
Network Visualization and Assessment of Student Reasoning
About Conditionals

Nathan Hurtig∗
Joseph Hollingsworth∗
hurtigna@rose-hulman.edu
hollings@rose-hulman.edu

Rose-Hulman Institute of Technology
Terre Haute, IN, USA

Sarah Blankenship∗
Eileen Kraemer∗
Murali Sitaraman∗
smblank@clemson.edu
etkraem@clemson.edu
msitara@clemson.edu
Clemson University
Clemson, SC, USA

Jason O. Hallstrom
jhallstrom@fau.edu

Florida Atlantic University
Boca Raton, FL, USA

ABSTRACT
Understanding the thought processes of students as they progress
from initial (incorrect) answers toward correct answers is a chal-
lenge for instructors, both in this pandemic and beyond. This paper
presents a general network visualization learning analytics sys-
tem that helps instructors to view a sequence of answers input by
students in a way that makes student learning progressions appar-
ent. The system allows instructors to study individual and group
learning at various levels of granularity.

The paper illustrates how the visualization system is employed
to analyze student responses collected through an intervention. The
intervention is BeginToReason, an online tool that helps students
learn and use symbolic reasoning—reasoning about code behavior
through abstract values instead of concrete inputs. The specific
focus is analysis of tool-collected student responses as they perform
reasoning activities on code involving conditional statements.

Student learning is analyzed using the visualization system and
a post-test. Visual analytics highlights include instances where
students producing one set of incorrect answers initially perform
better than a different set and instances where student thought
processes do not cluster well. Post-test data analysis provides a
measure of student ability to apply what they have learned and
their holistic understanding.

CCS CONCEPTS
• Human-centered computing → Graph drawings; Informa-
tion visualization;Visualization systems and tools; Empirical
studies in visualization.

KEYWORDS
Graph Drawing, Information Visualization, Visualization Systems
and Tools, Empirical Studies in Visualization, Program Verification
∗Authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ITiCSE 2022, July 8–13, 2022, Dublin, Ireland
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9201-3/22/07. . . $15.00
https://doi.org/10.1145/3502718.3524793

ACM Reference Format:
Nathan Hurtig, Joseph Hollingsworth, Sarah Blankenship, Eileen Kraemer,
Murali Sitaraman, and Jason O. Hallstrom. 2022. Network Visualization and
Assessment of Student Reasoning About Conditionals. In Proceedings of
the 27th ACM Conference on Innovation and Technology in Computer Science
Education Vol 1 (ITiCSE 2022), July 8–13, 2022, Dublin, Ireland. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3502718.3524793

1 INTRODUCTION
Rising enrollment, especially in computer science, has motivated
a need to develop, explore, and use new educational methods and
online tools in classrooms [8]. Specifically, automated code check-
ing systems have seen increased use [13, 18, 19]. Also, the use of
peer assessment and instruction has become more common to in-
crease engagement in learning and minimize graduate assistant
and instructor usage [4, 27, 32].

The trend toward hybrid and remote learning in computer sci-
ence at many institutions [7] has accelerated with the arrival of the
pandemic. Educators see the potential benefits of online teaching
and the challenges in student motivation and student-faculty in-
teraction [1, 3]. There is now more reason to implement and use
online tools.

The data analysis in this paper focuses on a challenging topic for
most students to learn: Reasoning effectively about the behavior of
code involving conditional statements. The novelty of the symbolic
reasoning approach is that it goes beyond understanding code be-
havior on specific test inputs and helps students generalize their
reasoning using abstract values and achieve a holistic understand-
ing [16]. The intervention to aid students in learning is an online
reasoning tool, BeginToReason, that has been shown to be effec-
tive in helping students to reason about sequential code[11, 17].
The tool collects student responses as they learn reasoning and
progressively develop more correct answers.

To gain the full benefits of interventions such as the reasoning
tool, ultimately, instructors need a way to understand the learning
progressions of their students. To aid in this objective, we have
developed a novel network visualization learning analytics system.
Figure 1 shows the relationships. The right half of the figure with
blue arrows shows the usage of the BeginToReason tool. The left
half adds the analytics system with green arrows. The system helps
instructors understand and analyze the difficulties their students
face, individually or collectively. The system is applicable to stu-
dent learning of any topic in any environment where intermediate

https://orcid.org/0000-0002-0988-1401
https://doi.org/10.1145/3502718.3524793
https://doi.org/10.1145/3502718.3524793

and possibly wrong answers are collected for analysis as students
progress toward correct answers.

Figure 1: Visualization system and reasoning tool.

1.1 The Intervention
To be effective programmers, computer science students need to
learn to reason about the behavior of the code they write. One
common way students learn to do such reasoning is to run their
code or hand execute their code on a variety of fixed test inputs and
generalize their reasoning from these specific cases. While such
reasoning is an appropriate starting point, to predict the behavior
of code with confidence and gain a more thorough understanding,
students need to be able to generalize their analysis. For example,
they should be able to reason that a given program computes a
function of some inputs x and y or that it computes the minimum of
two given inputs. Prior research has established that a vast majority
of undergraduate students can learn to do such symbolic reasoning
through a combination of instruction and tool usage.

