Informatics in Education, 2021, Vol. 20, No. 4, 533-566 533

© 2021 Vilnius University, ETH Ziirich
DOI: 10.15388/infedu.2021.24

Tool-Aided Learning of Code Reasoning
with Abstraction in the CS Curriculum

Megan FOWLER , Jason HALLSTROM

Joseph HOLLINGSWORTH Eileen KRAEMER
Murali SITARAMAN Yu Shan SUN Jiadi WANG
Gloria WASHINGTON

Clemson University, USA

Florlda Atlantic University, USA

Howard University, USA

‘Rose-Hulman Institute of Technology, USA

e-mail: mefowle@g.clemson.edu, jhallstrom@fau.edu, hollings@rose-hulman.edu,
etkraem@clemson.edu, msitara@clemson.edu, yushans@g.clemson.edu,
wangj19@rose-hulman.edu, gwashington@scs.howard.edu

Received: February 2021

Abstract. Computer science students often evaluate the behavior of the code they write by run-
ning it on specific inputs and studying the outputs, and then apply their comprehension to a more
general understanding of the code. While this is a good starting point in the student’s career, suc-
cessful graduates must be able to reason analytically about the code they create or encounter. They
must be able to reason about the behavior of the code on arbitrary inputs, without running the code.
Abstraction is central for such reasoning.

In our quest to help students learn to reason abstractly and develop logically correct code, we
have developed tools that rely on a verification engine. Code involves assignment, conditional,
and loop statements, along with objects and operations. Reasoning activities involve symbolic rea-
soning with simple assertions and design-by-contract assertions such as pre-and post-conditions
as well as loop invariants with data abstractions. Students progress from tracing and reading code
to the design and implementation of code, all relying on abstraction for verification. This paper
reports some key results and findings from associated studies spanning several years.

Keywords: abstraction, design by contract, online tool, software engineering, symbolic reasoning.

*Corresponding author.

534 M. Fowler et al.

1. Introduction

1.1. Foundations of Computer Science

Computer Science is a rapidly evolving field. It requires students to remain up to date
on the newest techniques, languages, and practices. Yet one aspect that doesn’t change
is the theoretical foundations of computing, such as abstract reasoning about code cor-
rectness. In order for students to enter the work force as successful developers, they
need to have a strong foundation in creating stable, well-designed code (Hinchey et al.,
2008). It has been established that students who are able to effectively trace code are
better at writing code (Lister ef al., 2004, 2009). Current standards for tracing code in-
volve running code on multiple test case input values. While this is a valuable process,
it can lead to limited student understanding of code. It is just not possible to run every
possible test scenario. For example, in a junior level software engineering course, 50%
of students found the code segment in Listing 1 was a correct implementation for find-
ing the maximum value between two integers (Cook et al., 2018).

Without students providing detailed work such as seen in Table 1, we can only spec-
ulate as to the cause for their oversight of the case in which i and j are equal. Their
reasoning, for example, may have been ad hoc.

What appears to be a simple oversight in a code sample is an argument for students to
learn to generalize their reasoning through the use of abstraction. Symbolic reasoning is

int Max (int i, int j){

int max = 1 + j;
if (1 > j){ max = max - j; }
if (3 > 1){ max = max - 1i; }

return max;

Listing 1. Code Exercis.

Table 1

Example Trace for Max with Concrete Values

Code max(1, 2) max(2, 1) max(2, 2)
intmax=i+j; max = 1+2; max=2+1;, max=2+2;
max = 3; max = 3; max = 4;
if (1>j) { max =max —j; } false true false
max =3 — 1;
max = 2;
if G>1) { max =max —1i; } true false false
max=3—1;
max = 2;

return max; max =2 max =2 max = 4;

Tool-Aided Learning of Code Reasoning with Abstraction in the CS Curriculum 535

Table 2

Example Trace using Symbolic Reasoning

Code max(i, j)

intmax=i+j; max =1+ j;

if (1>)) { max =max —j; } max =1i+j-jmax =i

if (j>1) { max =max —1i; max=i+j-imax=j

return max; max =iormax =jormax=i+j

reasoning about code on arbitrary symbolic input values, as opposed to specific concrete
inputs. In this example, if students traced the code with abstract symbolic values — mak-
ing no assumptions about their concrete values — they will have to consider every path of
the code. Such symbolic tracing, done manually or facilitated by an automated tool, can
help them understand where the code fails to compute the maximum. A simplified ver-
sion of such symbolic reasoning is shown in Table 2. In Listing 1, notice that the values
of i and j never change. Using i and j as initial symbolic place holders, we see that the
max value returned would be either 1, j, or 1+7.

1.2. Abstraction and Symbolic Reasoning

In general, our goal is for students to learn to reason abstractly. For example, to rea-
son that a given example function computes the positive square root of its input value
on all allowed inputs and not only that it computes 3.0 on input 9.0 or 5.0 on input
25.0.

A symbolic approach to reasoning aims for students to learn to generalize and under-
stand the overall purpose of code. A low level of understanding can be demonstrated
by explaining what is happening in the code line by line. For example, suppose that
Listing 1 in Section 1.1 were named Mystery instead of Max, and that the code were
corrected by changing the first 1f statement to greater than or equal to. An example of
a line-by-line explanation would be as follows:

e mystery is assigned the value of i plus j

e if i is greater than or equal to j, j is subtracted from mystery
e if j is greater than i, i is subtracted from mystery

e mystery is returned

Essentially, the above explanation is a translation of the code into common vernacu-
lar. Abstraction requires the student to view the logic of the operation in a broader scope
and therefore produce a more holistic understanding of the functionality. Even for an op-
eration with the name Mystery, a student who develops such an understanding would
conclude that it returns the maximum of input values.

We hope to help students achieve this higher level of understanding through sym-
bolic reasoning. Students will still utilize tracing through code, but instead of only rea-
soning with concrete values, they will also use symbolic input values. For the example

536 M. Fowler et al.

Table 3

Example Trace for Swap

Code i j
i=it+j; #i+4H #
#HHH#H—#
j=i—j; #H+H A+ H -
#
#H+#—#
i=i—j; - #
#i
Final Result i=#j j=*#i

above, the input values of i and j will be remembered as #1i and #7. So if the student
were to write 1 = 1 + 7;the value of 1 would be equal to #1 + #3 (the input value
of i plus the input value of j). An illustration of the idea is in Table 3, which shows that
the code effects a swap operation.

In the end we see that i now equals the input value of j and j equals the input value
of i. We were able to determine the purpose of this code without running multiple test
cases using concrete values and having to identify the pattern.

1.2.1. Data Abstraction

Whereas for primitive objects such as Integers and Reals, the corresponding mathemati-
cal abstractions are implicit and obvious, that is not the case for data structuring objects,
such as stacks, queues, and lists.

Abstraction is key when tracing method calls so students are not overwhelmed by
internal data structures (Bucci et al., 2001). The emphasis should not be placed on how
the data structure is represented within the operation, but rather on the abstract behavior
of the operations. For example, when using a stack object, it is not important to know if
a stack is represented by an array or linked structure, but what stack’s operations such as
push () and pop () do based on an understanding of a formal stack data abstraction.
While it is possible to observe and learn this behavior through the use of concrete exam-
ples, symbolic reasoning can help provide a stronger foundation and allow the transfer
of knowledge across data structures.

1.3. Research Objectives

The over arching goal of this research is to help students learn abstract reasoning at vari-
ous levels with the aid of tools that help students practice and help instructors identify
and understand their difficulties. Beginning with symbolic reasoning with simple asser-
tions as a foundation, students proceed to understand data abstractions. Studies were
conducted between 2016 and 2021 across 8 semesters which we label as F1, S1, F2, S2,
F3, S3, F4, and S4.

Tool-Aided Learning of Code Reasoning with Abstraction in the CS Curriculum 537

A key aim of using automated tools is to understand the specific fine-grain learning
difficulties students face when reasoning about code so that appropriate interventions
may be developed (Cook et al., 2018; Fowler et al., 2019; Priester et al., 2016). By
“fine-grain,” we mean understanding student difficulties at a resolution that exceeds
identifying high-level constructs that might present challenges (e.g., functions, loops,
parameter passing) to reveal the underlying cause(s) of a learning roadblock (e.g.,
a missing algebraic foundation or a flaw in the student’s mental model of variable stor-
age). When these difficulties are not readily apparent to instructors, it is hard to devise
suitable interventions, especially for students with the most need. Achieving this level
of resolution is prohibitively time-consuming in the absence of automation.

Our Educational Research Questions (ERQs), summarized below, will be discussed
in context in later sections. Together they focus on learning difficulties along four broad
themes of abstraction.

1. Learning symbolic reasoning basics with assignment statements; in Section 4.
This study utilized semesters F1, S1, and F2.
ERQ 1.1: With or without intermediate steps, can a majority of students
learn the basics of tracing code using symbolic input values instead of
specific input values (1) strictly with the help of an online reasoning tool
and (2) with instruction in addition to the tool?
2. Learning symbolic reasoning with conditional statements; in Section 5. This study
utilized semester S4.
ERQ 2.1: What impact does the online tool have on student performance
regarding the tracing of conditional statements using arbitrary symbolic
values?
ERQ 2.2:What impact does the online tool have on student self-efficacy
regarding the tracing of conditional statements using arbitrary symbolic
values?
3. Learning to use design-by-contract assertions in reasoning with data abstractions;
in Section 6. This study utilized semester S2.
ERQ 3.1: What common learning difficulties in reading and writing for-
mal Design-by-Contract (DbC) assertions can be pinpointed with an auto-
mated tool and collected data?
ERQ 3.2: Which difficulties persist on a final exam, when students do not
have access to the tool?
4. Learning to develop loop invariants for code involving data abstractions; in Sec-
tion 7. This study utilized semesters F3, S3, and F4.
ERQ 4.1: What common difficulties do students face, specifically as it
concerns developing loop invariants?
ERQ 4.2: With respect to developing loop invariants, a) what do student
responses reveal about their level of understanding of the concepts and
b) how suitable are their responses for identifying actionable items for
intervention?

