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A series of III-V ternary and quarternary digital alloy avalanche photodiodes have recently been seen to
exhibit very low excess noise. Using band inversion of an environment-dependent atomistic tight-binding
description of short-period superlattices, we argue that a combination of increased effective mass, mini-
gaps, and band split-off are primarily responsible for the observed superior performance. These properties
significantly limit the ionization rate of one carrier type, either holes or electrons, making the avalanche
multiplication process unipolar in nature. The unipolar behavior in turn reduces the stochasticity of the
multiplication gain. The effects of band folding on carrier transport are studied using the nonequilib-
rium Green’s function method that accounts for quantum tunneling, and the Boltzmann transport equation
model for scattering. It is shown here that carrier transport by intraband tunneling and optical phonon
scattering are reduced in materials with low excess noise. Based on our calculations, we propose five sim-
ple inequalities that can be used to approximately evaluate the suitability of digital alloys for designing
low-noise photodetectors. We evaluate the performance of multiple digital alloys using these criteria and
demonstrate their validity.
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I. INTRODUCTION

The demand for efficient optical detectors is constantly
growing due to rapid developments in telecommunica-
tion, light imaging, detection and ranging systems, and
other military and research fields [1–7]. Photodetectors
are increasingly being incorporated in photonic integrated
circuits for the Internet of things and 5G communica-
tions [8–10]. These applications require higher sensitiv-
ity in comparison to traditional p-i-n photodiodes [11].
Avalanche photodiodes (APDs) are often deployed instead
due to their higher sensitivity, enabled by their intrinsic
gain mechanism. However, the stochastic nature of the
impact ionization process of APDs adds an excess noise
factor F(M ) = 〈m2〉/〈m〉2 = kM + (1 − k)(2 − 1/M ) to
the shot noise current, 〈i2shot〉 = 2qIM 2F(M )�f [12–14].
Here, q is the electron charge, I is the total photo plus
dark current, m is the per primary electron avalanche gain,
M = 〈m〉 is the average multiplication gain, and �f is
the bandwidth. A low value of k, which is the ratio of
the hole ionization coefficient β to the electron ionization
coefficient, α, is desirable for designing low-noise n-type
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APDs. This ratio stipulates that, for pure electron injec-
tion, a significantly lower hole ionization than the electron
ionization rate leads to reduced shot noise. If impact ion-
ization is caused by pure hole injection, k in the equation
will be replaced by 1/k. This behavior is generally true
for low electric fields, which is usually applicable for thick
avalanche regions. Additionally, dead space effects can be
exploited to attain low noise in thin structures.

Recently, several III-V digital alloys, i.e., short-period
superlattices with binary components stacked alternately in
a periodic manner, were found to exhibit extremely low-
noise currents and a high gain-bandwidth product in the
short-infrared wavelength spectrum [15–17]. Characteri-
zation of (In,Al)As, (Al,In)(As,Sb), and Al(As,Sb) digital
alloy APDs have shown very small values of k [15–17],
whereas other digital alloys, like (In,Ga)As and (Al,Ga)As,
demonstrate much higher k values [18,19]. The k val-
ues of these materials were determined using an Agilent
8973A noise figure analyzer to obtain the excess noise fac-
tor, F(M ). The total noise was measured when the APDs
were illuminated and in the dark. The dark noise was then
subtracted to determine the photocurrent noise. Initially,
the noise was measured at the APD unity gain point and
then the bias was increased to obtain the gain-dependent
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noise characteristic. Plots of the excess noise factor ver-
sus the average gain, 〈M 〉, were fit to the expression
F(M ) = kM + (1 − k)(2 − 1/M ) to find the effective k
values. Based on previous full-band Monte Carlo simula-
tions [20–22], the low k has been attributed to the presence
of superlattice minigaps inside the valence band of the
material bandstructure, along with an enhanced effective
mass arising from the lower bandwidth available to the
holes. Such valence band minigaps often coexist with
similar (but not symmetrical) minigaps in the conduction
band. However, electrons in the conduction band typi-
cally have very low effective mass, which allows quantum
tunneling and enhanced phonon scattering to circumvent
minigaps in the conduction band. Furthermore, certain dig-
ital alloys show that minigaps do not exhibit low noise,
and the reason behind that has not yet been addressed.
More recently, Sb-containing random alloy (Al,In)(As,Sb)
and (Al,Ga)(As,Sb) APDs have demonstrated low excess
noise, and the underlying mechanism is not properly
understood [23,24]. Oğuzman et al. showed that at high
electric fields the impact ionization rate for the light-hole
and split-off bands for bulk Si and GaAs is much larger
compared to the heavy-hole bands [25]. In Si, ionization
events originating in the split-off band are comparable to
that of the light-hole rate, while for GaAs, the split-off
band rate clearly dominates the hole ionization process.
The β value was shown to be inversely proportional to
the spin-orbit splitting [26]. Liu et al. demonstrated that
the excess noise in GaAs can be significantly reduced by
alloying with small fractions of bismuth [27]. The strong
spin-orbit coupling of the heavier Bi atoms results in a
larger separation between light-hole and split-off bands
that reduces the hole ionization coefficient. Our postulate
is that a combination of valence band minigap, a large
separation between tight-hole and split-off bands, and cor-
responding enhanced hole effective mass tend to limit the
hole ionization coefficient in the digital alloys. A com-
prehensive analysis is clearly necessary to understand the
carrier impact ionization in these materials.

In this paper, we employ a fully atomistic, environment-
dependent tight-binding (EDTB) model [28], calibrated
to density functional theory (DFT) bandstructure as well
as wave functions, to compute the bandstructures of sev-
eral III-V digital alloys. Using a full three-dimensional
quantum kinetic nonequilibrium Green’s method (NEGF)
formalism with the EDTB Hamiltonian as input, we com-
pute the ballistic transmission across these digital alloys
that accounts for intraband quantum tunneling across mini-
gaps and light-hole and split-off bands offset. Additionally,
a full-band Boltzmann transport solver is employed to
determine the energy-resolved carrier density distribution
under the influence of an electric field in order to study
the effect of optical phonon scattering in these short-period
superlattices. The calculations are performed using compu-
tational resources at the University of Virginia and XSEDE

[29]. Using these transport formalisms, we elucidate the
impact of minigap sizes, light-hole and split-off bands off-
set, and effective masses on carrier transport in the valence
band.

