FLDetector: Defending Federated Learning Against Model
Poisoning Attacks via Detecting Malicious Clients

Zaixi Zhang
University of Science and Technology of China
zaixi@mail.ustc.edu.cn

Jinyuan Jia
Duke University
jinyuan.jia@duke.edu

ABSTRACT

Federated learning (FL) is vulnerable to model poisoning attacks,
in which malicious clients corrupt the global model via sending
manipulated model updates to the server. Existing defenses mainly
rely on Byzantine-robust or provably robust FL methods, which aim
to learn an accurate global model even if some clients are malicious.
However, they can only resist a small number of malicious clients.
It is still an open challenge how to defend against model poisoning
attacks with a large number of malicious clients. Our FLDetector
addresses this challenge via detecting malicious clients. FLDetector
aims to detect and remove majority of the malicious clients such
that a Byzantine-robust or provably robust FL method can learn an
accurate global model using the remaining clients. Our key obser-
vation is that, in model poisoning attacks, the model updates from
a client in multiple iterations are inconsistent. Therefore, FLDe-
tector detects malicious clients via checking their model-updates
consistency. Roughly speaking, the server predicts a client’s model
update in each iteration based on historical model updates, and flags
a client as malicious if the received model update from the client and
the predicted model update are inconsistent in multiple iterations.
Our extensive experiments on three benchmark datasets show that
FLDetector can accurately detect malicious clients in multiple state-
of-the-art model poisoning attacks and adaptive attacks tailored to
FLDetector. After removing the detected malicious clients, existing
Byzantine-robust FL methods can learn accurate global models. Our
code is available at https://github.com/zaixizhang/FLDetector.

CCS CONCEPTS

« Security and privacy — Intrusion/anomaly detection and

malware mitigation; - Computing methodologies — Distributed

artificial intelligence.

KEYWORDS

Federated Learning; Model Poisoning Attack; Malicious Client De-
tection; Anomaly Detection

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD °22, August 14-18, 2022, Washington, DC, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9385-0/22/08....$15.00
https://doi.org/10.1145/3534678.3539231

Xiaoyu Cao
Duke University
xiaoyu.cao@duke.edu

Neil Zhenqgiang Gong
Duke University
neil.gong@duke.edu

ACM Reference Format:

Zaixi Zhang, Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. 2022. FLDe-
tector: Defending Federated Learning Against Model Poisoning Attacks
via Detecting Malicious Clients. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD ’22), August
14-18, 2022, Washington, DC, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3534678.3539231

1 INTRODUCTION

Federated Learning (FL) [17, 21] is an emerging learning paradigm
over decentralized data. Specifically, multiple clients (e.g., smart-
phones, 10T devices, edge data centers) jointly learn a machine
learning model (called global model) without sharing their local
training data with a cloud server. Roughly speaking, FL iteratively
performs the following three steps: the server sends the current
gloabl model to the selected clients; each selected client finetunes
the received global model on its local training data and sends the
model update back to the server; the server aggregates the received
model updates according to some aggregation rule and updates the
global model.

However, due to its distributed nature, FL is vulnerable to model
poisoning attacks [1-3, 8, 11, 20], in which the attacker-controlled
malicious clients corrupt the global model via sending manipulated
model updates to the server. The attacker-controlled malicious
clients can be injected fake clients [8] or genuine clients compro-
mised by the attacker [1-3, 11, 20]. Based on the attack goals, model
poisoning attacks can be generally classified into untargeted and
targeted. In the untargeted model poisoning attacks [8, 11], the
corrupted global model indiscriminately makes incorrect predic-
tions for a large number of testing inputs. In the targeted model
poisoning attacks [1-3, 20], the corrupted global model makes
attacker-chosen, incorrect predictions for attacker-chosen testing
inputs, while the global model’s accuracy on other testing inputs is
unaffected. For instance, the attacker-chosen testing inputs could
be testing inputs embedded with an attacker-chosen trigger, which
are also known as backdoor attacks.

Existing defenses against model poisoning attacks mainly rely
on Byzantine-robust FL methods [4, 7, 10, 22] (e.g., Krum [4] and
FLTrust [7]) or provably robust FL methods [9]. These methods aim
to learn an accurate global model even if some clients are malicious
and send arbitrary model updates to the server. Byzantine-robust
FL methods can theoretically bound the change of the global model
parameters caused by malicious clients, while provably robust FL
methods can guarantee a lower bound of testing accuracy under

KDD ’22, August 14-18, 2022, Washington, DC, USA

malicious clients. However, they are only robust to a small num-
ber of malicious clients [4, 9, 22] or require a clean, representative
validation dataset on the server [7]. For instance, Krum can theoret-
ically tolerate at most L"T_ZJ malicious clients. FLTrust [7] is robust
against a large number of malicious clients but it requires the server
to have access to a clean validation dataset whose distribution does
not diverge too much from the overall training data distribution.
As a result, in a typical FL scenario where the server does not have
such a validation dataset, the global model can still be corrupted
by a large number of malicious clients.

Li et al. [16] tried to detect malicious clients in model poison-
ing attacks. Their key assumption is that the model updates from
malicious clients are statistically distinguishable with those from
benign clients. In particular, they proposed to use a variational
autoencoder (VAE) to capture model-updates statistics. Specifically,
VAE assumes the server has access to a clean validation dataset
that is from the overall training data distribution. Then, the server
trains a model using the clean validation dataset. The model up-
dates obtained during this process are used to train a VAE, which
takes a model update as input and outputs a reconstructed model
update. Finally, the server uses the trained VAE to detect malicious
clients in FL. Specifically, if a client’s model updates lead to high
reconstruction errors in the VAE, then the server flags the client
as malicious. However, this detection method suffers from two key
limitations: 1) it requires the server to have access to a clean valida-
tion dataset, and 2) it is ineffective when the malicious clients and
benign clients have statistically indistinguishable model updates.

In this work, we propose a new malicious-client detection method
called FLDetector. First, FLDetector addresses the limitations of ex-
isting detection methods such as the requirement of clean validation
datasets. Moreover, FLDetector can be combined with Byzantine-
robust FL methods, i.e., after FLDetector detects and removes major-
ity of the malicious clients, Byzantine-robust FL methods can learn
accurate global models. Our key intuition is that, benign clients
calculate their model updates based on the FL algorithm and their
local training data, while malicious clients craft the model updates
instead of following the FL algorithm. As a result, the model updates
from a malicious client are inconsistent in different iterations. Based
on the intuition, FLDetector detects malicious clients via checking
their model-updates consistency.

Specifically, we propose that the server predicts each client’s
model update in each iteration based on historical model updates
using the Cauchy mean value theorem. Our predicted model up-
date for a client is similar to the client’s actual model update if
the client follows the FL algorithm. In other words, our predicted
model update for a benign (or malicious) client is similar (or dis-
similar) to the model update that the client sends to the server. We
use Euclidean distance to measure the similarity between a pre-
dicted model update and the received model update for each client
in each iteration. Moreover, we define a suspicious score for each
client, which is dynamically updated in each iteration. Specifically,
a client’s suspicious score in iteration ¢ is the average of such Eu-
clidean distances in the previous N iterations. Finally, we leverage
k-means with Gap statistics based on the clients’ suspicious scores
to detect malicious clients in each iteration. In particular, if the
clients can be grouped into more than one cluster based on the
suspicious scores and Gap statistics in a certain iteration, we group

Zaixi Zhang et al.

the clients into two clusters using k-means and classify the clients
in the cluster with larger average suspicious scores as malicious.

