
MINiature Interactive Offset Networks (MINIONs) for Wafer Map Classification

Yueling (Jenny) Zeng, Li-C. Wang, Chuanhe (Jay) Shan
University of California, Santa Barbara

Santa Barbara, California 93106

Abstract—We present a novel approach called MINiature
Interactive Offset Networks (or MINIONs). We use wafer
map classification as an application example. A Minion is
trained with a specially-designed one-shot learning scheme.
A collection of Minions can be used to patch a master model.
Experiment results are provided to explain the potential areas
Minions can help and their unique benefits.

1. Introduction
For multi-class image classification, there are two com-

mon approaches as depicted in Figure 1. With a traditional
Machine Learning (ML) approach, one first decides on a
set of features. With the features defined, input samples
are converted into feature vectors “v1, v2,⋯” as shown in
Figure 1. Then, a model building method (e.g. SVM [1]) is
applied to learn a model based on the feature vectors.

Figure 1. Two Basic ML Approaches

With a Deep Learning approach, the entire feature ex-
traction step is automated, for example by multiple Convo-
lution Neural Network (CNN) layers. The output of the last
CNN layer can also be seen as a feature vector. Then, more
network layers (e.g. Fully-Connected layers) can follow, to
implement the model building step.

Take wafer map classification as an application example.
One can observe these two common approaches through
the works published over recent years. For example, the
authors in [2] developed a comprehensive wafer map dataset
called WM-811K (811,457 wafer maps where 172,950 with
labels and the rest without label), and followed a traditional
ML approach to build a wafer map pattern recognition and
similarity ranking system. The work employed several types
of features, including those based on Radon transform and
those based on analyzing geometric properties (e.g. failing
die counts, region labeling, line detection, etc.). Support
Vector Machine (SVM) [1] was used for the model building
step. The work reported an overall 94.63% accuracy on the
dataset, comparing to the deep learning approach at the time
which achieved 89.64% accuracy.

A number of works later also used the WM-811K
dataset. For example, the work in [3] followed the same
approach with a slightly different feature set and aimed to
improve multi-pattern detection accuracy. The work in [4]
advocated using more discriminant features based on Linear
Discriminant Analysis (LDA) to simplify the model build-
ing step. With Radon transform based features, the work
in [5] proposed a special Decision Tree based ensemble
learning method. Decision tree models are generally more
interpretable than SVM models.

To help deep learning on WM-811K, the author in [6]
proposed using an Autoencoder (AE) as a pre-training step
to learn features before learning a classifier. However, the
author found that pre-selected features were still needed
such that feature vectors, instead of the wafer map images
themselves, were fed into the AE.

To apply deep learning, the author in [7] proposed a 2-
stage classification process: first to classify between having a
pattern and having no pattern (the later is called the “None”
class in WM-811K), and if there is a pattern, classify which
class it is. Note that both works [6] and [7] acknowledged
that the wafer map images were noisy and a de-noising step
was required to make the learning work.

WM-811K is a highly imbalanced dataset where some
classes have many more samples than others [2]. The work
in [8] proposed a special data augmentation method based
on GAN (Generative Adversarial Network) [9]. Instead of
using GAN, the authors in [10] used AE [11] for data
augmentation. Moreover, the authors found that augmenting
the samples with rotation could help. In contrast, the authors
in [12] used pre-determined methods to augment the dataset
and a deeper CNN for training the classifier.

The authors in [13] approached WM-811K dataset from
a different angle. They tried to address the concern that a
wafer map to be predicted might contain a new pattern not
seen in the dataset, or contain a multi-pattern. As a result,
the classifier’s prediction might not be reliable. The work
proposed using Selective Learning to estimate confidence of
a prediction. Then, the deep learning model could include
the choice to abstain from making a prediction.

In view of Figure 1, the earlier works [2][3][4][5] follow
a traditional ML approach. The work [6] makes a transi-
tion to a deep learning approach. The later works [7][8]
[10][12][13] follow a deep learning approach where data
augmentation and sample de-noising are two helpful steps.

It is interesting to observe that most of the previous
works on wafer map classification were published in the

Regular Paper

semiconductor manufacturing field. Indeed, the problem has
been studied in that field for decades. The works discussed
above are only those based on the WM-811K dataset.

The problem attracts the interest of a fabless company
because classifying failure patterns can help facilitate com-
munication with the foundry, i.e. asking more tangible ques-
tions. This is particularly needed when unusual defectivity
is observed with an advanced technology node.

1.1. Premises of this work
Following the research line reviewed above, a natural

research path is to improve on a deep learning approach, e.g.
dealing with the dataset imbalance problem or the difficulty
among learning different classes. This is not the direction
followed by this work though. Instead, we follow a path
complementary to the deep learning direction.

With a deep learning approach, training a multi-class
classifier essentially comprises three steps:

1) Split a dataset into set T and set V .
2) Train a classifier with T .
3) Evaluate (and validate) the classifier with V .

We can call this an “end-to-end” training approach: Once
the dataset is prepared, network architecture is determined,
and training parameters are selected, a model is trained and
validated in terms of its classification accuracy.

Our work is based on two premises. First, it is difficult,
if not impossible, to obtain an end-to-end model where the
“source” of its prediction is traceable (and interpretable).
For example, suppose we desire to know why the label is
predicted for a particular sample. It is difficult to make such
a query and get an easily understandable answer. Our second
premise is that there can be ambiguity in the labels provided
in the dataset. For example, two very similar wafer maps are
labeled as two different classes. Such ambiguity limits the
accuracy achievable by an end-to-end model.

1.2. The master model and the Minions
In view of Figure 1, regardless of which approach is

taken, the end result is a model for performing the classi-
fication task. We call such a model a master. The works
reviewed above all try to optimize a master model, to
improve its prediction accuracy and/or to add a capability
it previously not having. With the two premises, our view
is that a master model is not going to be ideal in every
aspect. It will need some help. Hence in this work, we pro-
pose a novel approach called MINiature Interactive Offset
Networks (MINIONS) that can be used to help a master.

