
Automated Analysis of Student Verbalizations in
Online Learning Environments

Nazik A. Almazova1, Jason O. Hallstrom1, Megan Fowler2, Joseph
Hollingsworth3, Eileen Kraemer2, Murali Sitaraman2, and Gloria Washington4

1 Florida Atlantic University, Boca Raton FL 33433, USA
2 Clemson University, Clemson SC 29634, USA

3 Rose-Hulman Institute of Technology, Terre Haute IN 47803, USA
4 Howard University, Washington DC 20059, USA

1 Introduction
Online learning has become desirable for many students. In the U.S., more than
one-third of all enrolled students participate in at least one online course [13].
The most effective online learning environments allow students to work at their
own pace, from any location, at any time, and to receive automated feedback.
In light of these benefits and the likely protracted impact of the current public
health crisis, the trend toward online learning is likely to increase.

In traditional face-to-face learning environments, instructors adjust instruc-
tion based on student questions, specific misunderstandings, and attitudes (e.g.,
uncertainty, frustration). The limitation of many online learning environments
is that they rely exclusively on objective student response data (e.g., a specific
technical answer to a coding question) to base their feedback. This could result
in less effective learning and students’ giving preference to in-person instruc-
tion [19]. This research is about using more “noisy” data, student verbalizations,
as a basis for personalized feedback.

While the ideas and results in this paper are broadly applicable to any online
learning system, we have chosen to focus on an extension to an online environ-
ment for teaching code reasoning skills that our research team has developed
over the past decade. In prior research, we have investigated how students per-
ceive the tool, how well they understand the concepts taught, and the specific
difficulties they encounter during various exercises. Achieving this understand-
ing while students are using the tool (i.e., not just post hoc) is essential to being
able to design automated interventions that help students overcome difficulties
when they arise—not just for the reasoning tool, but for any online tool.

Objective assessments and attitudinal surveys are readily introduced in on-
line environments, and these instruments help to reveal technical and attitudinal
difficulties. However, these instruments are insufficient by themselves; they often
fail to provide a high-fidelity view of the subtle technical and attitudinal difficul-
ties students face when engaging in online problem-solving activities. Achieving
this level of fidelity requires a view into students’ internal cognitive processes.

A “think-aloud” protocol, which asks students to verbalize their thought
processes during a problem-solving activity, offers a glimpse into student think-
ing. It can be powerful in illuminating technical and attitudinal problems that
would otherwise be missed, but scalability is a problem. The protocol requires
individual student sessions, manual transcription of audio data, and skilled in-



2 Almazova et al.

terpretation of results. The process is labor-intensive, and with typical resource
shortages, cannot be applied across large student populations.

To overcome these scalability limitations, we present an automated approach
to collecting and analyzing think-aloud data in online learning environments.
The approach relies on an extension to web-based environments, which provides
automated screen and audio recording, transcription, and labeling of specific
characteristics of student attitudes (e.g., uncertainty), behaviors (e.g., guessing),
and difficulties (e.g., logic misunderstandings). The implementation uses natural
language processing and machine learning. The long-term goal of this labeling
is to support automated interventions that are tailored to the specific misunder-
standings student face, as well as their evolving emotional and attitudinal states,
which have been shown to have a significant impact on learning. We evaluated
the approach in two online sections of a required, junior-level algorithms course
during the Spring of 2020 (n=18, n=13, respectively).

We expect the approach will improve online learning for a variety of learn-
ers, across subjects and topics. Here we focus on understanding the difficulties
learners face when reasoning about code. Concretely, we focus on the following
questions: ERQ 1: How accurate are existing transcription tools in transcribing
domain-specific language, specifically, language associated with code reasoning?
ERQ 2: How suitable are existing natural language processing and machine
learning models to identify points of interest in student attitudes, behaviors,
and cognitive processes for purposes of automating interventions?