The objective of the intervention described in this paper is to help
students reason symbolically about code that involves conditional
statements. The specific intervention is the use of an online tool,
BeginToReason. The tool incorporates a variety of reasoning activ-
ities, beginning with straight-line code to code involving if and
while statements. Students receive a single lecture on the basics of
symbolic reasoning before using the tool in a lab setting. The lecture
focuses on reasoning about assignment statements symbolically,
leaving students to learn to reason about conditional statements
from the tool and its activities. Overall, the intervention is set up
so that it is easy to adapt for any institution interested in teaching
the ideas.

A key element of the reasoning tool that is particularly impor-
tant for this paper is that student responses are free-form, and all
responses are recorded. A student may attempt to solve a prob-
lem many times, get tool feedback, and continually improve their
answers.

1.2 Visualization and Assessment of Student
Learning

The network visualization learning analytics system we have devel-
oped is motivated by prior research, such as the work in [5]. Our
system automates the presentation of collected data of intermediate

and final answers, both right and wrong. In the underlying learning
network that is visualized, each node in the directed graph that
forms the network represents an answer input by some students,
and an edge to another node shows a subsequent answer.

The visualization system is designed to have an intuitive inter-
face. It allows instructors to study how students approach problem-
solving and make progress. It helps them identify common difficul-
ties and individuals or groups of students with similar difficulties. It
is interactive so that instructors can adjust the level of granularity
at which the same data is visualized.

Along with using the learning analytics system, our assessment
also employs a post-test. The post-test includes multiple-choice
questions to gauge students’ ability to apply what they have learned
and free response questions to capture their level of understanding
and the formality with which they can express that understanding.
A key goal is a holistic understanding, whereby for example, in
reasoning about a piece of code that computes a minimum of given
numbers, a student can realize and articulate that it computes a
minimum and not just its mechanics.

2 RELATEDWORK
Unlike other tutors and IDEs, the reasoning tool used in our inter-
vention is backed by the well-known RESOLVE verifier [10, 33]. It
is one of the several different existing verification tools summarized
in [28]. The verifier allows the tool to facilitate symbolic reasoning
over abstract input values. In turn, the tool allows students to input
free-form assertions in their responses to reasoning questions. The
tool collects some user data for research into student thinking. For
over a decade, thousands of undergraduate students at multiple in-
stitutions have employed symbolic reasoning approaches using this
reasoning tool in CS courses [12, 23, 26] and software engineering
projects [30].

Trustworthy software engineering undoubtedly requires logic
and reasoning rooted in mathematics that many students are taught
in a simple computer science curriculum [24]. Coding to test cases,
which most students do now, may lead to a lack of understanding of
the assignment [15], so a holistic reasoning approach can be more
helpful. Also, the logic employed in symbolic reasoning has the
potential to serve the students well in higher-level classes and their
careers with algorithm design and optimizations [22]. Symbolic
reasoning helps students see programming and mathematics as
more integrated [21]. Reasoning tools similar to the one used in this
research have shown to improve both performance and attitudes
towards reasoning elsewhere [34].

Learning progression, an idea that motivates this paper, is based
on the observation that learning for many skills tends to follow
an expected path (progression), in which more complex skills are
built on foundational skills (e.g., sitting, then crawling, then walk-
ing) [25]. A learning progression describes how the skills might
be demonstrated in both early and increasingly advanced forms.
Instructors who can identify demonstrations of these skills in their
students can provide appropriate experiences and levels of chal-
lenge to guide students along such a progression. For example,
educators in science have identified learning paths in traditional
academic learning about science concepts and used these to struc-
ture curricula [35]. While learning “trajectories” for computing

concepts have been identified for the K-8 space [31], we do not
know of such progressions or trajectories for abstract reasoning
about conditionals or other specific programming constructs. The
network visualization we describe here is an important step in
informing instructors.

A distinguishing aspect of the visualization system is that it
enables educators to note their own trends in data at a high level
but still draw their own conclusions through close inspection. This
goal differs from approaches such as the Error Quotient [37], the
WatWin measure [29], the Normalized Programming State Model
[9], and machine learning approaches [2, 36] in that this research
seeks to provide educators the means for network visual analytics,
rather than analyze data for them.

Prior research has employed networks to analyze and visualize
student learning data. For example, in [14], a graphical model of
how students navigate online courses is found. Prior research has
also explored using networks to represent how abstract concepts
are related [20] and how learned concepts progress [38]. But the
following central ideas in the visualization system make it novel.
It models students in a much smaller scope, and instead of analyz-
ing events within courses or concepts, it analyzes answers within
individual questions. It uses a dynamic and interactive visual pre-
sentation, unlike many summarized in [39].

