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ABSTRACT

Federated learning (FL) is vulnerable to model poisoning attacks,

in which malicious clients corrupt the global model via sending

manipulated model updates to the server. Existing defenses mainly

rely on Byzantine-robust or provably robust FL methods, which aim

to learn an accurate global model even if some clients are malicious.

However, they can only resist a small number of malicious clients.

It is still an open challenge how to defend against model poisoning

attacks with a large number of malicious clients. Our FLDetector

addresses this challenge via detecting malicious clients. FLDetector

aims to detect and remove majority of the malicious clients such

that a Byzantine-robust or provably robust FL method can learn an

accurate global model using the remaining clients. Our key obser-

vation is that, in model poisoning attacks, the model updates from

a client in multiple iterations are inconsistent. Therefore, FLDe-

tector detects malicious clients via checking their model-updates

consistency. Roughly speaking, the server predicts a client’s model

update in each iteration based on historical model updates, and flags

a client as malicious if the receivedmodel update from the client and

the predicted model update are inconsistent in multiple iterations.

Our extensive experiments on three benchmark datasets show that

FLDetector can accurately detect malicious clients in multiple state-

of-the-art model poisoning attacks and adaptive attacks tailored to

FLDetector. After removing the detected malicious clients, existing

Byzantine-robust FL methods can learn accurate global models. Our

code is available at https://github.com/zaixizhang/FLDetector.
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• Security and privacy → Intrusion/anomaly detection and

malwaremitigation; •Computingmethodologies→Distributed

artificial intelligence.
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1 INTRODUCTION

Federated Learning (FL) [17, 21] is an emerging learning paradigm

over decentralized data. Specifically, multiple clients (e.g., smart-

phones, IoT devices, edge data centers) jointly learn a machine

learning model (called global model) without sharing their local

training data with a cloud server. Roughly speaking, FL iteratively

performs the following three steps: the server sends the current

gloabl model to the selected clients; each selected client finetunes

the received global model on its local training data and sends the

model update back to the server; the server aggregates the received

model updates according to some aggregation rule and updates the

global model.

However, due to its distributed nature, FL is vulnerable to model

poisoning attacks [1–3, 8, 11, 20], in which the attacker-controlled

malicious clients corrupt the global model via sending manipulated

model updates to the server. The attacker-controlled malicious

clients can be injected fake clients [8] or genuine clients compro-

mised by the attacker [1–3, 11, 20]. Based on the attack goals, model

poisoning attacks can be generally classified into untargeted and

targeted. In the untargeted model poisoning attacks [8, 11], the

corrupted global model indiscriminately makes incorrect predic-

tions for a large number of testing inputs. In the targeted model

poisoning attacks [1–3, 20], the corrupted global model makes

attacker-chosen, incorrect predictions for attacker-chosen testing

inputs, while the global model’s accuracy on other testing inputs is

unaffected. For instance, the attacker-chosen testing inputs could

be testing inputs embedded with an attacker-chosen trigger, which

are also known as backdoor attacks.

Existing defenses against model poisoning attacks mainly rely

on Byzantine-robust FL methods [4, 7, 10, 22] (e.g., Krum [4] and

FLTrust [7]) or provably robust FL methods [9]. These methods aim

to learn an accurate global model even if some clients are malicious

and send arbitrary model updates to the server. Byzantine-robust

FL methods can theoretically bound the change of the global model

parameters caused by malicious clients, while provably robust FL

methods can guarantee a lower bound of testing accuracy under

ar
X

iv
:2

20
7.

09
20

9v
3 

 [c
s.C

R]
  2

7 
Ju

l 2
02

2



KDD ’22, August 14–18, 2022, Washington, DC, USA Zaixi Zhang et al.

malicious clients. However, they are only robust to a small num-

ber of malicious clients [4, 9, 22] or require a clean, representative

validation dataset on the server [7]. For instance, Krum can theoret-

ically tolerate at most �𝑛−22 � malicious clients. FLTrust [7] is robust

against a large number of malicious clients but it requires the server

to have access to a clean validation dataset whose distribution does

not diverge too much from the overall training data distribution.

As a result, in a typical FL scenario where the server does not have

such a validation dataset, the global model can still be corrupted

by a large number of malicious clients.

Li et al. [16] tried to detect malicious clients in model poison-

ing attacks. Their key assumption is that the model updates from

malicious clients are statistically distinguishable with those from

benign clients. In particular, they proposed to use a variational

autoencoder (VAE) to capture model-updates statistics. Specifically,

VAE assumes the server has access to a clean validation dataset

that is from the overall training data distribution. Then, the server

trains a model using the clean validation dataset. The model up-

dates obtained during this process are used to train a VAE, which

takes a model update as input and outputs a reconstructed model

update. Finally, the server uses the trained VAE to detect malicious

clients in FL. Specifically, if a client’s model updates lead to high

reconstruction errors in the VAE, then the server flags the client

as malicious. However, this detection method suffers from two key

limitations: 1) it requires the server to have access to a clean valida-

tion dataset, and 2) it is ineffective when the malicious clients and

benign clients have statistically indistinguishable model updates.

In this work, we propose a newmalicious-client detectionmethod

called FLDetector. First, FLDetector addresses the limitations of ex-

isting detectionmethods such as the requirement of clean validation

datasets. Moreover, FLDetector can be combined with Byzantine-

robust FL methods, i.e., after FLDetector detects and removes major-

ity of the malicious clients, Byzantine-robust FL methods can learn

accurate global models. Our key intuition is that, benign clients

calculate their model updates based on the FL algorithm and their

local training data, while malicious clients craft the model updates

instead of following the FL algorithm. As a result, the model updates

from a malicious client are inconsistent in different iterations. Based

on the intuition, FLDetector detects malicious clients via checking

their model-updates consistency.

Specifically, we propose that the server predicts each client’s

model update in each iteration based on historical model updates

using the Cauchy mean value theorem. Our predicted model up-

date for a client is similar to the client’s actual model update if

the client follows the FL algorithm. In other words, our predicted

model update for a benign (or malicious) client is similar (or dis-

similar) to the model update that the client sends to the server. We

use Euclidean distance to measure the similarity between a pre-

dicted model update and the received model update for each client

in each iteration. Moreover, we define a suspicious score for each

client, which is dynamically updated in each iteration. Specifically,

a client’s suspicious score in iteration 𝑡 is the average of such Eu-

clidean distances in the previous 𝑁 iterations. Finally, we leverage

𝑘-means with Gap statistics based on the clients’ suspicious scores

to detect malicious clients in each iteration. In particular, if the

clients can be grouped into more than one cluster based on the

suspicious scores and Gap statistics in a certain iteration, we group

the clients into two clusters using 𝑘-means and classify the clients

in the cluster with larger average suspicious scores as malicious.

We evaluate FLDetector on three benchmark datasets as well as

one untargeted model poisoning attack [11], three targeted model

poisoning attacks [1, 2, 20], and adaptive attacks tailored to FLDe-

tector. Our results show that, for the untargeted model poisoning

attack, FLDetector outperforms the baseline detection methods; for

the targeted model poisoning attacks, FLDetector outperforms the

baseline detection methods in most cases and achieves comparable

detection accuracy in the remaining cases; and FLDetector is effec-

tive against adaptive attacks. Moreover, even if FLDetector misses

a small fraction of malicious clients, after removing the clients

detected as malicious, Byzantine-robust FL methods can learn as

accurate global models as when there are no malicious clients.

In summary, we make the following contributions.

• We perform a systematic study on defending FL against

model poisoning attacks via detecting malicious clients.

• We propose FLDetector, an unsupervised method, to detect

malicious clients via checking the consistency between the

received and predicted model updates of clients.

• We empirically evaluate FLDetector against multiple state-

of-the-art model poisoning attacks and adaptive attacks on

three benchmark datasets.

2 RELATEDWORK

2.1 Model Poisoning Attacks against FL

Model poisoning attacks generally can be untargeted [8, 11, 18] and

targeted [1–3, 20]. Below, we review one state-of-the-art untargeted

attack and three targeted attacks.