Our simulations demonstrate that the squashing of sub-
bands into tighter bandwidths, such as arising from mini-
gap formation, or the engineering of large light-hole and
split-off bands offset lead to the suppression in trans-
port of one carrier type, by resisting quantum tunnel-
ing or phonon-assisted thermal jumps. For (In,Al)As, the
improved performance is primarily due to the minigaps
generated by the digital alloy periodicity and the corre-
sponding enhanced effective mass. For (Al,In)(As,Sb) and
Al(As,Sb), the gain is a combination of minigaps, large
effective mass, and LH-SO offset. The LH-SO offsets in
these two alloy results arise from the strong spin-orbit cou-
pling due to the Sb atoms, a characteristic which is also
observed in their random alloy counterparts that exhibit
low noise. A quantitative comparison of the various alloy
gains measured is presented in the last two columns of
Table IV in Sec. IV.

The unique superlattice structure of the digital alloys
opens the possibility for designing alternative low-noise
alloy combinations for detection of other frequency ranges.
Ideally, it is easier and cheaper to at first computationally
study the suitability of the alloys for achieving low noise
before actually fabricating these. For this purpose, we need
a set of design criteria for judging the alloy performance
using theoretically calculated parameters. Based on our
simulations, we propose five simple inequalities that can be
used to judge the suitability of digital alloys for use in low-
noise APDs. We judge the aptness of five existing digital
alloys: (In,Al)As, (In,Ga)As, (Al,Ga)As, (Al,In)(As,Sb),
and Al(As,Sb). We observe that the inequalities provide
a good benchmark for gauging the applicability of digital
alloys for use in low-noise APDs.

II. SIMULATION METHOD

A. Environment-dependent tight binding and band
unfolding for the atomistic description

In order to understand the influence of minigap filter-
ing in digital alloy structures, an accurate band structure
over the entire Brillouin zone is required. The periodic
structure of the (In,Al)As digital alloy shown in Figs. 1(a)
and 1(b) shows the typical structure of a p-i-n APD. We
have developed an EDTB model to accurately calculate the
band structure of alloys [28,30]. Traditional tight-binding
models are calibrated directly to bulk bandstructures near
their high symmetry points and not to the underlying chem-
ical orbital basis sets [30]. These models are not easily
transferable to significantly strained surfaces and inter-
faces where the environment has a significant impact on
their material chemistry. In other words, the tight-binding
parameters work directly with the eigenvalues (E-k) and
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FIG. 1. (a) Digital alloy structure. (b) Typical structure of an
APD.

not with the full eigenvectors. While the crystallographic
point group symmetry is enforced by the angular trans-
formations of the orbitals, the radial components of the
Bloch wave functions, which determine bonding and tun-
neling properties, are left uncalibrated. Previously, in order
to incorporate accuracy of radial components, an extended
Hückel theory [31,32] was used that incorporated explicit
Wannier basis sets created from nonorthogonal atomic
orbitals that were fitted to density functional theory for the
bulk Hamiltonian. The fitted basis sets were transferrable
to other environments by simply recomputing the orbital
matrix elements that the bonding terms were assumed to
be proportional to. As an alternative, the EDTB model
employs conventional orthogonal Wannier-like basis sets.
The tight-binding parameters of this model are generated
by fitting to both hybrid functional (HSE06) [33] band
structures and orbital-resolved wave functions. Our tight-
binding model can incorporate strain and interface-induced
changes in the environment by tracking changes in the
neighboring atomic coordinates, bond lengths, and bond
angles. The onsite elements of each atom have contribu-
tions from all its neighboring atoms. The fitting targets
include unstrained and strained bulk III-V materials as well
as select alloys. We have shown in the past that our tight-
binding model has the capability of matching the hybrid
functional band structures for bulk, strained layers, and
superlattices [28,34].

The band structures of the alloys contain a massive num-
ber of spaghettilike bands due to the large supercell of the
system that translates to a small Brillouin zone with closely
separated minibands and minigaps. In order to transform
the complicated band structure into something tractable,
we employ the technique of band unfolding [35–37]. This
method involves projecting the eigenvalues back to the

extended Brillouin zone of the primitive unit cell of either
component, with weights set by decomposing individual
eigenfunctions into multiple Bloch wave functions with
different wavevectors in the Brillouin zone of the origi-
nal primitive unit cell. The supercell eigenvector | �Km〉 is
expressible in terms of the linear combination of primi-
tive eigenvectors | �kin〉. The eigenstate Ep of an atom with
wavevector k can be expressed as a linear combination
of atomic-orbital wave functions. The supercell electron
wave function |ψSC

m �K〉 can be written as a linear combination
of electron wave functions in the primitive cell as [15]

|ψSC
m �K〉 =

∑

n

a(�ki, n; �K , m)|ψPC
n �ki

〉 (1)

with �ki ∈ { �̃ki}, where |ψPC
n �ki

〉 is the electron wave function

for the wavevector �ki in the nth band of the primitive cell.
Here, �K and �k denote the reciprocal vector in the supercell
and primitive cell, respectively. The folding vector �G�k→�K
contains the projection relationship and is expressed as

�K = �k − �G�k→�K. (2)

The projection of the supercell wave function |ψSC
m �K〉 into

the primitive cell wave function |ψPC
n �ki

〉 is given as

Pm �K =
∑

n

|〈ψSC
m �K |ψPC

n �ki
〉|2. (3)

Plotting these projection coefficients gives a cleaner pic-
ture of the band evolution from the individual primitive
components to the superlattice bands.

B. Nonequilibrium Green’s function method for
coherent transmission

Under the influence of a large electric field, it is possible
for carriers to move across minigaps by means of quan-
tum tunneling. Such transport involves a sum of complex
transmissions limited by wave function symmetry between
several minibands. We make use of the nonequilibrium
Green’s function formalism to compute the ballistic trans-
mission and study the influence of minigaps on quantum
tunneling in digital alloys. The digital alloys we are inter-
ested in studying are translationally invariant in the plane
perpendicular to the growth direction and have finite non-
periodic hopping in the transport (growth) direction. Thus,
we need a device Hamiltonian H whose basis is Fourier
transformed into k space in the perpendicular x-y plane but
is in real space in the z growth direction, i.e., H(rz, kx, ky).
Conventionally, this can be done with a DFT Hamiltonian
in real space, H(rz, rx, ry), which is Fourier transformed
along the transverse axes to get H(rz, kx, ky). However,
DFT Hamiltonians are complex and sometimes do not
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match with bulk material bandstructure. Thus, it is simpler
to utilize a tight-binding Hamiltonian whose E − �ks are
calibrated to the bulk bandstructure, and inverse transform
along the growth direction.