3 TOOL OVERVIEW
The intervention described in this paper is the use of a reasoning
tool called BeginToReason. A screenshot showing a tool activity
appears in Figure 2. The tool’s interface comprises three main
panels. The middle panel displays an activity where the student
directs most of her focus. The task at hand is to analyze the code in
the operation and determine what the code does. In the code, “:=”
is used to distinguish assignments from equality in mathematical
assertions embedded with code. Students learning Java appear to
have no difficulty with such minor syntactic variations.

A student accomplishes the task by filling in three Confirm
assertions at the end of the code segment to capture what the
code does with the given variables. Initially, the assertions appear
empty. For this example, there are three Confirm assertions to
be filled, each of which requires the student to enter a relational
operator. To successfully complete the task, all three assertions
at the end must verify to be true regardless of input values. In
this symbolic reasoning, before the conditional statement, input
values of variables I, J, and K are remembered to be #I, #J, and #K,
respectively on line 11 with the Remember keyword. Current values
of variables at any state are expressed using just their names. For
example, when K is used at the end of the code, undecorated with
#, it denotes K’s value at the end.

The left panel contains a plain English description of the current
activity, a record of past answers to help students recall their pre-
viously entered answers, a reference material area that provides
scaffolding, and a list of concepts related to the activity. The right
panel provides feedback to the student for the correctness of the
answers supplied, a student response area where instructors can
request answers to free-response or multiple-choice questions, and
an area to obtain attitudinal responses from the student.

Figure 2: A screenshot of a BeginToReason activity.

Figure 3: Middle panel shown with a student’s assertions.

For this particular activity, the relational operators that cause
these assertions on lines 20, 21, and 22 to evaluate to true are <=, <=,
<=, respectively. In other words, the conditional statement makes
variable K’s value to be the minimum value of the three input values.
In Figures 2 and 3, a student has entered correct responses only for
lines 20 and 22 and received exactly that feedback through red and
green color highlighting. (The tool allows the colors to be changed
for accessibility). All student responses are saved, and they are
allowed to retry indefinitely.

4 NETWORK VISUALIZATION
This section summarizes the network visualization learning ana-
lytics system that we have developed to study student responses
as a network. When tackling an activity, such as a code reason-
ing activity shown in the previous section, students will often try
many incorrect answers before finding a correct solution. The sys-
tem helps visualize not just one sequence of intermediate answers
proposed by one student but all sequences generated by a group
of students in a class. A sequence is a list of chronologically or-
dered responses given by one student while attempting to answer a
question. The visualization attempts to provide insight into how stu-
dents think by focusing on how students progress between answers.
The visualization system can be used in any learning scenario that
fulfills these criteria:

(1) Students attempt to answer a question and repeat until they
input a correct answer.

(2) The state space of reasonable answers is limited.
(3) Allowed formats of answers are of the form of fill-in-the-

blank, multiple-choice, or calculations.

These criteria are general enough so that the visualization sys-
tem can be applied to educational contexts outside of an online
introduction to conditional statements. Most online activities with
instant feedback fulfill the system’s criteria regardless of their topic.

Consider a reasoning activity such as in the previous section
where a student is asked to fill in a Confirm assertion. A fictional
student “Alex” might have tried the intermediate incorrect answers
J = 1 and J < 0, and then found J <= 0, which we suppose is a
correct answer. The visualization system combines Alex’s sequence
with the sequences of answers from other students into a network.
To illustrate these ideas, we show below a small fictional input
data set in Table 1 and its corresponding network visualization in
Figure 4.

Table 1: Synthetic Raw Data

Student Identifier Student’s Attempt Attempt Correct?
Alex J = 1 Incorrect
Alex J < 0 Incorrect
Alex J <= 1 Correct
Derek J = 1 Incorrect
Derek J <= 0 Correct
...

Emma J <= 0 Correct

Figure 4: Network visualization of the above synthetic data.

There is a corresponding node (circle) in the network for every
unique answer tried by at least one student. Incorrect answers are
in red, and correct answers are in green. The color scheme can be
changed from red-green to yellow-blue to enhance accessibility.
The black node denotes that a student “gave up” on solving the
problem and did not find a correct answer. Answers that many
students attempted are larger in the network, so common answers
are more noticeable. Likewise, edges grow wider as more students
input the same two answers in a row. The paths of all students
through the network begin at the “Start” node and end either at
a correct answer or at a node where they gave up. Double circles
highlight the beginning and end nodes of the network.

The visualization uses horizontal positioning to establish a hi-
erarchy of answers. Correct answers are on the right side of the
network, and the “Gave Up” node is on the left. The remaining
intermediate incorrect answers are placed according to their calcu-
lated distance from the correct answers. Each node’s distance metric
is calculated as the arithmetic mean of how many more attempts
students tried after leaving an incorrect answer before reaching
a correct answer. Nodes with higher distances are positioned on
the left side of the network, farther away from the correct answers.
Their color is also slightly darkened to visually indicate that stu-
dents made more attempts to arrive at a correct answer following
answers represented by these darker nodes.