Untargeted Model Poisoning Attack: Untargeted model poison-

ing attacks aim to corrupt the global model such that it has a low

accuracy for indiscriminate testing inputs. Fang et al. [11] proposed

an untargeted attack framework against FL. Generally speaking,

the framework formulates untargeted attack as an optimization

problem, whose solutions are the optimal crafted model updates on

the malicious clients that maximize the difference between the ag-

gregated model updates before and after the attack. The framework

can be applied to any aggregation rule, e.g., they have shown that

the framework can substantially reduce the testing accuracy of the

global models learnt by FedAvg [17], Krum [4], Trimmed-Mean [22],

and Median [22].

Scaling Attack, Distributed Backdoor Attack, and A Little is

Enough Attack: In these targeted model poisoning attacks (also

known as backdoor attacks), the corrupted global model predicts

an attacker-chosen label for any testing input embedded with an

attacker-chosen trigger. For instance, the trigger could be a patch

located at the bottom right corner of an input image. Specifically,

in Scaling Attack [1], the attacker makes duplicates of the local

training examples on themalicious clients, embeds the trigger to the

duplicated training inputs, and assigns an attacker-chosen label to

them. Then, model updates are computed based on the local training

data augmented by such duplicated training examples. Furthermore,

to amplify the impact of the model updates, the malicious clients

further scale them up by a factor before reporting them to the

server. In Distributed Backdoor Attack (DBA) [20], the attacker
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decomposes the trigger into separate local patterns and embeds

them into the local training data of different malicious clients. In

A Little is Enough Attack [2], the model updates on the malicious

clients are first computed following the Scaling Attack [1]. Then,

the attacker crops the model updates to be in certain ranges so

that the Byzantine-robust aggregation rules fail to eliminate their

malicious effects.

2.2 Byzantine-Robust FL Methods

Roughly speaking, Byzantine-robust FLmethods view clients’ model

updates as high dimensional vectors and apply robust methods to

estimate the aggregated model update. Next, we review several

popular Byzantine-robust FL methods.

Krum [4]: Krum tries to find a single model update among the

clients’ model updates as the aggregated model update in each

iteration. The chosen model update is the one with the closest

Euclidean distances to the nearest 𝑛 − 𝑘 − 2 model updates.

Trimmed-Mean and Median [22]: Trimmed-Mean and Median

are coordinate-wise aggregation rules that aggregate each coordi-

nate of the model update separately. For each coordinate, Trimmed-

Mean first sorts the values of the corresponding coordinates in

the clients’ model updates. After removing the largest and the

smallest 𝑘 values, Trimmed-Mean calculates the average of the

remaining 𝑛 − 2𝑘 values as the corresponding coordinate of the

aggregated model update. Median calculates the median value of

the corresponding coordinates in all model updates and treats it as

the corresponding coordinate of the aggregated model update.

FLTrust [7]: FLTrust leverages an additional validation dataset on

the server. In particular, a local model update has a lower trust score

if its update direction deviates more from that of the server model

update calculated based on the validation dataset. However, it is

nontrivial to collect a clean validation dataset and FLTrust has poor

performance when the distribution of validation dataset diverges

substantially from the overall training dataset.

3 PROBLEM FORMULATION

We consider a typical FL setting in which 𝑛 clients collaboratively

train a global model maintained on a cloud server. We suppose

that each client has a local training dataset 𝐷𝑖 , 𝑖 = 1, 2, · · · , 𝑛
and we use 𝐷 = ∪𝑛𝑖=1𝐷𝑖 to denote the joint training data. The

optimal global model𝑤∗ is a solution to the optimization problem:

𝑤∗ = arg min𝑤
∑𝑛
𝑖=1 𝑓 (𝐷𝑖 ,𝑤), where 𝑓 (𝐷𝑖 ,𝑤) is the loss for client

𝑖’s local training data. The FL process starts with an initialized

global model 𝑤0. At the beginning of each iteration 𝑡 , the server
first sends the current global model𝑤𝑡 to the clients or a subset of

them. A client 𝑖 then computes the gradient 𝑔𝑡𝑖 of its loss 𝑓 (𝐷𝑖 ,𝑤𝑡 )

with respect to𝑤𝑡 and sends 𝑔𝑡𝑖 back to the server, where 𝑔𝑡𝑖 is the
model update from client 𝑖 in the 𝑡 th iteration. Formally, we have:

𝑔𝑡𝑖 = ∇𝑓 (𝐷𝑖 ,𝑤𝑡 ). (1)

We note that client 𝑖 can also use stochastic gradient descent (SGD)

instead of gradient descent, perform SGD multiple steps locally,

and send the accumulated gradients back to the server as model

update. However, we assume a client performs the standard gradient

descent for one step for simplicity.

After receiving the clients’ model updates, the server computes

a global model update 𝑔𝑡 via aggregating the clients’ model updates

based on some aggregation rule. Then, the server updates the global

model using the global model update, i.e.,𝑤𝑡+1 = 𝑤𝑡 − 𝛼𝑔𝑡 , where
𝛼 is the global learning rate. Different FL methods essentially use

different aggregation rules.

Attack model: We follow the attack settings in previous works

[1, 2, 8, 11, 20]. Specifically, an attacker controls𝑚 malicious clients,

which can be fake clients injected by the attacker or genuine ones

compromised by the attacker. However, the server is not compro-

mised. The attacker has the following background knowledge about

the FL system: local training data and model updates on the ma-

licious clients, loss function, and learning rate. In each iteration

𝑡 , each benign client calculates and reports the true model update

𝑔𝑡𝑖 = ∇𝑓 (𝐷𝑖 ,𝑤𝑡 ), while a malicious client sends carefully crafted

model update (i.e., 𝑔𝑡𝑖 ≠ ∇𝑓 (𝐷𝑖 ,𝑤𝑡 )) to the server.

Problem definition:We aim to design a malicious-client detection

method in the above FL setting. In each iteration 𝑡 , the detection
method takes clients’ model updates in the current and previous

iterations as an input and classifies each client to be benign or

malicious. When at least one client is classified as malicious by our

method in a certain iteration, the server stops the FL process, re-

moves the clients detected as malicious, and restarts the FL process

on the remaining clients. Our goal is to detect majority of malicious

clients as early as possible. After detecting and removing majority

of malicious clients, Byzantine-robust FL methods can learn accu-

rate global models since they are robust against the small number

of malicious clients that miss detection.

4 FLDETECTOR

4.1 Model-Updates Consistency

A benign client 𝑖 calculates its model update 𝑔𝑡𝑖 in the 𝑡th itera-

tion according to Equation 1. Based on the Cauchy mean value

theorem [14], we have the following:

𝑔𝑡𝑖 = 𝑔𝑡−1𝑖 + H
𝑡
𝑖 · (𝑤𝑡 −𝑤𝑡−1), (2)

where H𝑡
𝑖 =

∫ 1

0
H𝑖 (𝑤𝑡−1 + 𝑥 (𝑤𝑡 −𝑤𝑡−1))𝑑𝑥 is an integrated Hes-

sian for client 𝑖 in iteration 𝑡 , 𝑤𝑡 is the global model in iteration

𝑡 , and 𝑤𝑡−1 is the global model in iteration 𝑡 − 1. Equation 2 en-

codes the consistency between client 𝑖’s model updates 𝑔𝑡𝑖 and 𝑔
𝑡−1
𝑖 .

However, the integrated Hessian H
𝑡
𝑖 is hard to compute exactly.