The research questions related to the first two themes additionally consider the
benefits of an automated tool itself, whereas the questions on the last two themes use

538 M. Fowler et al.

the tool only as a means to collect data for analysis. Results presented from all themes,
except for ERQ 2.1 and 2.2, are synthesized from prior publications. Additional details
may be found in the upcoming 2021 PhD dissertation of the primary author (Fowler,
2021).

2. Related Work

2.1. Abstraction and Reasoning

A debate exists in learning theory regarding the depth of understanding achieved by stu-
dents when introduced to a new topic through use of concrete examples, versus through
abstraction (Carbonneau et al., 2013; De Bock et al., 2011; Kaminski et al., 2008; Mc-
Callum, 2008), though the domain there is not computing. The findings in (Kaminski
et al., 2008) suggest that “...giving college students multiple concrete examples may
not be the most efficient means of promoting transfer of knowledge” and that “because
the difficulty of transferring knowledge acquired from concrete instantiations may stem
from extraneous information diverting attention from the relevant mathematical struc-
ture, concrete instantiations are also likely to hinder transfer for young learners who are
less able than adults to control their attentional focus.” Her study showed that through
the use of an abstract generalized structure, students were able to transfer that knowl-
edge to novel situations whereas when they used concrete instantiations there was little
or no transfer. McCallum rebutted this work claiming that the two treatment groups
were not working with the same mathematical structure which led to a bias in the trans-
fer task (McCallum, 2008).

A study focusing on the teaching of an electronic circuit-wiring task found that
when experts taught novices, they used more abstract statements compared to beginner
instructors who used more concrete examples to teach novices. They found that the
beginner-instructed novices performed better than the expert-instructed novices when
completing the target task. However, the reverse happened when trying to apply this
knowledge to a different task within the same domain (Hinds et al., 2001). Here, the
novices instructed by experts performed better than their counterparts. This reinforces
the idea that concrete examples may be useful for learning repeated tasks, but may not
necessarily help with the transfer of knowledge.

Within computing, the standard for all students is to learn how to code through the
use of concrete values. The automation of grading has lead to the current laboratory
practice in which students are writing code to pass given test cases. The emphasis is less
on understanding overall code behavior. This can lead to bloated, clunky, or inefficient
code. Worse, it can be incredibly frustrating to a student to write code that appears to
meet example test cases, yet be told that it fails the overall purpose. It is also possible
for automated testing to approve a flawed solution (ForiSek, 2006). The students who
are able to reason well in laboratory exercises and competitions focus of the logic of the
problem using induction (Ginat, 2014), which is key to abstraction.

Tool-Aided Learning of Code Reasoning with Abstraction in the CS Curriculum 539

2.2. Data Abstraction and Loop Invariants

Following an introduction to data abstraction with formal design-by-contract assertions
(Fowler et al., 2020), students are primed to develop and reason with loop invariants for
code that involves objects. Despite the importance of loop invariants for understanding
and debugging of algorithms, few computer science or software engineering graduates
are able to use them effectively (Henderson, 2003). When students learn to write loop
invariants for iterative code, they can achieve a level of understanding not possible
otherwise (Gries, 1981).

2.3. Reasoning Tool Design

Online tutoring of programming concepts has received much attention in the CS litera-
ture (e.g., (Aleven et al., 2009; Bhattacharya et al., 2011; Guo; Kumar ef al., 2007, Li
et al.,2011; O’Brien et al., 2014; Price et al., 2017; Wiggins et al., 2015)). There are
several IDEs that provide compile-time error feedback and numerous useful capabili-
ties (e.g., finding the declaration or all uses of a method). The novel online reasoning
tool that we have developed, unlike other tutors and IDEs, is backed by a software
verification engine (Cook et al., 2012a; Sitaraman ef al., 2011). This allows it to fa-
cilitate reasoning over abstract input values. It has a strong theoretical basis and has
been used for nearly a decade at multiple institutions. Thousands of undergraduate
students have employed symbolic reasoning approaches using this reasoning tool in
CS courses (Cook ef al., 2012b; Drachova ef al., 2015; Hallstrom et al., 2014; Heym
et al., 2017) and in software engineering projects (Cook et al., 2013; Priester et al.,
2016). It suffices to say that the engine is far more powerful than demanded by the
reasoning activities discussed here. The engine can enhance learning through a variety
of logical “what if” questions. Since answers are verified automatically, answer keys
are not stored or used.

3. Tool Design and Research Framework

3.1. Tool Design and Reasoning Activities

The reasoning tool utilizes a verification engine (Sitaraman et al., 2011) so that a proof
can be automatically generated and students do not have to complete the proof to
check correctness. This allows instructors to appropriately challenge students without
overwhelming them. The use of an online tool also means that students can make mul-
tiple attempts by having the tool check the correctness of their assertions.

The tool has been designed with scaffolding to reduce cognitive load, defined as the
ease with which information can be processed in working memory (Paas et al., 2010;
Sweller et al., 2011), as seen from the screen shot in Fig. 1. The activity description is

540 M. Fowler et al.

Lesson 0 - Constants and
assignments

Activity: 1 Facility BeginToReason;
Please complete the Confirm 2 uses Integer_Ext_Theory;
assertion(s) and check 3 3
correctness. 4 Operation Main();

5 Procedure

6 Var I, J, K: Integer;

7

8 I:=1;

9 J =25
Reference Material: 10 K := 3;
11
:= is the assignment operator 12 J =1+ 35
13 I:=1 K;
14
15 Confirm I = /*expression*/;
16 end Main;

17 end BeginToReason;

Click here to check correctness

Reload lesson End survey

Fig. 1. Online Reasoning Tool Interface.

at the top left with reference material below it showing only what is relevant to reason
about the code on the right. The first few lessons ask students to trace code on specific
input values, such as in Fig. 1. The use of the tool is the first introduction to all the con-
structs. In the Pascal-like code shown (with which most of our students learning Java
apparently have no trouble and need no introduction), we use := to denote assignment
to distinguish it from the mathematical equality used in assertions. The student’s task
is to trace the given code and replace /* expression */ after the Confirm with a logi-
cal assertion (utilizing “=" means equals, as in logic). The student can make changes
only in the assertion. Unlike an assert statement, nothing is executed; however, the
assertion is given to the verification engine to verify that the assertion holds.

An example of symbolic reasoning is shown in Fig. 2. The activity asks students
to state the values of I and J in terms of their input values, remembered to be #I and
#J, respectively, at the line marked Remember. The tool has been designed to provide
visual feedback that is immediate (Azevedo and Bernard, 1995) to reduce cognitive
load (Chen et al., 2011; Moreno, 2004). An example of this feedback can be seen in
Fig. 2. Since I is changed on line 12, it is not true that J = #I — #J, and hence, line
16 is wrong (and has been highlighted with a red background). A number of correct,
logically equivalent answers exist. While all answers are verified, the system expects
reasonable answers, rejecting trivial answers such as Confirm I = I. When a stu-
dent’s answer is wrong (i.e., does not verify, or is trivial), the lesson may be repeated,
or a follow-on lesson is given. Though not a focus of the current paper, a key benefit
of this tool is that it can pinpoint obstacles specific to subsets of learners (Cook et al.,
2018).

Tool-Aided Learning of Code Reasoning with Abstraction in the CS Curriculum 541

var I, 1! Integer;
Read(I);
Read{1);

Remembaer

I i=1+ 1;
Confirm I = #1;

J = I = J;
Canfirm 1 = Wl

Fig. 2. Symbolic Reasoning with Visual Correct and Incorrect Feedback.
3.2. Research Framework

In our attempt to help students to understand and use abstraction in reasoning about
code, we have integrated symbolic reasoning concepts into a sophomore level soft-
ware development course and a junior level software engineering course, both required
courses for CS majors at our institution. Introducing students to using logic to evaluate
code correctness early in their education helps build a foundation for abstract reason-
ing. The subsequent course then allows students to write and develop their own code
to meet specifications provided by the instructor. By dividing this process across two
courses, students are less likely to be overwhelmed. This approach also promotes rein-
forcement of these concepts.

3.2.1. Symbolic Reasoning with Simple Assertions

The software development course description includes specification and reasoning
among its topics and is required for all CS majors at our institution. Details of this
course are discussed in (Hallstrom et al., 2014). The course has a unit dedicated to
symbolic reasoning. Students receive a lecture on the topic and are then introduced to
the online tool BeginToReason. The tool aids in pinpointing student difficulties when
learning symbolic reasoning. Users are presented with a code sample and are asked to
complete assertions regarding the logic of the code.

3.3. Reasoning with Data Abstraction Assertions

The subsequent software engineering course description includes program specification
and reasoning as core topics and is required of all CS majors. The course integrates the
use of formal contracts. Pre-and post-condition assertions are now included in the tool.
Additionally, students learn to how to develop loop invariants through using a web IDE
that allows for the design and implementation of code. Though the web IDE’s interface
is different from the tool used in the software development course, this tool functions
similarly in that it relies on the same verification engine to generate and check proofs
for correctness.

542 M. Fowler et al.

4. Learning Symbolic Reasoning Basics

4.1. Introduction

The first learning objective is to understand whether we can effectively teach the gen-
eral population of computer science students the basics of reasoning about code on all
input values using a symbolic approach with the (non-exclusive) aid of a reasoning tool.
Symbolic reasoning basics concerns the ability to reason about a sequence of assignment
statements, and that is the focus of this section. Additional details of symbolic reasoning
studies in pinpointing specific difficulties for individual students and subgroups may be
found in (Cook et al., 2018). A related study in (Fowler et al., 2019) explores the role of
motivation in learning symbolic reasoning.

