
Visualization of Students’ Solutions as a Sequential
Network

Nathan Hurtig
Computer Science and Software Engineering

Rose-Hulman Institute of Technology
Terre Haute, USA

hurtigna@rose-hulman.edu

Olga Scrivner
Computer Science and Software Engineering

Rose-Hulman Institute of Technology
Terre Haute, USA

scrivner@rose-human.edu

Joseph Hollingsworth
Computer Science and Software Engineering

Rose-Hulman Institute of Technology
Terre Haute, USA

hollings@rose-hulman.edu

Abstract—It is known that timely and personalized feedback
is vital to the learning process, and because of increasing enroll-
ment, instructors can find it harder to provide that feedback.
Learning analytics presents a solution to this problem. The
growth in popularity of online education systems better enables
learning analytics by providing additional educational data.
This work focuses on the analysis of students’ incorrect short
answers and their pathways to correct solutions. By considering
student submissions as sequences, this work uses a dimension
called “distance” which can be used to predict how far off a
student’s incorrect answer is from a correct one. This distance
metric can be used for recognizing students who may need help,
understanding which concepts students struggle with, evaluating
assessment questions, and improving multiple-choice answers.

This paper discusses the methods, relevant learning scenarios,
and applications of the learning analytics system. It features the
results and analysis of a usability test conducted on 56 faculty
members.

Index Terms—network, learning analytics, data visualization

I. INTRODUCTION

Today’s instructors face a growing problem: connecting with
their students. Because of trends in higher education funding
and enrollment, recent world events, and new implementations
of teaching tools and strategies, the distance between instruc-
tors and students has grown.

Increasing enrollment and dwindling funding have encour-
aged many universities to consider offering more hybrid
classes [1]. Due to the recent COVID-19 pandemic, univer-
sities were forced to migrate to emergency remote learning.
This showed the potential benefits of hybrid and online classes,
but it also presented challenges with student motivation as well
as student-faculty interaction [2], [3].

A pronounced rise in engineering enrollment [4], [5] has
partially led instructors to seek and implement new educational
methods. Learning management systems have seen more use
recently [6], and the use of automatic grading systems has
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risen as well [7]–[9]. These systems have been shown to
improve student learning because of their timely feedback,
objective grading, and more relaxed environment.

With these changes, instructors can find it more difficult
to gather and analyze information from the classroom. Hy-
bridized online learning provides instructors with fewer op-
portunities to directly observe student learning, obscuring how
students approach problems and which concepts they struggle
with. When using automated grading systems, instructors may
not gain intuition about their assessments that they would
through conventional grading. Additionally, larger class sizes
make it harder to identify students that may need more help.

The goal of this research is to provide a novel web-based
visualization application to support instructors with learning
analytics insights. Learning analytics is the use of educational
data to optimise classroom learning. Leveraging learning an-
alytics is a natural choice as it benefits from the trends in
education mentioned earlier: more students, digitized learning,
and automated graders all can give rise to more educational
data for input to learning analytics tools. To assist instructors
with analyzing student thinking, improving assessment, and
recognizing intervention opportunities, a learning analytics
tool would:

1) Provide an intuitive interface for instructors to help
visualize how students are approaching problems.

2) Define and display metrics to help assess students’
learning.

3) Aggregate those metrics in an interactive view to help
identify groups or individuals who have difficulties.

The remainder of this paper is organized as follows. Section
II reviews prior related research. Section III introduces the
features of our tool. Section IV presents the survey conducted
on faculty members. Section V describes potential uses of our
tool. Finally, Section VI presents our conclusion and future
directions.



II. RELATED WORKS

The goal of this research is to enable educators to note
trends in student data at a high level but still draw fine-
grain conclusions through close inspection. This is distinct
from approaches such as the Error Quotient [10], the WatWin
measure [11], the Normalized Programming State Model [12],
and machine learning approaches [13], [14] in that these works
do most of the analysis for instructors. In contrast, the work
presented in this paper seeks to provide educators with the
means to explore their data and discover students’ learning
trajectories, rather than analyze data for them.