We evaluate FLDetector on three benchmark datasets as well as
one untargeted model poisoning attack [11], three targeted model
poisoning attacks [1, 2, 20], and adaptive attacks tailored to FLDe-
tector. Our results show that, for the untargeted model poisoning
attack, FLDetector outperforms the baseline detection methods; for
the targeted model poisoning attacks, FLDetector outperforms the
baseline detection methods in most cases and achieves comparable
detection accuracy in the remaining cases; and FLDetector is effec-
tive against adaptive attacks. Moreover, even if FLDetector misses
a small fraction of malicious clients, after removing the clients
detected as malicious, Byzantine-robust FL methods can learn as
accurate global models as when there are no malicious clients.

In summary, we make the following contributions.

e We perform a systematic study on defending FL against
model poisoning attacks via detecting malicious clients.

e We propose FLDetector, an unsupervised method, to detect
malicious clients via checking the consistency between the
received and predicted model updates of clients.

e We empirically evaluate FLDetector against multiple state-
of-the-art model poisoning attacks and adaptive attacks on
three benchmark datasets.

2 RELATED WORK

2.1 Model Poisoning Attacks against FL

Model poisoning attacks generally can be untargeted [8, 11, 18] and
targeted [1-3, 20]. Below, we review one state-of-the-art untargeted
attack and three targeted attacks.

Untargeted Model Poisoning Attack: Untargeted model poison-
ing attacks aim to corrupt the global model such that it has a low
accuracy for indiscriminate testing inputs. Fang et al. [11] proposed
an untargeted attack framework against FL. Generally speaking,
the framework formulates untargeted attack as an optimization
problem, whose solutions are the optimal crafted model updates on
the malicious clients that maximize the difference between the ag-
gregated model updates before and after the attack. The framework
can be applied to any aggregation rule, e.g., they have shown that
the framework can substantially reduce the testing accuracy of the
global models learnt by FedAvg [17], Krum [4], Trimmed-Mean [22],
and Median [22].

Scaling Attack, Distributed Backdoor Attack, and A Little is
Enough Attack: In these targeted model poisoning attacks (also
known as backdoor attacks), the corrupted global model predicts
an attacker-chosen label for any testing input embedded with an
attacker-chosen trigger. For instance, the trigger could be a patch
located at the bottom right corner of an input image. Specifically,
in Scaling Attack [1], the attacker makes duplicates of the local
training examples on the malicious clients, embeds the trigger to the
duplicated training inputs, and assigns an attacker-chosen label to
them. Then, model updates are computed based on the local training
data augmented by such duplicated training examples. Furthermore,
to amplify the impact of the model updates, the malicious clients
further scale them up by a factor before reporting them to the
server. In Distributed Backdoor Attack (DBA) [20], the attacker

FLDetector: Defending Federated Learning Against Model Poisoning Attacks via Detecting Malicious Clients

decomposes the trigger into separate local patterns and embeds
them into the local training data of different malicious clients. In
A Little is Enough Attack [2], the model updates on the malicious
clients are first computed following the Scaling Attack [1]. Then,
the attacker crops the model updates to be in certain ranges so
that the Byzantine-robust aggregation rules fail to eliminate their
malicious effects.

2.2 Byzantine-Robust FL Methods

Roughly speaking, Byzantine-robust FL methods view clients’ model
updates as high dimensional vectors and apply robust methods to
estimate the aggregated model update. Next, we review several
popular Byzantine-robust FL methods.

Krum [4]: Krum tries to find a single model update among the
clients’ model updates as the aggregated model update in each
iteration. The chosen model update is the one with the closest
Euclidean distances to the nearest n — k — 2 model updates.

Trimmed-Mean and Median [22]: Trimmed-Mean and Median
are coordinate-wise aggregation rules that aggregate each coordi-
nate of the model update separately. For each coordinate, Trimmed-
Mean first sorts the values of the corresponding coordinates in
the clients’ model updates. After removing the largest and the
smallest k values, Trimmed-Mean calculates the average of the
remaining n — 2k values as the corresponding coordinate of the
aggregated model update. Median calculates the median value of
the corresponding coordinates in all model updates and treats it as
the corresponding coordinate of the aggregated model update.

FLTrust [7]: FLTrust leverages an additional validation dataset on
the server. In particular, a local model update has a lower trust score
if its update direction deviates more from that of the server model
update calculated based on the validation dataset. However, it is
nontrivial to collect a clean validation dataset and FLTrust has poor
performance when the distribution of validation dataset diverges
substantially from the overall training dataset.

3 PROBLEM FORMULATION

We consider a typical FL setting in which n clients collaboratively
train a global model maintained on a cloud server. We suppose
that each client has a local training dataset D;, i = 1,2,---,n
and we use D = UL, D; to denote the joint training data. The
optimal global model w* is a solution to the optimization problem:
w* = arg min,, >,7 | f(D;, w), where f(D;, w) is the loss for client
i’s local training data. The FL process starts with an initialized
global model wy. At the beginning of each iteration ¢, the server
first sends the current global model w; to the clients or a subset of
them. A client i then computes the gradient gf of its loss f(Dj, wy)
with respect to w; and sends gf back to the server, where gf is the
model update from client i in the tth iteration. Formally, we have:

g9t = Vf(Di, wy).)

We note that client i can also use stochastic gradient descent (SGD)
instead of gradient descent, perform SGD multiple steps locally,
and send the accumulated gradients back to the server as model
update. However, we assume a client performs the standard gradient
descent for one step for simplicity.

KDD ’22, August 14-18, 2022, Washington, DC, USA

After receiving the clients’ model updates, the server computes
a global model update g’ via aggregating the clients’ model updates
based on some aggregation rule. Then, the server updates the global
model using the global model update, i.e., wy41 = w; — ag?, where
a is the global learning rate. Different FL methods essentially use
different aggregation rules.

Attack model: We follow the attack settings in previous works
[1, 2,8, 11, 20]. Specifically, an attacker controls m malicious clients,
which can be fake clients injected by the attacker or genuine ones
compromised by the attacker. However, the server is not compro-
mised. The attacker has the following background knowledge about
the FL system: local training data and model updates on the ma-
licious clients, loss function, and learning rate. In each iteration
t, each benign client calculates and reports the true model update
gf = Vf(D;, w;), while a malicious client sends carefully crafted
model update (i.e., 95 # Vf(Dj, wy)) to the server.

Problem definition: We aim to design a malicious-client detection
method in the above FL setting. In each iteration ¢, the detection
method takes clients’ model updates in the current and previous
iterations as an input and classifies each client to be benign or
malicious. When at least one client is classified as malicious by our
method in a certain iteration, the server stops the FL process, re-
moves the clients detected as malicious, and restarts the FL process
on the remaining clients. Our goal is to detect majority of malicious
clients as early as possible. After detecting and removing majority
of malicious clients, Byzantine-robust FL. methods can learn accu-
rate global models since they are robust against the small number
of malicious clients that miss detection.