4.1.1. Educational Research Question

Given the growing importance of online education in reaching a diverse audience, and
the role of online tools in ensuring that at least a portion of CS education can happen
outside a classroom, this research involves understanding the role of a reasoning tool
we have built. In helping students learn the basics of reasoning, we consider the role of
a step-by-step approach (i.e., intermediate steps) in reasoning correctly about code com-
position and whether students will follow such an approach if learned.

ERQ 1.1-Reasoning Basics: With or without intermediate steps, can a majority of stu-
dents learn the basics of tracing code using symbolic input values instead of specific
input values (1) strictly with the help of an online reasoning tool and (2) with instruction
in addition to the tool?

The hypothesis here is that a significant majority of students will indeed be able to
learn to reason with symbolic values; after all, students learn algebra in high schools.
But such learning will require classroom instruction in conjunction with a tool. We also
consider if students perform as well on symbolic reasoning questions as on other topics
in a CS course.

4.2. Experimental Methods

The reasoning system and the activities were administered in lab sessions. Data for the
experiments discussed in this section were obtained over the course of three semesters;
F1, S1, and F2. When multiple lecture sections were involved, the students were inter-
mingled in the lab sections.

We have varied when intermediate steps are provided in the tool activities. Interme-
diate steps are one way to ask a learner to show their understanding after each pro-
gram statement in a code segment (through Confirm assertions), instead of providing
a single summary Confirm assertion at the end of the code. This compels the student to
explicitly think about the values of variables after each statement. We included a sym-

Tool-Aided Learning of Code Reasoning with Abstraction in the CS Curriculum 543

bolic reasoning question on the exam to determine student learning. We also varied
exam questions: asking for steps, not asking for steps, and provided scaffolding.

4.3. Results

4.3.1. ERQ I-Reasoning Basics: Ability to Learn Symbolic Reasoning Basics

For the F1 experiment, 114 students participated in the study across five sections of the
lab. Students did not receive any formal instruction regarding symbolic reasoning before
tool use. This tool served as their first introduction to symbolic reasoning about code.
Though TA help was available, few students asked for help. Students were not time con-
strained and took between 20 minutes to an hour to complete all the activities.

About six weeks after working with the tool in the lab, students were asked to
complete a symbolic reasoning question on a regular final exam. The question was
worth a total of five points, which was 20% of the exam. There were four versions of
the reasoning question and the versions were randomly assigned at testing time. Two
versions of the reasoning question involved reasoning about a piece of swapping code
(similar, but not identical to the one given in the introduction). The other two versions
had to do with the sum of two variables. These two question versions were then further
separated by one version of the question asking students to show their work, while the
other did not.

Across all versions of the questions in F1, students received an average of at least 4
points, which translates into completing approximately 80% of the question correctly.
It would appear the online tool can successfully introduce all students to the basics of
symbolic reasoning. At the same time, it is equally possible that the question was too
easy. This is a useful, but not definitive result. The performance of students on such
questions have been sufficiently impressive that instructors in later semesters have re-
sorted to giving more demanding questions (in terms of both the number of variables
and the number of statements).

Learning Reasoning w/wo Classroom Instruction. The S1 and F2 experiments had
91 and 92 students respectively across five lab sections. We used a Mann-Whitney U-test
to assess if the student populations are comparable because it is more suitable to com-
pare performance of different groups of students across semesters and because it does
not require that the two independent samples are normally distributed.

In F2, tool-based instruction was supplemented with a one-hour classroom lecture
before the exam. The difference in scores for the exam reasoning question between the
semesters was found to be statistically significant with a p value less than 0.05. In the
spring, only 59.1% of students completed at least 80% of the question correctly, while
in the fall, 74.2% did. A similar pattern is observed between the overall exam scores,
where fall students performed significantly better, with a p value of 0.0005. While this
would point directly to the benefit of classroom instruction, student motivation may be
a confounding factor and is discussed in (Fowler ef al., 2019). Regardless, the important
point is that symbolic reasoning can be learned by a majority of students. The next sec-
tion explains how students can go from these basics to generalize the purpose of code

544 M. Fowler et al.

containing a conditional statement. Later sections illustrate how students are able to con-
nect the formally stated purpose of code (contracts) given in symbolic form with code
that realizes that purpose.

5. Learning to Reason about Conditional Statements

5.1. Introduction

Whereas the initial findings have shown the usefulness of an online tool to help students,
they focused on students reasoning about code involving only assignment statements.
Reasoning about conditional statements symbolically is naturally more challenging. An
exploration of that topic is the focus of the research discussed in this section.

5.1.1. Educational Research Questions

ERQ 2.1-Performance on Conditionals: What impact does the online tool have on stu-
dent performance regarding the tracing of conditional statements using arbitrary sym-
bolic values?

ERQ 2.2-Self-Efficacy on Conditionals: What impact does the online tool have on stu-
dent self-efficacy regarding the tracing of conditional statements using arbitrary sym-
bolic values?

This research has focused on two questions, both of which consider the benefits of
the reasoning tool. Since the classroom instruction was on symbolic reasoning basics
with assignments, any learning here can be attributed more directly to the practice and
learning resulting from tool usage.

5.2. Experimental Methods

The reasoning system and the activities were administered in closed lab sessions. Data
for the experiments discussed in this section were obtained the in the S4 study at three
universities.

A total of 106 students completed a pre-quiz, followed by a lab activity, and then
a post-quiz. This chapter focuses on the results obtained from the pre-and post-quiz with
regard to student performance and reported self-efficacy. While there were multiple lecture
sections, the students were intermingled in the lab sections (but not across universities).

The assessment quiz provided to students organized the questions in order of increas-
ing difficulty. We presented three types of multiple choice questions to students that
were essentially the same, except that the answers were in different formats, Table 4.
The first type of answer choices were about a high-level, holistic understanding of the
purpose of the code. The second type of answer choices made use of simple math func-
tions to summarize code behavior. The third type of answer choices were logical, using
only common relational operators.

Tool-Aided Learning of Code Reasoning with Abstraction in the CS Curriculum

Table 4

Conditional Questions on Assessments

545

Holistic

Functional

Relational

//Remember the value of

//Remember the
value of I at

//Remember the
value of I at

I at this point as #

I, etc. this point this point
If (J <= K) { as #I, etc. as #I, etc.
K = J; If(J < I) { If (J > 1) {
} I=2J; I =2J;
} }
a. J is unchanged a. I=#I a. I>=#
b. K is unchanged b.J=#] b. I <=#I
c. J is the minimum of #J and #K c. I =Min(#, #J) c.I>=#]
d. J is the maximum of #J and #K d. I=Max(#I, #J) d.J<=#]
e. K is the minimum of #J and #K e. J =Min(#l, #]) e. [>=4#]
f. K is the maximum of #J and #K f. J = Max(#1, #]) f.J<=#1

5.3. Results

5.3.1. ERQ 1-Performance on Conditionals

We found that overall, there was a statistically significant improvement in student
performance using symbolic reasoning about conditional statements. Scores from all
three conditional questions on the assessments were averaged together for the overall
analysis.

Fig. 3 plots each students’ results so the average between the pre-and post-quiz is
on the x-axis and the difference between the pre-and post-quiz on the y-axis. The re-

1.9,

Post-Quiz

N 10
=
o
o
a 0.5
N
)
<
b7 0.0€
&
g
c -0.5
o
(] .
;E .
8 10
5 Pre-Quiz
0.4 -0.2 00 02 04 06 08 1.0

Mean: (Post-Quiz+Pre-Quiz)/2

Fig. 3. Matched Pairs Analysis.

546 M. Fowler et al.

Table 5

Performance on Conditional Statements

Question Pre-Quiz Score Post-Quiz Score Difference p-value
Holistic 0.668 0.764 0.096 0.0124
Total 0.658 0.707 0.049 0.0339

sulting t-test indicates that the shift in student scores was statistically significant with
a p-value of 0.0339, as seen in Table 5. The average difference was an improvement
of 0.049.

When accounting for the various response methods for each question, we found that
there was statically significant improvement for students when answering the conditional
question that required a holistic understanding of the purpose behind the code segment,
Table 5. The other two question formats did not show any statistical significance, so they
were omitted from the table. This leads us to believe that using symbolic reasoning while
working with the online tool helped improve student ability to reason abstractly about
the purpose behind the functionality of the code.

5.4. ERQ 2-Self-Efficacy on Conditionals

The last two questions presented to students in the pre-and post-quiz were about student
ability to reason about assignments and conditionals. They were designed to be a self
evaluation in order for us to evaluate student self-efficacy. Students received a 7 point
Likert scale as seen in Table 6 which was transformed into numerical representation. To
evaluate if a student’s perceived understanding of reasoning with conditional statements
changed, we subtracted the pre-score from the post score.

Table 6

Likert Scale transformation

Strongly Dislike Dislike Slightly Dislike Neutral — Slightly Agree Agree Strongly Agree

-3 -2 -1 0 1 2 3

Table 7
Student Difference in Self-Efficacy

Statement Pre-Quiz Post-Quiz ~ Diff p-value

I can trace the execution of code involving conditional state- 1.02 1.80 0.78 <0.0001
ments, using symbolic input values, such as #I and #J

Tool-Aided Learning of Code Reasoning with Abstraction in the CS Curriculum 547

We found that student perception of their own ability to reason about condition-
al statements shifted from an average of approximately 1 (Slightly Agree) closer to 2
(Agree). This shift is statistically significant. This indicates that the tool and its lessons
may have helped students to feel more confident in their ability to reason about condi-
tional statements.