2 Background and Related Work

Think-aloud Analysis. Analysis of think-alouds has found a variety of uses.
In Nielson [29], think-alouds are considered among the set of usability inspec-
tion methods for evaluating user interfaces. Fan et al. [12] discuss the high value
of using a think-aloud protocol for identifying and pinpointing users’ problems
and the cost of manual processing of think-aloud data. In [21], a real-time, in-
class note-taking system for hearing-impaired CS students is discussed. Accuracy
rates for real-time transcription range from 75% for an untrained system, to 94%
for a trained system using a customized dictionary and customized pronuncia-
tions for 10 domain-specific words. The idea of detecting morphological forms
of software-specific terms found in informal writing has also received attention.
In [5], an automatic natural language processing approach is used for creating a
thesaurus [7] from question and answer posts on forums such as Stack Overflow.

Role of Emotions and Guessing in Learning. The labels used in our
verbalization analyzer are informed by the literature. Emotions, in particular,
play an important role in learning [22, 31, 32, 41]. A number of groups have
focused on identifying the links between learning and emotions [4,10,20,23,36],
with application to improving the effectiveness of intelligent learning systems
and providing personalized feedback [11, 15, 37]. Various emotions and affects
have been considered (e.g., boredom, confusion, delight, surprise, frustration).

Bosch et al. consider the emotions experienced during the first programming
experience and their correlation with performance [4], with a goal of automating



Automated Analysis of Student Verbalizations 3

detection and adaptation in intelligent learning environments. Affective states
most commonly observed in the study include confusion/uncertainty, frustra-
tion, boredom, and neutral. Not surprisingly, confusion/uncertainty at an early
stage is associated with a significant decline in performance. In a related study,
frustration (usually associated with a negative outcome) is found to be positively
correlated with learning [30].

Fig. 1. BTR Tracing Activity

Girard et al. identify a similar set
of labels for an affective learning com-
panion in a meta-tutor project [15].
The gaming label identifies students
who try multiple answers in a short
period of time without allocating
enough time to think about the prob-
lem (i.e., guessing). In [2], Baker et al.
associate students “gaming the sys-
tem” (i.e., guessing) with reductions
in learning. The authors emphasize
the importance of detecting and ad-
dressing guessing behaviors in intelli-
gent learning environments.

Existing Tool Background.
The experience reported here applies
to a variety of online learning systems.
The present experimentation has in-
volved an extension to an online tool
we have used to teach analytical rea-
soning that we use in our classrooms.

The online reasoning tool, BTR [35],
aims to facilitate abstract code reasoning. Tracing and gaining code understand-
ing based on arbitrary inputs (i.e., symbolic reasoning), instead of using one or
two concrete inputs, is essential to becoming a strong programmer. Exposure to
code reasoning basics, particularly through symbolic input values, provides fur-
ther benefits since a variety of other concepts and skills become easier to grasp
(e.g., in algorithms and data structures).

BTR includes a variety of activities, from code tracing on specific, concrete
inputs; to symbolic reasoning over arbitrary inputs; to reasoning about objects,
contracts, and invariants. The tool has been tested by over a thousand students
over multiple years and courses. Results show that it is possible to help stu-
dents learn the basics of abstract reasoning with minimal instruction [14], and
it is possible to pinpoint key technical challenges students encounter based on
directed activity paths and assessment of student response data [9].

BTR’s student interface, shown in Figure 1, consists of Activity, Reference
Material, and Exercise sections. The Activity section describes the current ex-
ercise, with instructions on how to complete it. The Reference Material section
provides definitions for any mathematical symbols and/or operators used in the



4 Almazova et al.

exercise. The Exercise section displays the current exercise, instructing students
to trace through a small fragment of Pascal-like code and to complete a logical
Confirm assertion on the program variables, which tests their understanding.

After an answer is entered, Check Correctness is clicked to validate the stu-
dent’s answer. Importantly, the system relies on a verifying compiler [45] to
validate the student’s answer using mathematical verification; it does not rely
on code execution or a prescribed list of student responses. The interface then
provides immediate visual feedback [1], reducing cognitive load [27].

The example shown in Figure 1 asks students to assert the relationships
between variables I and J at the two points marked Confirm, using #I and #J

to refer to the values of these variables at the point marked Remember. Feedback
is shown as red and green highlights, denoting incorrect and correct responses.