For example, suppose when a master model is applied,
it reports a prediction deemed by a person as a mistake.
Instead of re-training the model, we envision that we can
use a Minion to memorize the mistake to avoid a similar
mistake in the future. With many Minions, many mistakes
can be avoided. In essence, Minions can serve as “patches”
to a master, or in Minions’ own term, to serve a master.

For the rest of the paper, Section 2 reviews the problem
of wafer map classification and our previous works. Sec-
tion 3 discusses one-shot learning in view of Minion training

and the various methods proposed for one-shot learning.
Section 4 presents result from our selected master models.
Section 5 reviews manifestation learning [14] as our base-
line for training Minions, presents a novel two-part training
approach, and discusses potential methods for improving the
training. Section 6 demonstrates the two areas Minions can
help a master: filtering out wafer maps containing no pattern
and fixing a classification mistake. Section 7 discusses using
Minions by themselves to perform unsupervised analysis on
wafer batches. Section 8 concludes.

2. Wafer Map Pattern Recognition
A wafer map is an image of wafer where each die loca-

tion is marked with a value, such as a binary value indicating
pass/fail, or a numerical value indicating a measurement
result. Analysis of wafer maps is a common practice for
investigating a potential yield issue.

The WM-811K dataset categorizes wafer map patterns
into 8 class. Figure 2 illustrates the 8 pattern classes (where
yellow dots indicate fails). In addition, a “None” class is
used to denote those wafer maps containing no pattern.

Figure 2. Eight pattern classes in WM-811K dataset

Division of such classes was done manually, and could
be subjective. For example, Figure 3 shows different exam-
ples for the 8 classes. It is possible that a different person
might perceive those examples with a different label. Also
observe that the “Edge-Local” and the “Edge-Ring” exam-
ples look very similar, indicating potential label ambiguity.
Figure 3 illustrates that labels provided in a dataset for
training might not always be clear and consistent.

Figure 3. Additional examples assigned with the given label

Instead of using one model to classify all classes, our
earlier solution [15] proposes training one recognizer for ev-
ery class independently. This can avoid re-training an entire
model when an adjustment on one class is needed. Then,
following the work in [15], the work in [16] focuses on
issues related to the deployment. Tensor computation based
techniques [17][18][19] are introduced for two purposes: (1)
to automatically decide a new class to learn and extract
the corresponding training samples, and (2) to provide a

Regular Paper

verification method to validate the recognition result of a
neural network recognizer.

The first capability is useful when a large batch of
unlabeled wafer maps are processed for learning a set of
initial recognizers. The second capability adds a safe guard
and improves robustness of the classification. The reason for
needing such a safe guard is because training a recognizer
in [15][16] is based on a GAN setting [9][20][21] and the
training could be tricky [20][21], i.e. the robustness of a
GAN-based recognizer could be of concern [16].

3. The Minions
Instead of training one model for every class, in this

work we train one Minion model for one given wafer map.
For a Minion, we call the wafer map its anchor.

Figure 4 uses a scenario to illustrate one motivation to
consider the Minion approach. From Figure 3, we see that
there is an ambiguity between “Edge-Local” and “Edge-
Ring”. Suppose in application the master model classifies an
unlabeled wafer map as “Edge-Local” as shown in Figure 4.

Figure 4. Traing a Minion to help a master

Suppose a user reviews the result and decides that the
label should be “Edge-Ring”. To adjust the prediction for
future similar wafer maps, we train a Minion based on the
wafer map to be adjusted on. Then, the Minion is used as
a patch to the master model. The patch can work as the
following: For a future wafer map w classified by the master
as “Edge-Local, if w is also recognized by the Minion, then
it is moved from “Edge-Local” to “Edge-Ring”. In other
words, we use the Minion to memorize the move.

Relative to the master they serve, Minions can be a much
simpler model (MINiature). A Minion might be learned
through interacting with a user (Interactive). A Minion
performs a tweak to its master’s prediction when needed
(Offset). Moreover, a Minion is a neural network (Network).

3.1. One-shot learning
Minion is trained with one sample. Training with one

sample is generally referred as one-shot learning [22][23].
There can be two different setups: adjusting an existing
model with one sample and training a new model with one
sample. Our Minion training follows the second setup.

One-shot learning has been considered for many prob-
lem contexts, e.g. [24][25][26], just to name a few. The work
in [24] considered one-shot learning in the drug discovery
context. The work in [25] considered a recommendation
system (e.g. Netflix) when a new user or a new class was
presented. The term “cold-start” was used to describe the
context. The work in [26] considered multiple application

contexts such as hand-written character recognition and
language translation. The focus was on implementing a
memory module to remember rare training samples (one-
shot learning) and as a result, to achieve life-long learning.

Comparing to [24], our problem formulation is simpler.
While our one-shot learning focuses on recognizing a new
sub-class, in [24] the challenge is on predicting the behavior
of a molecule in a new experimental system. Similar to [25],
Minion learning is considered as a cold-start, i.e. we prefer
not to use other labeled samples. However, instead of taking
a meta-learning approach like [25] to overcome the cold-
start difficulty, we follow an approach called Manifestation
Learning proposed in [14]. Unlike [26] where a unified
memory module is used to remember rare samples, our
approach remembers through each sample with its own
dedicated Minion. Training a memory module is end-to-end.
The advantage of our approach is traceability, i.e. it allows
tracking the effect from every Minion.

3.2. Methods for One-Shot Learning
There are three sets of methods proposed to help one-

shot learning. Below we provide a quick review.

3.2.1. Data augmentation. For one-shot (or few-shot)
learning, the fundamental issue is labeled sample scarcity.
Hence, an intuitive idea is to generate new labeled samples
to augment the dataset. One of the earliest papers [27]
proposed learning a set of geometric transformations to
augment the training set. More recently, the work in [28]
used Autoencoder [11] to learn intra-class variations and
then applied the variations to synthesize new samples. The
idea of learning sample variations was also employed in
[29]. A single function was learned to answer an analogy
question: “z1 ∶ z2 ∶∶ x ∶?” where z1, z2 were feature vectors
of two existing samples, and x was the feature vector of a
sample from the new class to be augmented.