6. Learning Design-by-Contract (DbC) Assertions for Data Abstractions

6.1. Introduction

This section focuses on results in a software engineering course in which students learn
to read and write formal assertions using symbolic reasoning, in the context of data
abstractions. In software engineering using a design-by-contract approach, software
components encapsulate objects and they have interface contracts. The contracts in-
clude a mathematical abstraction for the encapsulated objects and contracts for opera-
tions to manipulate the objects, in the form of pre-and post-conditions. Students com-
plete exercises whereby they write pre-and post-conditions using the same automated
reasoning tool described in Section 4. Our findings are based on a quantitative analysis
of data collected by the tool, as well as qualitative data from task-based interviews.
To assess the persistence of student learning difficulties, we also study student perfor-
mance on relevant exam questions.

6.1.1. Educational Research Questions

ERQ 3.1-DbC Basics: What common learning difficulties in reading and writing for-
mal Design-by-Contract (DbC) assertions can be pinpointed with an automated tool
and collected data?

ERQ 3.2-DbC Persistence: Which difficulties persist on a final exam when students do
not have access to the tool?

The results help to inform computer science education efforts, not only in software
development and software engineering courses, but also in discrete mathematics and
formal languages courses where precise notations are important (Herman et al., 2008;
Zaccai et al., 2014).

While this research is based on a specific formalism dictated by an underlying
tool, we note that the results are generally more applicable because the core ideas of
mathematical modeling and logic are shared by many formal approaches. We note
that syntactic difficulties with formal expressions arise for beginning formal methods
learners no matter what the language. At the same time, semantic difficulties, such
as the one discussed in this section concerning the distinction between the input and
output values of a parameter in an operation’s post-condition, also arise across formal
specification approaches.

548 M. Fowler et al.

6.2. Lessons and the Reasoning Tool

For the work reported here, the tool utilizes the same interface as the studies discussed
in Section 4 and 5, but now is instrumented with six symbolic reasoning activities in-
volving DbC assertions on data abstractions. The activities are presented with scaffold-
ing that includes instructions and reference materials, helping to reduce extraneous cog-
nitive load (Moreno, 2004; Sweller et al., 2011; Wouters et al., 2008).

6.2.1. DbC Assertion

Basics Given the focus on assertions, the code in each lesson is relatively simple. After
a short introduction, students have little to no difficulty understanding the code, though
the syntax is slightly different than what they are used to (e.g., the distinguished argu-
ment is passed as an explicit parameter — Push (K, S),instead of s.push (k)) (Cook
etal.,2018).

Formal specifications rely on using mathematical models, such as numbers, tuples,
sets, or strings to explain the behavior of programming objects. For example, mathemati-
cal sets are useful when modeling a container where the order of the items in the con-
tainer does not matter. Mathematical strings, on the other hand, are useful for modeling
the behavior of programming objects, such as a stack, a queue, or a list, where order of
the items in the container is important. Often, the same mathematical concept is used
to explain a variety of programming concepts. This distinction between mathematical
models (e.g., sets and strings) and programming concepts (e.g., lists and hash maps)
become clear to students with a few examples. The students learn and appreciate, for
example, that numbers in mathematics have no bounds whereas programming integers
are necessarily bounded.

The mathematical string notation used to describe the behavior (but not a represen-
tation or specific implementation) of a data abstraction include Empty String, o for
string concatenation, |S| for string length, and <E> to denote a string containing a sin-
gle entry. After a few in-class activities, students become comfortable with basic string
notations.

Several of the lessons involve Stack objects and operations. The contract for object
construction ensures that stack S = Empty String, whereas the contract for Pop
requires (a pre-condition) that the stack not be empty, i.e., |[S| > 0. In the ensures
clause (post-condition) of an operation’s contract, it is often necessary to distinguish be-
tween input and output values. For example, the Push specification ensures the value of
stack S after invoking Push as S = <#E> o #8S; i.c., the concatenation of the input
entry (#E) and the input stack (#S). These specifications are entirely abstract and are
independent of how the objects might be represented and how the operations might be
implemented.

6.2.2. Lessons

The first two lessons ask students to consider formal contracts for operations such as
Push and Pop, and then to reason about code involving those operations. To facilitate

Tool-Aided Learning of Code Reasoning with Abstraction in the CS Curriculum 549

Confirm S = Empty String;

Read (K);
Remember;
Push (K, S);

Confirm S = /x expression #/;

Listing 2. Lesson 1.

symbolic reasoning, as opposed to the use of concrete values, a Remember construct
is used.

The code segment for Lesson 1 is shown in Listing 2, with the type declarations
omitted. The lesson begins with a newly constructed stack S. The Confirm line
S = Empty String serves as an explicit reminder for the students of the stack’s
initial value. Subsequently, an integer K is read (from standard input) and pushed onto
the stack. The Activity section on the tool’s screen reminds students to replace all
/* expression */ blocks with a mathematical assertion that expresses the behavior of
the provided code.

To answer the question correctly, students must be able to read and understand the
contract of Push. A correct answer is S = <#K>. Trivial answers, suchas S = S, are
not accepted. Other incorrect answers include the following.

e S = <> —Nothing has been pushed on the stack.

e S = K —Type mismatch; S is a string of entries; K is an integer.

® S =<K> —The Push contract is (purposely) written so that K may be changed
during the call. (This answer would be correct if Push were specified not to
change K.)

Activities 3 and 4 ask students to fill in a suitable pre-condition (or requires
clause) for an operation so that when the clause is assumed, the operation’s code is cor-
rect. Activities 5 and 6 focus on post-conditions (or ensures clauses), where students
must specify an operation’s behavior based on its code. Taken together, these activities
cover the essence of operation calls in DbC.

6.3. Experimental Methods

6.3.1. Online Tool

In the S2 study, seventy-one students interacted with the tool across two sections with
different instructors. The tool was used outside of the classroom with no restrictions
on the amount of time available. However, completion of the activities was required
before a specified due date. It is important to note that students’ answers did not affect
their grades, allowing them to interact with the tool without fear of penalty. Students
were also told that a (paper and pencil) final exam question would be given, similar to
the activities encountered when using the tool. All student response data was collected
automatically.

550 M. Fowler et al.

6.3.2. Final Exam

The final exam included a logical reasoning question that required students to complete
DbC activities similar to those encountered with the online tool. Students had access to
the tool leading up to the exam but not during the exam.

6.4. Results

6.4.1. ERQ 3.1-DbC Basics: Automated Analysis of Difficulties

Analysis of Lesson 1 Responses. Seventy-one students attempted Lesson 1 (Listing 2);
sixty-four were successful (90%), moving on to subsequent activities. The remaining
seven are candidates for targeted help. Table 8 shows the distribution of student attempts
at solving the lesson.

Of the 439 student responses, 86 unique response types emerged. Three of these
unique responses (3%) were correct; the remaining 83 (97%) were incorrect. We ana-
lyzed the incorrect responses for frequency of appearance and for the type of error caus-
ing the problem. Table 9 shows the top 10 most frequently given responses, which are
incorrect, except for the responses that are highlighted in green.

Table 8

Student-Response Distribution (Lesson 1)

No. of Attempts No. of Students %
1 8/71 11.3%
2~5 32/71 45.1%
6~ 10 17/71 23.9%
11 ~15 10/71 14.1%
16 ~ 20 4/71 5.6%
>20 0/71 0%
Table 9

Top 10 Unique Responses for Lesson 1

No. Responses Occurrence %

1 Confirm S = K 49/439 11%
2 Confirm S = <K>; 43/439 10%
3 Confirm S = <#K> o #S; 37/439 8%
4 Confirm S = <K> o #S; 27/439 6%
5 Confirm S = <#K>; 26/439 6%
6 Confirm S = #K; 19/439 4%
7 Confirm S = K o #S; 19/439 4%
8 Confirm S = /* expression #/; 18/439 4%
9 Confirm S = #S; 13/439 3%
10 Confirm S = #S o K; 12/439 3%

Tool-Aided Learning of Code Reasoning with Abstraction in the CS Curriculum 551

Table 10

Classification of Lesson 1 Difficulties

Difficulty Occurrence %

Input Values 31/83 37%
Stringification 32/83 39%
String Concatenation 10/83 12%
String Length 2/83 2%
Operation Contracts 9/83 11%
Under-Specification 12/83 14%
Variables 4/83 5%
Syntax and Other 16/83 19%

Example Semantic Difficulty: Neglecting Input Values. The second-most common
incorrect response was S = <K>. (The correct answer is S = <#K>.) Across unique
responses, the post-conditional value of K appeared in 31 instances (37%), signaling
a learning difficulty. Again, the answer is incorrect only because the Push specifica-
tion does not guarantee that the input entry K is left unchanged. Push may change K,
so the correct answer is S = <#K>. This difficulty could reflect a misunderstanding of
the “remembered” value notation or a misunderstanding of (or inattention to) the given
specification of Push. So while a difficulty has been spotted, it is not clear what misun-
derstanding has caused it to arise, a topic addressed further in our qualitative analysis
(Section 6.4.2).

Classifying Learning Difficulties. Table 10 summarizes our classification of difficulty
types across the 83 unique incorrect responses for Lesson 1. Since a single response may
contain more than one difficulty, the percentage column does not add up to 100% — but
does reflect the frequency with which the error occurred in the 83 responses.

This fine-grain classification of obstacles is adequate for the first lesson and makes
some interventions obvious. However, further refinement is needed for the more
challenging activities.

6.4.2. Validation through Qualitative Analysis

The qualitative analysis to address ERQ 3.1 and to identify the misunderstandings under-
lying observed learning obstacles is based on task-based interviews of nine volunteers.
The answers recorded by students were then classified based on the difficulty identified
in Table 3.

Overcoming Misunderstandings. Table 11 shows the progress of Student No. 3 (one
of the nine volunteers), which is consistent with learning. She changed her answer twice
before submitting, and with each change, moved closer to the correct answer.