The matrix elements of the three-dimensional (3D)
EDTB Hamiltonian are given in the basis of symmetri-
cally orthogonalized atomic orbitals |nbR〉. Here R denotes
the position of the atom, n is the orbital type (s, p , d or
s∗), and b denotes the type of atom (cation or anion). The
Hamiltonian can also be represented in the k-space basis
|nbk〉 by Fourier transforming the elements of the real-
space Hamiltonian. The 3D Hamiltonian is then converted
into a quasi-1D Hamiltonian [38]. The Hamiltonian ele-
ments can be represented in the basis |nbj k||〉 with “paral-
lel” momentum k|| = (kx, ky) and “perpendicular” position
xj = aL/4 as parameters. For a zinc-blende crystal, the dis-
tance between nearest-neighbor planes is one-fourth the
lattice constant aL. The 3D Hamiltonian is converted to
the quasi-1D Hamiltonian by means of a partial Fourier
transform [38,39]:

|nbj k||〉 = L−1/2
BZ

∫
dkze−ikz jaL/4|nbk〉. (4)

Here LBZ = 8π/aL is the length of the 1D Brillouin zone
over which the kz integral is taken. The quasi-1D Hamil-
tonian is position dependent in the growth direction. Thus,
we are able to utilize the accurate bandstructure capability
of the EDTB.

In the presence of contacts, the time-independent open
boundary Schrödinger equation reads

(EI − H −�1 −�2)� = S1 + S2, (5)

where E represents energy, I denotes the identity matrix,
and �1,2 are the self-energies for the left and right con-
tacts, respectively, describing electron outflow, while S1,2
are the inflow wave functions. The solution to this equation
is � = G(S1 + S2), where the Green’s function [40]

G(E) = [EI − H −�1 −�2]−1. (6)

Here H includes the applied potential, added to the onsite
1D elements. Assuming that the contacts are held in
local equilibria with bias-separated quasi-Fermi levels
μ1,2, we can write the bilinear thermal average 〈SiS

†
i 〉 =

	if (E − μi), where f is the Fermi-Dirac distribution and
	1,2 = i(�1,2 −�

†
1,2) denotes the broadening matrices of

the two contacts. The equal time current I = q(d/dt +
d/dt′)Tr〈�†(t)�(t′)〉|t=t′ then takes the Landauer form
I = (q/h)

∫
dET(f1 − f2), where the coherent transmission

between the two contacts is set by the Fisher-Lee formula

T(E) = Tr[	1G	2G†], (7)

where Tr represents the trace operator. The energy-
resolved net current density from layer m to layer m + 1

is expressed as [38]

Jm,m+1(E) = − iq
h

∫
k||
(2π)2

Tr[Gn,p
m+1,mHm,m+1

− Gn,p
m,m+1Hm+1,m], (8)

where Gn = 〈ψ†ψ〉 and Gp = 〈ψψ†〉 respectively repre-
sent the electron (n) and hole density (p), and Hm,m+1 is
the tight-binding hopping element between layers m and
m + 1 along the transport-growth direction.

C. Boltzmann transport model for incoherent
scattering

The NEGF approach is particularly suited to ballistic
transport where coherent quantum effects dominate. Inco-
herent scattering requires a self-consistent Born approxi-
mation that is computationally quite involved. We need a
practical treatment of scattering. Under an external electric
field, the carrier distributions in digital alloys no longer
follow a local Fermi distribution, but redistributed over
real-space and momentum space. To understand the car-
rier distribution under an electric field in digital alloys, we
employed the multiband Boltzmann equation:

�v · ∇rfn + �F · ∇kfn =
∑

m,�p ′
S(�p ′, �p)fm(�p ′)[1 − fn(�p)]

−
∑

m,�p ′
S(�p , �p ′)fn(�p)[1 − fm(�p ′)].

(9)

Here, f = f (r, k) is the carrier distribution, n and m are
band indices, �p and �p ′ are the momenta of the carriers,
and S(�p ′, �p) is the scattering rate. The left-hand side of
this equation alone describes the ballistic trajectory in the
phase space of carriers under an electric field. The right-
hand side of the equation corresponds to the scattering
processes including intraband and interband scattering.

In a homogeneous system where the electric field is
a constant, the distribution function is independent of
position, ∇rf = 0, and the equation is reduced to

�F · ∇kfn =
∑

m,�p ′
S(�p ′, �p)fm(�p ′)[1 − fn(�p)]

−
∑

m,�p ′
S(�p , �p ′)fn(�p)[1 − fm(�p ′)]. (10)

For APDs, it is critical to consider optical phonon scatter-
ing, which is the dominant process besides tunneling that
allows carriers to overcome the minigap arising in the band
structures of digital alloys. The optical phonon has a non-
trivial energy of �ωopt that can be absorbed or emitted by
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carriers. The scattering rate S(�p ′, �p) has the form set by
Fermi’s golden rule:

S(�p ′, �p) = 2π
�

|H�p ,�p ′ |2δ�p ′,�p± �βδ[E(�p ′)− E(�p)± �ωopt].

(11)

The E(�p) and E(�p ′) are band structures of the digital
alloy calculated with the tight-binding model. We can
calculate Hp ,p ′ by evaluating the electron-phonon cou-
pling matrix elements explicitly. In this work, we extract
a constant effective scattering strength H�p ,�p ′ from exper-
imental mobility μ. The scattering lifetime τ , which is
1/S(�p ′, �p), can be extracted from the mobility using μ =
qτ/m∗. Because of lack of experimental mobilities of the
digital alloys, we considered the average of the binary
constituent room-temperature mobilities for extracting the
lifetime. A simple average is done since the binary con-
stituents in periods of most of the digital alloys considered
here are equally divided. In using room-temperature values
the underlying assumption is that the dominant scatter-
ing mechanism here is phonon scattering due to a large
phonon population. Ionized impurity scattering is consid-
ered to be much lower due to digital alloys having clean
interfaces [16]. It is then possible to extract H�p ,�p ′ from
the scattering lifetime. To get the equilibrium solution,
we solve Eq. (10) self-consistently, starting from an initial
distribution f = δ�k,0.

A detailed model of carrier transport in APDs also
requires a NEGF treatment of impact ionization self-
energies and a Blanter-Buttiker approach to extract shot
noise, but we leave that to future work. Our focus here
is on conductive near-ballistic transport, and the role of
quantum tunneling and perturbative phonon scattering in
circumventing this.