In feature augmentation (e.g. [29]), generated samples
are in the feature space rather than in the input space. In
addition to [29], the work in [30] proposed to model so-
called feature trajectories induced by variations of object
poses. The work in [31] employed a novel GAN design for
feature augmentation. Instead of using GAN, the work in
[32] employed Variational Autoencoder (VAE) [33].

The works reviewed above are mostly for processing
“natural” images (same-class images have a high degree of
visual similarity, e.g. images from the popular ImageNet
dataset, as opposed to machine-generated or artificially-
created images like wafer maps), except for [27] which
focused on hand-writing characters. For processing images
of characters, the work in [34] considered one-shot genera-
tion, i.e. generating different writings of a given character.
The work was motivated by the challenge proposed in [35].
Worth noting, the approach in [34] employed a network
component called spatial transformer which learned invari-
ant with respect to four types of affine transformations [36].

3.2.2. Transfer learning. Another popular idea to overcome
sample scarcity is transfer learning [37]. Transfer learning
utilizes “knowledge” learned from a source domain, to

Regular Paper

facilitate learning on a target domain (where training data is
scarce). Feature transfer [38] is a common approach where
portion of a learned neural network from the source is re-
used in training for the target. A special context of transfer
learning is called domain adaptation [39] where knowledge
is transferred between two different domains for performing
the same task. Domain-Adversarial Training (DAT) [40] is
a way for domain adaptation. In DAT, adversarial training is
used to remove domain-specific effect in the feature space so
that same-class samples from two domains (e.g. black/white
images vs. color images) are mapped to similar feature
vectors, i.e. the feature space trained with one domain can
be re-used for the other domain.

3.2.3. Embedding learning. Embedding learning such as
Siamese Network [41], Matching Network [42], Prototypical
Network [43], and Relation Network [44], conceptually uses
two functions f, g to map a test sample xtest and a training
sample xtrain to their respective embedding vectors. A
similarity (e.g. cosine similarity) is checked between two
embedding vectors to determine if they are in the same class
or not. Task-invariant embedding learning can be considered
as a form of meta-learning [45].

3.2.4. Methods considered. Among the three sets of meth-
ods, we considered data augmentation and feature transfer in
our study. We did not consider meta-learning. This decision
was largely influenced by the recent work [46] on cross-
domain few-shot learning. Their findings include: (1) ad-
vanced meta-learning methods are out-performed by earlier
meta-learning approaches, (2) all meta-learning methods are
out-performed by feature transfer, and (3) performance of a
method correlates to dataset similarity between the source
and the target domains. Instead of meta-learning, we did
consider one variant of Siamese Network called Triplet Loss
Siamese Network (TLSN) [47], which inspired our two-part
Minion training scheme presented in Section 5.

4. The Selected Master Models
In this work, we select the popular VGG-16 architecture

[48] to train a master model.

4.1. The dataset and the training
The WM-811K dataset [2] comprises 9 classes with var-

ious wafer sizes. We select two sizes which have the largest
number of wafer maps. Table 1 summarizes the selected set
of labeled samples for our experiments. In addition, there
are 19086 unlabeled wafer maps to be tried on.
TABLE 1. LABELED WAFER MAPS FROM WM-811K DATASET (2 SIZES)

Center Donut Edge-L Edge-R Loc N-Full Random Scratch None
81 10 402 9 345 16 28 76 22115

First, let us focus on the 8 classes and ignore the “None”
class. The training is challenging because some classes have
many fewer samples than others. We can use image rotation
(as that commonly used for this dataset before, e.g. [6][7])
to balance the dataset. For example, we can add rotated
samples to make every class comparable to the number
of the “Edge-Local” class (i.e. 402). Then, we can follow
a simple 2/3-1/3 split on the augmented dataset to obtain

a training set and a validation set, respectively. With this
setup, we can learn a model with training accuracy 99.24%
and validation accuracy 92.5%. Applying this model onto
the original set of 967 samples from the 8 classes (without
rotation), the resulting confusion matrix is shown in Table 2.

TABLE 2. CONFUSION MATRIX (ON ALL 967 WAFER MAPS):
⇓: GIVEN LABEL,⇒: PREDICTED LABEL

Center Donut Edge-L Edge-R Loc. N-Full Random Scratch
Center 71 0 0 0 10 0 0 0
Donut 0 10 0 0 0 0 0 0
Edge-L 0 0 387 5 7 1 1 1
Edge-R 0 0 0 9 0 0 0 0

Loc. 3 1 16 0 319 0 1 5
N-Full 0 0 0 0 0 16 0 0

Random 0 1 1 0 0 0 26 0
Scratch 0 2 1 1 7 0 0 65

4.2. Manual review
In total, there are 64 mistakes shown in Table 2. With a

manual review, they are categorized into three types:

● Label Ambiguity: Two very similar patterns are
assigned with two different labels.

● Underspecification: The pattern is unique when
comparing to other wafer maps in the same class.

● Model Deficiency: If none of above is applicable, it
is put into this category

Among the 64 mistakes, we found 30 as label ambiguity
and 3 as underspecification. The remaining 31 were left as
model deficiency. Figure 5 shows several examples from
the label ambiguity category (another example is the “Edge-
Local” map shown in Figure 3). When training the model,
if the dataset contains such cases of label ambiguity, they
can be the causes for the accuracy loss.

Figure 5. Examples of mistakes potentially caused by label ambiguity

Figure 6 shows three underspecification examples. Each
of these patterns appears only on one wafer. If the wafer
map were not in the training set, the model would never see
the pattern. Hence, it was expected that the model could
make a mistake on the sample.