4 FLDETECTOR
4.1 Model-Updates Consistency

A benign client i calculates its model update gf in the tth itera-
tion according to Equation 1. Based on the Cauchy mean value
theorem [14], we have the following:

gt =g+ HE - (wr - wimn), ()

where Hf = fol H;(w¢—1 + x(w; — wi—1))dx is an integrated Hes-
sian for client i in iteration ¢, w; is the global model in iteration
t, and wy_1 is the global model in iteration t — 1. Equation 2 en-
codes the consistency between client i’s model updates gf and gf‘l.
However, the integrated Hessian Hf is hard to compute exactly.
In our work, we use a L-BFGS algorithm [5] to approximate in-
tegrated Hessian. To be more efficient, we approximate a single
integrated Hessian fi’ in each iteration t, which is used for all
clients. Specifically, we denote by Aw; = w; — w;—1 the global-
model difference in iteration ¢, and we denote by Ag’ = g; — g;—1
the global-model-update difference in iteration ¢, where the global
model update is aggregated from the clients’ model updates. We de-
note by AW; = {Aw;_N, Aw;_N+1, - -, Aws—1} the global-model
differences in the past N iterations, and we denote by AG; =
{AG1—N,AGt—N+1, -+ s Agr—1} the global-model-update differences
in the past N iterations in iteration t. Then, based on the L-BFGS
algorithm, we can estimate ig using AW; and AG;. For simplicity,
we denote by i = L-BFGS(AW;, AG;). Algorithm 1 shows the
specific implementation of L-BFGS algorithm in the experiments.

KDD ’22, August 14-18, 2022, Washington, DC, USA

The input to L-BFGS are v = w; — wy—1, AW, and AG;. The output
of L-BFGS algorithm is the projection of the Hessian matrix in the
direction of wy — wy_1.

Based on the estimated Hessian I:It, we predict a client i’s model
update in iteration ¢ as follows:

gh =gl A (we - wioa), (3)

where gf is the predicted model update for client i in iteration t.
When the L-BFGS algorithm estimates the integrated Hessian accu-
rately, the predicted model update f]f is close to the actual model
update gf for a benign client i. In particular, if the estimated Hessian
is exactly the same as the integrated Hessian, then the predicted
model update equals the actual model update for a benign client.
However, no matter whether the integrated Hessian is estimated
accurately or not, the predicted model update would be different
from the model update sent by a malicious client. In other words,
the predicted model update and the received one are consistent
for benign clients but inconsistent for malicious clients, which we
leverage to detect malicious clients.

4.2 Detecting Malicious Clients

Suspicious score for a client: Based on the model-updates consis-
tency discussed above, we assign a suspicious score for each client.
Specifically, we measure the consistency between a predicted model
update f]f and a received model update gf using their Euclidean dis-
tance. We denote by d’ the vector of such n Euclidean distances for
the n clients in iteration t, i.e., d* = [||g§ —gi |2, ||§§ —gg ll2, -, g% -

gl |l2]. We normalize the vector d’ as d = d'/||d?||1. We use such
normalization to incorporate the model-updates consistency varia-
tions across different iterations. Finally, our suspicious score sl.t for
client i in iteration t is the client’s average normalized Euclidean
distance in the past N iterations, i.e., sl? = ﬁ er\fz?)l rAif_r. We call N
window size.

Unsupervised detection via k-means: In iteration ¢, we perform
malicious-clients detection based on the clients’ suspicious scores
s{, sé, S ,sfl. Specifically, we cluster the clients based on their sus-
picious scores sf, sé, e ,s,ﬂ, and we use the Gap statistics [19] to
determine the number of clusters. If the clients can be grouped
into more than 1 cluster based on the Gap statistics, then we use
k-means to divide the clients into 2 clusters based on their suspi-
cious scores. Finally, the clients in the cluster with larger average
suspicious score are classified as malicious. When at least one client
is classified as malicious in a certain iteration, the detection fin-
ishes, and the server removes the clients classified as malicious and
restarts the training.

Algorithm 2 shows the pseudo codes of Gap statistics algorithm.
The input to Gap statistics are the vectors of suspicious scores
st, the number of sampling B, the number of maximum clusters
K, and the number of clients n. The output of Gap statistics is
the number of clusters K. Generally, Gap statistics compares the
change in within-cluster dispersion with that expected under a
reference null distribution, i.e., uniform distribution, to determine
the number of clusters. The computation of the gap statistic involves
the following steps: 1) Vary the number of clusters k from 1 to K
and cluster the suspicious scores with k-means. Calculate Wy, =

Zaixi Zhang et al.

Zle ij ec; lxj—pill 2_2) Generate B reference data sets and cluster
each of them with k-means. Compute the estimated gap statistics
Gap(k) = % 2?21 log(Wk*b) — log(Wy). 3) Compute the standard

deviation sd(k) = (% Zil(log(wlz‘b)) - w’)z)% and define sg, =

1/%sd(k). 4) Choose the number of clusters k as the smallest k

such that Gap(k) — Gap(k + 1) + sg,1 = 0. If there are more than
one cluster, the attack detection Flag is set to positive because there
are outliers in the suspicious scores.

Algorithm 3 summarizes the algorithm of FLDetector.

4.3 Complexity Analysis

To compute the estimated Hessian, the server needs to save the
global-model differences and global-model-update differences in the
latest N iterations. Therefore, the storage overhead of FLDetector
for the server is O(Np), where p is the number of parameters
in the global model. Moreover, according to [5], the complexity
of estimating the Hessian i’ using L-BFGS and computing the
Hessian vector product I:It(wt — wp_q) is O(N3 + 6Np) in each
iteration. The complexity of calculating the suspicious scores is
O(2np+Nn) in each iteration, where n is the number of clients. The
total complexity of Gap statistics and k-means is O(KBn?) where
K and B are the number of maximum clusters and sampling in Gap
statistics. Therefore, the total time complexity of FLDetector in each
iteration is O(N3 +KBn®+ (6N +2n)p+ Nn). Typically, K, B, n, and
N are much smaller than p. Thus, the time complexity of FLDetector
for the server is roughly linear to the number of parameters in the
global model in each iteration. We note that the server is powerful
in FL, so the storage and computation overhead of FLDetector for
the server is acceptable. As for the clients, FLDetector does not
incur extra computation and communication overhead.

4.4 Theoretical Analysis on Suspicious Scores

We compare the suspicious scores of benign and malicious clients
theoretically. We first describe the definition of L-smooth gradient,
which is widely used for theoretical analysis on machine learning.

Definition 4.1. We say a client’s loss function is L-smooth if we
have the following inequality for any w and w’:

IVf(Di,w) = Vf(Di,w')|l < Liw —w’l], ©

where f(Dj, w) is the client’s loss function and || - || represents ¢
norm of a vector.

THEOREM 1. Suppose the gradient of each client’s loss function is
L-smooth, FedAvg is used as the aggregation rule, the clients’ local
training datasets are iid, the learning rate a satisfies ¢ < m (N is
the window size). Suppose the malicious clients perform an untargeted
model poisoning attack in each iteration by reversing the true model
updates as the poisoning ones, i.e., each malicious client i sends —gf
to the server in each iteration t. Then we have the expected suspicious
score of a benign client is smaller than that of a malicious client in
each iteration t. Formally, we have the following inequality:

E(s!) < E(s;),vz' eBVjeM, (5)
where the expectation E is taken with respect to the randomness in

the clients’ local training data, B is the set of benign clients, and M
is the set of malicious clients.