The network in Figure 4 is only a static screenshot of the online
visualization system. The network is a dynamic physics simulation
powered by D3.js [6]. The simulation pulls connected nodes closer
together and pushes unconnected nodes apart. Users can click and
drag nodes in the network to arrange them as they see fit.

The tool offers options and filters that allow educators to con-
figure the visualization dynamically. When a user selects a node,
the tool displays the node’s calculated distance from the correct
answers, how many students answered the question correctly im-
mediately following their input of the selected attempt, and a list
of the students that input the answer. A screenshot of the interface
is in Figure 5. Users can direct the tool to filter by students to show
only a subset of the classroom’s paths through the network. In Fig-
ure 6, a single student’s path stands out because all other paths and
nodes have been dimmed. Users can also combine nodes through
drag-and-drop, so they can simplify the network by aggregating
similar answers together by their concepts.

Figure 5: User interface of the network visualization.

Figure 6: A single student’s path through the network.

5 EXPERIMENTAL SETUP
The data used for analysis in this paper was collected from an ex-
periment conducted in 2021 at one of our institutions. 76 out of
94 total students in a second-year software development course
consented to participate in the study. The class uses Java, and stu-
dents are expected to have learned foundational object-oriented
programming concepts in a prerequisite course.

Students received an in-person lecture on formal reasoning for
the experiment, focusing primarily on reasoning about a straight-
line sequence of assignment statements. The students completed
activities in a lab using the symbolic reasoning tool the week after
the lecture. They completed a post-test on symbolic reasoning a few
days later. 66 out of 76 of the consenting students also took the post-
test. The post-test asked students to choose the correct assertions for
a given code segment, similar to the activity in Section 3. The post-
test also asked students to choose the correct code segment to make
the given assertions true. Both kinds of assessments were presented
on each style of post-test question to check if students were able to
apply their understanding of conditional code reasoning beyond
the style of questions they had seen in the activities.

6 ANALYSIS
6.1 Network Visualization Learning Analytics
This section presents examples of qualitative insights gained from
employing the network visualization learning analytics system on
the tool-collected data from symbolic reasoning lab activities.

In the sameway that one specification can be realized bymultiple
code segments, multiple assertions may be true at the end of a given
code segment. Students who reach different correct answers may
do so because they employed different thinking strategies. These
differences can be detected using the interactive network display.

As part of the tool’s lab activity, students were asked to complete
the Confirm assertions found in Listing 1. The code takes an integer
I, and if I is non-negative, sets J to be -I. Otherwise, I is negative, and
J is set to be I. Unlike a minimum-finding example, this example
is designed to let students explore more. Students reached two
distinct correct answers for this problem: “J <= 0” (Answer A) and
“J <= I” (Answer B). Whereas the first answer, which more closely
corresponds to the purpose of the code, was the intended answer
to demonstrate a holistic understanding, the less intuitive second
answer is also correct. Of the 99 students that attempted the lesson,
51 reached Answer A and 47 reached Answer B.

Listing 1: Lab activity code.
1 Read(I);

2 If I >= 0 then

3 J := - I;

4 else

5 J := I;

6 end;

7 Confirm J /* relational op*/ /* expression */;

The networks shown in Figure 7 were made using the network
visualization’s selection feature, with Figures 7a and 7b showing the
network generated by Groups A and B, respectively. They show a
clear visual difference between the thought processes: Students who

(a) Answer A (b) Answer B

Figure 7: Comparison between two correct answers.

reached different correct answers tended to not share intermediate
incorrect answers along the way, and the students in Group B,
who picked the less intuitive answer, visited the higher-distance
nodes. This observation is supported by quantitative analysis as
well: Students in Group A reached the correct Answer A after an
average of 0.824 incorrect answers, but students in Group B reached
the correct Answer B after an average of 1.447 incorrect answers.

Figure 8 shows a network generated from another question in
the lab activity. The undirected, messy network shows that students
did not have many thinking strategies in common, though they all
arrived at the same correct answer.

Figure 8: A cluttered network means answers were diverse.

This network shows that some students employed a “guess-and-
check” strategy on this problem. Supporting this theory is the
relative “distance” of the Start node: many incorrect answers are
farther away from the correct answer than the Start node. Since the
distance of the Start node is mathematically the average number
of attempts across all students, this means that all the incorrect
answers to the left of the Start node are worse off than the class
average. This range might be due to a bifurcation in students: those
who got the correct answer through formal thinking and those
that relied on guessing. This claim is supported quantitatively: 44%
of the 98 students reached the correct answer on their first try.
However, the remaining 56% took an average of 5.291 attempts
before reaching the correct answer.

