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Multiphase DC-DC converters have been widely used to deliver more
power more efficiently with smaller ripples and faster large-signal
dynamic responses [1-5]. In terms of closed-loop voltage regulation,
traditional linear PWM control has limited small-signal bandwidth,
which is further compromised to ensure stability at different loading
conditions with different PVT and LC variations. Non-linear control,
such as hysteretic control, does not have small-signal bandwidth
limitations nor stability concerns, thus can potentially achieve a faster
dynamic performance. Among different topologies, current-mode
hysteretic control has been adopted in 4-phase converters [2, 3]. To
ensure proper operation at higher frequency, they require careful
matching between the inductor current-sensing RC networks and the
inductance and parasitic DC resistance (DCR) of the power inductors
[2], or more complex RC sensing networks [3]. Also, the converters
in [2-4] did not include current balancing, which could introduce
unbalanced current due to mismatches in power transistors, control
timing, and power inductors among different phases, and result in
significant compromise in efficiency. To maintain optimum efficiency
over a wide loading range, active-phase-count (APC) control has
been introduced in [1, 2, 4]. In [4], APC is realized by a multi-bit ADC,
which increases the design complexity and power consumption.
Double-adaptive-bound (DAB) hysteretic control in [6] has
demonstrated fast transient responses, however, it only works in
single phase, and the operation is very sensitive to the delay of the
comparator, the gate driver and other circuits in the control path, and
the matching of the RC filters, especially at higher switching
frequencies. Besides, due to the lack of a high-gain amplifier, output
voltage DC accuracy is also compromised in hysteretic controlled
switching converters, with a 40mV/1A load regulation in [2].

To address these limitations, this paper proposes a 4-phase DAB
hysteretic controlled converter with digital DC calibration, current
balancing, and APC management (Fig. 1). The DAB control achieves
fixed-frequency operation and the digital calibration functions are all
based on similar bidirectional-shift registers-controlled logics. This
makes the converter easily extendable to adapt more phases with
minimum design complexity overhead. Fig. 1 shows the system block
diagram of the proposed converter. Two RC filters (RpasCpas, RsCs)
are used for establishing the comparison boundary Vpas and Ves to
regulate the output voltage. Instead of using well-matched RCs [6],
RsCs is chosen to be 4 times of RpasCpas (Rs=Rpas, Cs=4*Cpas),
with which the amplitude of Vpas is larger than Ves for a higher

tolerance to circuit delays from Vewme to Vx to work at higher frequency.

In this work, matching of RsCs to 4 RpasCpas or with the L/DCR is
not needed due to the existence of the digital calibrations, thus, the
requirement of power inductors can be much more flexible.

The block diagram and operation principle of the digital DC output
voltage (Vo) calibration is shown in Fig. 2. A dead-zone boundary
between Vrerrpc and VrerLoc is set for DC calibration. To achieve a
wide range as well as a fine resolution, the bidirectional-shift-
registers (BSRs) are designed including 8-bit fine, 8-bit medium and
8-bit coarse segments with carry in/out operations. When Vo is
beyond the dead-zone region, the medium and coarse BSRs shift
the output codes to control the current sink array to adjust the slope
of Vpas or Ves in all 4 phases globally. If Vo is lower than VrerLoc, Irs
will be increased to discharge Vrs, if Vo is larger than VrerHpc, Ibas
will be controlled to discharge Vpas. The cross-point between Vpas
and Vrs changes accordingly when the slope of Vbas or Vs changes,
resulting in an increase or decrease of duty cycle for accuracy
calibration. When Vo is calibrated into the dead-zone, the fine BSRs
continue to further reduce the DC offset.

Current balancing (CB) digital calibration is also developed in this
work (the left of Fig. 3). Four current sensors, with one in each phase,
are designed to sense the high-side power PMOS current. By
comparing the sensed voltage of Phase 90, 180 and 270 (VsenpHoo,
VsenpH1so and VsenpHzro, respectively) with the sensed voltage of
Phase 0 (VsenpHo), the BSRs operate to adjust the duty cycle of each
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phase locally to maintain
the same amount of current
as Phase 0. Take CB
calibration for Phase 90 as
an example. If Vsenproo is
smaller than VsenpHo, only
lcse increases to charge
VbaspHoo to increase the
duty cycle of Phase 90
while lcsk remains 0. If
VsenpHoo is  larger than
VsenpHo, only Icsk increases
to discharge VpaspHoo to
reduce the duty cycle while
Icse remains 0.

APC management is also developed in this work (the right of Fig.3).
If Vsenpro is smaller than Vrernapc, only Phase 0 is activated. If the
load current increases such that Vo drops below VrerLoc, the burst-
mode (BM) will be activated for the full 4-phase operation with 100%
duty cycle to charge the power inductors with full thrust. The BM will
be disabled when Vo starts to recover, meaning that the inductor
current has been increased larger than the load current. This is
achieved by comparing Vo with VoLpe, a delayed version of Vo. In
terms of heavy-to-light load change, when load current steps down
to light load rapidly, the system will first turn off Phase 90 and Phase
270. If Vsenpro is still lower than Vrernarc, after a preset settling
period, Phase 180 will also be turned off. To avoid significant output
voltage fluctuations, the duty cycle of the corresponding phase(s) will
be reduced gradually. When the sensed voltage is lower than
VrerLapPc, the corresponding phase(s) will be completely turned off.

The proposed converter has been fabricated in 180-nm CMOS and
measured at 10MHz and 25MHz with 18-to-100-nH 0402 inductors
for full in-package integration (chip & inductor photo above),
converting 1.8V to 0.6V-1.5V. Fig. 4 shows the measured efficiency
versus load currents at different voltages. A 93.9% peak efficiency is
achieved with 100-nH 0402 inductors. Up to 12.2% efficiency
improvement and better Vx duty-cycle matching in measured
waveforms are observed by enabling the CB calibration. Fig. 5 shows
the measured load transient performance with fast current steps of
2.85A/2ns. The measured droop is 100mV with BM, which is 33.3%
smaller than the 150 mV without BM. Fig. 5 also shows the steady-
state DC Vo accuracy comparison with and without the DC
calibration. A significant improvement of 21.63% is observed with the
calibration, with error remains within 2.5% in the full loading range
with different voltages. This verified that the proposed DC calibration
can effectively relax the accuracy and matching requirement of the
RC current-sensing network in previous current-mode hysteretic
designs, while remaining a load regulation comparable to designs
with linear control. Fig. 6 shows the measured Vx waveforms in fast
load transients for APC demonstration, as well as the comparison
table with recent multiphase non-linearly controlled switching
converters. This work achieves higher efficiency using smaller-than-
the-chip inductors with relaxed tolerances in L, matching and DCR,
and decent transient responses with faster current steps.
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Fig. 1. System block diagram of the proposed converter.
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Fig. 2. Block diagram and operation principle of the proposed digital
DC Vo calibration.
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Fig. 5. Measured load tranS|ent response and DC Vo accuracy.
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Fig. 6. Measured Vx with APC operation, and comparison table.