FLDetector: Defending Federated Learning Against Model Poisoning Attacks via Detecting Malicious Clients

KDD ’22, August 14-18, 2022, Washington, DC, USA

Algorithm 1 L-BFGS to Compute Hessian Vector Product

Input: Global-model differences AW; = {Aw;—N, AWs—N+1, - - -, Aws—1}, global-model-update differences AG; = {Ag;—N, Agr-N+1," >

Agi-1}, vector v = w; — w;—1, and window size N
Output: Hessian vector product i'v
1: Compute AWtTAWt

2: Compute AWtTAGt, get its diagonal matrix D; and its lower triangular submatrix L;

3. Compute o = AgtT_lAwt_l/(Ath_lAwt_l)

4: Compute the Cholesky factorization for O'AWtTAWt + LtDtLtT to get J;]tT

1/2 -1/2,T
_Dt Dt Lt

0 JE
6: return crv—[AGy oAW;]q

p* o
-1/2

5: Compute q =
pute q : LtT I

)

D

AGI'v
oAW/[v

Algorithm 2 Gap Statistics

Algorithm 3 FLDetector

Input: Clients’ suspicious scores s’, number of sampling B,

maximum number of clusters K, and number of clients n.
Output: Number of clusters k.
fork=1,2,---,K do
Apply linear transformation on s’ so that the minimum of
s’ equals 0 and the maximum of s* equals 1.
Apply k-means on the suspicious scores to get clusters {C;}
and means {y;}.
Vi =3k, Sx,ec Il = pill®
forb=1,2---,Bdo
Sample n points uniformly in [0,1]
Perform k-means and calculate
v, =3k Sapec I1Xjp = Hinll?
end for
Gap(k) = & SB. log(V},) — log(V)
v’ = % Z?:l log(Vy,)
sd(k) = (3 ZB, (log(V7,)) - v')?) 2

s]’(= 1/%sd(k)

end for
k = smallest k such that Gap(k) — Gap(k +1) +s; ., > 0.
return k

ProoF. Our idea is to bound the difference between predicted
model updates and the received ones from benign clients. Appendix
shows our detailed proof. O

4.5 Adaptive Attacks

When the attacker knows that our FLDetector is used to detect
malicious clients, the attacker can adapt its attack to FLDetector
to evade detection. Therefore, we design and evaluate adaptive
attacks to FLDetector. Specifically, we formulate an adaptive attack
by adding an extra term to regularize the loss function used to
perform existing attacks. Our regularization term measures the
Euclidean distance between a predicted model update and a local
model update. Formally, a malicious client i solves the following
optimization problem to perform an adaptive attack in iteration ¢:

. — b
min A Lasraek + (1= Allg; = (g~ +Hi(we = we-1))ll, - (6)
9i

Input: Total training iterations Iter and window size N.
Output: Detected malicious clients or none.

1. fort=1,2---,Iter do

2 H =L-BFGS(AW,, AG,).

3 fori=1,2---,ndo

) At _ -1, 7 _

4 g; =g; +H (wr —wp1).

5 end for

6 d = [l1g] = gillz. 195 = g5llz. -+ . 1, = gnll2]-

~t
7 d =d'/|d"]

t_ 1 yN-157
8: Si =N Zr=0 di .
9: Determine the number of clusters k by Gap statistics.
10: if k> 1 then

11: Perform k-means clustering based on the suspicious scores
with k = 2.

12: return The clients in the cluster with larger average
suspicious score as malicious.

13: end if

14: end for

15: return None.

where L,4ck is the loss function used to perform existing at-
tacks [1, 2, 11, 20], gf is the poisoning local model update on mali-
cious client i in iteration ¢, gf‘l + I:I,t»(w, — w;—1) is the predicted
L Al . .
model update for client i, and H; is the Hessian calculated on client
i’s dataset to approximate i 1e (0,1] is a hyperparameter to
balance the loss function and the regularization term. A smaller A

makes the malicious clients less likely to be detected, but the attack
is also less effective.

5 EXPERIMENTS
5.1 Experimental Setup

Datasets and global-model architectures: We consider three
widely-used benchmark datasets MNIST [15], CIFAR10 [13], and
FEMNIST [6] to evaluate FLDetector. For MNIST and CIFAR10, we
assume there are 100 clients and use the method in [11] to distribute
the training images to the clients. Specifically, this method has a
parameter called degree of non-iid ranging from 0.1 to 1.0 to control
the distribution of the clients’ local training data. The clients’ local

KDD ’22, August 14-18, 2022, Washington, DC, USA

Table 1: The CNN architecture of the global model used for
MNIST and FEMNIST.

Layer Size
Input 28x 28 x 1
Convolution + ReLU 3% 3 X 30
Max Pooling 2X2
Convolution + ReLU 3X3X%X5
Max Pooling 2x2
Fully Connected + ReLU 100
Softmax 10 (62 for FEMNIST)

training data are not independent and identically distributed (iid)
when the degree of non-iid is larger than 0.1 and are more non-
iid when the degree of non-iid becomes larger. Unless otherwise
mentioned, we set the degree of non-iid to 0.5. FEMNIST is a 62-
class classification dataset from the open-source benchmark library
of FL [6]. The training images are already grouped by the writers
and we randomly sample 300 writers, each of which is treated as a
client. We use a four-layer Convolutional Neural Network (CNN)
(see Table 1) as the global model for MNIST and FEMNIST. For
CIFAR-10, we consider the widely used ResNet20 architecture [12]
as the global model.

FL settings: We consider four FL methods: FedAvg [17], Krum [4],
Trimmed-Mean [22], and Median [22]. We didn’t consider FLTrust
[7] due to its additional requirement of a clean validation dataset.
Considering the different characteristics of the datasets, we adopt
the following parameter settings for FL training: for MNIST, we
train 1,000 iterations with a learning rate of 2 X 10~%; and for CI-
FAR10 and FEMNIST, we train 2,000 iterations with a learning rate
of 1x 1073, For simplicity, we assume all clients are involved in each
iteration of FL training. Note that when FLDetector detects mali-
cious clients in a certain iteration, the server removes the clients
classified as malicious, restarts the FL training, and repeats for the
pre-defined number of iterations.

Attack settings: By default, we randomly sample 28% of the clients
as malicious ones. We choose this fraction because in the Dis-
tributed Backdoor Attack (DBA), the trigger pattern need to be
equally splitted into four parts and embedded into the local train-
ing data of four malicious clients groups. Specifically, the number
of malicious clients is 28, 28, and 84 for MNIST, CIFAR10, and FEM-
NIST, respectively. We consider one Untargeted Model Poisoning
Attack [11], as well as three targeted model poisoning attacks in-
cluding Scaling Attack [1], Distributed Backdoor Attack [20], and A
Little is Enough Attack [2]. For all the three targeted model poison-
ing attacks, the trigger patterns are the same as their original papers
and label *0’ is selected as the target label. The scaling parameters
for Scaling Attack and DBA are set to 1 to make the attacks more
stealthy. Unless otherwise mentioned, the malicious clients perform
attacks in every iteration of FL training.