Insights such as the ones here, made possible through network vi-
sualization, can help educators in two ways. First, they can serve as
an early warning that some students may not fully understand the
material. Detecting guessing methods in labs or homework allows

educators to respond and adjust proactively before administering
summative assessments like exams. Second, it can inform educators
that the question may be too difficult or exploratory. It is challeng-
ing for educators to measure the difficulty of questions that allow
students to retry after incorrect answers, as most students might
eventually guess correctly. By providing a way to visualize guess-
ing, network analysis can help educators gauge the difficulty of
their questions and arrive at questions that better channel students’
thought processes.

6.2 Post-Test Data Analysis
In the multiple-choice questions on the post-test, students either
selected assertions that satisfied a given code segment (similar
to the lab activity) or selected a code segment that would make
given assertions true. Figure 9 shows the average score versus
the difference between the two types of questions. The graph’s
x-axis is the average score on the conditional questions, and the
y-axis is the difference between scores on choosing code segment
questions and choosing assertions questions. Students maintained
the same performance on both kinds of questions. More points
are clustered towards the higher averages and zero or positive
differences, showing that students are learning to reason about
code in both directions. The p-value for this comparison of scores
is 0.048, indicating that the data are statistically significant.

Figure 9: Matched-pair analysis for selecting assertions ver-
sus code segments.

The post-test questions, aside from differing in selecting asser-
tions or code segments, were further subdivided into three cat-
egories: The answers for each question would either be “holis-
tic” (e.g., code computes the maximum), “holistic/formal” (e.g.,
K = Max(#I, #J)), or “formal” (e.g., K >= #I and K >= #J).
Table 2 shows the averages for these different types of questions
and the difference in scores between questions for selecting code
segments versus assertions. The latter difference is statistically sig-
nificant with a p-value of 0.007. While students performed well on
all questions when selecting code segments, their scores dropped
as they progressed from holistic to formal questions when select-
ing assertions. Students did worse specifically on the holistic/for-
mal questions when selecting code segments. These observations,
paired with the significant dip in students’ scores on the formal
question when selecting assertions, point to difficulties learning to
use mathematical assertions for the first time.

Table 2: Performance on conditional statement questions.

Question Select Assertion Select Code Difference p-value

Holistic 0.773 0.803 0.030 0.324
Holistic/Formal 0.750 0.682 -0.068 0.183

Formal 0.504 0.682 0.178 0.007
Total 0.676 0.722 0.047 0.184

6.3 Comparing Visualization and Post Analysis
We conclude the discussion by connecting visualization analysis
with post-test data analysis. Based on qualitative data from the
network visualization, we noted in Subsection 6.1 an activity where
students in Group A picked the more obviously correct answer
in fewer attempts than Group B. Of the students who completed
both the lab activities and post-test, those in Group A scored an
average of 2.34 out of 4 on the holistic section of the post-test, while
students in Group B scored an average of 1.70. These results are
summarized in Table 3. Although the difference is not statistically
significant, this correlation suggests that the qualitative data on
students’ thought processes from the network visualization of lab
activities may be a predictor of their performance on a post-test.

Table 3: Holistic post-test scores by group.

Group A Group B
Count 30 32

Mean (out of 4) 2.34 1.70
Standard Deviation 1.40 1.23

7 SUMMARY
Learning to reason symbolically about the behavior of code in-
volving conditional statements is a difficult task for students. This
paper reports on our experience using an online tool designed with
suitable activities to communicate the concepts to students. To
study student learning, we have used a novel network visualization
learning analytics system we built, along with a post-test.

Most students can learn symbolic reasoning through activities.
Visualization can highlight not only the clustering of answers and
students but also common learning progressions. It may help in-
structors see that reaching some answers (right or wrong) may be
qualitatively better than others and may serve as a prelude to post-
test data analysis. Post-test analysis shows that students achieve a
measure of holistic or formal thinking. It also shows that students
can pick code segments that match assertions better than the oppo-
site, suggesting learning to use assertions for the first time remains
a challenge.

Future directions include developing an intelligent tutoring sys-
tem to provide help where and for whom it is needed and the use
of the visualization system in non-CS contexts.

ACKNOWLEDGMENTS
This research is funded in part by US National Science Foundation
grants DUE-1914667 and DUE-1915334.