III. RESULTS AND DISCUSSION

There are three common ways to achieve a low noise
and high gain-bandwidth product: selecting a semiconduc-
tor with favorable impact ionization coefficients, scaling
the multiplication region to exploit the nonlocal aspect of
impact ionization, and impact ionization engineering using
appropriately designed heterojunctions [11]. Typically, the
lower hole impact ionization coefficient in semiconduc-
tors is due to stronger scattering in the valence bands, as
depicted in Fig. 2(a). Previously, the lowest noise with
favorable impact ionization characteristics were realized
with Si in the visible and near-infrared range [41–44], and
InAs [45–49] and (Hg,Cd)Te [50,51] in the midinfrared
spectrum. In comparison, (In,Ga)As/(In,Al)As [52,53] ran-
dom alloy APDs exhibit significantly higher noise than Si,
(Hg,Cd)Te, or InAs, which are the highest performance
telecommunication APDs. In the recent past, digital alloy
(In,Al)As APDs have demonstrated lower noise compared

(a) (b)

(c) (d) (e)

FIG. 2. Impact ionization process in a normal (random alloy)
APD and superlattice APD. In both APDs, it is easier for elec-
trons to gain energy and reach the impact ionization threshold
(c). The low effective mass of the electrons in these materi-
als allow easy acceleration under an applied electric field and
overcome any minigaps or scattering processes present in the
conduction band. In normal APDs (a), holes find it harder to gain
high energy compared to electrons because of thermalization.
The hole energy is reduced by thermalization due to various scat-
tering processes, as shown in (d). In the superlattice APD (b), the
existence of minigaps makes it harder for holes to reach higher
energies. The minigaps act as barriers that prevent holes from
moving to the lower valence bands. In the plots, the y axis E is
the total energy (kinetic plus potential), meaning that in between
inelastic scattering events the particles travel horizontally.

to their random alloy counterpart [15]. This seems a sur-
prise, as the suppression of one carrier type (the opposite
of ballistic flow expected in an ordered structure) is nec-
essary for low excess noise. Initially, the low value of k in
(In,Al)As was attributed to the presence of minigaps [22].
However, minigaps were also observed in (In,Ga)As digi-
tal alloy APDs that have higher excess noise [18,54]. So, a
clearer understanding of the minigap physics was needed
and hence a comprehensive study was required.

Our recent results suggest that well-defined minigaps
introduced in the valence band of digital alloys suppress
the density of high-energy holes and thereby reduce the
impact ionization greatly, as shown in Fig. 2(b). In a
regular low-noise electron-injected APD, the electron ion-
ization coefficient is much higher than the hole ionization
coefficient. The conduction band minigaps in the digi-
tal alloys can be bypassed by quantum tunneling due to
the low effective masses of the electrons. Thus, electrons
can easily climb to higher kinetic energies in the con-
duction band, depicted in Fig. 2(c), and participate in the
impact ionization process by gaining the impact ioniza-
tion threshold energy. Random and digital alloys have
similar electron impact ionization coefficients [19] that
verify that conduction band minigaps do not limit electron
impact ionization. On the other hand, holes lose energy by
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various inelastic scattering processes [Fig. 2(d)], collec-
tively known as thermalization. Thermalization prevents
holes from reaching their secondary impact ionization
threshold. In superlattice APDs, minigaps provide an addi-
tional filter mechanism that prevents holes from reaching
the threshold energy required to initiate secondary impact
ionization.

The effect of minigaps is shown in Fig. 2(e). How-
ever, not all digital alloy APDs exhibit low noise. The
excess noise F(M ) versus multiplication gain character-
istics of experimental (In,Ga)As, (Al,Ga)As, (In,Al)As,
(Al,In)(As,Sb), and Al(As,Sb) digital alloy APDs are
shown in Fig. 3 [15–19]. (In,Ga)As APDs have the high-
est excess noise while Al(As,Sb) has the lowest. A key
observation from this compilation is that As-based APDs
have higher excess noise than Sb-based APDs. The dotted
lines represent the theoretical F(M ) versus M calculated
using the well-known McIntyre’s formula [12], introduced
in the first paragraph of this paper. In order to understand
the underlying physics in these digital alloys, an in-depth
analysis of the material bandstructure and its effect on the
carrier transport is required.

We calculate the atomistic DFT-calibrated EDTB band-
structure of these materials and unfold their bands using
the techniques described in Sec. II A, to understand the
underlying physics of their noise performance. In Fig. 4,
we show the periods of the different digital alloys con-
sidered: (a) 6ML [monolayer (ML)] (In,Ga)As, (b) 6ML
(Al,Ga)As, (c) 6ML (In,Al)As, (d) 10ML Al0.7In0.3AsSb,
and (e) 5ML Al(As,Sb). Here, 6ML (In,Ga)As includes
3ML InAs and 3ML GaAs, 6ML (Al,Ga)As has 3ML

k = 0.5 k = 0.3 k = 0.2 k = 0.1

k = 0.05

3.0

2.0

1.0

E
xc

es
s 

no
is

e

k = 0.03

k = 0.01
k = 0.005

FIG. 3. Experimentally measured excess noise versus
multiplication gain of (In,Ga)As, (Al,Ga)As, (In,Al)As,
(Al,In)(As,Sb), and Al(As,Sb) digital alloys are shown here
[15–19]. The dotted lines for the corresponding k values are
plotted using McIntyre’s formula [12].

(a) (b) (c)

(d) (e)

FIG. 4. Lattice structures of (a) (In,Ga)As, (b) (Al,Ga)As, (c)
(In,Al)As, (d) (Al,In)(As,Sb), and (e) Al(As,Sb) digital alloys
considered in this paper.

AlAs and 3ML GaAs, and 6 ML (In,Al)As has 3ML InAs
and 3ML AlAs. 10ML Al0.7In0.3AsSb consists of 3ML
AlSb, 1ML AlAs, 3ML AlAs, and 3ML InAs in its period.
Al(As,Sb) has 4ML AlSb, and 1ML AlAs. The unfolded
bandstructures of these alloys are shown in Fig. 5. We
observe that minigaps exist in at least one of the valence
bands (heavy hole, light hole, or split off) for all the mate-
rial combinations. The (In,Al)As valence band structure is
magnified in Fig. 6. The minigap between the LH and SO
bands is denoted in the figure. Additionally, the large sep-
aration between the LH and SO bands at the 	 point is
highlighted. In general, the minigap size shows a decreas-
ing trend with increasing period thickness, as was observed
for the (In,Al)As digital alloy [15]. However, the minigaps
disappear for very short-period (≤ 4ML) structures, as was
recently observed by Wang et al. for the 4ML (In,Al)As
digital alloy [55]. This is primarily due to the increased
edge roughness in these structures that result in a larger
smearing of the bands around the minigap regions.