Figure 6. Examples of underspecification

4.3. Applied to unlabeled wafer maps
The 8-class VGG model cannot be applied to unlabeled

wafer maps directly. This is because the model does not
handle the “None” class. It assumes its input wafer map
always has a pattern and then, its job is to classify the wafer
map into one of the 8 classes. Therefore, before applying
the model, we need another model serving as a frontend

Regular Paper

“filter”. This filter’s job is to screen out those wafer maps
having no pattern, i.e. the “None” samples.

We trained a filter model based on the same VGG
architecture and with a different training and validation set
combination. The training set comprised the 967 samples
from the 8 classes and all their rotated samples used above
for training the VGG model. For the “None” class, 90K
samples were put in the training set. The rest were put in
the validation set. The validation set contained no sample
from the 8 classes. In training, we looked for a model that
achieved high accuracy on the training set and also screened
out most of the “None” samples from the validation set.
With this strategy, we obtained a filter model with training
accuracy at 95.25%. This model screened out 99.33% of the
“None” samples in the validation set.

Figure 7. Two-step classification done by 2 master VGG models

To classify unlabeled wafer maps, a 2-step classification
process is followed and depicted in Figure 7. After the
first step, there are 741 wafer maps left (out of 19086).
Then, Table 3 shows the classification result by the VGG
classifier. Again, we manually reviewed the classification of
each sample and identified those “questionable”, i.e. those
we thought they should not be in the class. The number of
questionable samples are also shown in the table.

TABLE 3. CLASSIFICATION ON THE UNLABELED DATASET
Class Center Donut Edge-L Edge-R Loc N-Full Random Scratch

VGG classifier 114 37 211 44 233 9 34 59
Questionable 2 24 4 10 37 0 10 49

We can observe that although the VGG classifier has a
high validation accuracy at 92.25%, its performance on the
unlabeled set is not comparable. Figure 8 shows examples
of questionable classification. In particular, its performance
on “Donut” and “Scratch” is much worse. Its performance
on other classes (e.g. “Loc”) can also be doubtful.

Figure 8. Examples of questionable classification

4.4. Issues with the two master VGG models
Result shown in Table 3 is by no means optimal.

First, we did not have a mechanism to deal with the label
ambiguity and underspecification issues discussed earlier.
Furthermore, there are specific issues with the two VGG
models as explained below.

For the filter model, its model selection is biased toward
screening out the “None” samples. Although it can screen
out 99.33% of the “None” samples, it also removes 249
wafer maps from the first 8 classes. Consequently, on the
unlabeled set there should be more samples having a pattern
than the 741 wafer maps being classified by the VGG
classifier. We need a way to bring back those wafer maps
mistakenly screened out by the VGG filter model.

For the VGG classifier, as shown before, it makes 64
mistakes on the 967 labeled wafer maps having a pattern.
These mistakes are known to us according to their labels.
These mistakes could be the causes for some of the mistakes
seen on the unlabeled set. Hence, we need a way to fix these
mistakes before applying to the unlabeled set.

5. Minions and Their Training

Figure 9. Minions for patching the two master models

We need two sets of Minions for patching the two master
VGG models, as illustrated in Figure 9. The first set is to
verify if a screened-out sample really has no pattern. As
mentioned above, we know that the filter model mistakenly
screen out 249 labeled samples. One Minion is trained for
each of the 249 mistakes. Then in future screening, for every
sample screened out by the filter model, if any of the 249
Minions considers the screening as a mistake, the screened
sample will be restored and given back to the VGG classifier.

The second set of Minions is to check the label predicted
by the VGG classifier. From its classification on the 967
labeled wafer maps, we know it makes 64 mistakes (see
Table 2). Again, one Minion is trained for each mistake. In
application, for example, to fix a mistake such that it should
be in class X but the VGG classifier puts it in class Y, the
Minion checks all samples predicted as class Y by the VGG
classifier. If the Minion recognizes any sample, the sample
is moved from class Y to class X.

Note that the two sets of mistakes mentioned above are
not disjoint, because the 64 mistakes in Table 2 are based on
all 967 wafer maps without the filtering. Further, with the
249 Minions patching the filter model, the Minions might
classify some “None” samples as having a pattern. As a
result, the VGG classifier should receive additional samples
from the Minions, which might lead to more mistakes.

5.1. Manifestation Learning
For Minion training, manifestation learning [14] is our

baseline. To start, first we pick a multi-class dataset, e.g. the
MNIST dataset [49], and follow three steps:

1) Learn an encoder A (a CNN model) that maps each
sample in the multi-class dataset onto a code (e.g.
a 16-dimension vector) in a code space.

Regular Paper

2) In the code space, we define a concept region (or
codebook) for a selected class, e.g. digit “1”.

3) For the given in-class wafer map, learn an encoder
B (a CNN model) that maps the sample to a code
(e.g. the center) of the concept region.

Figure 10. A recap of Manifestation Learning proposed in [14]

Moreover, a counter example can be generated based on
the given wafer map. For a counter example, the training
objective is to map it to a code outside the concept region.

After training, encoder B is used as the recognizer
for the wafer map. Samples mapped to a code inside the
concept region are considered in-class. Otherwise, samples
are considered unrecognized.

In the original setup [14], training encoder B was done
by generating two generic counter examples. The encoder
was trained with a VAE [50] setting. The concept region
was defined based on the digit “1” class such that most of
the “1” samples were included in the region while none of
samples from other digits were included. Modeling of the
concept region was based on one-class SVM [1]. Further
implementation detail could be found in [14].

5.1.1. Concept region. For this work we built a concept re-
gion (using one-class SVM) that includes at least 99% of the
“1” samples. The SVM model has 246 support vectors (out
of 5000 samples). In a sense, the concept region contains
(infinite) in-class codes and the outside contains (infinite)
out-class codes, both defined by the SVM model. These
codes can be seen as a codebook. In that sense, manifestation
learning transfers the codebook learned from one domain
(MNIST) to be reused for another domain (wafer map).