This paper attempts to meet this need through the devel-
opment of a visualization model that presents learning traces
in a network format. A single learning trace is a sequence
of a student’s attempted answers for a fill-in-the-blank or
short answer question. The use of a network to visualize
students in learning analytics is not a new concept on its
own. For example, studies have modeled how students navigate
online courses using networks [15], [16]. Prior research has
also explored representing causal relations between abstract
concepts [17] as well as the associations between learned
concepts [18].

Furthermore, recent educational research has shown that
incorrect answers can provide additional insights into stu-
dents’ learning as well as behavior. Several models have
been applied to online assessments in programming and math:
1) binary information (correct/incorrect), 2) manual mapping
of wrong answers into categories, such as “typing errors”,
“misconceptions”, “numerical errors”, 3) automatic classifica-
tion into “common” and “uncommon” answers, 4) clustering
and community detection [19]–[21]. These studies point to
a common issue with the skewness in the distribution of
wrong answers, where there is a large gap between high-
performing and low-performing students. This work hopes to
enable instructors to explore this gap. Response time has been
used as a measurement of student performance. However, it
often requires aggregated data, hindering the understanding of
individual learning [22].

This research is novel in three ways. First, it models students
in a smaller scope than most learning analytics tools: instead
of analyzing concepts and events within courses, it analyzes
answers within individual questions. Second, it applies a
new metric to compare incorrect answers. Finally, it presents
information in a dynamic and interactive visual format. As
shown by a review of visual learning analytics literature [23],
most tools only use simple and static models.

III. METHODS

This paper presents a novel visualization scheme that
represents students’ answers as nodes in a network. When
solving a problem, students may propose many intermediate
incorrect answers before arriving at a correct solution. We
have developed a visualization tool that takes a sequence of
answers proposed by not one student, but all the sequences
generated by a group of students (e.g., a class’s worth of
students) while attempting to solve a particular problem. In this

way, the focus is on how students progress between answers,
which can provide insight into students’ thinking processes.
The visualization can be applied in learning scenarios that
fulfill these criteria:

1) Students attempt to answer a question and repeat until
they input a correct answer.

2) The state space of reasonable answers is limited. Appli-
cable formats include fill-in-the-blank, multiple-choice,
or calculations.

The data required by this visualization tool are sequences
of chronologically ordered answers given by students when
attempting to answer a question. This is why the first criterion
is required: the sequences of responses can occur in a forma-
tive assessment that allows for multiple attempts. The tool
focuses on how students’ answers develop as they attempt
to answer questions. Previous research [24] has found that
students’ understanding of a problem develops as they make
multiple attempts to answer questions.

For example, suppose a student is asked to provide the
chemical formula for acetic acid. This question has multiple
correct answers; one possible correct answer is C2H4O2. For
the purposes of formative assessment, a student may input
any number of incorrect answers before arriving at a correct
answer. An example sequence entered by a fictional student
“Abe” might be HFl, C2H3O3, C2H4O2. In this sequence, Abe
entered two incorrect answers before entering a correct answer.
This visualization tool utilizes this sequence of answers from
Abe along with the sequences of answers from the remaining
students to generate a network. An example of an input data
set can be found in Table I.

TABLE I
SYNTHETIC RAW DATA

Student Identifier Student’s Attempt Attempt Correct?

Abe HFl Incorrect
Abe C2H3O3 Incorrect
Abe C2H4O2 Correct

Olivia C2H3O3 Incorrect
Olivia HC2H3O2 Correct

... ... ...
Kelly HC2H3O2 Correct

Fig. 1 shows the network visualization generated from the
data in Table I. Each node in the network represents an
answer that at least one student attempted while trying to
solve the problem. Every node’s size is proportional to how
many times all students input the answer associated with the
node, meaning more common answers stand out compared to
less common ones. Red nodes represent incorrect answers and
green nodes represent correct answers.