REFERENCES
[1] Olasile Babatunde Adedoyin and Emrah Soykan. 2020. Covid-19 pandemic

and online learning: the challenges and opportunities. Interactive Learning
Environments 0, 0 (2020), 1–13. https://doi.org/10.1080/10494820.2020.1813180

[2] Gökhan Akçapınar, Arif Altun, and Petek Aşkar. 2019. Using learning analytics
to develop early-warning system for at-risk students. International Journal of
Educational Technology in Higher Education 16, 1 (dec 2019), 40. https://doi.org/
10.1186/s41239-019-0172-z

[3] Mohammad Alawamleh, Lana Al-Twait, and Gharam Al-Saht. 2020. The effect
of online learning on communication between instructors and students during
Covid-19 pandemic. Asian Education and Development Studies ahead-of-print (08
2020). https://doi.org/10.1108/AEDS-06-2020-0131

[4] Ashok R. Basawapatna and Alexander Repenning. 2010. Cyberspace Meets Brick
and Mortar: An Investigation into How Students Engage in Peer to Peer Feed-
back Using Both Cyberlearning and Physical Infrastructures. In Proceedings of the
Fifteenth Annual Conference on Innovation and Technology in Computer Science
Education (Bilkent, Ankara, Turkey) (ITiCSE ’10). Association for Computing Ma-
chinery, New York, NY, USA, 184–188. https://doi.org/10.1145/1822090.1822143

[5] Daniel Bauer, Veronika Kopp, and Martin R. Fischer. 2007. Answer changing in
multiple choice assessment change that answer when in doubt – and spread the
word! BMCMedical Education 7, 1 (24 Aug 2007), 28. https://doi.org/10.1186/1472-
6920-7-28

[6] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. 2011. D3 Data-Driven
Documents. IEEE Transactions on Visualization and Computer Graphics 17, 12
(dec 2011), 2301–2309. https://doi.org/10.1109/TVCG.2011.185

[7] William G. Bowen, Matthew M. Chingos, Kelly A. Lack, and Thomas I. Nygren.
2014. Interactive Learning Online at Public Universities: Evidence from a Six-
Campus Randomized Trial. Journal of Policy Analysis and Management 33, 1 (jan
2014), 94–111. https://doi.org/10.1002/pam.21728

[8] Tracy Camp, W. Richards Adrion, Betsy Bizot, Susan Davidson, Mary Hall, Su-
sanne Hambrusch, Ellen Walker, and Stuart Zweben. 2017. Generation CS: The
growth of computer science. ACM Inroads 8, 2 (2017), 44–50.

[9] Adam S. Carter, Christopher D. Hundhausen, and Olusola Adesope. 2015. The
Normalized Programming State Model. In Proceedings of the eleventh annual
International Conference on International Computing Education Research (ICER
’15). ACM, New York, NY, USA, 141–150. https://doi.org/10.1145/2787622.2787710

[10] Charles T. Cook, Heather Harton, Hampton Smith, and Murali Sitaraman. 2012.
Specification engineering and modular verification using a web-integrated verify-
ing compiler. In 2012 34th International Conference on Software Engineering (ICSE).
IEEE, Zurich, Switzerland, 1379–1382. https://doi.org/10.1109/ICSE.2012.6227243

[11] Michelle Cook, Megan Fowler, Jason O. Hallstrom, Joseph E. Hollingsworth,
Tim Schwab, Yu-Shan Sun, and Murali Sitaraman. 2018. Where exactly are the
difficulties in reasoning logically about code? experimentation with an online
system. In Proceedings of the 23rd Annual ACM Conference on Innovation and
Technology in Computer Science Education, ITiCSE 2018, Larnaca, Cyprus, July 02-
04, 2018. Association for Computing Machinery, Larnaca, Cyprus, 39–44. https:
//doi.org/10.1145/3197091.3197133

[12] Svetlana V. Drachova, Jason O. Hallstrom, Joseph E. Hollingsworth, Joan Krone,
Richard Pak, and Murali Sitaraman. 2015. Teaching Mathematical Reasoning
Principles for Software Correctness and Its Assessment. TOCE 15, 3 (2015),
15:1–15:22.

[13] Tommy Färnqvist and Fredrik Heintz. 2016. Competition and feedback through
automated assessment in a data structures and algorithms course. Annual Con-
ference on Innovation and Technology in Computer Science Education, ITiCSE
11-13-July (2016), 130–135. https://doi.org/10.1145/2899415.2899454

[14] Louis Faucon, Lukasz Kidzinski, and Pierre Dillenbourg. 2016. Semi-Markov
model for simulating MOOC students. In Proceedings of the 9th International Con-
ference on Educational Data Mining, EDM 2016, Raleigh, North Carolina, USA, June
29 - July 2, 2016, Tiffany Barnes, Min Chi, and Mingyu Feng (Eds.). International
Educational DataMining Society (IEDMS), Raleigh, North Carolina, USA, 358–363.
http://www.educationaldatamining.org/EDM2016/proceedings/paper_112.pdf

[15] Michal Forišek. 2006. On the suitability of programming tasks for automated
evaluation. Informatics in Education-An International Journal 5, 1 (03 2006), 63–76.

[16] Megan Fowler. 2021. A Human-Centric System for Symbolic Reasoning About
Code. Ph. D. Dissertation. Clemson University, Clemson, SC 29634.