3 Online Think-Aloud Extension

As a first step towards building a verbalization analyzer and to pilot the think-
aloud extensions, the tool was configured with 14 reasoning activities. The activ-
ities included tracing a concrete value assigned to a variable, swapping symbolic
values of variables, finding the smallest and largest symbolic values given, finding
the absolute value of a symbolic variable, and other similar exercises.

The think-aloud extension to BTR provides automated recording of screen
and audio data, real-time transcription and logging, and automated tagging
of transcribed speech with inferred characteristics of technical and attitudinal
challenges expressed. When the tool is first loaded, students are presented with
instructions on how to think out loud.

Before proceeding to the reasoning activities, the think-aloud extension re-
quests access to the student’s microphone and screen, and then runs a five-second
recording test. The test may have to be repeated if there are problems, though
for most users, one round of testing is sufficient. Once testing is complete and
quality is ensured, the system enters the think-aloud state. When in the think-
aloud state, the tool records audio and screen content, performing real-time
transcription as the student works through the exercises.

The extension is built as a conventional web application, with an Amazon
Web Services (AWS) back-end designed to support a large number of simulta-
neous think-aloud sessions. Media content is stored in an AWS S3 bucket, with
transcribed speech stored in an AWS RDS instance to facilitate downstream
analysis. Browser-based recording of screen and audio content relies on the Me-
diaStream Recording API [44]. Recordings are captured in 30-second fragments
and uploaded to AWS incrementally, limiting load.

While speech-to-text services have advanced significantly in recent years, high
accuracy is only possible in perfect conditions. There are limitations in typical
environments, stemming from background noise, recording equipment quality,
muffled and/or quiet speech, and domain-specific technical terms—a key focus
of this paper. We explored multiple transcription options, including Google’s
SpeechRecognition [17] interface and the DeepSpeech [28] library.

Google’s SpeechRecognition interface is part of the Web Speech API, a W3C
Community Specification [16], currently implemented only in Chromium-based



Automated Analysis of Student Verbalizations 5

browsers (i.e., Chrome, Edge, Opera). The current implementation relies on the
Google Cloud Speech-to-Text API. Benchmarking results show that the API
achieves an error rate of 12.23% on LibriSpeech’s test-clean dataset [34, 38].
While these results are impressive, it is important to note that they reflect perfor-
mance on typical, conversational speech. Understanding whether they translate
to domain-specific speech is a key goal of the work presented here.

DeepSpeech [28] is an open-source speech-to-text engine developed by Mozilla,
which uses a TensorFlow-based deep learning algorithm. Benchmarking results
show that the implementation achieves a 6.5% error rate on LibriSpeech’s test-
clean dataset [26]. These results are comparable to human performance [24] –
but again reflect performance on conversational speech. Of note, DeepSpeech
makes it difficult to achieve real-time transcription. In the current implementa-
tion of the verbalization analyzer, transcription via SpeechRecognition occurs in
real-time, whereas transcription via DeepSpeech occurs post hoc.

4 Experimental Set Up

The experiments were conducted in a required third-year algorithms course at
a Hispanic-Serving Institution. They were conducted in synchronous online set-
tings via WebEx. Two sections of students were involved (n=18, n=13).

Each pilot began with a brief introduction to the goals of the study and
the structure of the experiment. Students were introduced to the BTR tool and
the think-aloud extension. The instructor demonstrated how to use the tool,
how to complete a reasoning exercise, and how to think out loud. Students were
encouraged to describe the steps in their thinking process while solving the
exercises. The introduction was followed by the individual think-aloud sessions.
Students were instructed to disconnect from the WebEx conference, and to use
the web link to begin their think-aloud sessions. Each student completed a think-
aloud session individually, from home, at their own computer.

5 ERQ 1: Transcription Accuracy

In the first pilot, students completed an average of 11 exercises out of a possible
14, with 9 students completing all exercises. Audio and video were captured
per student, per session. The average recording length was 41.1 minutes per
session, with a minimum length of 13 minutes, and a maximum length of 110
minutes. In the second pilot, students completed an average of 10 exercises, with
4 students completing all exercises. The average recording length was 29 minutes
per session, with a minimum length of 9 minutes, and a maximum length of 46
minutes. Video content was used to study how students engaged with the tool,
to support transcription correction, and to select the label set.