5.2. The Two-Part Training Approach
As pointed out in [14], for manifestation learning with

one wafer map, counter examples can affect its learning [14].
To provide flexibility to supply more generated counter ex-
amples, we consider the contrastive learning idea presented
in TLSN [47]. By adapting their idea with our codebook
transfer idea, we came out with a novel two-part training
approach as illustrated in Figure 11.

Figure 11. Illustration of the two-part training scheme

The first part is similar to the original manifestation
learning. In the second part, we consider generating more
in-class samples and more counter examples, using the
given wafer map. For in-class samples, they are mapped

to codes inside the concept region. For out-class samples,
they are mapped to codes outside the concept region. We
also constrain the codes to be away from the boundary of
the concept region by a margin. The CNN is trained to
simultaneously satisfy constraints from both parts.

5.3. Potential areas for improvement
Figure 12 illustrates four areas for potential improvement

of Minion training: (1) image preprocessing, (2) strategy to
generate in-class samples, (3) strategy to generate counter
examples, and (4) feature transfer for the CNN layers.

5.3.1. Preprocessing. The WM-811K wafer images come
with different sizes. Image resizing is a common step in
the previous works. De-noising the images can also impact
CNN training significantly (e.g. [7]). For preprocessing we
therefore adopt both image resizing and de-noising. For de-
noising, we consider a median filter as that used in [7].
In addition, we also consider using region-labeling method
to highlight the most salient region as that used in [2] for
creating an in-class sample.

Figure 12. Possible areas to improve learning of encoder B

5.3.2. Augmenting the input sample. Rotation-invariant
is a common consideration in pattern recognition based on
WM-811K dataset [2]. Image rotation is therefore a straight-
forward method to help CNN training for capturing this
invariant [6][7]. Originally, we considered generating more
in-class samples using rotation. However, in our Minion
approach, to take care of rotation invariant, we could also
consider rotating the input image to be recognized. We found
this method more robust than using rotated in-class samples
in the training.

Another consideration is scale-invariant [2]. In this work,
we do not involve scale-invariant rules for in-class sample
generation. Instead, we study the possibility of using a pre-
trained model to capture variations and then apply the model
to generate samples from the given wafer map. This learning
can be achieved by the spatial transformer proposed in [36].

5.3.3. Using spatial transformer. In one study, we learned
a spatial transformer to capture the variations from the given
“1” anchor image to other “1” images in the concept region.
We then applied the spatial transformer to transform the
given anchor wafer map to new wafer maps. We found that,
while some generated wafer maps could make sense, many
did not. They looked more like a new pattern than a variation
of the original pattern. This means that invariant learned on

Regular Paper

the digit “1” is not the same as the invariant we would like to
capture for a given wafer map. Because not all transformed
wafer maps make sense, a manual review is required to hand
pick those to be included as proper in-class samples. This
manual step makes the approach difficult to use in practice.

The same concern applies to using AE [11] (or VAE
[33]) and GAN [9] for sample generation. Manual review
is required to exclude generated samples that do not make
sense, making them difficult to use in practice.
5.3.4. Generating counter examples. We consider gener-
ating random counter examples. Generating random wafer
maps is straightforward. However, we take the yield loss
on the anchor wafer map into account. Based on the yield
loss, we randomly select locations to put failing dies. For
the results reported in this work, the number of counter
examples generated is fixed at 500.
5.3.5. Feature transfer. There can be three types of settings
to adopt feature transfer to start the learning of encoder
B in Figure 10: (1) Transfer the weights of CNN layer(s)
from encoder A; (2) Train a VAE [33] with labeled and/or
unlabeled samples and then transfer its CNN weights; (3)
Transfer the weights of CNN layers from the master.

In our study, we found that the first type of setting did
not help, indicating difficulty to adopt cross-domain feature
transfer. The second type also did not improve Minion
learning. Often, it significantly reduced the recognized set
of a Minion, which was not a desirable effect. We observed
a similar trend with the third type of transfer.

Overall, we did not find a setting where feature transfer
could provide a clear benefit for Minion training. As a result,
we did not involve feature transfer in Minion training.

6. Experiment Results
Continuing from the discussion before with Figure 9,

Figure 13 shows the numbers of Minions trained for fixing
the two sets of mistakes. As mentioned before, the first set
of 249 Minions are for patching the VGG filter.

Figure 13. Workflow view of the result on labeled wafer maps

6.1. Minions for patching the VGG filter
For the 23082 labeled wafer maps, the VGG filter

screens out 22278 wafer maps which need to be verified
by the 249 Minions. The 249 Minions guarantee to restore
their anchor wafer map back. In addition, the 249 Minions
capture 597 “None” samples as having a pattern.

We manually reviewed those 597 wafer maps to verify if
any obviously had no pattern. Then, we applied the region-
labeling method to measure a pattern size. We found that
all of them had a pattern size greater than the smallest size
from the wafer maps labeled as having a pattern. As a result,
they were included in the input to the VGG classifier.

Figure 14. Examples of “None” considered having a pattern by Minions

For example, Figure 14 shows three smallest-size
“None” samples captured by a Minion as having a pattern.
Each sample receives a label from the corresponding Minion
whose anchor is shown. Each Minion accurately captures a
similar pattern even though the pattern is small.

Based on the Minions capturing them, each of the 597
“None” samples receive a new label. For a sample captured
by multiple Minions whose labels are different, a dual or
multi-class label is assigned. For example, if a sample is
captured by a “Loc” Minion and an “Edge-Loc” Minion,
then its label is “[Loc, Edge-Loc]”. In total, 72 of the 597
wafer maps receive a dual/multi-class label. For wafer maps
with such a label, we do not consider them as a mistake if the
VGG classifier correctly puts them into one of the classes.