In our work, we use a L-BFGS algorithm [5] to approximate in-

tegrated Hessian. To be more efficient, we approximate a single

integrated Hessian Ĥ
𝑡
in each iteration 𝑡 , which is used for all

clients. Specifically, we denote by Δ𝑤𝑡 = 𝑤𝑡 − 𝑤𝑡−1 the global-

model difference in iteration 𝑡 , and we denote by Δ𝑔𝑡 = 𝑔𝑡 − 𝑔𝑡−1
the global-model-update difference in iteration 𝑡 , where the global
model update is aggregated from the clients’ model updates. We de-

note by Δ𝑊𝑡 = {Δ𝑤𝑡−𝑁 ,Δ𝑤𝑡−𝑁+1, · · · ,Δ𝑤𝑡−1} the global-model

differences in the past 𝑁 iterations, and we denote by Δ𝐺𝑡 =
{Δ𝑔𝑡−𝑁 ,Δ𝑔𝑡−𝑁+1, · · · ,Δ𝑔𝑡−1} the global-model-update differences

in the past 𝑁 iterations in iteration 𝑡 . Then, based on the L-BFGS

algorithm, we can estimate Ĥ
𝑡
using Δ𝑊𝑡 and Δ𝐺𝑡 . For simplicity,

we denote by Ĥ
𝑡
= L-BFGS(Δ𝑊𝑡 ,Δ𝐺𝑡 ). Algorithm 1 shows the

specific implementation of L-BFGS algorithm in the experiments.
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The input to L-BFGS are v = 𝑤𝑡 −𝑤𝑡−1, Δ𝑊𝑡 , and Δ𝐺𝑡 . The output

of L-BFGS algorithm is the projection of the Hessian matrix in the

direction of𝑤𝑡 −𝑤𝑡−1.

Based on the estimated Hessian Ĥ
𝑡
, we predict a client 𝑖’s model

update in iteration 𝑡 as follows:

𝑔̂𝑡𝑖 = 𝑔𝑡−1𝑖 + Ĥ
𝑡
(𝑤𝑡 −𝑤𝑡−1), (3)

where 𝑔̂𝑡𝑖 is the predicted model update for client 𝑖 in iteration 𝑡 .
When the L-BFGS algorithm estimates the integrated Hessian accu-

rately, the predicted model update 𝑔̂𝑡𝑖 is close to the actual model

update 𝑔𝑡𝑖 for a benign client 𝑖 . In particular, if the estimated Hessian

is exactly the same as the integrated Hessian, then the predicted

model update equals the actual model update for a benign client.

However, no matter whether the integrated Hessian is estimated

accurately or not, the predicted model update would be different

from the model update sent by a malicious client. In other words,

the predicted model update and the received one are consistent

for benign clients but inconsistent for malicious clients, which we

leverage to detect malicious clients.

4.2 Detecting Malicious Clients

Suspicious score for a client: Based on the model-updates consis-

tency discussed above, we assign a suspicious score for each client.

Specifically, we measure the consistency between a predicted model

update 𝑔̂𝑡𝑖 and a received model update 𝑔𝑡𝑖 using their Euclidean dis-

tance. We denote by 𝑑𝑡 the vector of such 𝑛 Euclidean distances for

the𝑛 clients in iteration 𝑡 , i.e.,𝑑𝑡 = [‖𝑔̂𝑡1−𝑔
𝑡
1‖2, ‖𝑔̂

𝑡
2−𝑔

𝑡
2‖2, · · · , ‖𝑔̂

𝑡
𝑛−

𝑔𝑡𝑛 ‖2]. We normalize the vector 𝑑𝑡 as 𝑑̂
𝑡
= 𝑑𝑡/‖𝑑𝑡 ‖1. We use such

normalization to incorporate the model-updates consistency varia-

tions across different iterations. Finally, our suspicious score 𝑠𝑡𝑖 for
client 𝑖 in iteration 𝑡 is the client’s average normalized Euclidean

distance in the past 𝑁 iterations, i.e., 𝑠𝑡𝑖 = 1
𝑁

∑𝑁−1
𝑟=0 𝑑̂

𝑡−𝑟
𝑖 . We call 𝑁

window size.

Unsupervised detection via 𝑘-means: In iteration 𝑡 , we perform
malicious-clients detection based on the clients’ suspicious scores

𝑠𝑡1, 𝑠
𝑡
2, · · · , 𝑠

𝑡
𝑛 . Specifically, we cluster the clients based on their sus-

picious scores 𝑠𝑡1, 𝑠
𝑡
2, · · · , 𝑠

𝑡
𝑛 , and we use the Gap statistics [19] to

determine the number of clusters. If the clients can be grouped

into more than 1 cluster based on the Gap statistics, then we use

𝑘-means to divide the clients into 2 clusters based on their suspi-

cious scores. Finally, the clients in the cluster with larger average

suspicious score are classified as malicious. When at least one client

is classified as malicious in a certain iteration, the detection fin-

ishes, and the server removes the clients classified as malicious and

restarts the training.

Algorithm 2 shows the pseudo codes of Gap statistics algorithm.

The input to Gap statistics are the vectors of suspicious scores

𝑠𝑡 , the number of sampling 𝐵, the number of maximum clusters

𝐾 , and the number of clients 𝑛. The output of Gap statistics is

the number of clusters 𝐾 . Generally, Gap statistics compares the

change in within-cluster dispersion with that expected under a

reference null distribution, i.e., uniform distribution, to determine

the number of clusters. The computation of the gap statistic involves

the following steps: 1) Vary the number of clusters 𝑘 from 1 to 𝐾
and cluster the suspicious scores with 𝑘-means. Calculate𝑊𝑘 =

∑𝑘
𝑖=1

∑
𝑥 𝑗 ∈𝐶𝑖

‖𝑥 𝑗−𝜇𝑖 ‖
2. 2) Generate𝐵 reference data sets and cluster

each of them with 𝑘-means. Compute the estimated gap statistics

𝐺𝑎𝑝 (𝑘) = 1
𝐵

∑𝐵
𝑖=1 𝑙𝑜𝑔(𝑊

∗
𝑘𝑏
) − 𝑙𝑜𝑔(𝑊𝑘 ). 3) Compute the standard

deviation 𝑠𝑑 (𝑘) = ( 1𝐵
∑𝐵
𝑖=1 (𝑙𝑜𝑔(𝑊

∗
𝑘𝑏
)) −𝑤 ′)2)

1
2 and define 𝑠𝑘+1 =√

1+𝐵
𝐵 𝑠𝑑 (𝑘). 4) Choose the number of clusters 𝑘̂ as the smallest 𝑘

such that 𝐺𝑎𝑝 (𝑘) −𝐺𝑎𝑝 (𝑘 + 1) + 𝑠𝑘+1 ≥ 0. If there are more than

one cluster, the attack detection 𝐹𝑙𝑎𝑔 is set to positive because there
are outliers in the suspicious scores.

Algorithm 3 summarizes the algorithm of FLDetector.

4.3 Complexity Analysis

To compute the estimated Hessian, the server needs to save the

global-model differences and global-model-update differences in the

latest 𝑁 iterations. Therefore, the storage overhead of FLDetector

for the server is 𝑂 (𝑁𝑝), where 𝑝 is the number of parameters

in the global model. Moreover, according to [5], the complexity

of estimating the Hessian Ĥ
𝑡
using L-BFGS and computing the

Hessian vector product Ĥ
𝑡
(𝑤𝑡 − 𝑤𝑡−1) is 𝑂 (𝑁 3 + 6𝑁𝑝) in each

iteration. The complexity of calculating the suspicious scores is

𝑂 (2𝑛𝑝+𝑁𝑛) in each iteration, where 𝑛 is the number of clients. The

total complexity of Gap statistics and 𝑘-means is 𝑂 (𝐾𝐵𝑛2) where
𝐾 and 𝐵 are the number of maximum clusters and sampling in Gap

statistics. Therefore, the total time complexity of FLDetector in each

iteration is𝑂 (𝑁 3 +𝐾𝐵𝑛2 + (6𝑁 +2𝑛)𝑝 +𝑁𝑛). Typically, 𝐾 , 𝐵, 𝑛, and
𝑁 are much smaller than 𝑝 . Thus, the time complexity of FLDetector

for the server is roughly linear to the number of parameters in the

global model in each iteration. We note that the server is powerful

in FL, so the storage and computation overhead of FLDetector for

the server is acceptable. As for the clients, FLDetector does not

incur extra computation and communication overhead.