Audio recordings were processed using the Speech-Recognition and Deep-
Speech implementations, generating per student, per session transcripts. All
recordings were also manually transcribed to enable accuracy evaluation. The
first pilot generated 18 transcripts, with an average word count of 1,562, a min-
imum word count of 288, and a maximum word count of 3,161. The second pilot
generated 13 total transcripts, with an average word count of 1,269, a minimum



6 Almazova et al.

word count of 192, and a maximum word count of 2,605. In total, 31 per-session
transcripts were collected across the two pilots.

WC SR WER DS WER WC SR WER DS WER

288 0.51 0.59 1755 0.42 0.53
714 0.47 0.48 1756 0.53 0.57
718 0.12 0.21 1835 0.21 0.29
747 0.43 0.57 1889 0.36 0.49
810 0.35 0.48 1996 0.63 0.55
1114 0.33 0.44 2618 0.29 0.43
1423 0.59 0.63 2688 0.37 0.45
1487 0.34 0.49 3161 0.18 0.40

192 0.14 0.22 1257 0.23 0.32
397 0.34 0.39 1800 0.34 0.39
662 0.37 0.40 1837 0.39 0.49
716 0.37 0.44 1898 0.34 0.52
830 0.41 0.42 2446 0.43 0.58
861 0.43 0.56 2605 0.36 0.49
1005 0.23 0.33

Table 1. Error Rate per Transcript, Across Pilots

Table 1 details the
per-transcript word error
rates (WER) for the two
pilots, respectively (top-
half=pilot 1, bottom-
half=pilot 2). Overall,
DeepSpeech exhibited an
error rate of 45% (DS
WER), and SpeechRecog-
nition exhibited an error
rate of 36% (SR WER).
From these results, we
conclude that at this
time, neither state-of-
the-art tool offers suffi-
cient accuracy of tran-
scription in the context
of code reasoning.

Given the significantly
better performance of
SpeechRecognition and

DeepSpeech in prior benchmarking studies, the relatively poor performance of
these systems may be surprising. Comparisons between the manually collected
and automatically collected transcripts show that a significant portion of the er-
rors are due to limitations in handling references to the code text. Both systems
were trained using conversational speech, presenting a context mismatch during
transcription. Note that this limitation might be overcome using DeepSpeech,
which supports training on a custom corpus. With training on a robust corpus
collected in the context of code reasoning, performance is likely to improve.

6 ERQ 2: Identification Accuracy

We now turn our attention to identifying points of interest in student behaviors,
attitudes, and difficulties. Given the error rates in the automatically generated
transcripts, manually generated and validated transcripts are used hereafter.

Dataset Labeling. Labels corresponding to points of interest likely to be
relevant in the design of automated interventions were identified through a care-
ful literature review and manual analysis of audio, video, and transcript content.
They are summarized in Table 2. Each of the 435 transcripts were manually la-
beled with the appropriate tags for testing purposes.

One important threat to validity is the subjective nature of the labeling
process. Labels such as uncertain and guessing, for instance, are subject to
interpretation, varying from one observer to another. To mitigate subjectivity,
the label set was established iteratively through independent consideration of



Automated Analysis of Student Verbalizations 7

a subset of transcripts by two independent labelers. After multiple iterations
of independent labeling and comparison, the intent of each label was carefully
described and documented, along with heuristics and examples. Subsequently,
the transcript set was shuffled, and labels were independently assigned to all
435 transcripts. Inter-rater reliability was assessed using Cohen’s kappa [8]. The
agreement rate was high, with individual label agreement ranging between 0.84
and 1.0, with an overall agreement rate of 0.91. The final dataset used for analy-
sis was created by merging the two independent datasets, with conflicting labels
argued between the raters until consensus was reached.

Preprocessing and Vectorization. The input data for each student at-
tempt includes a think-aloud transcript and BTR state (e.g., exercise number,
attempt count, whether the exercise was solved correctly). Each response (i.e.,
answer) is encoded as a vector of tokens, including a boolean indicating correct-
ness (i.e., 0 or 1). The vectors are padded, if necessary, to ensure consistency.