Compared detection methods: There are few works on detecting
malicious clients in FL. We compare the following methods:
e VAE [16]. This method trains a variational autoencoder for

benign model updates by simulating model training using
a validation dataset on the server and then applies it to

Zaixi Zhang et al.

detect malicious clients during FL training. We consider the
validation dataset is the same as the joint local training data
of all clients, which gives a strong advantage to VAE.

e FLD-Norm. This is a variant of FLDetector. Specifically,
FLDetector considers the Euclidean distance between a pre-
dicted model update and the received one in suspicious
scores. One natural question is whether the norm of a model
update itself can be used to detect malicious clients. In FLD-
Norm, the distance vector d’ consists of the #» norms of the
n clients’ model updates in iteration ¢, which are further
normalized and used to calculate our suspicious scores.

e FLD-NoHVP. This is also a variant of FLDetector. In par-
ticular, in this variant, we do not consider the Hessian vec-
tor product (HVP) term in Equation 3, i.e., f]f = gl?’l, The
clients’ suspicious scores are calculated based on such pre-
dicted model updates. We use this variant to show that the
Hessian vector product term in predicting the model update
is important for FLDetector.

Evaluation metrics: We consider evaluation metrics for both de-
tection and the learnt global models. For detection, we use detection
accuracy (DACC), false positive rate (FPR), and false negative rate
(FNR) as evaluation metrics. DACC is the fraction of clients that
are correctly classified as benign or malicious. FPR (or FNR) is the
fraction of benign (or malicious) clients that are falsely classified as
malicious (or benign). To evaluate the learnt global model, we use
testing accuracy (TACC), which is the fraction of testing examples
that are correctly classified by the global model. Moreover, for tar-
geted model poisoning attacks, we further use attack success rate
(ASR) to evaluate the global model. In particular, we embed the
trigger to each testing input and the ASR is the fraction of trigger-
embedded testing inputs that are classified as the target label by the
global model. A lower ASR means that a targeted model poisoning
attack is less successful.

Detection settings: By default, we start to detect malicious clients
in the 50th iteration of FL training, as we found the first dozens
of iterations may be unstable. We will show how the iteration to
start detection affects the performance of FLDetector. If no mali-
cious clients are detected after finishing training for the pre-defined
number of iterations, we classify all clients as benign. We set the
window size N to 10. Moreover, we set the maximum number of
clusters K and number of sampling B in Gap statistics to 10 and 20,
respectively. We will also explore the impact of hyperparameters
in the following section.

5.2 Experimental Results

Detection results: Table 2 shows the detection results on the FEM-
NIST dataset for different attacks, detection methods, and FL meth-
ods. The results on MNIST and CIFAR10 are respectively shown
in Table 4 and Table 5 in the Appendix, due to limited space. We
have several observations. First, FLDetector can detect majority
of the malicious clients. For instance, on FEMNIST, the FNR of
FLDetector is always 0.0 for different attacks and FL methods. Sec-
ond, FLDetector falsely detects a small fraction of benign clients
as malicious, e.g., the FPR of FLDetector ranges between 0.0 and
0.20 on FEMNIST for different attacks and FL methods. Third, on
FEMNIST, FLDetector outperforms VAE for different attacks and FL

FLDetector: Defending Federated Learning Against Model Poisoning Attacks via Detecting Malicious Clients KDD 22, August 14-18, 2022, Washington, DC, USA

Table 2: DACC, FPR, and FNR of malicious-client detection for different attacks, detection methods, and aggregation rules.
The best detection results are bold for each attack. FEMNIST dataset, CNN global model, and 28 malicious clients are used.

FedAvg Krum Trimmed-Mean Median
Attack Detector
pacc FPR FNR pacc FPR FNR pacc FPR FNR pacc FPR FNR
Untargeted VAE 0.71 0.02 099 057 036 062 056 037 0.62 055 035 0.71
Model FLD-Norm 0.72 0.03 093 0.05 093 100 042 042 1.00 0.13 0.82 1.00
Poisoning FLD-NoHVP 0.51 038 0.79 034 083 021 077 032 0.00 0.67 028 0.54
Attack FLDetector 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
VAE 0.73 0.05 099 0.68 044 0.00 033 054 1.00 047 042 0.82
Scaling FLD-Norm 0.82 0.14 0.29 0.68 044 0.00 092 0.00 0.29 090 0.03 0.29
Attack FLD-NoHVP 0.07 098 0.82 0.42 042 1.00 091 0.13 0.00 096 0.05 0.00
FLDetector 0.85 0.20 0.00 1.00 0.00 0.00 0.98 0.03 0.00 1.00 0.00 0.00
N VAE 0.75 0.07 0.71 0.69 043 0.00 0.52 0.28 1.00 0.53 0.68 1.00
Distributed
Backdoor FLD-Norm 0.66 0.33 036 065 042 0.18 0.73 0.28 0.25 0.75 0.22 033
j;ta:]f FLD-NoHVP 0.09 098 075 046 064 029 090 011 007 098 003 0.0
FLDetector 0.92 0.11 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
A Little VAE 0.80 0.22 0.14 0.77 071 0.11 092 0.00 0.29 093 0.00 0.25
. FLD-Norm 0.05 093 1.00 0.11 097 0.68 0.02 097 1.00 0.08 089 1.00
is Enough
Attack FLD-NoHVP 0.49 040 0.79 047 035 1.00 023 0.69 096 026 069 0.86

FLDetector 0.93 0.10 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

Table 3: TACC and ASR of the global models learnt by Median in different scenarios. The results for the targeted model
poisoning attacks are in the form of “TACC / ASR (%)”. 28 malicious clients are used.

Dataset Attack No Attack w/o FLDetector ~ w/ FLDetector
Untargeted Model Poisoning Attack 97.6 69.5 97.4
MNIST Scaling Attack 97.6 97.6/0.5 97.6/0.5
Distributed Backdoor Attack 97.6 97.4/0.5 97.5/0.4
A Little is Enough Attack 97.6 97.8/100.0 97.9/0.3
Untargeted Model Poisoning Attack 65.8 27.8 65.9
CIFAR10 Sc,:aln.lg Attack 65.8 66.6/91.2 65.7/2.4
Distributed Backdoor Attack 65.8 66.1/93.5 65.2/1.9
A Little is Enough Attack 65.8 62.1/95.2 64.3/1.8
Untargeted Model Poisoning Attack 64.4 14.3 63.2
Scaling Attack 64.4 66.4/57.9 64.5/1.7
FEMNIST
Distributed Backdoor Attack 64.4 67.5/53.2 64.3/2.1
A Little is Enough Attack 64.4 66.7/59.6 65.0/1.6

methods; on MNIST and CIFAR10, FLDetector outperforms VAE in
most cases and achieves comparable performance in the remaining
cases. Fourth, FLDetector outperforms the two variants in most
cases while achieving comparable performance in the remaining
cases, which means that model-updates consistency and the Hes-
sian vector product in estimating the model-updates consistency
are informative at detecting malicious clients. Fifth, FLDetector
achieves higher DACC for Byzantine-robust FL methods (Krum,
Trimmed-Mean, and Median) than for FedAvg. The reason may be
that Byzantine-robust FL methods provide more robust estimations
of global model updates under attacks, which makes the estimation
of Hessian and FLDetector more accurate.

Performance of the global models: Table 3 shows the TACC
and ASR of the global models learnt by Median under no attacks,
without FLDetector deployed, and with FLDetector deployed. Table

6 in the Appendix shows the results of other FL methods on MNIST.
“No Attack” means the global models are learnt by Median using
the remaining 72% of benign clients; “w/o FLDetector” means the
global models are learnt using all clients including both benign and
malicious ones; and “w/ FLDetector” means that the server uses
FLDetector to detect malicious clients, and after detecting malicious
clients, the server removes them and restarts the FL training using
the remaining clients.