After entering her first answer, she referred to the supporting material on the screen,
which inspired the change to the second answer based on the post-condition. On a sec-
ond pass through the material, student No. 3 recognized the need to stringify K (place
it inside <>) and was able to explain the purpose behind this action. When questioned

552 M. Fowler et al.

Table 11

Student No. 3 Responses for Lesson 1

No. Response Tool Response
1 Confirm S = #S o K;

2 Confirm S = K o #S;

3 Confirm S = <K> o #S; Incorrect

4 Confirm S = = <#K> o #S; Correct

about the inclusion of the # symbol after the second failed attempt, No. 3 responded “...
initially I wasn’t thinking I needed to include that, because we didn’t change K, so I was
thinking K was already its original value... We change K because we use K throughout
the operation, and so we have to just prove that it is the original that is being added to
the stack due to... [Push specification].”

This task-based interview shows that a potential intervention could be as simple as
recommending to a student that she use the references after a failed attempt, or after a
fixed amount of time has been spent on the lesson without a submission. This particular
student worked for four minutes before the first submission.

Lingering Misunderstandings. While use of the reference material can assist in guid-
ing students to the correct answer, it does not guarantee an accurate understanding of
the material. Consider Student No. 8’s responses for Lesson 1, shown in Table 12. Stu-
dent No. 8 appears to demonstrate the same growth as No. 3 for this lesson.

When No. 8 was asked why he included the # symbol, he responded, “I want to be
able to confirm that K didn’t change between when it was pushed onto the stack and
when you’re confirming it.” According to this answer, it would appear that he does
not understand how an element may be affected by being pushed onto a Stack. This
suspicion was further confirmed when he reiterated this idea after Lesson 2: “You
want to show that those values didn’t get changed, they were the original values that
were pushed on.” Without this task-based interview, it would not have been possible
to capture this particular misunderstanding since the answers being submitted were
correct.

Summary Analysis. In an automated analysis, the two students above are likely
indistinguishable with respect to the difficulty concerning input values, whereas the
interventions suggested by the interviews are quite different.

Table 12

Student No. 8 Responses for Lesson 1

No. Response Tool Response
1 Confirm S = K; Incorrect
Confirm S = <K> o #S; Incorrect

3 Confirm S = <#K> o #S; Correct

Tool-Aided Learning of Code Reasoning with Abstraction in the CS Curriculum 553

For most students, learning occurred and some misunderstandings disappeared as
they progressed from the first to the second lesson. This is less apparent in the auto-
mated analysis.

Finally, while the online tool only collects student response data when they make
a submission for checking correctness, in the interviews it is seen that seven of the nine
participants changed their answers multiple times before ever submitting. Much of stu-
dents’ thought processes may not be visible in the responses collected automatically.

6.4.3. ERQ 3.2-DbC Persistence: Persistence of Difficulties on Final Exam

The final exam was administered to a class of 43 students. During the exam, students
did not have access to the tool. Part 1 of the logical reasoning exam question closely
resembled Lesson 2, the difference being that students were working with a preempt-
able queue rather than a stack. 86% of students received full credit for part 1. Those
that received partial credit appeared to confuse the Enqueue () and Inject () op-
erations.

Part 2 of the logical reasoning question resembled a combination of Activities 3
through 6 from the tool. Students were required to develop an operation’s pre- and post-
conditions to reflect the behavior of the code provided in the question. 84% of students
received full credit for the pre-condition, and those that did not receive credit did not
provide an answer. The post-condition proved to be more difficult for students, result-
ing in 60% of students receiving full credit, 21% receiving partial credit only, and 19%
not receiving any credit.

Based on student exam performance, students were able to demonstrate their learn-
ing, thereby answering the question of which difficulties persisted on a final exam when
students did not have access to the tool. The persistence of semantic difficulties seen
through the analysis of tool lessons is also seen to a degree on the exam. For example,
students incorrectly specified the necessary preconditions for a given code segment.
One confounding factor in analyzing exam answers is that manual grading might not
have been as rigorous as the tool.

7. Learning to Develop Loop Invariants

7.1. Introduction

This section focuses on a more challenging aspect of learning to reason about code in-
volving data abstractions and contracts. To formally reason about code involving loops
that manipulate a data abstraction, with or without the aid of a tool, loop invariants are
necessary. This section focuses on difficulties beginning students face when learning to
develop a loop invariant.

554 M. Fowler et al.

7.2. Educational Research Questions

Towards helping students write invariants for loops, we considered the following spe-
cific educational research questions (ERQs) in our research. The reasoning tool that
aided students in developing the invariants collected data as they performed invariant
lessons.

ERQ 4.1-Loop Invariant Basics: What common difficulties do students face, specifi-
cally as it concerns developing loop invariants?

ERQ 4.2-Loop Invariant Understanding: With respect to developing loop invariants,
a) what do student responses reveal about their level of understanding of the concepts
and b) how suitable are their responses for identifying actionable items for interven-
tion?

We answer both questions based on data collected as third year undergraduate soft-
ware engineering students performed activities using an online verification system and
developed loop invariants. ERQ 4.2 is answered using a qualitative analysis of written
responses to determine if the responses show holistic, partial, or no understanding.
Additionally, for ERQ 4.2, we analyze responses from a paper medium and an online
medium. Obviously, the latter is more amenable to automation. The results are based
on an analysis of nearly 250 submissions over three semesters, from 105 groups com-
prising two or three students, with a grand total of 272 students having given consent
to use their data.

7.3. Online Verifier

The online system used in this experiment is backed by a formal verification engine
(Sitaraman et al., 2011). Using the verifier requires understanding and use of design-
by-contract (DbC) assertions (Meyer, 1992). In DbC, the requires clause acts as
a pre-condition meaning that it is the responsibility of the caller of an operation. The
ensures clause is the corresponding post-condition that tells the caller what to expect
from the operation after the call and tells the called operation’s implementer what the
operation must guarantee.

Fig. 4 provides a snapshot of the online verifier. When a user clicks the MP-Prove
button to verify, the verifier generates and displays the verification conditions (VCs).
VCs are assertions that are necessary and sufficient to prove code correctness. They
arise for a variety of reasons including: that the code’s ensures clause is met,
that the requires clauses of all called operations are met, and that a programmer-
supplied loop invariant is truly an invariant. For each VC, the verifier shows why it
arises and if it is proved. Every VC needs to be proved for the code to be correct. For
the example shown in Fig. 4, two of the VCs fail to prove. It turned out for some of
the submitted invariants that initially failed to verify, the students were able to more

Tool-Aided Learning of Code Reasoning with Abstraction in the CS Curriculum 555

E Invariant_Activity_ (X E,@
(Build | MP-Prove Executable |(H)(=)
1 Facility Invariant_Activity_1; |
2 --This is an in-class activity for NOT PROVED
3 --learning loop invariants
4 --Complete the maintaining clause (loop invariant) 'C12 (22)
5 --replacing true with a suitable invariant and verify [‘ S |
6 uses Integer_Template, String_Theory;
7
8 Facility Queue_Fac is Queue_Template(Integer, 3) Requires C\ausg of Enqueue in Procedure Append:
. 5 i Invariant_Activity_1.fa(22)
9 realized by Circular_Array_Realiz;
10 Goal:
11 Operation Append(updates P: Queue; clears Q: Queue); —
12 requires |P| + |Q| <= 3; @@+ 1P <=3)
13 ensures P = #P o #Q; Given:
14 Procedure o
15 Var I: Integer; L <=1Q")
16
17 Whi = C
ile (1 < ALeng‘(h(Q)) VC2_1 (11) 2
18 maintaining true; .
19 decreasing |Q|;
20 do
x Ensures Clause of Append:
21 Dequeue(I, Q); Invariant_Activity_1.fa(11)
22 Enqueue(I, P);
23 end; Goal:
24 end Append; = (PoQ)
25
26 end Invariant_Activity_1; Given:
L. not((1 <= 1Q'])
2.((IP1 + 1Q1) <=3)
3. (IP| <= 3)
4.(1Ql <= 3)
PROVED
[VCo_1 (8 @& .

Fig. 4. Verifier Feedback Using true as Invariant.

quickly (i.e., with fewer attempts) arrive at a proper invariant as compared to some
of the other submitted incorrect invariants. In other words, not all failures to verify
show the same level of misunderstanding. We return to this topic in detail in a later
subsection.

The use of mathematical strings to model a queue abstractly enables the queue’s
specification to use string notations and the verifier to use results from a theory of strings
to prove code correctness. This functionality is critical to the formation and use of a loop
invariant, which serves as an internal contract necessary for verifying the correctness of
operations containing loops.

7.4. Experimental Methods

7.4.1. Experimental Overview

The experiment was conducted in a required third year course on software engineering
in which students completed a set of activities on invariants using the online verifier in
a class period. All invariant attempts collected and analyzed in this section are self re-
ported. Data used for analysis in this section was collected from a total of 272 students
over three semesters: F3 (101 students), S3 (86), and F4 (85). Students worked on the
activities in self-selected groups of two or three, totaling 105 groups.

556 M. Fowler et al.

7.4.2. An In-class Student Invariant Activity

For this activity, students were given a formal specification and code for an Append
operation, Fig. 4, whose specified goal is to append one queue onto the end of another
queue. Only an invariant for proving correctness is missing. Whereas classical loop in-
variant activities involving arrays, for example, involve the use of quantifiers, these
activities are set up to factor out that additional complexity.

In the description of queues on which the Append operation is based, mathematical
strings are used to model a queue abstractly and to capture the importance of ordering.
Importantly, this mathematical modeling has nothing to do with how queues might be
represented and implemented, such as using arrays, vectors, or linked lists.

When conceptualized abstractly as a string, a queue (Q) containing the following
entries, O, & would be seenas Q = <O, &>. When Enqueue is called with Q and
<, abstractly it is adding the diamond to the right side of the string, resulting in Q =
<Q, &, &>. The removal of an entry by Dequeue conceptually will remove an entry
from left side of the string, resulting in 9 = <&, {>>. Together they uphold the First-
In-First-Out nature of a queue.