Label Definition

read instructions The student read the exercise
instructions out loud.

traced code The student traced the code
out loud.

uncertain The student was not confident
in her reasoning.

guessing The student was guessing, us-
ing brute-force.

btr confusion The student misunderstood a
core BTR concept.

logic confusion The student misunderstood a
core logic (programming) con-
cept.

intermediates conf.The student misunderstood
how to differentiate and/or
carry-through intermedi-
ate states across multiple,
dependent statements.

Table 2. Attitude/Behavior/Misunderstanding Labels

Transcript data is pre-
processed to remove low-
value content. This in-
cludes removal of punc-
tuation, symbols, single-
letter words, numbers,
and stop-words. We use
NLKT’s [3] default set
of stop-words (e.g., “it”,
“its”). Lemmatization is
also performed: Multi-
ple forms of the same
word are often used—for
instance, multiple verb
forms, such as thinks
and thinking. It is of-
ten beneficial to reduce
inflectional forms of a
word to its root [18,
43]. Lemmatization is
performed using NLTK’s
part-of-speech tagger and
WordNet [42].

Most natural language labeling algorithms operate on vectorized text, col-
lapsing each transcript to a vector of real numbers, or a set of such vectors,
representing features of the text. We explore a range of vectorization techniques.

TF-IDF [40] computes a vector of weights for each transcript, where the
length of each vector is equal to the number of words contained in the corpus
(i.e., all preprocessed transcripts). The weight for each word in the vector for a
specific transcript is calculated as the word’s frequency in the transcript, divided
by its frequency in the corpus. (Words that are rare in the corpus, but appear



8 Almazova et al.

frequently in a transcript, receive larger weights in that transcript’s vector.) Note
that the approach ignores information about word position. A phrase like, “I
don’t understand” is treated as a collection of three words, not a single concept.
To overcome this limitation, we consider TF-IDF using phrase lengths of one to
three words (i.e., n-gram lengths of one to three).

Word2Vec [25] is a word embedding algorithm that relies on a neural net-
work model to generate a vector of real numbers for each word in the corpus.
The vectors are intended to capture relationships among words, so that, for
instance,“don’t understand” - “don’t” = “understand”. The mechanics of the
neural network are omitted here, but they rely on the relative context of words
within phrases across the corpus. A Word2Vec model was trained on the think-
aloud corpus, using a specified vector dimension of 100. This resulted in a set of
vectors for each transcript, containing one vector for each word in the transcript.

GloVe [33] is another embedding algorithm intended to capture the rela-
tionships among words. The mechanics, again omitted, rely on word-word co-
occurrence statistics. While a custom GloVe model can be trained, we use the
pre-trained model, which benefits from a large corpus. Whereas our domain-
specific corpus includes 10,898 tokens (total words), and a vocabulary of 772
distinct words, the GloVe corpus includes 840B tokens and a vocabulary of 2.2M
words. Encoding using the pre-trained model generated a vector of dimension
300 for each word in the corpus and corresponding sets of vectors for each tran-
script. While all three methods were evaluated in the context of the labeling
algorithms described next, only GloVe performed significantly better than 50%
labeling accuracy. It remains the focus hereafter.

7 Data Analysis and Results

The binary relevance method [46] is one of the most common techniques for
approaching multi-label classification. The problem is decomposed into seven
sub-problems, one for each label (i.e. positive or negative). As detailed next, a
variety of models were explored to automate label assignment. A key factor in
achieving high accuracy when training these classifiers is the size of the training
set (a portion of our transcript set) and the distribution of labels across the
set. Labels that are underrepresented or overrepresented can bias the classifier’s
performance. Even at 435 per-attempt transcripts, our training sets are relatively
small. More importantly, as illustrated in Figure 2, the label distributions are not
balanced. The guessing label, for instance, is assigned to only 47 transcripts,
whereas the traced code label is assigned to 265 transcripts.

To achieve balance across labels, weight adjustments were applied during
training. While the exploratory results are omitted here, the balancing approach
improved the accuracy of label assignment by as much as 30% for some labels.
The labeled, vectorized dataset was shuffled and split, with 70% of the transcripts
used for training, 10% withheld for validation and 20% withheld for testing. The
split was stratified across labels to ensure balanced representation.