The role of the minigaps on hole localization is not iden-
tical across different alloys. For instance, the presence of
minigaps in the material bandstructure is not sufficient to
realize low noise in APDs. Taking a closer look at the
bandstructures, we observe that the positions in energy of
the minigaps with respect to the valence band edge dif-
fer from one material to another. Additionally, the minigap
sizes of the different alloys vary in magnitude. A compli-
mentary effect of the minigap size is the flattening of the
energy bands, i.e., a large minigap size results in flatter
bands around the gap. This in turn results in an increased
effective mass that tends to inhibit carrier transport. Table I
lists the energy location of the minigap with respect to the
valence band edge �Eb, the minigap size �Em, the light-
hole (LH) and split-off (SO) band effective masses, and the
energy difference between the LH and SO bands �ELS at
the 	 point for the digital alloys studied.
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(a) (b) (c)

(d) (e)

FIG. 5. Unfolded bandstructure of (a) 6ML (In,Ga)As, (b) 6ML (Al,Ga)As, (c) 6ML (In,Al)As, (d) 10ML (Al,In)(As,Sb), and (e)
5ML Al(As,Sb). The minigaps of (In,Ga)As, (In,Al)As, (Al,In)(As,Sb), and Al(As,Sb) real bandstructures are shown in the insets.

We can see in the table that there are significant varia-
tions in minigap size and position between different mate-
rials. At first glance, there seems to be no direct correlation
between these variations and the excess noise, prompting
us to do added transport analyses. Under a high electric
field, a carrier must gain at least the threshold energy,
Eth, in order to impact ionize. Typically, Eth is assumed
to be approximately 1.5 times the material bandgap, EG.
Thus, in the presence of minigaps, electrons and holes must
bypass these gaps by some transport mechanism in order
to gain energy equivalent to Eth. Two such major transport
mechanisms are quantum mechanical tunneling and optical

FIG. 6. A magnified picture of the (In,Al)As valence band
shows the minigap closest to the valence band edge. The split
between the LH and SO at the 	 point is also highlighted.

phonon scattering. Our transport study must incorporate
these two mechanisms to understand the effectiveness of
minigaps on the APD excess noise.

We employ the NEGF formalism described in Sec. II B
to compute the ballistic transmission in the valence band
as a function of energy, T(E), dominated by tunneling pro-
cesses. The effect of different minigap sizes is highlighted
in Fig. 7. For our simulation, we set the quasi-Fermi level
of the left contact at −qV below the valence band edge
and the quasi-Fermi level of the right contact at another
−qV below. This is done in order to only observe the
intraband tunneling inside the valence band that is respon-
sible for overcoming minigaps under ballistic conditions.
In Fig. 7(a), we demonstrate that a small minigap in the
valence band creates a small tunneling barrier for the holes.
A hole with a small enough effective mass will be able
to tunnel across this barrier and render it ineffective. That
is the case for (In,Ga)As, which has a LH effective mass
of 0.13m0 and �Em = 0.03 eV. The spectral current den-
sity for (In,Ga)As under a bias V = 0.25 V is shown in
Fig. 7(b). We observe that the current spectrum in the
valence band is continuous in the Fermi energy window
and there is no drop in transmission due to the minigap.
For a large minigap, the holes encounter a larger tunnel-
ing barrier, as shown in Fig. 7(c), preventing them from
gaining the threshold energy Eth for secondary impact
ionization. This case is operational in (In,Al)As digital
alloys, as shown in the spectral density plot in Fig. 7(d).
(In,Al)As has a minigap size of 0.12 eV and LH effective
mass of 0.4m0. Within the Fermi window we see that
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TABLE I. Material parameters of the different digital alloys simulated in this paper.

Material EG (eV) �Eb (eV) �Em (eV) HH m∗ LH m∗ SO m∗ �ELS (eV)

(In,Ga)As 0.63 0.34 0.03 0.31 0.13 0.045 0.35
(Al,Ga)As 1.94 1.03 0.34 0.45 0.31 0.12 0.33
(In,Al)As 1.23 0.30 0.12 0.5 0.4 0.1 0.31
(Al,In)(As,Sb) 1.19 0.33 0.06 0.42 0.38 0.08 0.48
Al(As,Sb) 1.6 0.56 0.1 0.45 0.3 0.13 0.54

there are regions with extremely low current due to low
tunneling probability across the minigap. This is further
demonstrated by the T(E) versus E plot in Fig. 7(e). Here,

(a) (b)

(c) (d)

(e)

FIG. 7. Small minigaps in the valence band, as shown in (a),
create a small tunneling barrier that can be overcome by holes
with low mass. The spectral current density for (In,Ga)As, which
has a small minigap and small LH effective mass, is shown in
(b). The current spectrum for (In,Ga)As in the Fermi window
is continuous. The creation of a large tunneling barrier by a
larger minigap is shown in (c). This barrier prevents hole trans-
mission. (In,Al)As has a larger minigap and LH m∗. Regions
of low current density are observed within the Fermi window
in the (In,Al)As spectral current density in (d). The large mini-
gap in (In,Al)As results in reduced transmission, as shown in the
T(E) versus E plot of (e). The simulations for (b), (d) and (e) are
conducted under a bias of V = 0.25 V. Here EV is the valence
band edge, EC the conduction band edge and EFL represents
quas-Fermi level of the left contact.

it is observed that there are regions of low transmission
for (In,Al)As, whereas the (In,Ga)As transmission is con-
tinuous. This signifies that the minigaps in the (In,Al)As
valence band are large enough to prevent holes from gain-
ing in kinetic energy, resulting in a low hole ionization
coefficient.

In order to investigate the role of minigaps in the remain-
ing digital alloys, we look at the transmission versus
energy plots for all the alloys. The T(E) versus E char-
acteristics for the five digital alloys are shown in Fig. 8
for two bias conditions: (a) V = 0.25 V and (b) V = 0.5
V. We use a 21 × 21 grid for the transverse wavevec-
tors (kx, ky) within the first Brillouin zone. For this sim-
ulation, the structure lengths for (In,Ga)As, (Al,Ga)As,
(In,Al)As, and Al(As,Sb) are considered to be two periods.
For (Al,In)(As,Sb) we consider one period length. This
allows us to keep the structure lengths as close as possi-
ble. We consider lengths of 3.48 nm (In,Ga)As, 3.42 nm
(Al,Ga)As, 3.54 nm (In,Al)As, 3.06 nm (Al,In)(As,Sb),
and 3.08 nm Al(As,Sb) channels. The channel sizes cho-
sen are small compared to actual device lengths in order
to keep the computation tractable. For both the bias con-
ditions in Fig. 8 we see that there are energy ranges
for (In,Al)As, (Al,In)(As,Sb), and Al(As,Sb) in which the
transmission probability drops drastically. This low tunnel-
ing probability can be attributed to two factors. The first
factor is the presence of a sizeable minigap in all directions
in the material bandstructure. The other contributing factor
is the separation between the LH and SO bands. To a large
extent this factor is responsible for the low transmission

(a) (b)

FIG. 8. The transmission T(E) versus energy E for all the dig-
ital alloys at (a) V = 0.25 V and (b) V = 0.5 V. A 21 × 21 grid
for transverse wavevectors is used.
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(a) (b)

(c)

FIG. 9. Unfolded bandstructure of Sb-containing random
alloys: (a) Al0.79In0.21As0.74Sb0.26, (b) AlAs0.44Sb0.56, and (c)
Al0.85Ga0.15As0.56Sb0.44.

regions in (Al,In)(As,Sb) and Al(As,Sb), whose minigap
sizes (from Table I) are smaller than (In,Al)As but also
demonstrate lower excess noise. (In,Ga)As and (Al,Ga)As
do not have any large drop in transmission for both biases.
This characteristic implies that either the minigap size is
too small to affect the carrier transport like in (In,Ga)As or
there is no minigap at all, as in (Al,Ga)As.