The edges of the network are generated as follows: When a
student inputs her first answer “A”, a directed edge is created
from the white “Start” node to the node representing answer
“A”. If the attempt was incorrect, the student tries again,
making an edge from “A” to “B”. This process is continued
until she inputs a correct answer or she exits the system



Fig. 1. An example network populated from synthetic data representing a
class’s answers to the question “What is the formula of acetic acid?”.

without completing the question. In the second case, an edge
is drawn from the student’s last attempted answer to the black
“Gave Up” node. As multiple students take the same path
between two nodes, the edge grows wider, providing visual
feedback as to how many times this edge was traversed, and
the node grows larger indicating the answer associated with the
node was input multiple times. All students’ paths through the
network begin at the “Start” node, and end either at a correct
answer or at the “Gave Up” node. In accordance with finite
state machines, the beginning and ending points of the network
have a ring around them.

The horizontal positioning of nodes is another feature of
the visualization. Correct answers are on the right side of the
network, and the “Gave Up” node is on the left. The remaining
nodes are positioned according to their “distance” from the
correct answers. Each node’s distance metric is calculated as
the arithmetic mean of how many more attempts students tried
after leaving a node representing an incorrect answer before
coming to a correct answer. Nodes that have higher distances
are positioned on the left side of the network, which is farther
away from the correct answers. Their color is also slightly
darkened to visually indicate that after students input answers
represented by these darker nodes, they took more attempts to
arrive at a correct answer.

The network in Fig. 1 is only a static screenshot of the
online tool. The network is a dynamic physics simulation
powered by D3.js [25]. The simulation pulls connected
nodes closer together and pushes unconnected nodes apart.
Users can click and drag nodes in the network to arrange it
how they see fit as well as activate a red-green color blindness
mode that changes the color scheme from red-green to yellow-
blue.

The tool offers options and filters that allow educators to
dynamically configure the visualization. When a user clicks on
a node, the tool shows the node’s calculated distance from the
correct answers, how many students answered the question
correctly immediately following their input of the selected
attempt, and a list of the students that input the answer. Users

can direct the tool to filter by students to show only a subset
of the classroom’s paths through the network. An example of
student filtering can be found in Fig. 2. In this example, a
single student’s path stands out because all other paths and
nodes have been dimmed. A user can also combine nodes
through drag-and-drop, which allows the user to simplify
the network by aggregating similar answers together by their
concepts.

Fig. 2. A single student’s path through the network.

IV. SURVEY

Faculty from 10 STEM departments and a Humanities
and Arts department were invited to complete an anonymous
survey to evaluate our interactive visualization tool in terms of
its usability and utility. The survey served three purposes. First,
it measured the tool’s usability by asking faculty to answer
questions using the dashboard. Second, half of the respondents
were shown a vertical layout of the network as in Fig. 3a, and
the other half were shown a horizontal layout as in Fig. 3b. At
the end of the survey, the respondents were shown both layouts
and answered which layout they found more intuitive. Third,
we asked the respondents to describe the ways they might use
the tool, getting feedback from educators’ perspectives.

(a) Vertical (b) Horizontal

Fig. 3. Vertical and horizontal layouts.

We received 56 responses, with 50 of them coming from
STEM faculty and the remaining 6 from Humanities and Arts
faculty. All participants stated that they were familiar with
graphs, and 12 participants indicated that they had previously
taken a seminar, course, or training session on visualization.

Of the 56 respondents, 54 completed all 5 usability ques-
tions on the survey. The usability section showed an example
network generated by the tool and asked respondents to answer
multiple-choice questions based on the networks. For example,
respondents were given the prompt “From the dashboard in



Fig. 1, you can see that there are three correct answers (marked
by green circles) in this specific question. How many of the
three correct answers were reached by a student on their first
try (i.e., a student that did not input any incorrect answers)?”.
Respondents were shown Fig. 4, and provided five choices:
0, 1, 2, 3, and “It cannot be determined”. Out of the 54
respondents that completed all the usability questions, 46 of
them correctly answered 2.

Fig. 4. Image of network provided to respondents to answer usability question.