7.1 Classifier Architecture and Model Training



Automated Analysis of Student Verbalizations 9

Fig. 2. Dataset Label Distribution

Several neural network architectures
were evaluated, all with previously
demonstrated success in text classifi-
cation problems, including fully con-
nected neural networks, convolutional
neural networks, recurrent neural net-
works (RNN) with gated recurrent
units, and long short-term memory
(LSTM) networks [39]. The open-
source Keras library [6] was used for
network implementation and evalua-
tion. The best performing architec-
ture is structured as follows.

The first input layer accepts a tokenized transcript (i.e., a set of integers
corresponding to the corpus vocabulary), which is passed to a pre-trained em-
bedding layer. The embedding layer transforms the integer set into a GloVe-
based embedding representation (i.e., a set of embedding vectors of dimension
300). The embedding layer is followed by two LSTM networks [39], recurrent
structures designed for problems involving order-dependence. An interspersed
dropout layer limits network over-fitting, enhancing generalizability. The second
input layer (dimension=3) accepts exercise number, attempt count, and attempt
outcome. The third input layer (dimension=66) accepts the tokenized solution
entered by the student. A concatenation layer combines the three inputs into a
single tensor. A fully connected layer of 32 units with rectified linear activation
(ReLU) trains on all data combined. Finally, a fully-connected output layer with
one sigmoid activation function outputs a likelihood score (0.0-1.0) correspond-
ing to the label result. A score at or above 0.5 corresponds to true, and lower
values correspond to false. This architecture was trained to generate seven differ-
ent models, corresponding to each of the labels, respectively. (Details concerning
hyper-parameter tuning for each model are omitted.) All models required fewer
than 1,000 epochs to converge. The best performing models, with minimal loss
scores across both the training and validation sets were used.

Label Acc. n Label Acc. n Label Acc. n

uncertain 88.5% 26 btr confusion 87.8% 15 traced code 87.0% 56

logic conf. 80.2% 20 read inst. 92.4% 12 inter. conf. 96.2% 10

guessing 94.7% 10

Table 3. Automated Labeling Accuracy (per label)

Table 3 summarizes labeling accuracy over the withheld test set (n=87), as
well as the number of transcripts with each label. There were 20 transcripts
corresponding to the logic confusion label, for instance, and these were iden-
tified correctly 80.2% of the time – the lowest across the labels. There were 10
transcripts corresponding to students who had intermediates confusion, and
these were correctly identified 96.2% of the time – the highest accuracy across
the labels. Of course, the significance of the results varies from one label to an-



10 Almazova et al.

other due to variation in representation within the test set – but overall, the
classifier performed well, with an average accuracy of 89.5%

Fig. 3. ROC Curves for All Models

Recall that each of the seven
trained networks outputs a likelihood
score (0.0-1.0) for each transcript,
with a discrimination threshold of 0.5.
The receiver operating characteristic
(ROC) plot shown in Figure 3 is
generated by varying this threshold
to explore the trade-off between the
true positive rate and the false pos-
itive rate. Increasing the discrimina-
tion threshold to 1.0, for instance,
guarantees a 100% true positive rate,
but at the cost of false positives. The
area beneath each curve, shown par-

enthetically in the legend, is a measure of the network’s discriminatory power
– the likelihood the classifier will rank positive cases above negative cases. The
discriminatory performance is strong, with an average area-under-curve of 0.94.

8 Conclusion

This paper presented results in automating the analysis of student verbaliza-
tions in online learning environments, using an existing code reasoning tutor as
the study context. A new extension automatically transcribes student verbaliza-
tions and uses machine learning to identify specific student attitudes, behaviors,
and difficulties. We presented an analysis of transcription accuracy and utility
in identifying seven learner characteristics of interest. The results were based
on experimentation in two online sections of a required, junior-level algorithms
course, resulting in 435 think-aloud transcripts.