We observe that the global models learnt with FLDetector de-
ployed under different attacks are as accurate as those learnt under
no attacks. Moreover, the ASRs of the global models learnt with
FLDetector deployed are very small. This is because after FLDetec-
tor detects and removes majority of malicious clients, Byzantine-
robust FL methods can resist the small number of malicious clients
that miss detection. For instance, FLDetector misses 2 malicious

KDD ’22, August 14-18, 2022, Washington, DC, USA

Zaixi Zhang et al.

0.8 0.8

0.6 0.6

04

o} =e= DACC
== TACC w/o FLDetector

“an
00 TACC w/ FLDetector 00

=o= DACC

==t TACC w/o FLDetector

=4 TACC w/ FLDetector
o+ ASR w/o FlLDetector
%= ASR w/ FLDetector

A x

0.8

0.6

0.0

2l = 4= TACC w/ FLDetector 0

0.8

0.6

=—o= DACC A
== TACC w/0 FLDetector

TACC w/ FLDetector

ASR w/o FLDetector

%= ASR w/ FLDetector e

=e= DACC 0.4
=== TACC w/o FLDetector

of = an
e ASR w/o FLDetector °
%= ASR w/ FLDetector

* * 0.0

10 15 20 25 30 35 10
Number of malicious clients

10 15 20 25 30 35 10
Number of malicious clients

15 20 30 35 10 15

25 25 30 35 10
Number of malicious clients

20
Number of malicious clients

(a) Untargeted Model Poisoning Attack

Figure 1: Impact of the number of malicious clients on FLDetector, where CIFAR10, Median, and 0.5 degree of non-iid are used.

(b) Scaling Attack

(c) Distributed Backdoor Attack

(d) A Little is Enough Attack

1O O s s s O e B o e s St O ° 1.0[G- o - e - - —~ 1O °
——— e -~ ° ——— *
- <~ - -
13 - o =0 o~
° -~
~ ° S~
0.8 0.8 0.8 0.8 Mg
~
e
Bersrasaanarannans, ’e AL L) » .
06 . 0.6 0.6 0.6 ————
I . Tre. EY
04 04 Zom DACC 04 04} == DACC
: N == TACC w/o FLDetector == TACC w/o FLDetector h == TACC w/o FLDetector
0.2} == DACC 0.2} =%+ TACC w/ FLDetector 02} =4r TACC w/ FLDetector 02} =4+ TACC w/ FLDetector
== TACC w/o FLDetector e ASR w/o FLDetector e ASR w/o FLDetector - ASR w/o FLDetector %
0.0l =4+ TACC w/ FLDetector ool = ASRw/ FlDetector o o0l T ASRw/ FlDetector x o0l 7 ASRw/ FlDetector
01 02 03 04 05 06 07 05 09 01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 05 09

Degree of non-iid Degree of non-iid

(a) Untargeted Model Poisoning Attack (b) Scaling Attack

Degree of non-iid Degree of non-iid

(c) Distributed Backdoor Attack (d) A Little is Enough Attack

Figure 2: Impact of the degree of non-iid on FLDetector, where CIFAR10, Median, and 28 malicious clients are used.

0
0.025) 0.025
0.020) 0.020]
0.015) 0.015

0.010) el fd S Ll 0.010]

0.005, 0.005

oo} **** Average suspicious score of benign clients ool te

Average suspicious score of benign clients

Average suspicious score of malicious clients Average suspicious score of malicious clients

0
0.023 0.025
0.020) 0.020
0.015

0.015

0.010) 0.010

0.003 0.003

oo} **** Average suspicious score of benign clients ool *e

Average suspicious score of benign clients

Average suspicious score of malicious clients Average suspicious score of malicious clients

0 0o 200 00 w00 En 0o 20 00 w00 500

Training iteration Training iteration

(a) Untargeted Model Poisoning Attack (b) Scaling Attack

o [20 500 10 500 0 00 0 300 0 500

Training iteration Training iteration

(c) Distributed Backdoor Attack (d) A Little is Enough Attack

Figure 3: Dynamics of the clients’ suspicious scores when malicious clients perform attacks periodically, where MNIST, 0.5

degree of non-iid, and 28 malicious clients are used.

clients on CIFAR10 in Median and A Little is Enough Attack, but
Median is robust against them when learning the global model.

Impact of the number of malicious clients and degree of non-
iid: Figure 1 and 2 show the impact of the number of malicious
clients and the non-iid degree on FLDetector, respectively. First,
we observe that the DACC of FLDetector starts to drop after the
number of malicious clients is larger than some threshold or the
non-iid degree is larger than some threshold, but the thresholds are
attack-dependent. For instance, for the Untargeted Model Poisoning
Attack, DACC of FLDetector starts to decrease after more than 30
clients are malicious, while it starts to decrease after 20 malicious
clients for the A Little is Enough Attack. Second, the global models
learnt with FLDetector deployed are more accurate than the global
models learnt without FLDetector deployed for different number
of malicious clients and non-iid degrees. Specifically, the TACCs
of the global models learnt with FLDetector deployed are larger

than or comparable with those of the global models learnt without
FLDetector deployed, while the ASRs of the global models learnt
with FLDetector deployed are much smaller than those of the global
models learnt without FLDetector. The reason is that FLDetector
detects and removes (some) malicious clients.

Dynamics of the clients’ suspicious scores: Figure 3 shows the
average suspicious scores of benign clients and malicious clients as
a function of the training iteration t. To better show the dynamics
of the suspicious scores, we assume the malicious clients perform
the attacks in the first 50 iterations in every 100 iterations, starting
from the 50th iteration. Note that FLDetector is ignorant of when
the attack starts or ends. We observe the periodic patterns of the
suspicious scores follow the attack patterns. Specifically, the aver-
age suspicious score of the malicious clients grows rapidly when
the attack begins and drops to be around the same as that of the
benign clients when the attack stops. In the iterations where there

FLDetector: Defending Federated Learning Against Model Poisoning Attacks via Detecting Malicious Clients

KDD ’22, August 14-18, 2022, Washington, DC, USA

1.0 R 10 B i it 10 I it TR ° L0 g e O O = = —o
" e~ o=
- P
0.8 - 08 0.8 0.8
j
i PO PP, derashans IS T Aeseses PP PO PO " S desassanans P T " bresesheanas Y A Y SRR S “
06 0.6 0.6 06
0.4 0.4 04 04
0.2} =e= DACC 0.2} =e= DACC 0.2} == DACC 0.2} == DACC
sas TACC +as TACC +as TACC san TACC
00p T ASR x = . oof T AR " o e X. o0 T AR o " X oo T ASR - e .
02 03 04 05 06 07 08 09 L0 10 20 30 10 30 60 35 10 1 20 10 I3 20 % 30 35 10
A Iteration to start FLDetector N B
(a) (b) (© (d)

Figure 4: (a) Adaptive attack; (b) impact of the detection iteration; (c) impact of window size N; (d) impact of number of sampling
B, where CIFAR10, Median, 0.5 degree of non-iid, 28 malicious clients, and scaling attack are used.

are attacks, malicious and benign clients can be well separated
based on the suspicious scores. In these experiments, FLDetector
can detect malicious clients at around 60th iteration. Note that
the average suspicious score of the benign clients decreases (or
increases) in the iterations where there are attacks (or no attacks).
This is because FLDetector normalizes the corresponding Euclidean
distances when calculating suspicious scores.