Across all five usability questions, the respondents answered
correctly 91.5% of the time. We see this result as satisfactory,
as the respondents were only given a brief description of how
the tool worked. Of the 23 incorrect answers given, 15 of
them were “It cannot be determined”. This means only 8 out
of the 270 total answers (3.0%) were a result of respondents
misinterpreting the tool. These results are summarized in Table
II. Respondents that were shown vertical network layouts
scored higher on average: 94.3% compared to the horizontal
cohort’s 88.5%.

TABLE II
USABILITY RESULTS

Correct Not sure Incorrect

Count 247 15 8
Percentage 91.5% 5.5% 3.0%

At the end of the usability test, participants were shown an
example of both the horizontal and vertical layouts. Of the
56 respondents, 58.9% preferred the horizontal layout, 12.5%
preferred vertical, and 28.6% stated they had no preference.
When asked to provide reasons why, respondents that preferred
the horizontal layout stated they were “used to thinking about
graphs with time on the x-axis” and that “left to right feels
more like progressing from start to finish”. Respondents that
were initially shown the vertical layout were less likely to
prefer the horizontal layout, with only 46.4% of the cohort
preferring the horizontal layout.

V. APPLICATIONS

The tool can be applied to a broad range of learning
analyses. First, users can filter by student to investigate how
individual students’ understanding changes over time. Second,
users can analyze the incorrect answers that students gave to
understand which concepts students struggle with. Third, users
can evaluate their questions and use the tool to generate future
multiple-choice options.

One application of the tool is analyzing individual students’
thinking on questions. Users can filter the network by student,
dimming the other students’ paths. This shows the student’s
sequence of attempted answers in the larger context of the
classroom’s performance. A respondent commented “[the tool]
helps indicate how the student was classifying the information
in their head”. Instructors could identify students that are
thinking differently than others by examining how many other
students shared the student’s answers.

The tool can also be used to investigate student thinking
by comparing answers. A respondent said that the tool could
help “elucidate the students’ thought patterns” by examining
the incorrect answers given by students. For example, the tool
can help differentiate between incorrect answers that were
commonly given initially and those that students gave later
in their sequences. The incorrect answers tried by students at
the start might be due to misreading or misunderstanding the
question, and incorrect answers tried later are more likely to
be due to misconceptions about the material. The tool shows
this through its arrows. Thick arrows leading from the “Start”
node to another node indicate that many students attempted
that node as their first answer. A respondent commented
that “arrows of common paths from wrong answers might
help me understand common misconceptions that I should
address while teaching”. A large red node that has a thick
arrow coming from the “Start” node shows that many students
shared the same initial misconception. Instructors can analyze
the connections a node has to develop a hypothesis about
why students might be tempted to respond with a particular
answer. In response, instructors can clarify their question or
adjust their instructional material to better cover the common
misconception.

Respondents also identified ways that they could use the
distance metric in learning analytics. One commented “if a
student chose a node with really high distance, it suggests
they have a very basic misunderstanding, while if they choose
nodes with lower distances they might have more minor
misunderstandings about the info”. If a user is interested in
a specific answer, she or he can select that answer in the
network and click a button to highlight the group of students
that input that answer, dimming out the others. This can be
especially effective on incorrect answers with a high distance
from correct answers, as it may reveal that the students who
input the highlighted answer also shared other answers. A
synthetic example of this is in Fig. 5, where highlighting the
students that answered AcOH shows that they also shared
multiple other answers. Users can use that information to



better understand what concept the selected group of students
is struggling with. Instructors can then reinforce the concept
in later lectures or with additional instructional materials.

Fig. 5. Selecting a group of students that input the same incorrect answer.