4.4 Theoretical Analysis on Suspicious Scores

We compare the suspicious scores of benign and malicious clients

theoretically. We first describe the definition of 𝐿-smooth gradient,

which is widely used for theoretical analysis on machine learning.

Definition 4.1. We say a client’s loss function is 𝐿-smooth if we

have the following inequality for any 𝒘 and𝒘 ′:

‖∇𝑓 (𝐷𝑖 ,𝒘) − ∇𝑓 (𝐷𝑖 ,𝒘
′)‖ ≤ 𝐿‖𝒘 −𝒘 ′‖, (4)

where 𝑓 (𝐷𝑖 ,𝑤) is the client’s loss function and ‖ · ‖ represents ℓ2
norm of a vector.

Theorem 1. Suppose the gradient of each client’s loss function is

𝐿-smooth, FedAvg is used as the aggregation rule, the clients’ local

training datasets are iid, the learning rate𝛼 satisfies𝛼 < 1
(𝑁+2)𝐿 (𝑁 is

the window size). Suppose the malicious clients perform an untargeted

model poisoning attack in each iteration by reversing the true model

updates as the poisoning ones, i.e., each malicious client 𝑖 sends −𝑔𝑡𝑖
to the server in each iteration 𝑡 . Then we have the expected suspicious

score of a benign client is smaller than that of a malicious client in

each iteration 𝑡 . Formally, we have the following inequality:

E(𝑠𝑡𝑖 ) < E(𝑠
𝑡
𝑗 ),∀𝑖 ∈ B,∀𝑗 ∈ M, (5)

where the expectation E is taken with respect to the randomness in

the clients’ local training data, B is the set of benign clients, andM

is the set of malicious clients.
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Algorithm 1 L-BFGS to Compute Hessian Vector Product

Input: Global-model differences Δ𝑊𝑡 = {Δ𝑤𝑡−𝑁 ,Δ𝑤𝑡−𝑁+1, · · · ,Δ𝑤𝑡−1}, global-model-update differences Δ𝐺𝑡 = {Δ𝑔𝑡−𝑁 ,Δ𝑔𝑡−𝑁+1, · · · ,
Δ𝑔𝑡−1}, vector v = 𝑤𝑡 −𝑤𝑡−1, and window size 𝑁

Output: Hessian vector product Ĥ
𝑡
v

1: Compute Δ𝑊𝑇
𝑡 Δ𝑊𝑡

2: Compute Δ𝑊𝑇
𝑡 Δ𝐺𝑡 , get its diagonal matrix 𝐷𝑡 and its lower triangular submatrix 𝐿𝑡

3: Compute 𝜎 = Δ𝑔𝑇𝑡−1Δ𝑤𝑡−1/(Δ𝑤
𝑇
𝑡−1Δ𝑤𝑡−1)

4: Compute the Cholesky factorization for 𝜎Δ𝑊𝑇
𝑡 Δ𝑊𝑡 + 𝐿𝑡𝐷𝑡𝐿

𝑇
𝑡 to get 𝐽𝑡 𝐽

𝑇
𝑡

5: Compute 𝑞 =

[
−𝐷

1/2
𝑡 𝐷

−1/2
𝑡 𝐿𝑇𝑡

0 𝐽𝑇𝑡

]−1 [
𝐷
1/2
𝑡 0

𝐷
−1/2
𝑡 𝐿𝑇𝑡 𝐽𝑡

]−1 [
Δ𝐺𝑇

𝑡 v

𝜎Δ𝑊𝑇
𝑡 v

]
6: return 𝜎v −

[
Δ𝐺𝑡 𝜎Δ𝑊𝑡

]
𝑞

Algorithm 2 Gap Statistics

Input: Clients’ suspicious scores 𝑠𝑡 , number of sampling 𝐵,
maximum number of clusters 𝐾 , and number of clients 𝑛.
Output: Number of clusters 𝑘 .

for 𝑘 = 1,2, · · · , 𝐾 do

Apply linear transformation on 𝑠𝑡 so that the minimum of

𝑠𝑡 equals 0 and the maximum of 𝑠𝑡 equals 1.
Apply 𝑘-means on the suspicious scores to get clusters {𝐶𝑖 }
and means {𝜇𝑖 }.

𝑉𝑘 =
∑𝑘
𝑖=1

∑
𝑥 𝑗 ∈𝐶𝑖

‖𝑥 𝑗 − 𝜇𝑖 ‖
2

for 𝑏 = 1,2, · · · , 𝐵 do

Sample 𝑛 points uniformly in [0,1]

Perform 𝑘-means and calculate

𝑉 ∗
𝑘𝑏

=
∑𝑘
𝑖=1

∑
𝑥 𝑗𝑏 ∈𝐶𝑖𝑏

‖𝑥 𝑗𝑏 − 𝜇𝑖𝑏 ‖
2

end for

𝐺𝑎𝑝 (𝑘) = 1
𝐵

∑𝐵
𝑖=1 𝑙𝑜𝑔(𝑉

∗
𝑘𝑏
) − 𝑙𝑜𝑔(𝑉𝑘 )

𝑣 ′ = 1
𝐵

∑𝐵
𝑖=1 𝑙𝑜𝑔(𝑉

∗
𝑘𝑏
)

𝑠𝑑 (𝑘) = ( 1𝐵
∑𝐵
𝑖=1 (𝑙𝑜𝑔(𝑉

∗
𝑘𝑏
)) − 𝑣 ′)2)

1
2

𝑠 ′
𝑘
=
√

1+𝐵
𝐵 𝑠𝑑 (𝑘)

end for

𝑘̂ = smallest 𝑘 such that 𝐺𝑎𝑝 (𝑘) −𝐺𝑎𝑝 (𝑘 + 1) + 𝑠 ′
𝑘+1

≥ 0.

return 𝑘̂

Proof. Our idea is to bound the difference between predicted

model updates and the received ones from benign clients. Appendix

shows our detailed proof. �

4.5 Adaptive Attacks

When the attacker knows that our FLDetector is used to detect

malicious clients, the attacker can adapt its attack to FLDetector

to evade detection. Therefore, we design and evaluate adaptive

attacks to FLDetector. Specifically, we formulate an adaptive attack

by adding an extra term to regularize the loss function used to

perform existing attacks. Our regularization term measures the

Euclidean distance between a predicted model update and a local

model update. Formally, a malicious client 𝑖 solves the following
optimization problem to perform an adaptive attack in iteration 𝑡 :

min
𝑔𝑡𝑖

𝜆L𝑎𝑡𝑡𝑎𝑐𝑘 + (1 − 𝜆)‖𝑔𝑡𝑖 − (𝑔𝑡−1𝑖 + Ĥ
𝑡
𝑖 (𝑤𝑡 −𝑤𝑡−1))‖, (6)

Algorithm 3 FLDetector

Input: Total training iterations 𝐼𝑡𝑒𝑟 and window size 𝑁 .

Output: Detected malicious clients or none.

1: for 𝑡 = 1, 2, · · · , 𝐼𝑡𝑒𝑟 do

2: Ĥ
𝑡
= L-BFGS(Δ𝑊𝑡 ,Δ𝐺𝑡 ).

3: for 𝑖 = 1, 2, · · · , 𝑛 do

4: 𝑔̂𝑡𝑖 = 𝑔𝑡−1𝑖 + Ĥ
𝑡
(𝑤𝑡 −𝑤𝑡−1).

5: end for

6: 𝑑𝑡 = [‖𝑔̂𝑡1 − 𝑔𝑡1‖2, ‖𝑔̂
𝑡
2 − 𝑔𝑡2‖2, · · · , ‖𝑔̂

𝑡
𝑛 − 𝑔𝑡𝑛 ‖2].

7: 𝑑̂
𝑡
= 𝑑𝑡/‖𝑑𝑡 ‖1.

8: 𝑠𝑡𝑖 = 1
𝑁

∑𝑁−1
𝑟=0 𝑑̂

𝑡−𝑟
𝑖 .

9: Determine the number of clusters 𝑘 by Gap statistics.

10: if 𝑘 > 1 then

11: Perform𝑘-means clustering based on the suspicious scores

with 𝑘 = 2.

