This is the preprint version of the following article:
Bingran Wang, Anugrah Jo Joshy, and John T. Hwang. Equality-Constrained Engineering Design Optimiza-
tion Using a Novel Inexact Quasi-Newton Method. ATAA Journal, 2022.

Published article: |https://doi.org/10.2514/1.J061695
Preprint pdf: |https://github.com/LSD0lab/lsdo_bib/blob/main/pdf/wang2022equality.pdf
Bibtex: https://github.com/LSD0lab/lsdo_bib/blob/main/bib/wang2022equality.bib

Equality-Constrained Engineering Design

Optimization Using a Novel Inexact
Quasi-Newton Method®

Bingran Wang! Anugrah Jo Joshy! and John T. Hwang®

University of California San Diego, La Jolla, CA, 92093

Abstract

For engineering design optimization, the full-space formulation offers the potential for greater
efficiency than the more commonly used reduced-space formulation. This potential is greater
when the numerical model involves discretized partial differential equations or coupled disci-
plines. However, the full-space formulation results in a larger optimization problem with at
least a factor of two increase in the number of optimization variables and equality constraints.
Using Newton-type methods to solve such problems involves solving a large-scale and, often,
ill-conditioned Karush—Kuhn—Tucker linear system at each optimization iteration. This can be
time-consuming to solve even with a Krylov solver. If the number of iterations is reduced, the
full-space formulation could be applied to a broader class of problems. This paper presents
an inexact quasi-Newton algorithm with an adaptive extension for solving large-scale equality-
constrained optimization problems. The new algorithm inexactly solves the Karush—Kuhn—
Tucker system using new inexactness criteria that are derived to ensure a descent direction.
The adaptive extension chooses the stopping condition of the Krylov solver by also taking its
convergence rate into account. The paper presents results of numerical experiments applying
this algorithm to three types of problems: six constrained optimization problems from the widely
used CUTEst test suite, a bar thickness optimization problem, and a two-dimensional topology
optimization problem. For all problems, the new algorithm consistently shows a roughly 50%
reduction in the total number of Krylov solver iterations and a minimum of roughly 15% reduc-
tion in the optimization time. Moreover, the proposed approach for selecting the Krylov solver
tolerance shows an improvement in all cases, whereas the existing forcing-parameter approach
shows an increase in the number of Krylov iterations in some cases. These results indicate that
this new method for selecting solver tolerances is effective and robust, and a good choice in
algorithms that use a Krylov solver for solving the Karush—-Kuhn—Tucker linear system.

*This paper was originally presented at the ATAA AVIATION 2021 FORUM held virtually on August 2-6, 2021.
Paper number: ATAA 2021-3041. doi: https://doi.org/10.2514/6.2021-3041

TPh.D Student, Department of Mechanical and Aerospace Engineering, ATAA Student Member.

fPh.D Student, Department of Mechanical and Aerospace Engineering, ATAA Student Member.

$ Assistant Professor, Department of Mechanical and Aerospace Engineering, ATAA Member.

https://doi.org/10.2514/1.J061695
https://github.com/LSDOlab/lsdo_bib/blob/main/pdf/wang2022equality.pdf
https://github.com/LSDOlab/lsdo_bib/blob/main/bib/wang2022equality.bib
https://doi.org/10.2514/6.2021-3041

1 INTRODUCTION

Engineering design optimization seeks improved design solutions using numerical optimization
techniques. The problems arise from many domains such as fluids [1} [2], structures [3-5], aerody-
namics [6, 7] and controls [8]. In these domains, the governing system of equations usually results
from discretization of a partial differential equation (PDE). In more complex problems, the model
could involve multiple disciplines, which is the domain of interest of multidisciplinary design opti-
mization (MDO). A typical MDO problem is the conceptual design of an aircraft [9-11]. In this
problem, disciplines such as aerodynamics, structures, and controls are tightly coupled. Optimizing
the design of an aircraft requires an integrated optimization framework that considers how the dif-
ferent disciplines interact with each other. MDO has also been applied to other complex engineering
design problems for automobiles [12-14], wind turbines [15-17], launch vehicles [18], satellites |19,
20|, electric aircraft [21], and electric vertical take-off and landing (eVTOL) aircraft [22].

The validity of the optimization result depends on the accuracy of the computational model
of the system being designed. For disciplines like structures and aerodynamics, sufficient accuracy
can be achieved using high-fidelity finite element solvers and computational fluid dynamics (CFD)
solvers, respectively. In this case, we are solving a large-scale optimization problem with hundreds
or thousands of design and even more state variables.