The caller is responsible for the requires clause where the combining of the two
queues, P and Q, will not cause the modified queue P to violate the length constraint of 3.
Here, the bars surrounding a queue variable (e.g., P) denotes the string length operator.
The ensures clause P = #P o #Q states that the value of P at the end of the opera-
tion is the concatenation of the input value of P, with the input value of Q. Q is cleared,
meaning that it is empty after the call to the operation.

One way to accomplish the task of appending two queues is to use a While loop to
Dequeue one element from Q and Enqueue it to the end of P. The code is straightfor-
ward. The novel elements of this code are the introduction of amaintaining clause
that lets a programmer specify a loop invariant and a decreasing clause that lets
them specify a progress metric that is used to prove termination. These assertions (i.e.,
maintaining clause and decreasing clause) are automatically checked by the verifier to be
legitimate before it uses them in proving code correctness. The verifier is sound (Cook
et al., 2012a; Sitaraman et al., 2011).

In this example, students need to replace the assignment’s default invariant t rue
with a correct invariant — an assertion that will hold true at the beginning and end
of every iteration, and with this particular implementation, is sufficient to guarantee
that the ensures clause is met after the loop when Append terminates. This task

Table 13

Example Trace Using Data Abstraction to Discover and Check an Invariant

Iteration P Q Check Invariant P o Q = #P o #0
0 <1> <2,3> <1> o <2,3> = <[> o <2,3>
1 <1,2> <3> <1,2> o <3> = <1> o <2,3>

2 <1,2,3> <> <1,2,3> = <I> o <2,3>

Tool-Aided Learning of Code Reasoning with Abstraction in the CS Curriculum 557

requires identifying the relationship between input values #P and #Q and the current
values of P and Q, which vary from iteration to iteration. An example trace is shown in
Table 13 to illustrate how a student might discover an (intended) invariant.

7.5. Results

7.5.1. ERQ 4.1-Loop Invariant Basics: Building A Catalog of Difficulties

We have employed an iterative process to develop a catalog of student difficulties with
respect to learning to reason about loop invariants. The process was complicated for
multiple reasons. Due to the various forms of data collection, all data had to be con-
verted to a digital format to allow for classification. In doing so, notes were included
such as the number of attempts made. Furthermore, since the research involved col-
lecting student explanations on different types of response media, the researcher had to
make some judgment calls in order to make all data compatible for analysis. A second
researcher then reviewed the transcripts, verifying the data obtained and the decisions
made. This researcher then proceeded to use the F3 data as the foundation, grouping
similar incorrect answers together. These categories were subsequently used to label
the submitted responses from S3 and F4. The occurrence of incorrect answers that
belonged to these categories across multiple semesters presented promising results for
the classification.

A Catalog and Frequency of Difficulties. This initial classification was then shared
with a cohort of experts to receive feedback and was subsequently revised to address
potential needs. The grouping of similar incorrect answers was a good start for iden-
tifying problem areas, but it was found to be inadequate. This led to a final iteration
for developing activity-specific categories and this is what is reported in the catalog of
difficulties in Table 14. Data (comprising incorrect answers) from all three semesters
were re-categorized using the catalog. While F4 has the most groups participating
(represented by n in Table 14), the format of the collected results provided a confound-
ing factor which is explored in Section 7.5.2 and could explain why fewer difficulties
were recorded.

Verifier Feedback and Discussion. We found that when students submitted either the
Invariant Total Size is Conserved or Requires Clause (marked in Table 14 by an aster-
isk), they were more likely to get the correct answer on the next attempt. Of the two
responses, the former made sense, since conservation of total size is an invariant, but
just not a sufficient one. The reason for the latter, if any, is not obvious. This led to an
examination of the online verifier’s feedback.

Fig. 4 shows the feedback students get for verifying with the default invariant t rue.
The first failed VC returned indicates that the requires clause for a call within the
loop to Enqueue is not met. It is the second failed VC that concerns the ensures
clause of the Append operation. If we assume that students follow traditional debug-
ging techniques they would normally begin with resolving the first unproved VC. Upon
further evaluation, we see that the invariant for conservation of size also results in sat-
isfying the requires clause of Enqueue. So when the students attempt to verify the

558 M. Fowler et al.

Table 14
Catalog of Difficulties

General Category Activity Specific Activity Example F3 S3 F4
n=35 n=28 n=43

Use of Loop Condition as Loop Condition Q=0 9 2 2

Invariant

Use of Constraints as Invariant Data Structure [P|<=3 4 3 0
Constraints

Focus on What is Varying as [P| is Changing [P| = [#P| + 1 11 2 6

Opposed to What is Invariant

Use of Irrelevant Math Operators Use of Substring P=#P o Prt Btwn(0,1,Q) 11 2 4
Use of Reverse #Q = Reverse(P) 0 Q 5 0 2

Confusion of Data Structure Incorrect Concatenation Q o P=#P o #Q 2 1 2

Operations (e.g., Stacks vs

Queues)

Use of Requires Clause as Requires Clause* [P|+]|Q| <=3 8 6 7

Invariant

Use of Ensures Clause as Ensures Clause P=#P o #Q 6 2 3

Invariant

Ignoring Some Input Possibilities Assumes #P is Empty #Q=PoQ 11 0 3

Underspecification Total Size is Conserved* |P| + |Q| = [#P| + [#Q)| 7 6

Other 21 3 5

code with either of these invariants, they notice that only the ensures clause of the code
fails to prove, focusing their attention on where it needs to be focused. So the process
of verification with the online tool works as might be expected.

7.5.2. ERQ 4.2-Loop Invariant Understanding: Student Conceptions

For ERQ 4.2, student responses were analyzed to determine if students were able to
communicate a holistic understanding of the task at hand, and to identify any actionable
information for future instruction as well as automated tutor development.

Response Medium. In the F3 and S3 experiments, a total of 62 student groups re-
ceived a piece of paper at the start of the activity that contained the instructions men-
tioned above, and a table to use as a scaffold, as seen in Fig. 5. We found that the scaf-
folding encouraged students to record each attempt. Students also used the margins to
perform traces such as seen in Table 13 using concrete numbers. Analysis of student
responses was labor intensive and required some interpretation of what was written,
making automation difficult.

For the F4 experiment, 43 student groups received the same instructions, with a free
response text box for online submission as seen in Fig. 6. While easier for automated
analysis, a reasonable question is what impact the online medium has on student re-
sponse.

Level of Understanding. When the medium for response changed, we observed that
student responses appeared to shift from explaining what individual pieces of invariant

Tool-Aided Learning of Code Reasoning with Abstraction in the CS Curriculum 559

Activity 1
Steps or your thought process or how you | Invariant Success?
used the feedback to modify your answer Yes or No
T teyth of P+ 2 g0
Shatld pemaln onrtont Y/
) leiPl + 14 7
at vy Jlep.

¥ oslood add I fom 8 whic Pos1se 7308

- A
R fumerws T, A

Ay oMM S of e \oof

R R R B T N N
the guirnk Skl ¥ O gl 7 |
R LA ™ ofigoch |
comnks @,

Fig.5.PaperResponse.

Our thought process was that this one will empty q and put each value
into P during the loop. We started off by using a tracing approach and
started by saying it maintains that #Q = Q o P, but then we realized this
was only true in the case when P was empty so we came to the correct
conclusion that maintaining #P o #Q = P o Q and this proved everything

Fig. 6. Online Response.

attempts meant to a reflective analysis of their work, often explaining why a sufficient
invariant worked. Fig. 6 demonstrates this shift in focus for the response. Rather than
stating what “should” be happening “now”, this response reflects upon attempts made
and explaining why they did not work.

To evaluate this observation, student responses were analyzed for the level of under-
standing communicated. We identified three levels of understanding; None, Partial, and
Holistic. Figures 5 and 6 demonstrate what would be considered holistic understanding
for each response medium.

We conducted an analysis of the significance of medium on observed student under-
standing. Due to the validity conditions for the Chi-Square test not being met (not
every option has at least 10 observations), simulations of the MAD statistic for 100,000
shuffles were run to determine an approximate p-value. The higher proportion of stu-
dent responses displaying holistic understanding in the online medium is significant
with a p-value of 0.0095.

Table 15
Completed Additional Activities for F4 (Online)

Understanding Count Activity 2 Activity 3
Holistic 11 9/11 =81.2% 9/11 =81%
Partial 24 21/24 =87.5% 1924 =179.2%

None 8 4/8 =50% 3/8=37.5%

560 M. Fowler et al.

Table 15 illustrates that students who showed some understanding for Activity 1
made good progress on subsequent, slightly more complex activities, also involving
queues. The importance of intervention during the first activity for students who need
it is clear.

8. Discussion and Conclusions

The overarching goal of this research is to help students learn abstract reasoning at
various levels with the aid of tools. Together, the tools help students practice abstrac-
tion and instructors identify and understand student difficulties. We have integrated
symbolic reasoning into the curriculum for a software development course, and then
built upon that foundation for reasoning with data abstractions in a third year software
engineering course.

8.1. Symbolic Reasoning

Our research in Section 4 has shown it is possible to teach symbolic reasoning to a
majority of students (at the 80% or a B grade level). Classroom instruction does have a
statistically significant impact. One potential threat to validity of the results is that each
semester had slight variations in the experimental conditions. Using Mann-Whitney
U-test on the incoming student GPA, we found that the S1 and F2 student populations
were comparable. While both S1 and F2 were taught by the same instructor, the S1 se-
mester was the first time this instructor taught this course. This could indicate that the
instructor was better equipped in the F2 semester than in the S1 semester to teach these
concepts, and why students performed well on this particular exam. Upon further ex-
amination, the overall average course grade for the F2 semester is actually worse than
the S1 semester, indicating that students did not receive an advantage due to teacher
experience.

A follow-on study to the initial work reported in this section is an exploration of
an automated way to analyze student vocalizations as they perform tool lessons. Ini-
tial results from the analysis from this follow-on study are promising Almazova et al.
(2021).