12: return The clients in the cluster with larger average

suspicious score as malicious.

13: end if

14: end for

15: return None.

where L𝑎𝑡𝑡𝑎𝑐𝑘 is the loss function used to perform existing at-

tacks [1, 2, 11, 20], 𝑔𝑡𝑖 is the poisoning local model update on mali-

cious client 𝑖 in iteration 𝑡 , 𝑔𝑡−1𝑖 + Ĥ
𝑡
𝑖 (𝑤𝑡 −𝑤𝑡−1) is the predicted

model update for client 𝑖 , and Ĥ
𝑡
𝑖 is the Hessian calculated on client

𝑖’s dataset to approximate Ĥ
𝑡
. 𝜆 ∈ (0, 1] is a hyperparameter to

balance the loss function and the regularization term. A smaller 𝜆
makes the malicious clients less likely to be detected, but the attack

is also less effective.

5 EXPERIMENTS

5.1 Experimental Setup

Datasets and global-model architectures: We consider three

widely-used benchmark datasets MNIST [15], CIFAR10 [13], and

FEMNIST [6] to evaluate FLDetector. For MNIST and CIFAR10, we

assume there are 100 clients and use the method in [11] to distribute

the training images to the clients. Specifically, this method has a

parameter called degree of non-iid ranging from 0.1 to 1.0 to control

the distribution of the clients’ local training data. The clients’ local
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Table 1: The CNN architecture of the global model used for

MNIST and FEMNIST.

Layer Size

Input 28× 28 × 1

Convolution + ReLU 3× 3 × 30

Max Pooling 2 × 2

Convolution + ReLU 3 × 3 × 5

Max Pooling 2 × 2

Fully Connected + ReLU 100

Softmax 10 (62 for FEMNIST)

training data are not independent and identically distributed (iid)

when the degree of non-iid is larger than 0.1 and are more non-

iid when the degree of non-iid becomes larger. Unless otherwise

mentioned, we set the degree of non-iid to 0.5. FEMNIST is a 62-

class classification dataset from the open-source benchmark library

of FL [6]. The training images are already grouped by the writers

and we randomly sample 300 writers, each of which is treated as a

client. We use a four-layer Convolutional Neural Network (CNN)

(see Table 1) as the global model for MNIST and FEMNIST. For

CIFAR-10, we consider the widely used ResNet20 architecture [12]

as the global model.

FL settings: We consider four FL methods: FedAvg [17], Krum [4],

Trimmed-Mean [22], and Median [22]. We didn’t consider FLTrust

[7] due to its additional requirement of a clean validation dataset.

Considering the different characteristics of the datasets, we adopt

the following parameter settings for FL training: for MNIST, we

train 1,000 iterations with a learning rate of 2 × 10−4; and for CI-

FAR10 and FEMNIST, we train 2,000 iterations with a learning rate

of 1×10−3. For simplicity, we assume all clients are involved in each

iteration of FL training. Note that when FLDetector detects mali-

cious clients in a certain iteration, the server removes the clients

classified as malicious, restarts the FL training, and repeats for the

pre-defined number of iterations.

Attack settings: By default, we randomly sample 28% of the clients

as malicious ones. We choose this fraction because in the Dis-

tributed Backdoor Attack (DBA), the trigger pattern need to be

equally splitted into four parts and embedded into the local train-

ing data of four malicious clients groups. Specifically, the number

of malicious clients is 28, 28, and 84 for MNIST, CIFAR10, and FEM-

NIST, respectively. We consider one Untargeted Model Poisoning

Attack [11], as well as three targeted model poisoning attacks in-

cluding Scaling Attack [1], Distributed Backdoor Attack [20], and A

Little is Enough Attack [2]. For all the three targeted model poison-

ing attacks, the trigger patterns are the same as their original papers

and label ’0’ is selected as the target label. The scaling parameters

for Scaling Attack and DBA are set to 1 to make the attacks more

stealthy. Unless otherwise mentioned, the malicious clients perform

attacks in every iteration of FL training.

Compared detectionmethods: There are fewworks on detecting

malicious clients in FL. We compare the following methods:

• VAE [16]. This method trains a variational autoencoder for

benign model updates by simulating model training using

a validation dataset on the server and then applies it to

detect malicious clients during FL training. We consider the

validation dataset is the same as the joint local training data

of all clients, which gives a strong advantage to VAE.

• FLD-Norm. This is a variant of FLDetector. Specifically,

FLDetector considers the Euclidean distance between a pre-

dicted model update and the received one in suspicious

scores. One natural question is whether the norm of a model

update itself can be used to detect malicious clients. In FLD-

Norm, the distance vector 𝑑𝑡 consists of the ℓ2 norms of the

𝑛 clients’ model updates in iteration 𝑡 , which are further

normalized and used to calculate our suspicious scores.

• FLD-NoHVP. This is also a variant of FLDetector. In par-

ticular, in this variant, we do not consider the Hessian vec-

tor product (HVP) term in Equation 3, i.e., 𝑔̂𝑡𝑖 = 𝑔𝑡−1𝑖 . The

clients’ suspicious scores are calculated based on such pre-

dicted model updates. We use this variant to show that the

Hessian vector product term in predicting the model update

is important for FLDetector.

Evaluation metrics:We consider evaluation metrics for both de-

tection and the learnt global models. For detection, we use detection

accuracy (DACC), false positive rate (FPR), and false negative rate

(FNR) as evaluation metrics. DACC is the fraction of clients that

are correctly classified as benign or malicious. FPR (or FNR) is the

fraction of benign (or malicious) clients that are falsely classified as

malicious (or benign). To evaluate the learnt global model, we use

testing accuracy (TACC), which is the fraction of testing examples

that are correctly classified by the global model. Moreover, for tar-

geted model poisoning attacks, we further use attack success rate

(ASR) to evaluate the global model. In particular, we embed the

trigger to each testing input and the ASR is the fraction of trigger-

embedded testing inputs that are classified as the target label by the

global model. A lower ASR means that a targeted model poisoning

attack is less successful.

Detection settings: By default, we start to detect malicious clients

in the 50th iteration of FL training, as we found the first dozens

of iterations may be unstable. We will show how the iteration to

start detection affects the performance of FLDetector. If no mali-

cious clients are detected after finishing training for the pre-defined

number of iterations, we classify all clients as benign. We set the

window size 𝑁 to 10. Moreover, we set the maximum number of

clusters 𝐾 and number of sampling 𝐵 in Gap statistics to 10 and 20,

respectively. We will also explore the impact of hyperparameters

in the following section.

5.2 Experimental Results

Detection results: Table 2 shows the detection results on the FEM-

NIST dataset for different attacks, detection methods, and FL meth-

ods. The results on MNIST and CIFAR10 are respectively shown

in Table 4 and Table 5 in the Appendix, due to limited space. We

have several observations. First, FLDetector can detect majority

of the malicious clients. For instance, on FEMNIST, the FNR of

FLDetector is always 0.0 for different attacks and FL methods. Sec-

ond, FLDetector falsely detects a small fraction of benign clients

as malicious, e.g., the FPR of FLDetector ranges between 0.0 and

0.20 on FEMNIST for different attacks and FL methods. Third, on

FEMNIST, FLDetector outperforms VAE for different attacks and FL
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Table 2: DACC, FPR, and FNR of malicious-client detection for different attacks, detection methods, and aggregation rules.

The best detection results are bold for each attack. FEMNIST dataset, CNN global model, and 28 malicious clients are used.