Adaptive attack and impact of the detection iteration: Figure
4(a) shows the performance when we adapt Scaling Attack to FLDe-
tector. We observe that DACC drops as A decreases. However, ASR
is still low because the local model updates from the malicious
clients are less effective while trying to evade detection. Figure 4(b)
shows the impact of the detection iteration. Although DACC drops
slightly when FLDetector starts earlier due to the instability in the
early iterations, FLDetector can still defend against Scaling Attack
by removing a majority of the malicious clients.

Impact of hyperparameters: Figure 4(c) and (d) explore the im-
pact of hyperparameters N and B, respectively. We observe FLDe-
tector is robust to these hyperparameters. DACC drops slightly
when N is too small. This is because the suspicious scores fluctuate
in a small number of rounds. In experiments, we choose N = 10
and B =20 as the default setting considering the trade-off between
detection accuracy and computation complexity.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose FLDetector, a malicious-client detection
method that checks the clients’ model-updates consistency. We
quantify a client’s model-updates consistency using the Cauchy
mean value theorem and an L-BFGS algorithm. Our extensive eval-
uation on three popular benchmark datasets, four state-of-the-art
attacks, and four FL methods shows that FLDetector outperforms
baseline detection methods in various scenarios. Interesting future
research directions include extending our method to vertical feder-
ated learning, asynchronous federated learning, federated learning
in other domains such as text and graphs, as well as efficient re-
covery of the global model from model poisoning attacks after
removing the detected malicious clients.

ACKNOWLEDGEMENTS

We thank the reviewers for constructive comments. This work is
supported by NSF under grant No. 2125977 and 2112562.

REFERENCES

[1] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly
Shmatikov. 2020. How to backdoor federated learning. In AISTATS.

[2] Gilad Baruch, Moran Baruch, and Yoav Goldberg. 2019. A Little Is Enough:
Circumventing Defenses For Distributed Learning. In NeurIPS.

[3] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin Calo.
2019. Analyzing federated learning through an adversarial lens. In ICML.

[4] Peva Blanchard, El Mahdi E1 Mhamdi, Rachid Guerraoui, and Julien Stainer.
2017. Machine learning with adversaries: Byzantine tolerant gradient descent. In
NeurIPS.

[5] Richard H Byrd, Jorge Nocedal, and Robert B Schnabel. 1994. Representations of
quasi-Newton matrices and their use in limited memory methods. Mathematical
Programming (1994).

[6] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Kone¢ny,
H Brendan McMahan, Virginia Smith, and Ameet Talwalkar. 2018. Leaf: A
benchmark for federated settings. arXiv preprint arXiv:1812.01097 (2018).

[7] Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhengiang Gong. 2021. FLTrust:
Byzantine-robust Federated Learning via Trust Bootstrapping. In NDSS.

[8] Xiaoyu Cao and Neil Zhenqgiang Gong. 2022. MPAF: Model Poisoning Attacks to
Federated Learning based on Fake Clients. In CVPR Workshops.

[9] Xiaoyu Cao, Jinyuan Jia, and Neil Zhengiang Gong. 2021. Provably Secure

Federated Learning against Malicious Clients. In AAAL

Yudong Chen, Lili Su, and Jiaming Xu. 2017. Distributed statistical machine

learning in adversarial settings: Byzantine gradient descent. In SIGMETRICS.

Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Gong. 2020. Local model

poisoning attacks to Byzantine-robust federated learning. In USENIX Security.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In CVPR.

A. Krizhevsky and G. Hinton. 2009. Learning multiple layers of features from

tiny images.

Serge Lang. 1968. A second course in calculus. Vol. 4197. Addison-Wesley Publish-

ing Company.

Y. LeCun. 1998. The MNIST database of handwritten digits. http://yann. lecun.

com/exdb/mnist/.

Suyi Li, Yong Cheng, Wei Wang, Yang Liu, and Tianjian Chen. 2020. Learn-

ing to detect malicious clients for robust federated learning. arXiv preprint

arXiv:2002.00211 (2020).

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-

works from decentralized data. In AISTATS.

Virat Shejwalkar and Amir Houmansadr. 2021. Manipulating the Byzantine:

Optimizing Model Poisoning Attacks and Defenses for Federated Learning. In

NDSS.

Robert Tibshirani, Guenther Walther, and Trevor Hastie. 2001. Estimating the

number of clusters in a data set via the gap statistic. Journal of the Royal Statistical

Society: Series B (Statistical Methodology) (2001).

Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. 2019. Dba: Distributed backdoor

attacks against federated learning. In ICLR.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Federated machine

learning: Concept and applications. TIST (2019).

Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. 2018.

Byzantine-robust distributed learning: Towards optimal statistical rates. In ICML.

[10]

[11

[12

[14

[15

[16

(17

[18

=
2

[20]

[21

[22]

KDD ’22, August 14-18, 2022, Washington, DC, USA

A PROOF OF THEOREM 1
LEMMA 1. For any t and any vector z, the following inequality
related to the estimated Hessian ' holds:

TH 2 < (N+DL|2% @)
where N is the window size and L is from Assumption 1.

Proor. By following Equation 1.2 and 1.3 in [5], the Quasi-
Hessian update can be written as:

Bt—mAWt—mAWtT—th—m + Agt—mAgz—m

. (8)

Bt—m+1 = Bt-m — T
Agt,mAWt—m

AwL | BimAwi—pm

where the initialized matrix B;_n = AgtT_NAwt_N/Ath_NAwt_NI

and m € {1,2,---, N}. The final estimated Hessian I:It = B;.
Based on Equation 8, we derive an upper bound for z' A ‘2

2T BiomAwi—mAw!_ Bi_mz

T T
Z2' Br-m+12 =2 By—mz — 9
AWZ‘_th_mAWt_m
zTAgt_mAgtT_mz (10)
Agl_ Awg_
t-m=Wt-m
T T
z° AGr—m A\ z
<z Bi_pmz+ M (11)
Agt,mAWt—m
T T
2" Hi—m Awi—mAw;_, Hi_mz
= 2Bz 4 —— M T (1)
Awt,mHt—mAWt—m
T T
z' H—mzAwi_mAw;_ H;_
< ZTBt_mZ+ t mT t-m t—-miit—-m (13)
Awt,mHt—mAWt—m
= zTBt_mz + zTHt_mz (14)
< 2'B;_mz+L|jz|)? (15)

Zaixi Zhang et al.

The first inequality uses the fact that zTBt_mAw;_mAth_th_mz =

(2T Bs—mAwi—m)? > 0 and Ath_th_mAwt_m > 0 due to the pos-
itive definiteness of B;_p,. The second inequality uses the Cauchy-
Schwarz inequality.