[17] Megan Fowler, Jason Halltrom, Joseph E. Hollingsworth, Eileen Kraemer, Murali
Sitaraman, Yu-Shan Sun, Jiadi Wang, and Gloria Washington. 2021. Tool-Aided
Learning of Code Reasoning with Abstraction in the CS Curriculum. Informatics
in Education 20, 4 (2021), 533–566. https://doi.org/10.15388/infedu.2021.24

[18] Jianxiong Gao, Bei Pang, and Steven S. Lumetta. 2016. Automated feedback
framework for introductory programming courses. Annual Conference on Inno-
vation and Technology in Computer Science Education, ITiCSE 11-13-July (2016),
53–58. https://doi.org/10.1145/2899415.2899440

[19] Ginés Gárcia-Mateos and José Luis Fernández-Alemán. 2009. A course on algo-
rithms and data structures using on-line judging. ACM SIGCSE Bulletin 41, 3
(2009), 45–49. https://doi.org/10.1145/1595496.1562897

[20] Philippe J. Giabbanelli, Andrew A. Tawfik, and Vishrant K. Gupta. 2019. Learning
Analytics to Support Teachers’ Assessment of Problem Solving: A Novel Applica-
tion for Machine Learning and Graph Algorithms. In Utilizing Learning Analytics

to Support Study Success, Dirk Ifenthaler, Dana-Kristin Mah, and Jane Yin-Kim Yau
(Eds.). Springer International Publishing, 175–199. https://doi.org/10.1007/978-
3-319-64792-0_11

[21] J. Paul Gibson. 2008. Weaving a Formal Methods Education with Problem-Based
Learning. Communications in Computer and Information Science 17, 460–472.
https://doi.org/10.1007/978-3-540-88479-8_32

[22] David Ginat. 2014. On Inductive Progress in Algorithmic Problem Solving.
Olympiads in Informatics 8 (2014), 81–91.

[23] Jason O. Hallstrom, Cathy Hochrine, Jacob Sorber, and Murali Sitaraman. 2014.
An ACM 2013 exemplar course integrating fundamentals, languages, and soft-
ware engineering. In The 45th ACM Technical Symposium on Computer Science
Education, SIGCSE 2014, Atlanta, GA, USA, March 5-8, 2014, J. D. Dougherty, Kris
Nagel, Adrienne Decker, and Kurt Eiselt (Eds.). ACM, Atlanta, GA, USA, 211–216.
https://doi.org/10.1145/2538862.2538969

[24] Peter B. Henderson. 2003. Mathematical reasoning in software engineering
education. Commun. ACM 46, 9 (2003), 45–50.

[25] Karin Hess. 2008. Developing and using learning progressions as a schema for
measuring progress. National Center for Assessment (2008).

[26] Wayne D. Heym, Paolo A. G. Sivilotti, Paolo Bucci, Murali Sitaraman, Kevin Plis,
Joseph E. Hollingsworth, Joan Krone, and Nigamanth Sridhar. 2017. Integrating
Components, Contracts, and Reasoning in CS Curricula with RESOLVE: Experi-
ences at Multiple Institutions. In 30th IEEE Conference on Software Engineering
Education and Training, CSEE&T 2017. IEEE, Savannah, GA, USA, 202–211.

[27] Sarah Hug, Heather Thiry, and Phyllis Tedford. 2011. Learning to Love Computer
Science: Peer Leaders Gain Teaching Skill, Communicative Ability and Content
Knowledge in the CS Classroom. In Proceedings of the 42nd ACM Technical Sympo-
sium on Computer Science Education (Dallas, TX, USA) (SIGCSE ’11). Association
for Computing Machinery, New York, NY, USA, 201–206.

[28] Vladimir Klebanov, Peter Müller, Natarajan Shankar, Gary T. Leavens, Valentin
Wüstholz, EyadAlkassar, RobArthan, Derek Bronish, RodChapman, Ernie Cohen,
Mark Hillebrand, Bart Jacobs, K. Rustan M. Leino, Rosemary Monahan, Frank
Piessens, Nadia Polikarpova, Tom Ridge, Jan Smans, Stephan Tobies, Thomas
Tuerk, Mattias Ulbrich, and Benjamin Weiß. 2011. The 1st Verified Software
Competition: Experience Report. In FM 2011: Formal Methods, Michael Butler and
Wolfram Schulte (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 154–168.

[29] Victoria Menzies, Catherine Hewitt, Dimitra Kokotsaki, Clare Collyer, and Andy
Wiggins. 2016. Project Based Learning : evaluation report and executive summary.
Project Report. DU, London. http://dro.dur.ac.uk/20513/

[30] Caleb Priester, Yu-Shan Sun, and Murali Sitaraman. 2016. Tool-Assisted Loop
Invariant Development and Analysis. In 29th IEEE International Conference on
Software Engineering Education and Training, CSEET 2016. IEEE, Dallas, TX, USA,
66–70.