Attack Detector
FedAvg Krum Trimmed-Mean Median

DACC FPR FNR DACC FPR FNR DACC FPR FNR DACC FPR FNR

Untargeted

Model

Poisoning

Attack

VAE 0.71 0.02 0.99 0.57 0.36 0.62 0.56 0.37 0.62 0.55 0.35 0.71

FLD-Norm 0.72 0.03 0.93 0.05 0.93 1.00 0.42 0.42 1.00 0.13 0.82 1.00

FLD-NoHVP 0.51 0.38 0.79 0.34 0.83 0.21 0.77 0.32 0.00 0.67 0.28 0.54

FLDetector 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

Scaling

Attack

VAE 0.73 0.05 0.99 0.68 0.44 0.00 0.33 0.54 1.00 0.47 0.42 0.82

FLD-Norm 0.82 0.14 0.29 0.68 0.44 0.00 0.92 0.00 0.29 0.90 0.03 0.29

FLD-NoHVP 0.07 0.98 0.82 0.42 0.42 1.00 0.91 0.13 0.00 0.96 0.05 0.00

FLDetector 0.85 0.20 0.00 1.00 0.00 0.00 0.98 0.03 0.00 1.00 0.00 0.00

Distributed

Backdoor

Attack

VAE 0.75 0.07 0.71 0.69 0.43 0.00 0.52 0.28 1.00 0.53 0.68 1.00

FLD-Norm 0.66 0.33 0.36 0.65 0.42 0.18 0.73 0.28 0.25 0.75 0.22 0.33

FLD-NoHVP 0.09 0.98 0.75 0.46 0.64 0.29 0.90 0.11 0.07 0.98 0.03 0.00

FLDetector 0.92 0.11 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

A Little

is Enough

Attack

VAE 0.80 0.22 0.14 0.77 0.71 0.11 0.92 0.00 0.29 0.93 0.00 0.25

FLD-Norm 0.05 0.93 1.00 0.11 0.97 0.68 0.02 0.97 1.00 0.08 0.89 1.00

FLD-NoHVP 0.49 0.40 0.79 0.47 0.35 1.00 0.23 0.69 0.96 0.26 0.69 0.86

FLDetector 0.93 0.10 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

Table 3: TACC and ASR of the global models learnt by Median in different scenarios. The results for the targeted model

poisoning attacks are in the form of “TACC / ASR (%)”. 28 malicious clients are used.

Dataset Attack No Attack w/o FLDetector w/ FLDetector

MNIST

Untargeted Model Poisoning Attack 97.6 69.5 97.4

Scaling Attack 97.6 97.6/0.5 97.6/0.5

Distributed Backdoor Attack 97.6 97.4/0.5 97.5/0.4

A Little is Enough Attack 97.6 97.8/100.0 97.9/0.3

CIFAR10

Untargeted Model Poisoning Attack 65.8 27.8 65.9

Scaling Attack 65.8 66.6/91.2 65.7/2.4

Distributed Backdoor Attack 65.8 66.1/93.5 65.2/1.9

A Little is Enough Attack 65.8 62.1/95.2 64.3/1.8

FEMNIST

Untargeted Model Poisoning Attack 64.4 14.3 63.2

Scaling Attack 64.4 66.4/57.9 64.5/1.7

Distributed Backdoor Attack 64.4 67.5/53.2 64.3/2.1

A Little is Enough Attack 64.4 66.7/59.6 65.0/1.6

methods; on MNIST and CIFAR10, FLDetector outperforms VAE in

most cases and achieves comparable performance in the remaining

cases. Fourth, FLDetector outperforms the two variants in most

cases while achieving comparable performance in the remaining

cases, which means that model-updates consistency and the Hes-

sian vector product in estimating the model-updates consistency

are informative at detecting malicious clients. Fifth, FLDetector

achieves higher DACC for Byzantine-robust FL methods (Krum,

Trimmed-Mean, and Median) than for FedAvg. The reason may be

that Byzantine-robust FL methods provide more robust estimations

of global model updates under attacks, which makes the estimation

of Hessian and FLDetector more accurate.

Performance of the global models: Table 3 shows the TACC

and ASR of the global models learnt by Median under no attacks,

without FLDetector deployed, and with FLDetector deployed. Table

6 in the Appendix shows the results of other FL methods on MNIST.

“No Attack” means the global models are learnt by Median using

the remaining 72% of benign clients; “w/o FLDetector” means the

global models are learnt using all clients including both benign and

malicious ones; and “w/ FLDetector” means that the server uses

FLDetector to detect malicious clients, and after detecting malicious

clients, the server removes them and restarts the FL training using

the remaining clients.

We observe that the global models learnt with FLDetector de-

ployed under different attacks are as accurate as those learnt under

no attacks. Moreover, the ASRs of the global models learnt with

FLDetector deployed are very small. This is because after FLDetec-

tor detects and removes majority of malicious clients, Byzantine-

robust FL methods can resist the small number of malicious clients

that miss detection. For instance, FLDetector misses 2 malicious
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Figure 1: Impact of the number ofmalicious clients on FLDetector, where CIFAR10, Median, and 0.5 degree of non-iid are used.
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Figure 2: Impact of the degree of non-iid on FLDetector, where CIFAR10, Median, and 28 malicious clients are used.
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Figure 3: Dynamics of the clients’ suspicious scores when malicious clients perform attacks periodically, where MNIST, 0.5

degree of non-iid, and 28 malicious clients are used.

clients on CIFAR10 in Median and A Little is Enough Attack, but

Median is robust against them when learning the global model.

Impact of the number ofmalicious clients and degree of non-

iid: Figure 1 and 2 show the impact of the number of malicious

clients and the non-iid degree on FLDetector, respectively. First,

we observe that the DACC of FLDetector starts to drop after the

number of malicious clients is larger than some threshold or the

non-iid degree is larger than some threshold, but the thresholds are

attack-dependent. For instance, for the Untargeted Model Poisoning

Attack, DACC of FLDetector starts to decrease after more than 30

clients are malicious, while it starts to decrease after 20 malicious

clients for the A Little is Enough Attack. Second, the global models

learnt with FLDetector deployed are more accurate than the global

models learnt without FLDetector deployed for different number

of malicious clients and non-iid degrees. Specifically, the TACCs

of the global models learnt with FLDetector deployed are larger

than or comparable with those of the global models learnt without

FLDetector deployed, while the ASRs of the global models learnt

with FLDetector deployed are much smaller than those of the global

models learnt without FLDetector. The reason is that FLDetector

detects and removes (some) malicious clients.

Dynamics of the clients’ suspicious scores: Figure 3 shows the

average suspicious scores of benign clients and malicious clients as

a function of the training iteration 𝑡 . To better show the dynamics

of the suspicious scores, we assume the malicious clients perform

the attacks in the first 50 iterations in every 100 iterations, starting

from the 50th iteration. Note that FLDetector is ignorant of when

the attack starts or ends. We observe the periodic patterns of the

suspicious scores follow the attack patterns. Specifically, the aver-

age suspicious score of the malicious clients grows rapidly when

the attack begins and drops to be around the same as that of the

benign clients when the attack stops. In the iterations where there
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Figure 4: (a) Adaptive attack; (b) impact of the detection iteration; (c) impact ofwindow size𝑁 ; (d) impact of number of sampling

𝐵, where CIFAR10, Median, 0.5 degree of non-iid, 28 malicious clients, and scaling attack are used.

are attacks, malicious and benign clients can be well separated

based on the suspicious scores. In these experiments, FLDetector

can detect malicious clients at around 60th iteration. Note that

the average suspicious score of the benign clients decreases (or

increases) in the iterations where there are attacks (or no attacks).

This is because FLDetector normalizes the corresponding Euclidean

distances when calculating suspicious scores.

Adaptive attack and impact of the detection iteration: Figure

4(a) shows the performance when we adapt Scaling Attack to FLDe-

tector. We observe that DACC drops as 𝜆 decreases. However, ASR

is still low because the local model updates from the malicious

clients are less effective while trying to evade detection. Figure 4(b)

shows the impact of the detection iteration. Although DACC drops

slightly when FLDetector starts earlier due to the instability in the

early iterations, FLDetector can still defend against Scaling Attack

by removing a majority of the malicious clients.

Impact of hyperparameters: Figure 4(c) and (d) explore the im-

pact of hyperparameters 𝑁 and 𝐵, respectively. We observe FLDe-

tector is robust to these hyperparameters. DACC drops slightly

when 𝑁 is too small. This is because the suspicious scores fluctuate

in a small number of rounds. In experiments, we choose 𝑁 = 10

and 𝐵 =20 as the default setting considering the trade-off between

detection accuracy and computation complexity.