The tool can be used to examine questions as well. An ideal
question would be challenging enough where some incorrect
answers would be expected, but still not be unnecessarily
difficult. A question that is too challenging can lead students
to give up, or to guess answers, eventually coming across the
correct answer through “brute force”. The tool can provide
insight into this, as a network of a question where students
primarily guessed will be made up of many small red nodes
because students did not try similar answers. In contrast, a
question where students were more thoughtful in their answers
would generate a comparatively fewer amount of larger red
nodes, as the students would overlap with their incorrect
answers. Fig. 6 shows an example of what a network would
look like where students primarily guessed. One respondent
commented “You could see when students are guessing and
checking/struggling and flailing on which problems. You’ll get
the chance to see a rough idea of why they’re guessing what
they’re guessing”. After identifying that students may have
been guessing, users can investigate individual student paths
to identify the strategies students employed at a more fine-
grain level.

Fig. 6. A large number of small incorrect answers can indicate that students
employed guessing.

The tool’s distance metric can be used to predict students’
future performance. Since the distance of each incorrect an-

swer is defined to be the average number of attempts before
students reached a correct answer, the metric could be used to
predict that a student who just input a high-distance answer
is likely to take many more answers until they reach a correct
answer. A respondent said “This could be a very interesting
tool, especially if it updates and can be used in real-time
in a classroom during an active learning activity”. Using the
data from a previous session, instructors could be notified in
real-time on how students are performing, and could even
be warned when a student inputs a high distance answer.
Identifying students that are likely to struggle on a question
could provide instructors with a chance to intervene during
active learning activities, assisting where needed.

Work has been done in developing systematic methods to
develop quality distractors (plausible but incorrect options) for
multiple-choice questions. Some of this work [26] has used
natural language processing and machine learning techniques
to analyze a large corpus of written responses to identify cat-
egories of student misconceptions. The tool could be applied
to serve a similar purpose, as the largest red nodes represent
the most common incorrect answers given by students. We
believe that the larger red nodes in our network will correspond
to misconception categories, and verifying this conjecture is
included as one of our options for future work.

VI. CONCLUSION

In this paper, we presented a novel web-based learning
analytics tool that used a network to model students’ sequences
of attempted answers. Educators could use the tool to visualize
how students’ understanding of problems develops, identify
trends in correct and incorrect answers, and measure how
different thinking strategies affect learning. We conducted a
user study of 56 faculty members, 50 of which were STEM
faculty. The respondents scored an average of 91.5% on our
usability test. We described various ways to use the tool to
analyze students, answers, and questions.

It should be noted that this work’s scope is limited, as the
tool can only be applied to specific learning environments. It
requires that students make attempts to answer a question until
they get it correct and that the amount of possible answers is
reasonably limited. This means that the tool cannot be applied
to questions requiring long textual responses. However, this
tool is often applicable to online formats, which have become
more popular due to recent trends in education.

In Section V we noted that the larger red nodes in one of our
networks might correspond to categories of misconceptions
held by students. If this conjecture can be verified, our
networks might be leveraged by instructors for more quickly
developing plausible distractors for multiple-choice questions.

Applying the tool to various educational domains is appeal-
ing. Preliminary piloting of the tool has been conducted with
data from the introductory computer science courses where
sequences of responses have come from students asked to
determine the values of variables after a few lines of code have
been executed. More recently, we have been in discussions
with a faculty member in electrical engineering about using



the tool to analyze sequences of answers provided to questions
concerning digital signal processing filters.

In a formative assessment setting, we have collected a
sequence of student responses to a prompt. One might think of
these as taking snapshots of the student’s thinking as she or he
moves toward a correct answer. Another area for future work
would be to expand the analysis of student performance from
one question at a time to a string of questions. We believe
there might be detectable trends across multiple questions.
For example, analyzing multiple questions at once can help
instructors more confidently identify groups of students that
are struggling.

Another area of interest is to utilize the tool to identify
various groups of students, like those that employ guessing
strategies or those that could benefit from additional instruc-
tion. We could utilize this information to select students
for think-aloud problem-solving sessions. During these think-
alouds, we would have the students verbalize their thought
processes when providing a sequence of answers. By analyzing
these think-alouds, we might better pin down their problem-
solving processes and create interventions. The tool in this
sense would help us reduce the number of students needed to
participate in a very time-consuming think-aloud process.
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