L‒m, A

‒
m − 1 = 0‒, Am = 1 − E Um ∣ L‒m, A

‒
m − 1 = 0‒, Am = 0 = α0 + α1CD4m, which 

corresponds to the third scenario for specification of g L‒m  in Section 5.
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Table 1

Results of the sensitivity analysis in AIEDRP: optimal estimates and 95% confidence intervals (CIs).

g L‒m; η η 0 η 1 ψ1 CI ψ2 CI

η 0

−100 0 43.33 (39.35, 47.39) −0.305 (−1.973, 0.883)

−75 0 38.33 (34.79, 43.08) −0.340 (−1.635, 0.826)

−50 0 36.42 (27.13, 39.11) −0.396 (−1.771, 0.795)

−25 0 31.06 (25.54, 33.46) −0.411 (−1.856, 0.785)

0 0 24.71 (21.37, 28.47) −0.426 (−1.944, 0.654)

25 0 20.64 (l6.37, 25.10) −0.617 (−2.071, 1.190)

50 0 16.30 (12.75, 20.78) −0.727 (−2.131, 0.401)

75 0 11.86 (7.82, 16.54) −0.814 (−2.296, 0.519)

100 0 7.43 (2.66, 11.29) −0.891 (−2.277, 0.833)

η0 + η1 m

−100 5 42.72 (37.36, 49.17) −1.243 (−3.763, 1.729)

−75 5 38.42 (31.86, 42.71) −1.408 (−3.317, 1.648)

−50 5 35.51 (28.67, 38.00) −1.481 (−3.642, 1.215)

−25 5 29.17 (25.07, 33.89) −1.512 (−3.381, 0.950)

0 5 25.20 (18.87, 30.67) −1.846 (−3.977, 0.932)

25 5 21.34 (14.68, 27.25) −2.157 (−4.272, 1.351)

50 5 17.76 (12.17, 24.13) −2.355 (−5.024, 0.768)

75 5 12.40 (6.42, 19.78) −2.419 (−6.199, 0.706)

100 5 7.92 (1.57, 19.96) −2.606 (−9.637, 0.587)

−100 −5 42.03 (32.37, 53.61) 1.660 (−5.197, 6.836)

−75 −5 37.82 (29.47, 47.70) 1.465 (−1.896, 6.007)

−50 −5 33.63 (27.58, 42.98) 1.218 (−3.831, 3.908)

−25 −5 29.36 (22.89, 37.24) 1.000 (−2.444, 4.158)

0 −5 24.82 (19.11, 30.19) 0.806 (−1.333, 3.453)

25 −5 20.61 (16.07, 26.51) 0.564 (−2.486, 2.538)

50 −5 16.27 (12.76, 20.85) 0.432 (−1.861, 1.504)

75 −5 11.91 (8.62, 16.03) 0.316 (−1.187, 1.454)

100 −5 7.54 (3.45, 11.60) 0.202 (−1.249, 1.703)

η0 + η1 CD4m

−100 0.02 41.23 (36.85, 45.51) −0.341 (−1.950, 0.697)

−75 0.02 36.54 (31.35, 40.42) −0.375 (−2.115, 0.779)

−50 0.02 31.97 (26.12, 36.99) −0.429 (−2.751, 1.158)

−25 0.02 27.65 (23.74, 30.96) −0.544 (−2.253, 0.531)

0 0.02 22.54 (18.74, 27.05) −0.419 (−1.938, 0.845)

25 0.02 18.54 (14.92, 21.90) −0.629 (−1.659, 0.415)

50 0.02 14.20 (8.61, 18.77) −0.741 (−2.444, 1.452)

75 0.02 9.76 (3.98, 13.87) −0.833 (−2.046, 1.101)

100 0.02 5.24 (0.55, 9.54) −0.916 (−3.100, 0.630)

−100 −0.02 45.71 (41.11, 49.71) −0.283 (−1.301, 1.141)
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g L‒m; η η 0 η 1 ψ1 CI ψ2 CI

−75 −0.02 40.95 (37.06, 44.83) −0.335 (−1.406, 0.683)

−50 −0.02 36.35 (32.25, 39.68) −0.415 (−1.633, 0.706)

−25 −0.02 32.28 (28.20, 35.18) −0.635 (−1.764, 0.526)

0 −0.02 26.87 (23.62, 32.52) −0.428 (−2.876, 0.617)

25 −0.02 22.74 (19.55, 26.74) −0.607 (−2.779, 0.284)

50 −0.02 18.40 (14.34, 22.95) −0.716 (−1.929, 0.628)

75 −0.02 13.97 (9.93, 17.47) −0.799 (−1.950, 0.497)

100 −0.02 9.47 (3.99, 14.50) −0.869 (−2.487, 1.033)
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