6 CONCLUSION AND FUTUREWORK

In this paper, we propose FLDetector, a malicious-client detection

method that checks the clients’ model-updates consistency. We

quantify a client’s model-updates consistency using the Cauchy

mean value theorem and an L-BFGS algorithm. Our extensive eval-

uation on three popular benchmark datasets, four state-of-the-art

attacks, and four FL methods shows that FLDetector outperforms

baseline detection methods in various scenarios. Interesting future

research directions include extending our method to vertical feder-

ated learning, asynchronous federated learning, federated learning

in other domains such as text and graphs, as well as efficient re-

covery of the global model from model poisoning attacks after

removing the detected malicious clients.

ACKNOWLEDGEMENTS

We thank the reviewers for constructive comments. This work is

supported by NSF under grant No. 2125977 and 2112562.

REFERENCES
[1] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly

Shmatikov. 2020. How to backdoor federated learning. In AISTATS.
[2] Gilad Baruch, Moran Baruch, and Yoav Goldberg. 2019. A Little Is Enough:

Circumventing Defenses For Distributed Learning. In NeurIPS.
[3] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin Calo.

2019. Analyzing federated learning through an adversarial lens. In ICML.
[4] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer.

2017. Machine learning with adversaries: Byzantine tolerant gradient descent. In
NeurIPS.

[5] Richard H Byrd, Jorge Nocedal, and Robert B Schnabel. 1994. Representations of
quasi-Newton matrices and their use in limited memory methods. Mathematical
Programming (1994).

[6] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ,
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A PROOF OF THEOREM 1

Lemma 1. For any 𝑡 and any vector 𝑧, the following inequality

related to the estimated Hessian 𝐻̂
𝑡
holds:

𝑧𝑇 𝐻̂
𝑡
𝑧 ≤ (𝑁 + 1)𝐿‖𝑧‖2, (7)

where N is the window size and L is from Assumption 1.

Proof. By following Equation 1.2 and 1.3 in [5], the Quasi-

Hessian update can be written as:

𝐵𝑡−𝑚+1 = 𝐵𝑡−𝑚 −
𝐵𝑡−𝑚Δ𝑤𝑡−𝑚Δ𝑤𝑇

𝑡−𝑚𝐵𝑡−𝑚

Δ𝑤𝑇
𝑡−𝑚𝐵𝑡−𝑚Δ𝑤𝑡−𝑚

+
Δ𝑔𝑡−𝑚Δ𝑔𝑇𝑡−𝑚

Δ𝑔𝑇𝑡−𝑚Δ𝑤𝑡−𝑚
, (8)

where the initializedmatrix𝐵𝑡−𝑁 = Δ𝑔𝑇𝑡−𝑁Δ𝑤𝑡−𝑁 /Δ𝑤𝑇
𝑡−𝑁Δ𝑤𝑡−𝑁 I

and𝑚 ∈ {1, 2, · · · , 𝑁 }. The final estimated Hessian 𝐻̂
𝑡
= 𝐵𝑡 .

Based on Equation 8, we derive an upper bound for 𝑧𝑇 𝐻̂
𝑡
𝑧:

𝑧𝑇𝐵𝑡−𝑚+1𝑧 = 𝑧𝑇𝐵𝑡−𝑚𝑧 −
𝑧𝑇𝐵𝑡−𝑚Δ𝑤𝑡−𝑚Δ𝑤𝑇

𝑡−𝑚𝐵𝑡−𝑚𝑧

Δ𝑤𝑇
𝑡−𝑚𝐵𝑡−𝑚Δ𝑤𝑡−𝑚

(9)

+
𝑧𝑇Δ𝑔𝑡−𝑚Δ𝑔𝑇𝑡−𝑚𝑧

Δ𝑔𝑇𝑡−𝑚Δ𝑤𝑡−𝑚
(10)

≤ 𝑧𝑇𝐵𝑡−𝑚𝑧 +
𝑧𝑇Δ𝑔𝑡−𝑚Δ𝑔𝑇𝑡−𝑚𝑧

Δ𝑔𝑇𝑡−𝑚Δ𝑤𝑡−𝑚
(11)

= 𝑧𝑇𝐵𝑡−𝑚𝑧 +
𝑧𝑇𝐻𝑡−𝑚Δ𝑤𝑡−𝑚Δ𝑤𝑇

𝑡−𝑚𝐻𝑡−𝑚𝑧

Δ𝑤𝑇
𝑡−𝑚𝐻𝑡−𝑚Δ𝑤𝑡−𝑚

(12)

≤ 𝑧𝑇𝐵𝑡−𝑚𝑧 +
𝑧𝑇𝐻𝑡−𝑚𝑧Δ𝑤𝑡−𝑚Δ𝑤𝑇

𝑡−𝑚𝐻𝑡−𝑚

Δ𝑤𝑇
𝑡−𝑚𝐻𝑡−𝑚Δ𝑤𝑡−𝑚

(13)

= 𝑧𝑇𝐵𝑡−𝑚𝑧 + 𝑧𝑇𝐻𝑡−𝑚𝑧 (14)

≤ 𝑧𝑇𝐵𝑡−𝑚𝑧 + 𝐿‖𝑧‖2 (15)

The first inequality uses the fact that 𝑧𝑇𝐵𝑡−𝑚Δ𝑤𝑡−𝑚Δ𝑤𝑇
𝑡−𝑚𝐵𝑡−𝑚𝑧 =

(𝑧𝑇𝐵𝑡−𝑚Δ𝑤𝑡−𝑚)2 ≥ 0 and Δ𝑤𝑇
𝑡−𝑚𝐵𝑡−𝑚Δ𝑤𝑡−𝑚 ≥ 0 due to the pos-

itive definiteness of 𝐵𝑡−𝑚 . The second inequality uses the Cauchy-

Schwarz inequality.

By applying the formula above recursively, we have 𝑧𝑇 𝐻̂
𝑡
𝑧 =

𝑧𝑇𝐵𝑡𝑧 ≤ (𝑁 + 1)𝐿‖𝑧‖2. �

Next, we prove Theorem 1. Our idea is to bound the difference

𝑑𝑖 between predicted model updates and the received ones from
benign clients in each iteration. For 𝑖 ∈ B and 𝑗 ∈ M, we have:

E 𝑑 𝑗 − E 𝑑𝑖 (16)

= E‖𝑔𝑡−1𝑗 + 𝐻̂
𝑡
(𝑤𝑡 −𝑤𝑡−1) − 𝑔𝑡𝑗 ‖ − E‖𝑔

𝑡−1
𝑖 + 𝐻̂

𝑡
(𝑤𝑡 −𝑤𝑡−1) − 𝑔𝑡𝑖 ‖

(17)

= E𝐷 𝑗∼𝐷 ‖∇𝑓 (𝐷 𝑗 ,𝑤𝑡−1) + ∇𝑓 (𝐷 𝑗 ,𝑤𝑡 ) + 𝐻̂
𝑡
(𝑤𝑡 −𝑤𝑡−1)‖ (18)

− E𝐷𝑖∼𝐷 ‖∇𝑓 (𝐷𝑖 ,𝑤𝑡−1) − ∇𝑓 (𝐷𝑖 ,𝑤𝑡 ) + 𝐻̂
𝑡
(𝑤𝑡 −𝑤𝑡−1)‖ (19)

≥ E𝐷 𝑗∼𝐷2‖∇𝑓 (𝐷 𝑗 ,𝑤𝑡−1)‖ − 𝐿‖𝑤𝑡 −𝑤𝑡−1‖ − ‖𝐻̂
𝑡
(𝑤𝑡 −𝑤𝑡−1)‖

(20)

− E𝐷𝑖∼𝐷 (‖∇𝑓 (𝐷𝑖 ,𝑤𝑡−1) − ∇𝑓 (𝐷𝑖 ,𝑤𝑡 )‖ + ‖𝐻̂
𝑡
(𝑤𝑡 −𝑤𝑡−1)‖)

(21)