8.2. Conditional Statements

The research presented in Section 5 examines student ability to translate the skills
demonstrated in Section 4 and apply it to a more challenging application. After working
with the online tool, students performed better on questions that involved the tracing of
conditional statements. Students also reported being more confident with their ability to
trace code with conditional statements using symbolic values.

Tool-Aided Learning of Code Reasoning with Abstraction in the CS Curriculum 561

One potential confounding factor for experiments, such as this one, is that only the
performance of students who have completed both a pre-and post-quiz are considered.
In this process, students who perform poorly and most likely needed the additional assis-
tance, may be omitted due to not completing either the pre-or post-quiz. It is also pos-
sible that for the students whose performance improved, the improvement comes simply
from additional practice through tool lessons, but not from the supporting system and
feedback. A potential follow-up study could try to account for these factors with appro-
priate control and treatment groups.

Future work will study the preferred method of student response when asked to ana-
lyze and explain the purpose of code with conditional statements. Since earlier multiple
choice questions, such as the ones discussed in Section 5, present students with three
options for the types of reasoning answers, it will be interesting to look for trends as to
the preferred method of student answers and impact of their chosen method on the cor-
rectness of their answers.

8.3. Learning Design-by-Contract Assertions

The research presented in Section 6 has helped identify common difficulties for students
in learning to understand formal DbC assertions and trace symbolically over code in-
volving data abstractions. While students have syntactic and semantic difficulties, two
kinds of semantic difficulties need to be addressed: Those involving mathematical mod-
eling used in describing contracts for operations and those in understanding how and
why input values need to be distinguished. Such semantic difficulties are programming
and specification-language neutral, and educators need to understand them in order to
develop suitable interventions.

This research also confirms the importance of using a qualitative analysis to comple-
ment quantitative analysis. While quantitative analysis based on automated data collec-
tion is beneficial for developing tutors and interventions, qualitative analysis provides
insights behind student misunderstandings that give rise to learning difficulties.

8.4. Learning to Develop Loop Invariants

In Section 7 we analyzed explanations of student reasoning to identify their diffi-
culties. A catalog has been constructed to identify places to focus subsequent les-
sons. Analysis of the paper and online versions of student responses allow us to reach
a qualitative conclusion that the medium impacts the response, and both kinds of
responses are of interest. We have found more responses in the online medium to show
a holistic understanding through a subjective analysis. However, that does not mean
that those using the online medium lacked such an understanding. Rather, this is what
we are able to say from the responses. The online medium, which makes automation
easier, is an effective option for collecting actionable information as well. A threat to

562 M. Fowler et al.

validity is that our results depend on students accurately reporting their attempts and
reasons.

We have developed the process of identifying difficulties in learning loop invariants
in such a way that it is a useful starting point to generalize and possibly guide the design
of other systems for helping students to learn formal topics, such as discrete structures
and automata theory.

8.5. Conclusions

We have found that students are able to successfully learn how to do symbolic reason-
ing, given a sequence of assignment statements. Going beyond the basics, we have
found that students are also able to learn to reason symbolically about code involving
conditional statements. Using that knowledge, they are successful in learning how to
use formal specification of data abstractions. They are able to progress further and de-
velop loop invariants for code involving data abstractions. In every case, the tools have
aided in student learning and in helping pinpoint difficulties at a fine-grain level.

Data that continues to be collected with our tools will help us focus our future
work on providing targeted feedback. The next version of the tool, a more general
human-centric reasoning system, aims to take on the role of an intelligent tutor by
providing tailored feedback to students and creating individualized learning experi-
ences. Additionally, a variety of data will be processed in real time to assist instruc-
tors with identifying students that may need help, or specific sub-concepts that may
need additional instruction. We need students to understand not only specific technical
details but also the larger purpose of abstraction and reasoning. Ultimately, the tu-
tor’s aim is not to replace an instructor, but to be of assistance to everyone involved.
Teasing out the benefits of using a tool in conjunction with instruction is among our
current educational research questions. Exploring the use of the tool and the benefits
of related symbolic reasoning activities at a diverse set of institutions are among our
other ongoing research efforts.

Acknowledgments

We thank all members of the RESOLVE Software Research Group (RSRG) at Clem-
son University and The Ohio State University for their helpful comments throughout
the course of this work.

Funding

This research is funded in part by US National Science Foundation grants DUE-1914667,
DUE-1914820, DUE-1915088, and DUE-1915334.

Tool-Aided Learning of Code Reasoning with Abstraction in the CS Curriculum 563

References

Aleven, V., McLaren, B.M., Sewall, J. (2009). Scaling up programming by demonstration for intelligent
tutoring systems development: An open-access web site for middle school mathematics learning. /IEEE
transactions on learning technologies, 2(2), 64-78.

Almazova, N., Hallstrom, J., Fowler, M., Hollingsworth, J., Kraemer, E., Sitaraman, M., Washington, G.
(2021). Automated Analysis of Student Verbalizations in Online Learning Environments. In: Interna-
tional Symposium on Emerging Technology for Education. SETE Springer, Cham.

Azevedo, R., Bernard, R.M. (1995). A meta-analysis of the effects of feedback in computer-based instruc-
tion. Journal of Educational Computing Research, 13(2), 111-127.

Bhattacharya, P., Guo, M., Tao, L., Wu, B., Qian, K., Palmer, E.K. (2011). A cloud-based cyberlearning
environment for introductory computing programming education. In: 2011 IEEE 11th International Con-
ference on Advanced Learning Technologies, pp. 12—13. IEEE.

Bucci, P., Long, T.J., Weide, B.W. (2001). Do We Really Teach Abstraction? In: Proceedings of the Thirty-
second SIGCSE Technical Symposium on Computer Science Education. SIGCSE *01. ACM, New York,
NY, USA, pp. 26-30. 1-58113-329-4. https://doi.org/10.1145/364447.364531

Carbonneau, K.J., Marley, S.C., Selig, J.P. (2013). A meta-analysis of the efficacy of teaching mathematics
with concrete manipulatives. Journal of Educational Psychology, 105(2), 380.

Chen, C.-Y., Pedersen, S., Murphy, K.L. (2011). Learners’ perceived information overload in online learn-
ing via computer-mediated communication. Research in Learning Technology, 19(2).

Cook, C.T., Harton, H., Smith, H., Sitaraman, M. (2012a). Specification engineering and modular verifica-
tion using a web-integrated verifying compiler. In: 2012 34th International Conference on Software
Engineering (ICSE), pp. 1379-1382. IEEE.

Cook, C.T., Drachova, S., Hallstrom, J.O., Hollingsworth, J.E., Jacobs, D.P., Krone, J., Sitaraman, M.
(2012b). A systematic approach to teaching abstraction and mathematical modeling. In: Proceedings
of the 17th ACM annual conference on Innovation and technology in computer science education, pp.
357-362.

Cook, C.T., Drachova-Strang, S.V., Sun, Y.-S., Sitaraman, M., Carver, J.C., Hollingsworth, J. (2013).
Specification and reasoning in SE projects using a Web IDE. In: 2013 26th International Conference on
Software Engineering Education and Training (CSEE&T), pp. 229-238. IEEE.

Cook, M., Fowler, M., Hallstrom, J.O., Hollingsworth, J.E., Schwab, T., Sun, Y., Sitaraman, M. (2018).
Where exactly are the difficulties in reasoning logically about code? experimentation with an online sys-
tem. In: Proceedings of the 23rd Annual ACM Conference on Innovation and Technology in Computer
Science Education, ITiCSE 2018, Larnaca, Cyprus, July 02—04, 2018, pp. 39-44.
https://doi.org/10.1145/3197091.3197133

De Bock, D., Deprez, J., Van Dooren, W., Roelens, M., Verschaffel, L. (2011). Abstract or concrete exam-
ples in learning mathematics? A replication and elaboration of Kaminski, Sloutsky, and Heckler’s study.
Journal for research in Mathematics Education, 42(2), 109—126.

Drachova, S.V., Hallstrom, J.O., Hollingsworth, J.E., Krone, J., Pak, R., Sitaraman, M. (2015). Teach-
ing Mathematical Reasoning Principles for Software Correctness and Its Assessment. TOCE, 15(3),
15-11522. https://doi.org/10.1145/2716316

Forisek, M. (2006). On suitability of programming competition tasks for automated testing. In: Internation-
al Workshop, Perspectives on Computer Science Competitions for (High School) Students, pp. 25-28.

Fowler, M. (2021). A Human-Centric System for Symbolic Reasoning About Code. PhD thesis, Clemson
University, Clemson, SC 29634.

Fowler, M., Cook, M., Plis, K., Schwab, T., Sun, Y., Sitaraman, M., Hallstrom, J.O., Hollingsworth, J.E.
(2019). Impact of Steps, Instruction, and Motivation on Learning Symbolic Reasoning Using an Online
Tool. In: Proceedings of the 50th ACM Technical Symposium on Computer Science Education, SIGCSE
2019, Minneapolis, MN, USA, February 27-March 02, 2019. ACM, New York, NY, USA, pp. 1039-
1045. https://doi.org/10.1145/3287324.3287401

Fowler, M., Kraemer, E.T., Sun, Y.-S., Sitaraman, M., Hallstrom, J.O., Hollingsworth, J.E. (2020). Tool-
Aided Assessment of Difficulties in Learning Formal Design-by-Contract Assertions. In: Proceedings of
the 4th European Conference on Software Engineering Education, pp. 52—60.

Ginat, D. (2014). On Inductive Progress in Algorithmic Problem Solving. Olympiads in Informatics, 8.

Gries, D. (1981). The science of programming. Springer-Verlag.