[31] Kathryn M. Rich, Carla Strickland, T. Andrew Binkowski, Cheryl Moran, and Di-
ana Franklin. 2018. K–8 Learning Trajectories Derived from Research Literature:
Sequence, Repetition, Conditionals. ACM Inroads 9, 1 (Jan 2018), 46–55.

[32] Beth Simon, Sarah Esper, Leo Porter, and Quintin Cutts. 2013. Student Experience
in a Student-Centered Peer Instruction Classroom. In Proceedings of the Ninth An-
nual International ACMConference on International Computing Education Research
(San Diego, San California, USA) (ICER ’13). Association for Computing Machin-
ery, New York, NY, USA, 129–136. https://doi.org/10.1145/2493394.2493407

[33] Murali Sitaraman, Bruce M. Adcock, Jeremy Avigad, Derek Bronish, Paolo Bucci,
David Frazier, Harvey M. Friedman, Heather K. Harton, Wayne D. Heym, Jason
Kirschenbaum, Joan Krone, Hampton Smith, and Bruce W. Weide. 2011. Building
a push-button RESOLVE verifier: Progress and challenges. Formal Asp. Comput.
23, 5 (2011), 607–626.

[34] Sotiris Skevoulis and Vladimir Makarov. 2006. Integrating formal methods tools
into undergraduate computer science curriculum. In Proceedings. Frontiers in
Education. 36th Annual Conference. IEEE, IEEE, San Diego, CA, USA, 1–6.

[35] Carol L. Smith, Marianne Wiser, Charles W. Anderson, and Joseph Krajcik. 2006.
Implications of Research on Children’s Learning for Standards and Assessment:
A Proposed Learning Progression for Matter and the Atomic-Molecular Theory.
Measurement: Interdisciplinary Research and Perspectives 4, 1-2 (2006), 1–98. https:
//doi.org/10.1080/15366367.2006.9678570

[36] Daniel Spikol, Emanuele Ruffaldi, Giacomo Dabisias, and Mutlu Cukurova. 2018.
Supervised machine learning in multimodal learning analytics for estimating
success in project-based learning. Journal of Computer Assisted Learning 34, 4
(2018), 366–377. https://doi.org/10.1111/jcal.12263

[37] Emily S. Tabanao, Ma. Mercedes T. Rodrigo, and Matthew C. Jadud. 2011. Predict-
ing At-Risk Novice Java Programmers through the Analysis of Online Protocols.
In Proceedings of the Seventh International Workshop on Computing Education
Research (Providence, Rhode Island, USA) (ICER ’11). Association for Computing
Machinery, New York, NY, USA, 85–92. https://doi.org/10.1145/2016911.2016930

[38] Daan Vermaak. 2019. Modeling, Visualizing, and Analyzing Student Progress on
Learning Maps. Ph. D. Dissertation. University of Kansas.

[39] Camilo Vieira, Paul Parsons, and Vetria Byrd. 2018. Visual learning analytics of
educational data: A systematic literature review and research agenda. Computers
& Education 122 (July 2018), 119–135.

https://doi.org/10.1080/10494820.2020.1813180
https://doi.org/10.1186/s41239-019-0172-z
https://doi.org/10.1186/s41239-019-0172-z
https://doi.org/10.1108/AEDS-06-2020-0131
https://doi.org/10.1145/1822090.1822143
https://doi.org/10.1186/1472-6920-7-28
https://doi.org/10.1186/1472-6920-7-28
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1002/pam.21728
https://doi.org/10.1145/2787622.2787710
https://doi.org/10.1109/ICSE.2012.6227243
https://doi.org/10.1145/3197091.3197133
https://doi.org/10.1145/3197091.3197133
https://doi.org/10.1145/2899415.2899454
http://www.educationaldatamining.org/EDM2016/proceedings/paper_112.pdf
https://doi.org/10.15388/infedu.2021.24
https://doi.org/10.1145/2899415.2899440
https://doi.org/10.1145/1595496.1562897
https://doi.org/10.1007/978-3-319-64792-0_11
https://doi.org/10.1007/978-3-319-64792-0_11
https://doi.org/10.1007/978-3-540-88479-8_32
https://doi.org/10.1145/2538862.2538969
http://dro.dur.ac.uk/20513/
https://doi.org/10.1145/2493394.2493407
https://doi.org/10.1080/15366367.2006.9678570
https://doi.org/10.1080/15366367.2006.9678570
https://doi.org/10.1111/jcal.12263
https://doi.org/10.1145/2016911.2016930

	Abstract
	1 Introduction
	1.1 The Intervention
	1.2 Visualization and Assessment of Student Learning

	2 Related Work
	3 Tool Overview
	4 Network Visualization
	5 Experimental Setup
	6 Analysis
	6.1 Network Visualization Learning Analytics
	6.2 Post-Test Data Analysis
	6.3 Comparing Visualization and Post Analysis

	7 Summary
	Acknowledgments
	References