≥ E𝐷 𝑗∼𝐷2‖∇𝑓 (𝐷 𝑗 ,𝑤𝑡−1)‖ − 2(𝐿‖𝑤𝑡 −𝑤𝑡−1‖ + ‖𝐻̂
𝑡
(𝑤𝑡 −𝑤𝑡−1)‖)

(22)

≥ E𝐷 𝑗∼𝐷2‖∇𝑓 (𝐷 𝑗 ,𝑤𝑡−1)‖ − 2(𝑁 + 2)𝐿‖(𝑤𝑡 −𝑤𝑡−1)‖ (23)

= E𝐷 𝑗∼𝐷2‖∇𝑓 (𝐷 𝑗 ,𝑤𝑡−1)‖ − 2(𝑁 + 2)𝐿𝛼E𝐷𝑖∼𝐷 ‖∇𝑓 (𝐷 𝑗 ,𝑤𝑡−1)‖

(24)

= (2 − 2(𝑁 + 2)𝐿𝛼)E𝐷 𝑗∼𝐷 ‖∇𝑓 (𝐷 𝑗 ,𝑤𝑡−1)‖ (25)

≥ 0, (26)

where the first inequality uses the Triangle inequality, the sec-

ond inequality uses Assumption 1, and the third inequality uses

Lemma 1. According to the definition of suspicious scores (𝑠𝑡𝑖 =
1
𝑁

∑𝑁−1
𝑟=0 𝑑̂

𝑡−𝑟
𝑖 ), we have E (𝑠𝑡𝑖 ) < E (𝑠𝑡𝑗 ).
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Table 4: DACC, FPR, and FNR of malicious-client detection for different attacks, detection methods, and aggregation rules.

The best detection results are bold for each attack. MNIST dataset, CNN global model, and 28 malicious clients are used.

Attack Detector
FedAvg Krum Trimmed-Mean Median

DACC FPR FNR DACC FPR FNR DACC FPR FNR DACC FPR FNR

Untargeted
Model

Poisoning
Attack

VAE 0.67 0.18 0.71 0.60 0.22 0.86 0.58 0.38 0.54 0.58 0.38 0.54
FLD-Norm 0.68 0.17 0.71 0.08 0.89 1.00 0.28 1.00 0.00 0.15 0.79 1.00
FLD-NoHVP 0.60 0.22 0.86 0.11 0.85 1.00 0.39 0.85 0.00 0.66 0.26 0.54
FLDetector 0.87 0.18 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

Scaling
Attack

VAE 0.78 0.31 0.00 0.97 0.00 0.11 0.76 0.00 0.86 0.75 0.00 0.89
FLD-Norm 0.97 0.00 0.11 0.97 0.00 0.11 0.92 0.11 0.00 1.00 0.00 0.00
FLD-NoHVP 0.62 0.21 0.82 0.59 0.40 0.43 0.90 0.10 0.11 0.83 0.21 0.07
FLDetector 0.81 0.22 0.11 0.98 0.00 0.07 1.00 0.00 0.00 1.00 0.00 0.00

Distributed
Backdoor
Attack

VAE 0.89 0.15 0.00 0.97 0.00 0.11 0.79 0.00 0.75 0.81 0.06 0.54
FLD-Norm 0.91 0.08 0.11 0.75 0.26 0.21 0.90 0.14 0.00 0.93 0.10 0.00
FLD-NoHVP 0.62 0.21 0.82 0.82 0.21 0.11 1.00 0.00 0.00 0.93 0.10 0.00
FLDetector 0.86 0.15 0.11 0.97 0.00 1.00 1.00 0.00 0.00 1.00 0.00 0.00

A Little
is Enough
Attack

VAE 0.80 0.28 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
FLD-Norm 0.00 1.00 1.00 0.12 0.83 1.00 0.00 1.00 1.00 0.09 0.86 1.00
FLD-NoHVP 0.65 0.10 1.00 0.02 0.97 1.00 1.00 0.00 0.00 0.75 0.35 0.00
FLDetector 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

Table 5: DACC, FPR, and FNR of malicious-client detection for different attacks, detection methods, and aggregation rules.

The best detection results are bold for each attack. CIFAR10 dataset, ResNet20 global model, and 28 malicious clients are used.

Attack Detector
FedAvg Krum Trimmed-Mean Median

DACC FPR FNR DACC FPR FNR DACC FPR FNR DACC FPR FNR

Untargeted
Model

Poisoning
Attack

VAE 0.28 1.00 0.00 0.61 0.42 0.32 0.52 0.33 0.86 0.46 0.40 0.89
FLD-Norm 0.72 0.00 1.00 0.07 0.90 1.00 0.00 1.00 1.00 0.00 1.00 1.00
FLD-NoHVP 0.53 0.40 0.64 0.85 0.21 0.00 0.48 0.51 0.54 0.98 0.00 0.07
FLDetector 0.93 0.10 0.00 0.97 0.04 0.00 1.00 0.00 0.00 1.00 0.00 0.00

Scaling
Attack

VAE 0.24 0.71 0.89 0.50 0.31 1.00 0.48 0.38 0.89 0.75 0.00 0.89
FLD-Norm 0.96 0.00 0.14 0.98 0.00 0.07 0.96 0.01 0.11 1.00 0.00 0.00
FLD-NoHVP 0.86 0.14 0.14 1.00 0.00 0.00 1.00 0.00 0.00 0.97 0.00 0.11
FLDetector 0.88 0.11 0.14 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

Distributed
Backdoor
Attack

VAE 0.27 0.74 0.93 0.53 0.26 1.00 0.55 0.33 0.71 0.76 0.00 0.86
FLD-Norm 0.91 0.07 0.14 0.85 0.14 0.18 0.92 0.07 0.11 0.96 0.01 0.11
FLD-NoHVP 0.84 0.14 0.21 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
FLDetector 0.89 0.11 0.11 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

A Little
is Enough
Attack

VAE 0.81 0.13 0.36 0.61 0.49 0.14 0.84 0.14 0.21 0.85 0.10 0.29
FLD-Norm 0.33 0.69 0.61 0.77 0.22 0.25 0.45 0.69 0.18 0.47 0.67 0.18
FLD-NoHVP 0.72 0.24 0.39 0.85 0.14 0.18 0.80 0.17 0.29 0.81 0.15 0.32
FLDetector 0.80 0.14 0.36 0.92 0.11 0.00 0.89 0.13 0.07 0.87 0.15 0.07

Table 6: TACC and ASR of the global models learnt by different FL methods on MNIST. The results for the targeted model

poisoning attacks are in the form of “TACC / ASR (%)”. 28%malicious clients are used. The ASR on FedAvg with FLDetector is

still high because FedAvg is not Byzantine-robust and can be backdoored by even a single malicious client.

FL Method Attack No Attack w/o FLDetector w/ FLDetector

FedAvg

Untargeted Model Poisoning Attack 98.4 10.1 98.3
Scaling Attack 98.4 98.5/99.8 98.2/99.6
Distributed Backdoor Attack 98.4 98.4/99.9 98.1/99.5
A Little is Enough Attack 98.4 97.9/99.9 98.2/0.3

Krum

Untargeted Model Poisoning Attack 93.5 11.2 92.8
Scaling Attack 93.5 94.3/0.9 93.2/0.7
Distributed Backdoor Attack 93.5 94.4/0.8 93.1/0.8
A Little is Enough Attack 93.5 94.4/99.6 93.4/0.6

Trimmed-Mean

Untargeted Model Poisoning Attack 97.6 63.9 97.5
Scaling Attack 97.6 97.5/0.6 97.5/0.5
Distributed Backdoor Attack 97.6 97.5/0.5 97.4/0.4
A Little is Enough Attack 97.6 97.8/100.0 97.5/0.4

Median

Untargeted Model Poisoning Attack 97.6 69.5 97.4
Scaling Attack 97.6 97.6/0.5 97.6/0.5
Distributed Backdoor Attack 97.6 97.4/0.5 97.5/0.4
A Little is Enough Attack 97.6 97.8/100.0 97.9/0.3