To further underscore the role of the separation
between the LH and SO bands, we looked at the band-
structure of Sb-containing random alloys in Fig. 9.
Here, for Al0.79In0.21As0.74Sb0.26, AlAs0.44Sb0.56, and
Al0.85Ga0.15As0.56Sb0.44, the �ELS values are 0.44, 0.46,
and 0.52 eV, respectively. The LH and SO offset values of
the Al(As,Sb) and (Al,In)(As,Sb) random alloys are com-
parable to their digital alloy counterparts that are given in
Table I. The different gap sizes of these alloys most likely
originate from variations in bonding and antibonding inter-
actions due to their different chemical compositions. The
valence band effective masses of these random alloys are
also similar to the digital alloy masses. However, there are
no minigaps present in these random alloys. Thus, the low
excess noise observed recently in the (Al,In)(As,Sb) and
(Al,Ga)(As,Sb) random alloys can be attributed to their
large LH/SO offsets. This also indicates that these offsets
play a crucial role in achieving low noise in Al(As,Sb) and
(Al,In)(As,Sb) digital alloys.

For further confirmation of these observations on the
digital alloys, we compute the spectral current density for
the case of constant total period length for all the struc-
tures. The period size of each unit cell stays the same,
but the number of unit cells is increased to make the
total period length the same for all alloys. We consider
the case with total period of 30MLs and voltage bias of
0.25 V. The current spectral density plots for the five dig-
ital alloys using a 15 × 15 transverse wavevector grid are

(a) (b)

(c) (d)

(e)

FIG. 10. Energy-resolved current spectral density in the
valence band for (a) (In,Ga)As, (b) (Al,Ga)As, (c) (In,Al)As, (d)
(Al,In)(As,Sb), and (e) Al(As,Sb). The bias for the simulation is
set to V = 0.25 V and the total period length is 30 monolayers.

shown in Fig. 10. A smaller number of grid points is used
here to save computation time. In the figure, a very small
minigap is observed for (In,Ga)As within the Fermi win-
dow and a continuous spectrum is seen for (Al,Ga)As.
Regions of low transmission and current are observed for
(In,Al)As, (Al,In)(As,Sb), and Al(As,Sb). These observa-
tions are consistent with our previous calculations. We
can thus infer that at least under fully coherent transport
including tunneling, holes will not be able to gain sufficient
kinetic energy to achieve impact ionization.

Besides tunneling processes, it is possible for carriers
to jump across energy gaps through inelastic scattering. In
APDs, the dominant scattering mechanism is intervalley
optical phonon scattering. Using the Boltzmann transport
equation (BTE) model described in Sec. II C, the effect of
phonon scattering in digital alloys is studied. The low-field
carrier mobilities and optical phonon energies of the binary
constituents of the alloys used in the BTE simulations are
listed in Table II. The low-field mobilities are generally
valid for electric fields up to of 1–100 kV/cm depending on
the material. The effective mobility at high fields is propor-
tional to the low-field mobility [58]. Experimental data for
the high field mobilities or scattering lifetimes of the digi-
tal alloys are not available. Thus, it is reasonable to use the
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TABLE II. Electron/hole mobilities and optical phonon ener-
gies of binary compounds that form the digital alloys [56,57].

Material μh (cm2/Vs) Eopt (meV)

InAs 500 30
AlAs 200 50
GaAs 400 35
AlSb 400 42

low-field mobilities because the relative difference in the
scattering lifetimes of the different digital alloys and their
effects are preserved even at high electric fields. An effec-
tive scattering strength H�p ,�p ′ is obtained from the mobility
values, as described in Sec. II C. For our BTE simula-
tions, we use the heavy-hole effective masses outlined in
Table I. We compute the carrier density distribution in
the valence band under a high electric field of 1 MV/cm,
by solving the three-dimensional Boltzmann equation with
the entire set of tight-binding energy bands within the Bril-
louin zone of the digital alloy. The optical phonon energy
and mobilities of each alloy are taken to be the average
of the binary constituent optical phonon energies and their
mobilities. The energy-resolved carrier density distribu-
tion of the valence band for all the alloys is shown in
Fig. 11. The valence band plot in Fig. 11 has contributions
from different valence bands like heavy-hole, light-hole,
and split-off bands. It shows that the occupation probabili-
ties for (In,Al)As, (Al,In)(As,Sb), and Al(As,Sb) are lower
than those of the other two alloys at high energies. The
optical phonon energies of these alloys are not sufficiently

–2.0 –1.5 –1.0 –0.5 0.0
Energy (eV)

10–10

10–5
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D
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Al(As,Sb)

FIG. 11. Carrier density distribution versus energy for the
valence band in the presence of optical phonon scattering com-
puted using BTE simulation. (In,Al)As, (Al,In)(As,Sb), and
Al(As,Sb) have lower occupation probabilities compared to
(In,Ga)As and (Al,Ga)As. This prevents holes from gaining the
ionization threshold energy.

large to overcome their minigaps and thus prevent holes
from ramping their kinetic energies up to Eth.

The top few valence bands of (In,Ga)As are shown on
the left side of Fig. 12(a) and the valence band carrier den-
sity distribution is projected onto the bottom. The bands
are inverted for a better view. For clearer understand-
ing, the (In,Ga)As carrier density distribution contour is
also shown on the right. The valence band carrier distri-
butions for the (Al,Ga)As, (In,Al)As, (Al,In)(As,Sb), and
Al(As,Sb) alloys are respectively shown in Figs. 12(b),
12(c), 12(d), and 12(e). By studying the contours of each
material, we observe that the densities for (In,Al)As,
(Al,In)(As,Sb), and Al(As,Sb) are more localized com-
pared to those of (Al,Ga)As and (In,Ga)As. This is once
again consistent with the lower hole impact ionizations of
(In,Al)As, (Al,In)(As,Sb), and Al(As,Sb).