By applying the formula above recursively, we have z H ‘2=

zTBiz < (N +1)L|z||% o

Next, we prove Theorem 1. Our idea is to bound the difference

d; between predicted model updates and the received ones from
benign clients in each iteration. For i € 8 and j € M, we have:

E dj —-Ed; (16)
=Ellg} ™" + A (wr = wie1) = g1l = Ellgi™ + H' (wi = wi1) — gt
17)
=Ep,~plIVf (D), we—1) + VF(Dj,we) + H (wr —we—p)l - (18)
—Ep,-plIVf(Diy we1) = Vf(Diywe) + H (we —wee)ll - (19)
> Ep,-p2lIVf(Dj, wi-)ll = Liiwe = weet || = 12" (we = we—1)]|
(20)
—Ep,~p(IVf(Di, wi—1) = VF(Di, we) |l + IE (wi = wi_)])
(1)
> Ep,<p2l|Vf(Dj,wi—)ll = 2(Lliwe = wemall + 1H (we = we—p)])
(22)
2 Ep;~p2|IVf(Dj, we-1)|l = 2(N + 2)L|[(wr — we-1)|l (23)
= Ep,~p2lVf(Dj, we-1)ll - 2(N +2)LaEp,~plIVf (D}, we-1)ll
(24)
= (2~ 2(N + 2)La)Ep,-plIVf (D}, we-1)| (25)
>0, (26)

where the first inequality uses the Triangle inequality, the sec-
ond inequality uses Assumption 1, and the third inequality uses
Lemma 1. According to the definition of suspicious scores (s} =

_1 5t
ﬁ ZJrV:Ol d; "), we have E (s}) <E (sjt.).

FLDetector: Defending Federated Learning Against Model Poisoning Attacks via Detecting Malicious Clients KDD 22, August 14-18, 2022, Washington, DC, USA

Table 4: DACC, FPR, and FNR of malicious-client detection for different attacks, detection methods, and aggregation rules.
The best detection results are bold for each attack. MNIST dataset, CNN global model, and 28 malicious clients are used.

Attack Detector FedAvg Krum Trimmed-Mean Median
DACC FPR FNR DACC FPR FNR DACC FPR FNR DACC FPR FNR
Untargeted VAE 0.67 018 071 060 022 086 058 038 054 058 038 0.54
Model FLD-Norm 0.68 017 071 008 089 100 028 1.00 0.00 015 079 1.00
Poisoning FLD-NoHVP 0.60 0.22 086 0.11 085 1.00 039 085 0.00 0.66 026 054
Attack FLDetector 087 0.18 0.00 100 0.00 0.00 1.00 0.00 0.00 100 0.00 0.00
VAE 078 031 000 097 0.00 011 076 0.00 086 075 0.00 0.89
Scaling FLD-Norm 097 0.00 0.11 097 000 011 092 0.11 0.00 1.00 0.00 0.00

Attack FLD-NoHVP 0.62 021 082 059 040 043 090 0.10 0.11 083 021 0.07
FLDetector 081 022 011 098 0.00 0.07 100 0.00 000 100 0.00 0.00

Distributed VAE 089 015 000 0.97 0.00 0.11 0.79 0.00 075 081 006 0.54
Backdoor FLD-Norm 091 008 0.11 075 026 021 090 0.14 0.00 093 0.10 0.00
Attack FLD-NoHVP 0.62 021 082 082 021 011 1.00 0.00 0.00 093 0.10 0.00
FLDetector 086 015 011 0.97 0.00 1.00 1.00 0.00 0.00 100 0.00 0.00

A Little VAE 080 028 000 1.00 0.00 0.00 1.00 0.00 0.00 100 0.00 0.00
is Enough FLD-Norm 0.00 1.00 100 0.12 083 1.00 0.00 1.00 1.00 0.09 086 1.00
Attack FLD-NoHVP 065 0.10 1.00 0.02 097 1.00 100 0.00 0.00 075 035 0.00

FLDetector 1.00 0.00 0.00 1.00 0.00 0.00 100 0.00 0.00 100 0.00 0.00

Table 5: DACC, FPR, and FNR of malicious-client detection for different attacks, detection methods, and aggregation rules.
The best detection results are bold for each attack. CIFAR10 dataset, ResNet20 global model, and 28 malicious clients are used.

Attack Detector FedAvg Krum Trimmed-Mean Median
DACC FPR FNR DACC FPR FENR DACC FPR FNR DACC FPR FNR
Untargeted VAE 0.28 1.00 0.00 0.61 0.42 0.32 0.52 0.33 086 046 040 0.89
Model FLD-Norm 0.72 0.00 1.00 0.07 0.90 1.00 0.00 1.00 1.00 0.00 1.00 1.00
Poisoning FLD-NoHVP 0.53 040 0.64 0.85 0.21 0.00 0.48 0.51 0.54 098 0.00 0.07
Attack FLDetector 093 0.10 0.00 097 0.04 000 100 0.00 0.00 1.00 0.00 0.00
VAE 024 0.71 0.89 0.50 0.31 1.00 0.48 0.38 0.89 0.75 0.00 0.89
Scaling FLD-Norm 096 0.00 0.14 098 0.00 0.07 0.96 0.01 0.11 1.00 0.00 0.00

Attack FLD-NoHVP 086 0.14 014 1.00 000 0.00 1.00 0.00 0.00 097 0.00 0.11
FLDetector 088 011 014 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

Distributed VAE 027 074 093 053 026 1.00 055 033 071 076 0.00 0.86
Backdoor FLD-Norm 091 0.07 0.14 085 014 018 092 0.07 011 09 001 0.11
Attack FLD-NoHVP 084 0.14 0.21 1.00 0.00 0.00 1.00 0.00 000 100 0.00 0.00
FLDetector 089 011 011 1.00 0.00 0.00 100 0.00 0.00 100 0.00 0.00

A Little VAE 081 0.13 036 061 049 014 084 0.14 021 085 010 029
is Enough FLD-Norm 033 069 061 077 022 025 045 069 018 047 0.67 0.18
Attack FLD-NoHVP 0.72 024 039 085 0.14 0.18 080 017 029 081 0.15 032

FLDetector 080 0.14 036 092 0.11 0.00 089 0.13 0.07 087 0.15 0.07

Table 6: TACC and ASR of the global models learnt by different FL methods on MNIST. The results for the targeted model
poisoning attacks are in the form of “TACC / ASR (%)”. 28% malicious clients are used. The ASR on FedAvg with FLDetector is
still high because FedAvg is not Byzantine-robust and can be backdoored by even a single malicious client.

FL Method Attack No Attack w/o FLDetector =~ w/ FLDetector
Untargeted Model Poisoning Attack 98.4 10.1 98.3
FedAv, Scaling Attack 98.4 98.5/99.8 98.2/99.6
E Distributed Backdoor Attack 98.4 98.4/99.9 98.1/99.5
A Little is Enough Attack 98.4 97.9/99.9 98.2/0.3
Untargeted Model Poisoning Attack 93.5 11.2 92.8
Krum Scaling Attack 93.5 94.3/0.9 93.2/0.7
" Distributed Backdoor Attack 935 94.4/0.8 93.1/0.8
A Little is Enough Attack 93.5 94.4/99.6 93.4/0.6
Untargeted Model Poisoning Attack 97.6 63.9 97.5
Trimmed-Mean Scaling Attack 97.6 97.5/0.6 97.5/0.5
Distributed Backdoor Attack 97.6 97.5/0.5 97.4/0.4
A Little is Enough Attack 97.6 97.8/100.0 97.5/0.4
Untargeted Model Poisoning Attack 97.6 69.5 97.4
Median Scaling Attack 97.6 97.6/0.5 97.6/0.5
Distributed Backdoor Attack 97.6 97.4/0.5 97.5/0.4

A Little is Enough Attack 97.6 97.8/100.0 97.9/0.3