Unfortunately, the accuracy offered by current transcription tools appears to
be insufficient to enable reliable transcription in the context of domain-specific
verbalizations (e.g., code reasoning), hindering a fully automated implementa-
tion. However, this is only a temporary problem, almost certainly due to the
absence of sufficient training on an appropriately robust, domain-specific verbal-
ization corpus. Developing such a corpus is only a matter of time – and looking to
the future, there is reason to invest in that effort. When transcription accuracy is
high, our results provide evidence that a broad set of interesting characteristics
concerning student attitudes, behaviors, and difficulties can be identified auto-
matically, with high accuracy, in real-time. Enabling automatic identification of
student difficulties would have a profound impact on the design and efficacy of
online tutoring systems, in computer science education and beyond.

References

1. R. Azevedo and R. M. Bernard. A meta-analysis of the effects of feedback
in computer-based instruction. Journal of Educational Computing Research,



Automated Analysis of Student Verbalizations 11

13(2):111–127, 1995.
2. R. S. Baker, A. T. Corbett, K. R. Koedinger, and A. Z. Wagner. Off-task behavior

in the cognitive tutor classroom: when students” game the system”. In Proceedings
of SIGCHI, pages 383–390, 2004.

3. S. Bird, E. Klein, and E. Loper. Natural language processing with Python: analyzing
text with the natural language toolkit. ” O’Reilly Media, Inc.”, 2009.

4. N. Bosch, S. D’Mello, and C. Mills. What emotions do novices experience during
their first computer programming learning session? In International Conference
on Artificial Intelligence in Education, pages 11–20. Springer, 2013.

5. C. Chen, Z. Xing, and W. Ximing. Unsupervised software-specific morphological
forms inference from informal discussions. In The 39th International Conference
on Software Engineering, Buenos Aires, Argentina. IEEE, 2017.

6. F. Chollet et al. Keras, 2015.
7. C. Chunyang. Sethesaurus: synonyms and abbreviations for software-related terms.
8. J. Cohen. A coefficient of agreement for nominal scales. Educational and psycho-

logical measurement, 20(1):37–46, 1960.
9. M. Cook, M. Fowler, J. O. Hallstrom, J. E. Hollingsworth, T. Schwab, Y.-S. Sun,

and M. Sitaraman. Where exactly are the difficulties in reasoning logically about
code? experimentation with an online system. In Proceedings of the 23rd Annual
ACM Conference on Innovation and Technology in Computer Science Education,
pages 39–44, 2018.

10. S. Craig, A. Graesser, J. Sullins, and B. Gholson. Affect and learning: an ex-
ploratory look into the role of affect in learning with autotutor. Journal of educa-
tional media, 29(3):241–250, 2004.

11. L. S. Doddannara, S. M. Gowda, R. S. d Baker, S. M. Gowda, and A. M. De Car-
valho. Exploring the relationships between design, students’ affective states, and
disengaged behaviors within an its. In International Conference on Artificial In-
telligence in Education, pages 31–40. Springer, 2013.

12. M. Fan, J. Lin, C. Chung, and K. N. Truong. Concurrent think-aloud verbalizations
and usability problems. ACM Trans. Comput.-Hum. Interact., 26(5), July 2019.

13. N. C. for Education Statistics. Trend generator (student enrollment).
14. M. Fowler, M. Cook, K. Plis, T. Schwab, Y.-S. Sun, M. Sitaraman, J. O. Hallstrom,

and J. E. Hollingsworth. Impact of steps, instruction, and motivation on learning
symbolic reasoning using an online tool. In Proceedings of the 50th ACM Technical
Symposium on Computer Science Education, pages 1039–1045, 2019.

15. S. Girard, M. E. Chavez-Echeagaray, J. Gonzalez-Sanchez, Y. Hidalgo-Pontet,
L. Zhang, W. Burleson, and K. VanLehn. Defining the behavior of an affective
learning companion in the affective meta-tutor project. In International Confer-
ence on Artificial Intelligence in Education, pages 21–30. Springer, 2013.

16. W. C. Group. Web speech api.
17. W. C. Group. Web speech api the speechrecognition interface.
18. P. Han, S. Shen, D. Wang, and Y. Liu. The influence of word normalization in

english document clustering. In 2012 ieee international conference on computer
science and automation engineering (csae), volume 2, pages 116–120. IEEE, 2012.

19. N. Kemp and R. Grieve. Face-to-face or face-to-screen? undergraduates’ opinions
and test performance. Frontiers in Psychology, 5:1278, 2014.