For (In,Ga)As and (Al,Ga)As, the bandwidths are large
enough to allow both holes and electrons to reach Eth
easily. The resulting values of k for these materials are
quite high. Correspondingly, these two alloys have higher
excess noise. In contrast, for (In,Al)As, (Al,In)(As,Sb),
and Al(As,Sb), it is easy for electrons to reach the threshold
energy, but the holes are confined close to the valence band
edge. This results in asymmetric ionization coefficients
that give a low k, leading in turn to low excess noise.

(a)

(b)

(d) (e)

(c)

FIG. 12. Carrier density distribution for (a) (In,Ga)As, (b)
(Al,Ga)As, (c) (In,Al)As, (d) (Al,In)(As,Sb), and (e) Al(As,Sb).
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Armed with these results, we attempt to paint a clearer
picture of how the minigaps and band splitting can reduce
the excess noise in APDs. Specifically, we propose a set
of empirical inequalities that can used to judge the excess
noise performance of a digital alloy.

IV. EMPIRICAL INEQUALITIES

Based on our experimental results and theoretical cal-
culations, five inequalities are proposed that use only
material parameters like effective mass and minigap size
obtained from our material bandstructures as inputs. In
this paper, the transport is in the [001] direction. Since
the minigaps considered lie in the LH band, we use the
unfolded LH effective mass value in the 	 − [001] direc-
tion for the inequalities. The masses are obtained using
the relationship �2k2/2m∗ = E(1 + αE), where α = [(1 −
m∗/m0)

2]/EG [59]. In reality, the effective masses are com-
plicated tensors that cannot be included in these empirical
inequalities, but are captured by the NEGF simulations
described in Sec. II B. A digital alloy material should favor
low noise if it satisfies the majority of these inequalities.
The four main inequalities are as follows.

Inequality (1): �Eb/Eth � 1.
Inequality (2): Eopt/�Em � 1.

Inequality (3): exp
(

− 4
√

2ml�E3/2
m

3q�F

)
� 1.

Inequality (4): exp
(

− 4
√

2ml�E3/2
LS

3q�F

)
� 1.

Here, �Eb represents the energy difference between the
VB maximum and the first minigap edge in VB, Eopt is the
optical phonon energy, and�Em gives the size of the mini-
gap. The longitudinal effective mass of the band in which
the minigap exists is represented by ml. The energy dif-
ference between the LH and SO bands at the 	 point is
denoted by �ELS. A pictorial view of the different energy
differences and inequalities mentioned above is shown in
Fig. 13.

The first inequality, inequality (1), states that the energy
bandwidth �Eb must be less than the ionization threshold
energy Eth. This means that a carrier cannot gain suffi-
cient kinetic energy to impact ionize before reaching the
minigap. When a carrier reaches a minigap, it faces a bar-
rier (Fig. 13), which it can overcome by phonon scattering
or quantum tunneling. Within the parabolic band approx-
imation, Eth = [(2μ+ 1)/(μ+ 1)]EG, where for holes, μ
is the ratio between the valence band effective mass and
conduction band mass. According to this equation, Eth
varies between EG and 2EG depending on the value of μ.
For the minigaps to be effective, they should ideally be
located within an EG value away from the valence band
edge. Inequality (2) sets the condition for phonon scat-
tering across the minigap. If the Eopt of the material is

FIG. 13. Criteria for designing low-noise digital alloy APDs.
Inequality (1) states that the bandwidth to the first minigap is
lower than the ionization threshold energy. Inequality (2) asserts
that the optical phonon energy has to be less than the minigap
size. The tunneling probability for holes to jump across the mini-
gap or from the light-hole band to the split-off band must be low.
These are described by inequalities (3) and (4).

less than �Em then the phonon scattering of the carri-
ers across the minigap is inhibited because carriers cannot
gain sufficient energy to jump across the gap. It is possible
for the carrier to still overcome the minigap by tunnel-
ing, and the condition for that is given in inequality (3),
in terms of the tunneling probability across the minigap
under the influence of an electric field. To compute the tun-
neling probability, we consider a triangular barrier in the
minigap region and use the well-known Fowler-Nordheim
equation. Together inequalities (2) and (3) give the effec-
tiveness of the minigap in limiting hole ionization in digital
alloys.

Electron-injected digital alloys can in fact achieve low
noise even in the absence of minigaps, for instance in a
material with a large separation �ELS between the LH
and SO bands, like Al(As,Sb). Holes within the heavy-
hole (HH) and LH bands are limited near the valence
band edge by thermalization (hole-phonon scattering) due
to the heavy effective masses in these bands, preventing
them from reaching the ionization threshold energy within
the band. An alternate pathway to ionization involves the
split-off band. Since the split-off band has a low effec-
tive mass, holes require much smaller momentum to reach
higher energies in this band, so that holes entering this
band from HH or LH can quickly gain their ionization
threshold energy. The separation between HH or LH and
SO bands is controlled by spin-orbit coupling, as shown
in Fig. 14. Strong spin-orbit coupling due to the inclusion
of heavy elements, like antimony or bismuth, can increase
the separation �ELS, as shown in Fig. 14(b). When �ELS
is large, it becomes very difficult for holes to reach the
threshold energy. Inequality (4) is accordingly impor-
tant for APDs in which electron impact ionization is the
dominant process, and is a measure of hole tunneling from
the light-hole to the split-off band.
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(a)

(b)

FIG. 14. Effect of spin-orbit coupling on LH/SO separation.
(a) Weak coupling results in small �ELS and (b) strong coupling
results in large �ELS.

An inherent fifth inequality, satisfied by these five
alloys, is

ESC < Eth. (12)

Here ESC is the energy gained by a hole between succes-
sive phonon scattering events, expressed as ESC = λmfp/F .
The z-directed mean free path, λmfp = vsatτSC/2, where vsat
is the saturation velocity and τSC is the scattering life-
time. This inequality states that phonon scattering events
reduce the carrier energy and prevent them from directly
gaining the ionization threshold energy between two suc-
cessive scattering events. This makes it more difficult for
the carriers to impact ionize. As a result, the carriers
need to traverse several mean free paths to gain sufficient
energy for ionization. The ESC values of the five alloys at
electric fields of 100 and 500 kV/cm are given in Table III.
We extract τSC for an alloy by assuming a virtual crystal
approximation of the component binary alloy scattering

TABLE III. The ESC values at F = 100 kV/cm and F = 500
kV/cm, and Eth of the five alloys. For a material with equal con-
duction and valence band effective masses, considering parabolic
bands, the threshold energy Eth = 1.5EG [60]. The same assump-
tion is made here for the fifth inequality, as this is standard
practice in the APD literature.