Figure 15. Pairs of Minions causing a dual label

Among the 72 wafer maps, many of them are caused
by the two pairs of Minions shown in Figure 15. With the
first pair, the label is “[Loc, Edge-Loc]”. The figure shows
three “None” examples receiving this label. Similarly, with
the second pair, the label is “[Scratch, Edge-Loc]”.

Figure 15 illustrates that with Minions, we are able
to detect label ambiguity across samples. For example, as
shown in the figure, although samples in each pair have
different labels, they turn out to recognize each other. Hence,
we can identify them as a case of label ambiguity.

6.2. Minions for patching VGG classification
For the VGG classifier, 64 Minions are trained for

the 64 mistakes discussed before. Then, among the 597
“None” samples that receive new labels, the VGG classifier
makes 304 mistakes. As a result, 304 additional Minions are
trained. In total, the second set has 368 Minions.

When applying these 368 Minions to the VGG classifi-
cation result, every Minion guarantees moving its anchor to
its own class. Collectively, they also move additional 146
wafer maps. Table 4 shows the number of wafers with its
labels given by the VGG classifier and the Minions.

TABLE 4. ADDITIONAL 146 MOVES DONE BY MINIONS
VGG says Edge-R Scratch Edge-L Edge-L Edge-L Loc

Minions say Edge-L [Loc,Scratch] Loc Scratch
5 9 16 102 13 1

We manually reviewed all 146 cases. We found that
most of the disagreements involve label ambiguity. Figure 16

Regular Paper

shows 7 interesting cases where their detailed recognition
traces are included. Overall, we did not find an obvious
case where the Minion made a wrong move.

The VGG labels are those originally given in the dataset.
For each label given by the Minions, Minions allow us to
trace back to find out who provides the label. For cases 1,
5, and 6, the trace goes beyond one level of recognition.

Figure 16. Seven disagreements and their reasons provided by Minions

Take case 1 as an example. The disagreement is between
“Scratch” by VGG and “Edge-Loc” by Minions. The “Edge-
Loc” label is due to two Minions whose anchors are origi-
nally labeled as “None”. They receive the “Edge-Loc” label
because they are captured by three Minions whose labels are
all “Edge-Loc”. Hence, five Minions directly and indirectly
classify the wafer map as an “Edge-Loc”. The example
shows that all wafer maps supporting this classification are
traceable. This traceability is one major benefit with the
Minions. In all 7 cases, one cannot say for certain that a
disagreement is due to a wrong move by the Minion(s).

6.3. Additional results on unlabeled wafer maps

Table 3 shows that originally, out of 19086 unlabeled
samples, VGG classifier receives 741 samples from the
VGG filter. Applying the same workflow in Figure 13,
the remaining 18345 samples need to be verified by the
249 Minions. Figure 17 shows that the verification restores
649 samples and considers them as having a pattern. As
a result, these 649 samples, together with the original 741
samples, are both given to the VGG classifier. After VGG
classification, Figure 17 further shows that the 368 Minions
change the label on 316 wafers in total.

Table 5 summarizes the moves by Minions from each
class claimed by VGG classifier. Note that not all 8 classes
are shown because for some, Minions are not applicable.

We manually reviewed all 316 moves by Minions, and
did not find any unreasonable. Figure 18 shows 9 cases and

Figure 17. Summary result on the 19086 unlabeled samples

TABLE 5. IN TOTAL 316 WAFERS MOVED BY 368 MINIONS
VGG says Center Edge-Loc Edge-Ring Loc Scratch

Total # claimed by VGG: 154 499 58 275 324
moved by Minions: 4 120 8 13 171

their traces, similar to those shown in Figure 16 before. As
seen, all moves made by Minions make sense.

Figure 18. Example moves by Minions and their traces

Note that not all questionable cases on the unlabeled
samples discussed with Table 3 (and shown in Figure 8) are
fixable by Minions. Figure 19 shows three such examples for
the “Donut” class. On the labeled samples, VGG’s mistakes
include the 3 samples shown, resulting in 3 Minions trained.

Figure 19. VGG mistakes on labeled/unlabeled samples for “Donut” class

On the unlabeled samples, 3 VGG’s mistakes are also
shown, each with a pattern looking quite differently from
the three labeled samples. As a result, the 3 Minions do not
recognize any of the unlabeled samples and hence, none of
the mistakes can be fixed by the 3 Minions. Cases like these
can happen because Minions are only for fixing mistaken
patterns that have been seen before. If a mistake involved a
new pattern, it would not be fixed by Minions.

Regular Paper

7. Unsupervised Batch Analysis
Minions were meant to serve a master. However, in some

scenarios our Minions can operate effectively by themselves.
Consider a scenario where batches of wafers are coming in.
On each batch, one desires to answer two questions: (1) if
there is a systematic pattern on this batch, and (2) if yes,
whether or not the pattern occurred previously.

For the scenario, starting with a multi-class classification
is unnecessary. With Minions, we can apply an unsupervised
analysis on each batch to find systematic patterns. Once a
pattern is found, Minions can also help search for occur-
rences of the pattern in a set of past wafer maps.

Because a Minion is specific to an anchor wafer map, if
we want to check if two wafer maps have the same pattern,
we can simply apply one Minion to recognize the other Min-
ion and vice versa. Each pair of Minions can establish their
relationship in this way. With n Minions, we can use their
relationships to extract a cluster. For example, Figure 20
shows such a cluster extracted from 4 lots of wafers. The
cluster initially contains 10 unlabeled wafer maps. Each red
edge indicates a relationship via mutual recognition. The
cluster represents a systematic pattern discovered by the
unsupervised analysis.

Figure 20. An example result from Minion-based unsupervised analysis

For answering the 2nd question, let us assume that the
set of the labeled wafer maps is the source to search for
previous occurrences. Using the Minions trained on the
unlabeled wafer maps and the Minions trained on the labeled
wafer maps, we can establish their relationships as well.
The figure shows that 3 of the 10 unlabeled wafer maps
are related to two “Loc” wafer maps and their relationships
are marked by three green edges. In addition, two “Donut”
wafer maps are related to 3 unlabeled wafer maps, and their
relationships are marked by four blue edges. By checking
the relationships between those 4 labeled wafer maps and
other unlabeled wafer maps left in the 4 lots, we found one
additional unlabeled wafer map, shown in the figure with a
“***” mark. This 11th wafer is connected to the cluster due
to indirect relationships through the labeled wafer maps.