Guo, P. http://www.pythontutor.com/java. html#mode=edit

Hallstrom, J.O., Hochrine, C., Sorber, J., Sitaraman, M. (2014). An ACM 2013 exemplar course integrating

564 M. Fowler et al.

fundamentals, languages, and software engineering. In: Proceedings of the 45th ACM technical sympo-
sium on Computer science education, pp. 211-216.

Henderson, P.B. (2003). Mathematical Reasoning in Software Engineering Education. Commun. ACM,
46(9), 45-50. https://doi.org/10.1145/903893.903919

Herman, G.L., Kaczmarczyk, L., Loui, M.C., Zilles, C. (2008). Proof by Incomplete Enumeration and Other
Logical Misconceptions. In: Proceedings of the Fourth International Workshop on Computing Educa-
tion Research. ICER *08. ACM, New York, NY, USA, pp. 59-70. 978-1-60558-216-0.
https://doi.org/10.1145/1404520.1404527

Heym, W.D., Sivilotti, P.A.G., Bucci, P., Sitaraman, M., Plis, K., Hollingsworth, J.E., Krone, J., Sridhar,
N. (2017). Integrating Components, Contracts, and Reasoning in CS Curricula with RESOLVE: Experi-
ences at Multiple Institutions. In: 30th IEEE Conference on Software Engineering Education and Train-
ing, CSEE&T 2017, Savannah, GA, USA, November 7-9, 2017, pp. 202-211.
https://doi.org/10.1109/CSEET.2017.40

Hinchey, M., Jackson, M., Cousot, P., Cook, B., Bowen, J.P., Margaria, T. (2008). Software engineering and
formal methods. Communications of the ACM, 51(9), 54-59.

Hinds, P.J., Patterson, M., Pfeffer, J. (2001). Bothered by abstraction: The effect of expertise on knowledge
transfer and subsequent novice performance. Journal of applied psychology, 86(6), 1232.

Kaminski, J.A., Sloutsky, V.M., Heckler, A.F. (2008). The advantage of abstract examples in learning math.
SCIENCE-NEW YORK THEN WASHINGTON-, 320(5875), 454.

Kumar, R., Rosé, C.P., Wang, Y.-C., Joshi, M., Robinson, A. (2007). Tutorial dialogue as adaptive collabora-
tive learning support. Frontiers in artificial intelligence and applications, 158, 383.

Li, C., Dong, Z., Untch, R., Chasteen, M., Reale, N. (2011). Peerspace-an online collaborative learning
environment for computer science students. In: 2011 IEEE 11th International Conference on Advanced
Learning Technologies, pp. 409-411. IEEE.

Lister, R., Fidge, C., Teague, D. (2009). Further evidence of a relationship between explaining, tracing and
writing skills in introductory programming. Acm sigcse bulletin, 41(3), 161-165.

Lister, R., Adams, E.S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., McCartney, R., Mostrém, J.E.,
Sanders, K., Seppéld, O., Simon, B., Thomas, L. (2004). A Multi-national Study of Reading and Tracing
Skills in Novice Programmers. In: Working Group Reports from ITiCSE on Innovation and Technology
in Computer Science Education. ITICSE-WGR ’04. ACM, New York, NY, USA, pp. 119-150.
https://doi.org/10.1145/1044550.1041673

McCallum, W. (2008). Commentary on Kaminski et al, The Advantage of Abstract Examples in Learning
Math, Science, April 2008. Science.

Meyer, B. (1992). Applying “Design by Contract”. Computer, 25(10), 40-51.
https://doi.org/10.1109/2.161279

Moreno, R. (2004). Decreasing Cognitive Load for Novice Students: Effects of Explanatory versus Correc-
tive Feedback in Discovery-Based Multimedia. /nstructional Science, 32, 99—113.
https://doi.org/10.1023/B:TRUC.0000021811.66966.1d.

O’Brien, C., Goldman, M., Miller, R.C. (2014). Java tutor: bootstrapping with python to learn Java. In: Pro-
ceedings of the first ACM conference on Learning@, scale conference, pp. 185-186.

Paas, F., Van Gog, T., Sweller, J. (2010). Cognitive load theory: New conceptualizations, specifications, and
integrated research perspectives. Educational psychology review, 22(2), 115-121.

Price, T.W., Dong, Y., Lipovac, D. (2017). iSnap: Towards Intelligent Tutoring in Novice Programming
Environments. In: Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education. SIGCSE ’17. ACM, New York, NY, USA, pp. 483—488. 978-1-4503-4698-6.
https://doi.org/10.1145/3017680.3017762

Priester, C., Sun, Y., Sitaraman, M. (2016). Tool-Assisted Loop Invariant Development and Analysis. In:
29th IEEE International Conference on Software Engineering Education and Training, CSEET 2016,
Dallas, TX, USA, April 5-6, 2016, pp. 66—70. https://doi.org/10.1109/CSEET.2016.28

Sitaraman, M., Adcock, B.M., Avigad, J., Bronish, D., Bucci, P., Frazier, D., Friedman, H.M., Harton, H.K.,
Heym, W.D., Kirschenbaum, J., Krone, J., Smith, H., Weide, B.W. (2011). Building a push-button RE-
SOLVE verifier: Progress and challenges. FormalAsp.Comput., 23(5), 607-626.
https://doi.org/10.1007/s00165-010-0154-3

Sweller, J., Ayres, P., Kalyuga, S. (2011). Cognitive Load Theory. Springer New York, New York, NY.

Wiggins, J.B., Boyer, K.E., Baikadi, A., Ezen-Can, A., Grafsgaard, J.F., Ha, E.Y., Lester, J.C., Mitchell,
C.M., Wiebe, E.N. (2015). JavaTutor: An Intelligent Tutoring System That Adapts to Cognitive and Af-
fective States During Computer Programming. In: Proceedings of the 46th ACM Technical Symposium
on Computer Science Education. SIGCSE ’15. ACM, New York, NY, USA, pp. 599-599. 978-1-4503-

Tool-Aided Learning of Code Reasoning with Abstraction in the CS Curriculum 565

2966-8. https://doi.org/10.1145/2676723.2691877

Wouters, P., Paas, F., van Merriénboer, J.J.G. (2008). How to Optimize Learning From Animated Models:
A Review of Guidelines Based on Cognitive Load. Review of Educational Research, 78(3), 645-675.
https://doi.org/10.3102/0034654308320320

Zaccai, D., Tagore, A., Hoffman, D., Kirschenbaum, J., Bainazarov, Z., Friedman, H.M., Pearl, D.K.,
Weide,

B.W. (2014). Syrus: Providing Practice Problems in Discrete Mathematics with Instant Feedback. In: Pro-
ceedings of the 45th ACM Technical Symposium on Computer Science Education. SIGCSE *14. ACM, New
York, NY, USA, pp. 61-66. 978-1-4503-2605-6. https://doi.org/10.1145/2538862.2538929

M. Fowler is a doctoral candidate in the Human-Centered Computing program at
Clemson University. She currently holds a B.S. in Computer Science and M.A. in
Teaching Secondary Science. The results presented in this article are a part of her
research carried out within her dissertation thesis. She currently works as a Computer
Science teacher at Walhalla High School in South Carolina. Her academic interest is
in computer science education.

J. Hallstrom serves as Executive Director of Florida Atlantic University’s Institute for
Sensing and Embedded Network Systems Engineering (I-SENSE) and is a Professor
in the Department of Electrical Engineering and Computer Science. He holds a B.S.
in Systems Analysis, an M.A. in Economics, and M.S. and Ph.D. degrees in Computer
and In-formation Science. His work spans embedded, networked systems; software
engineering; and computer science education. His work is currently supported through
the National Science Foundation, NOAA (via CCU), the Knight Foundation, the City
of West Palm Beach, and industry partners. He was previously supported through the
NSF, DOE, EPA,USDA, NASA, industry partners, and other entities.

J. Hollingsworth is a member of the Computer Science and Software Engineering
Department at Rose-Hulman Institute of Technology in Terre Haute, Indiana, where
he serves as an associate professor and teaches undergraduate CS courses as well
as supervises undergraduate researchers. His research has primarily focused on the
scholarship of teaching and learning in the field of computer science with support from
NSF DUE grants and has publications in various CS education related conferences and
journals.

E. Kraemer is a Professor in the School of Computing at Clemson University. She
holds a PhD from the College of Computing at Georgia Tech. Her research interests
are in computer science education and human aspects of the software development
process.

566 M. Fowler et al.

M. Sitaraman is a professor in the School of Computing at Clemson University. He
is a principal investigator of the multi-institutional RESOLVE software engineering
research and education effort that has been continuously funded by the US National
Science Foundation for thirty years. Broadening participation in computing and help-
ing students to learn how to reason correctly and soundly about the behavior of the
code they write are among the goals of his group’s CS education research. To date, the
results have reached over 30,000 students and over 200 educators. Dr. Sitaraman is a
co-editor of a Cambridge University Press book on Foundations of Component-Based
Systems. His publications have appeared in ACM Transactions on Computing Edu-
cation, Computer Science Education journal, and ACM SIGCSE and ACM ITiCSE
conference proceedings.

Y. Sun is a lecturer in the School of Computing at Clemson University and teaches
CS1, Software Development, and Introduction to Software Engineering. In addition to
his teaching duties, he is also passionate about building software applications, men-
toring students with their research implementations, exploring new fields in Com-
puter Science, and developing automated grading tools to provide feedback to students
while they work on a programming assignment.

J. Wang is an undergraduate Bachelor student of Rose-Hulman Institute of Technol-
ogy majoring in Computer Science and Data Science. He is interested in machine
learning and deep reinforcement learning.

G. Washington is an Assistant Professor at Howard University in Computer Science.
At Howard, she runs the Affective Biometrics Lab and performs research on affective
computing, computer science education, and biometrics. Currently, she is leading re-
search that explores the role of how affect/emotion is displayed in imposter phenom-
ena and in negatively impacting performance in computer science courses. She can be
reached atgloria.washington@howard.edu.