ESC (eV) ESC (eV)
Material at 100 kV/cm at 500 kV/cm Eth (eV)

(In,Ga)As 0.029 0.149 0.95
(Al,Ga)As 0.036 0.181 3.91
(In,Al)As 0.028 0.138 1.85
(Al,In)(As,Sb) 0.024 0.119 1.79
Al(As,Sb) 0.038 0.19 2.4

times. The τSC values for InAs, GaAs, AlAs, and AlSb are
0.08, 0.09, 0.08, and 0.11 ps, respectively [62]. A similar
average is done for the ternary alloy saturation veloci-
ties. Because of unavailability of AlSb vsat, InAs vsat is
used for (Al,In)(As,Sb) and AlAs vsat for Al(As,Sb). InAs,
GaAs, and AlAs vsat values used are 5 × 104, 9 × 104, and
8 × 104 m/s, respectively [63].

In order to validate these inequalities as design criteria,
we apply them to the set of digital alloys mentioned in
this paper. We consider a high electric field of 1 MV/cm
for inequalities (3) and (4). The values of the left sides of
the inequalities for the five alloys—(In,Ga)As, (Al,Ga)As,
(In,Al)As, (Al,In)(As,Sb), and Al(As,Sb)—are given in the
first four columns of Table IV, while the measured k is pro-
vided as reference in column 6. The table cells are colored
green or red. Green cells aid in noise suppression (left sides
of the inequalities are relatively small) and red is detrimen-
tal to reducing noise (left sides larger and corresponding
inequalities not satisfied). Additionally, the color intensi-
ties highlight the strength of that inequality (how far the
left side is from equality with the right side). A lighter
shade represents a smaller impact, while a darker shade
means that the condition has a greater effect on the impact
ionization noise. For example, in the case of (In,Ga)As,
inequality (1) is shaded light green, which means that

TABLE IV. Suitability of digital alloys for attaining low noise is judged using the proposed inequalities. Here, the color green means
beneficial for low noise and red indicates it is detrimental. The impact of the inequality in determining the experimentally determined
ionization coefficient ratio k of the material is depicted by the color shades. A darker shade indicates that the inequality has a greater
impact on the value of k. The experimental random alloy k values of the five alloys are given in the last column.
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it does not effect noise performance significantly. How-
ever, the remaining inequalities for (In,Ga)As are shaded
dark red, indicating their key role in the high noise and
hence high k of (In,Ga)As. The inequalities for (Al,Ga)As,
which has a slightly lower k, have a lighter shade of red.
There are no minigaps for (Al,Ga)As in the light-hole
band. There is a minigap in the SO band of (Al,Ga)As
that is very deep in the valence band and there are other
available states at that energy. Thus, holes can gain suffi-
cient momentum to jump to other bands and bypass the
minigap. So, we consider �Em = 0 for it. We accord-
ingly expect that (Al,Ga)As has a lower noise. However,
since the LH effective mass for (Al,Ga)As is greater than
(In,Ga)As, it has lower hole impact ionization and thus
lower noise compared to (In,Ga)As. The remaining alloys
have significantly lower noise compared to these two.

The cells for (In,Al)As, (Al,In)(As,Sb), and Al(As,Sb)
are all green. This means that these three alloys are quite
favorable for attaining low excess performance. (In,Al)As
has a minigap size �Em = 0.12 eV, which is larger than
its optical phonon energy. It also has a large LH effective
mass that prevents quantum tunneling across the minigap,
as well as the LH-SO separation �ELS that is compara-
ble to that of (Al,Ga)As and (In,Ga)As. (Al,In)(As,Sb)
has a low value for inequality (1), so that cell is shaded
dark green. However, for inequalities (2) and (3), the val-
ues for (Al,In)(As,Sb) are higher than those of (In,Al)As
and are thus shaded in a lighter color. (Al,In)(As,Sb)
has a larger LH-SO separation than (In,Al)As and hence
its inequality (4) has a darker shade. For In Al(As,Sb),
the values for inequalities (1)–(3) have medium shades
as they lie between the maximum and minimum val-
ues in each of these columns for the corresponding
inequalities. However, Al(As,Sb) has a large�ELS = 0.54
eV, so its inequality-(4) cell is shaded dark green. The
(Al,In)(As,Sb) and Al(As,Sb) minigaps are larger than the
optical phonon energies and have favorable locations away
from the valence band edge. Thus, these gaps have sec-
ondary contributions in limiting hole impact ionization in
these Sb-containing materials. Based on the inequality val-
ues, it would seem that (In,Al)As would have the lowest
noise since it has the darkest shades. However, looking
at the inequality-(4) values for these three materials we
can infer that the LH-SO separation plays a critical role in
reducing noise. Here, Al(As,Sb) has the lowest k = 0.005
and also the largest �ELS. On the contrary, (In,Al)As has
the highest k = 0.1 and the smallest�ELS. Finally, the fifth
inequality, Eq. (12), discussed in the context of split-off
states is trivially satisfied by all five studied alloys. While
important, it is thus not tabulated here, as it does not alter
the status quo.

The random alloy k values are given in final column
to provide comparison with the digital alloy k values. In
general, the random alloy values are higher than the digital
alloy values, but there are some subtleties that should be

pointed out. The (Al,In)(As,Sb) random alloy value is very
close to the digital alloy value. The small discrepancy
might be within the experimental error limits. Moreover,
the thickness of the multiplication region in the Al(As,Sb)
digital APD is 1550 nm [17] and is 250 nm for the random
alloy counterpart [61]. In the thinner Al(As,Sb) random
alloy the larger k value can be due to the presence of higher
electric fields where α and β start to converge. Data for
thick random alloy Al(As,Sb) APD are not available as it
is very difficult to grow good quality thick random alloy
Al(As,Sb) structures [64]. Also, the period thickness in the
Al(As,Sb) digital alloy is very small (about 1.3 nm). This
can introduce some randomness in the alloy composition.

In short, the values of the inequalities in Table IV give a
fairly good understanding of the excess noise performance
of the set of digital alloys considered in this paper. They
can potentially serve as empirical design criteria for judg-
ing alternative digital alloys in consideration as potential
material candidates for digital alloy superlattice APDs.

V. CONCLUSION

In this paper, we have studied the digital alloy valence
band carrier transport using NEGF and BTE formalisms.
Based on our simulation results, we explain how mini-
gaps and LH/SO offset impede hole impact ionization in
APDs and improve their excess noise performance. When
these gaps and offsets are sufficiently large, they cannot
be bridged across by quantum tunneling or phonon scatter-
ing processes. Furthermore, we propose five inequalities as
empirical design criteria for digital alloys with low-noise
performance capabilities. Material parameters calculated
computationally are used as inputs for these. We validate
these criteria by explaining the excess noise performance
of several experimentally fabricated digital alloy APDs.
The design criteria can be used to computationally design
alternative digital alloy structures and benchmark them
before actually fabricating these.
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