With the result shown, answers to the two questions
may go like this: (1) There are 11 wafer maps exhibiting
a systematic pattern; (2) There is one previous occurrence
which was named “Loc” and is represented by two wafers;
(3) There is another previous occurrence which was named
“Donut” and is represented by two wafers.

Notice that in the analysis, labels are used only to
annotate the cluster. As a result, labels have no impact
on the analysis. For the cluster, what label we choose to
name it also has nothing to do with future analysis. The
name will be used for annotation and issue tracking only.
Consequently, with our Minion-based unsupervised analysis,
label ambiguity is no longer an issue.

Furthermore, underspecification is less an issue as well.
Suppose a pattern has no previous occurrence and only
appear on a given batch. As long as the pattern is on two
or more wafers, Minions may find it. Then, the search will
simply report no previous occurrence found. Interestingly,
for the two fundamental issues discussed lengthily before,
both are not of great concern if only Minions are involved.

8. Conclusion
Minions are models each trained with one sample. We

investigate various options for improving Minion train-
ing. Originally, Minions were meant for patching a master
model. A master model can make mistakes due to its own
deficiency, label ambiguity, and training set underspecifica-
tion. Through experiments, we demonstrate that our Minions
can effectively help a master and also provide traceability to
detect cases of label ambiguity. Without a master, Minions
can also operate effectively in an unsupervised way, when
analyzing batches of wafers looking for systematic patterns.
When Minions operate without their master, label ambiguity
and underspecification are no longer of great concern. This
benefit along with the traceability Minions can provide,
make the Minion-based unsupervised analysis an attractive
approach to be applied in practice.
Acknowledgment This work is supported in part by Na-
tional Science Foundation Grant No. 2006739. The authors
are thankful to Sergio Mier and Leon Wang of Qualcomm
for their valuable inputs to our research.

References
[1] B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector

Machines, Regularization, Optimization, and Beyond. The MIT
Press, 2001.

[2] M.-J. Wu, J.-S. R. Jang, and J.-L. Chen, “Wafer map failure pattern
recognition and similarity ranking for large-scale data sets,” IEEE
Transactions on Semiconductor Manufacturing, vol. 28, no. 1, pp.
1–12, 2015.

[3] M. Fan, Q. Wang, and B. van der Waal, “Wafer defect patterns
recognition based on optics and multi-label classification,” IEEE
Advanced Information Management, Communicates, Electronic and
Automation Control Conference (IMCEC), 2016.

[4] J. Yu and X. Lu, “Wafer map defect detection and recognition
using joint local and nonlocal linear discriminant analysis,” IEEE
Transactions on Semiconductor Manufacturing, vol. 29, no. 1, pp.
33–43, 2016.

[5] M. Piao, C. H. Jin, J. Y. Lee, and J.-Y. Byun, “Decision tree ensemble-
based wafer map failure pattern recognition based on radon transform-
based features,” IEEE Transactions on Semiconductor Manufacturing,
vol. 31, no. 2, pp. 250–257, 2018.

[6] J. Yu, “Enhanced stacked denoising autoencoder-based feature learn-
ing for recognition of wafer map defects,” IEEE Transactions on
Semiconductor Manufacturing, vol. 32, no. 4, pp. 613–624, 2019.

[7] N. Yu, Q. Xu, and H. Wang, “Wafer defect pattern recognition and
analysis based on convolutional neural network,” IEEE Transactions
on Semiconductor Manufacturing, vol. 32, no. 4, pp. 566–573, 2019.

Regular Paper

[8] J. Wang, Z. Yang, J. Zhang, Q. Zhang, and W.-T. K. Chien, “Ada-
balgan: An improved generative adversarial network with imbalanced
learning for wafer defective pattern recognition,” IEEE Transactions
on Semiconductor Manufacturing, vol. 32, no. 3, pp. 310–319, 2019.

[9] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and J. Bengio, “Generative adversarial net-
works,” arXiv:1406.2661, 2014.

[10] T.-H. Tsai and Y.-C. Lee, “A light-weight neural network for wafer
map classification based on data augmentation,” IEEE Transactions
on Semiconductor Manufacturing, vol. 33, no. 4, pp. 663–672, 2020.

[11] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
internal representations by error propagation,” Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, vol. 1,
pp. 318–362, 1986. [Online]. Available: https://doi.org/10.21105

[12] M. Saqlain, Q. Abbas, and J. Y. Lee, “A deep convolutional neural
network for wafer defect identification on an imbalanced dataset
in semiconductor manufacturing processes,” IEEE Transactions on
Semiconductor Manufacturing, vol. 33, no. 3, pp. 436–444, 2020.

[13] M. B. Alawieh, D. Boning, and D. Z. Pan, “Wafer map defect pat-
terns classification using deep selective learning,” ACM/IEEE Design
Automation Conference, 2020.

[14] Y. J. Zeng, L.-C. Wang, C. J. Shan, and N. Sumikawa, “Learning a
wafer feature with one training sample,” in IEEE International Test
Conferencel. IEEE, 2020, pp. 1–10.

[15] M. Nero, J. Shan, L.-C. Wang, and N. Sumikawa, “Concept recog-
nition in production yield data analytics,” IEEE International Test
Conference, 2018.

[16] C. Shan, A. Wahba, L.-C. Wang, and N. Sumikawa, “Deploying a
machine learning solution as a surrogate,” in IEEE International Test
Conferencel. IEEE, 2019, pp. 1–10.

[17] A. Wahba, L.-C. Wang, Z. Zhang, and N. Sumikawa, “Wafer pattern
recognition using tucker decomposition,” in VLSI Test Symposium
(VTS), 2019 IEEE 37th. IEEE, 2019, pp. 1–6.