20. I. A. Khan, R. M. Hierons, and W. P. Brinkman. Mood independent programming.
In Proceedings of the 14th European conference on Cognitive ergonomics: invent!
explore!, pages 269–272, 2007.

21. R. Kheir and T. Way. Inclusion of deaf students in computer science classes using
real-time speech transcription. SIGCSE Bull., 39(3):261–265, June 2007.



12 Almazova et al.

22. L. Knörzer et al. Facilitators or suppressors: Effects of experimentally induced
emotions on multimedia learning. Learning and Instruction, 44:97–107, 2016.

23. B. Kort, R. Reilly, and R. W. Picard. An affective model of interplay between
emotions and learning: Reengineering educational pedagogy-building a learning
companion. In Proceedings IEEE International Conference on Advanced Learning
Technologies, pages 43–46. IEEE, 2001.

24. R. P. Lippmann. Speech recognition by machines and humans. Speech communi-
cation, 22(1):1–15, 1997.

25. T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

26. R. Morais. A journey to ¡10% word error rate.
27. R. Moreno. Decreasing cognitive load for novice students: Effects of explanatory

versus corrective feedback in discovery-based multimedia. Instructional science,
32(1-2):99–113, 2004.

28. Mozilla. Project deepspeech.
29. J. Nielsen. Usability Engineering. Morgan Kaufmann Publishers Inc., San Fran-

cisco, CA, USA, 1993.
30. Z. A. Pardos, R. S. Baker, M. O. San Pedro, S. M. Gowda, and S. M. Gowda.

Affective states and state tests: Investigating how affect throughout the school year
predicts end of year learning outcomes. In Proceedings of the third international
conference on learning analytics and knowledge, pages 117–124, 2013.

31. B. Park, J. L. Plass, and R. Brünken. Cognitive and affective processes in multi-
media learning, 2014.

32. R. Pekrun and L. Linnenbrink-Garcia. International handbook of emotions in ed-
ucation. Routledge, 2014.

33. J. Pennington et al. Glove: Global vectors for word representation. In Empirical
Methods in Natural Language Processing (EMNLP), pages 1532–1543, 2014.

34. Picovoice. Speech-to-text benchmark.
35. RESOLVE Software Research Group at Clemson University. BeginToReason.
36. M. M. T. Rodrigo and R. S. Baker. Coarse-grained detection of student frustration

in an introductory programming course. In Proceedings of the fifth international
workshop on Computing education research workshop, pages 75–80, 2009.

37. K. D. Sidney, S. D. Craig, B. Gholson, S. Franklin, R. Picard, and A. C. Graesser.
Integrating affect sensors in an intelligent tutoring system. In Affective Interac-
tions: The Computer in the Affective Loop Workshop at, pages 7–13, 2005.

38. O. Speech and L. Resources. Librispeech asr corpus.
39. R. Staudemeyer and E. Morris. Understanding lstm–a tutorial into long short-term

memory recurrent neural networks. arXiv preprint arXiv:1909.09586, 2019.
40. tfidf.com. Tf-idf :: A single-page tutorial - information retrieval and text mining.
41. E. Um, J. L. Plass, E. O. Hayward, B. D. Homer, et al. Emotional design in

multimedia learning. Journal of educational psychology, 104(2):485, 2012.
42. P. University. About wordnet.
43. A. K. Uysal and S. Gunal. The impact of preprocessing on text classification.

Information Processing & Management, 50(1):104–112, 2014.
44. W3C. Mediastream recording.
45. D. Welch, C. T. Cook, Y. Sun, and M. Sitaraman. A web-integrated verifying

compiler for RESOLVE: a research perspective. In D. Janakiram, K. Sen, and
V. Kulkarni, editors, 7th India Software Engineering Conference, Chennai, ISEC
’14, Chennai, India - February 19 - 21, 2014, pages 12:1–12:6. ACM, 2014.

46. M.-L. Zhang, Y.-K. Li, X.-Y. Liu, and X. Geng. Binary relevance for multi-label
learning: an overview. Frontiers of Computer Science, 12(2):191–202, 2018.