[18] A. Wahba, J. Shan, L.-C. Wang, and N. Sumikawa, “Wafer plot
classification using neural networks and tensor methods,” in ITC-Asia.
IEEE, 2019, pp. 79–84.

[19] A. Wahba, C. Shan, L.-C. Wang, and N. Sumikawa, “Measuring the
complexity of learning in concept recognition,” in Int. Symposium on
VLSI Design, Automation and Test. IEEE, 2019, pp. 1–4.

[20] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Rad-
ford, and X. Chen, “Improved techniques for training GANs,”
arXiv:1606.03498v1, 2016.

[21] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,”
arXiv:1511.06434v2, 2016.

[22] F.-F. Li, R. Fergus, and P. Perona, “One-shot learning of object
categories,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 28, no. 4, pp. 594–611, 2006.

[23] M. Fink, “Object classification from a single example utilizing class
relevance metrics,” Advances in Neural Information Processing Sys-
tems, pp. 449–456, 2005.

[24] H. Altae-Tran, B. Ramsundar, A. S. Pappu, and V. Pande, “Low data
drug discovery with one-shot learning,” Central Science, vol. 3, no. 4,
pp. 283–293, 2017.

[25] M. Vartak, A. Thiagarajan, C. Miranda, J. Bratman, and
H. Larochelle, “A meta-learning perspective on cold-start recom-
mendations for items,” Advances in Neural Information Processing
Systems, pp. 6904–6914, 2017.

[26] L. Kaiser, O. Nachum, A. Roy, and S. Bengio, “Learning to remember
rare events,” International Conference on Learning Representations,
pp. 1–10, 2017.

[27] E. G. Miller, N. E. Matsakis, and P. A. Viola, “Learning from one
example through shared densities on transforms,” Conference on
Computer Vision and Pattern Recognition, pp. 464–471, 2000.

[28] E. Schwartz, L. Karlinsky, J. Shtok, and e. a. Harary, “Deltaencoder:
An effective sample synthesis method for few-shot object recogni-
tion,” Advances in NIPS, pp. 2850–2860, 2018.

[29] B. Hariharan and R. Girshick, “Low-shot visual recognition by
shrinking and hallucinating features,” International Conference on
Computer Vision, 2017.

[30] B. Liu, X. Wang, M. Dixit, R. Kwitt, and N. Vasconcelos, “Feature
space transfer for data augmentation,” Conference on Computer Vision
and Pattern Recognition, p. 9090–9098, 2018.

[31] H. Gao, Z. Shou, A. Zareian, H. Zhang, and S. Chang, “Low-
shot learning via covariance-preserving adversarial augmentation net-
works,” Advances in Neural Information Processing Systems, pp.
983–993, 2018.

[32] Z. Cheny, Y. Fuy, Y. Zhang, and e. a. Jiang, “Multi-level semantic
feature augmentation for one-shot learning,” IEEE Transactions on
Image Processing, vol. 28, no. 9, pp. 4594–4605, 2019.

[33] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
2013. [Online]. Available: https://arxiv.org/abs/1312.6114

[34] D. Rezende, I. Danihelka, K. Gregor, and D. Wierstra, “One-shot
generalization in deep generative models,” International Conference
on Machine Learning, pp. 1521–1529, 2016.

[35] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “Human-level
concept learning through probabilistic program induction,” Science,
vol. 350, no. 6266, pp. 1332–1338, 2015.

[36] M. Jaderberg, K. Simonyan, A. Zisserman, and k. kavukcuoglu,
“Spatial transformer networks,” Advances in Neural Information Pro-
cessing Systems, vol. 28, 2015.

[37] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE
Transactions on Knowledge and Data Engineering, vol. 10, no. 22,
pp. 1345–1359, 2010.

[38] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?” Advances in Neural Information
Processing Systems, vol. 2, pp. 3320–3328, 2014.

[39] S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira, “Analysis of
representations for domain adaptation,” Advances in Neural Informa-
tion Processing Systems, no. 22, pp. 137–144, 2007.

[40] Y. Ganin, E. Ustinova, H. Ajakan, and e. a. Germain, “Domain-
adversarial training of neural networks,” Journal of Machine Learning
Research, vol. 17, no. 1, pp. 1–35, 2016.

[41] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks
for one-shot image recognition,” ICML deep learning workshop,
2015.

[42] O. Vinyals, C. Blundell, D. T. Lillicrap, and e. a. Wierstra, “Matching
networks for one shot learning,” Advances in Neural Information
Processing Systems, pp. 363–368, 2016.

[43] J. Snell, K. Swersky, and R. S. Zemel, “Matching networks for one
shot learning,” Advances in Neural Information Processing Systems,
pp. 4077–4087, 2017.

[44] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M.
Hospedales, “Matching networks for one shot learning,” Conference
on Computer Vision and Pattern Recognition, pp. 1199–1208, 2018.

[45] S. Hochreiter, A. S. Younger, and P. R. Conwell., “Learning to learn
using gradient descent,” International Conference on Artificial Neural
Networks, pp. 87–94, 2001.

[46] Y. Guo, N. C. Codella, L. Karlinsky, and e. a. Codella, “A broader
study of cross-domain few-shot learning,” A. Vedaldi et al. (Eds.):
ECCV 2020, LNCS, Springer Nature Switzerland AG 2020, vol.
12372, pp. 124–141, 2020.

[47] X. Dong and J. Shen, “Triplet loss in siamese network for object
tracking,” in European Conference on Computer Vision (ECCV),
September 2018.

[48] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2015.

[49] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[Online]. Available: http://yann.lecun.com/exdb/mnist/

[50] S. Zhao, J. Song, and S. Ermon, “Infovae: Information
maximizing variational autoencoders,” 2017. [Online]. Available:
https://arxiv.org/abs/1706.02262

Regular Paper