Many engineering design optimization problems are constrained nonlinear optimization prob-
lems with continuous variables. When these problems are large-scale, gradient-based methods like
sequential quadratic programming (SQP) and interior-point methods are state-of-the-art methods
to solve the optimization problems. Gradient-based methods require an efficient and accurate ap-
proach to calculate the derivatives. Common methods to compute the analytic derivatives are the
complex-step method, algorithmic differentiation, direct method and adjoint method. The complex-
step method |23 uses the Taylor series expansion with a purely imaginary step. This method can
be accurate but it requires the model to support complex arithmetic. Algorithmic differentiation
(AD) repeatedly applies the chain rule to each elementary function and operation in the model to
compute the total derivatives. The direct and adjoint methods linearize the governing equations
and formulate the problem as the solution of a linear system and subsequent insertion into an
algebraic equation to compute the derivatives at a cost independent of the number of outputs and
inputs, respectively. We often see adjoint method being used in PDE-constrained optimization and
MDO problems as the number of functions is typically much less than the number of variables. In
the MDO field, NASA’s OpenMDAO software framework [24] enables a gradient-based approach
using analytic derivatives to solve large-scale MDO problems. In OpenMDAO, the analytic deriva-
tives are calculated using the unified derivative equation [25], which unifies the chain rule, adjoint
method and other derivative computation methods.

The SQP and interior-point methods apply Newton’s method to solve a linear Karush-Kuhn—
Tucker (KKT) system for the update direction at each optimization iteration. When equality
constraints are present, the KKT matrix is indefinite. For large-scale optimization problems, the
KKT matrix is high-dimensional and can be ill-conditioned. Solving this KKT system necessitates
using an iterative Krylov solver, but it can still be computationally expensive to solve this KKT
system exactly (to a tight tolerance) at each iteration. One way to accelerate the computation is
to solve the KKT system to a looser tolerance in intermediate optimization iterations, i.e., apply
an inexact Newton approach. Compared with the exact Newton approach, the inexact Newton
approach saves computing time for solving the KKT systems but loses accuracy in the computed
update directions. If the inexact tolerance selection is too aggressive (i.e., the tolerances are too

large), the resulting errors in the linear solutions, which are the search directions, may cause
an increase in the total number of optimization iterations, and there are no guarantees that the
optimization algorithm will converge as it did with an exact linear solver.

In current inexact Newton methods, an inexact tolerance is computed, and the Krylov solver
for the KKT system terminates at the first iteration in which the tolerance is satisfied. Regarding
the criterion used to compute the inexact tolerance, most of the inexact methods use a forcing
parameter criterion to compute the inexact tolerance. However, for constrained optimization, they
do not guarantee the update direction computed is a descent direction at each iteration. For
those methods that guarantee a descent direction (e.g., the inexact Lagrange-Newton-Krylov-Schur
(LNKS) method [26]), the criteria used are only applicable to a specific preconditioner, and the
criteria are expensive to compute. For the termination of the Krylov solver, it stops as soon as
the inexact tolerance is met, regardless of the convergence rate of the Krylov solver. However, in
many cases, running the Krylov solver for a small number of additional iterations would result in
a significantly more accurate solution for the update direction.

In this paper, we propose an inexact quasi-Newton algorithm for large-scale equality-constrained
optimization. This algorithm uses the new criteria we derived to compute the inexact tolerance for
the Krylov solver. The new criteria, under certain approximations, can be easy to compute, and
the tolerance computed assures a descent direction on the augmented Lagrangian merit function
at each iteration. We also offer an extension for this algorithm to adaptively select the stopping
criteria for the Krylov solver based on its convergence rate to capitalize whenever the convergence
rate is high.

This paper is organized as follows. In Section [2, we give some background on optimization
problem formulations for engineering design optimization problems, Newton’s method to solve
equality constrained optimization, and current inexact Newton methods. In Section |3 we present
the outline of the inexact quasi-Newton method we proposed and the adaptive extension. In Section
[we show the numerical results on several test problems. We make the conclusion in Section

2 BACKGROUND
2.1 Optimization Problem Formulation

The numerical model for an engineering system can, in general, be formulated using an implicit
function that yields the solution of R(z,y) = 0. Here, x € R™ and y € R™ denote the design
variables and state variables respectively, and R : R” x R”™ — R" is the vector-valued residual func-
tion. Depending on how to treat the residual function, there are two standard methods to formulate
the optimization problems. In PDE-constrained optimization, they are called the reduced-space
method and full-space method; in MDO, they are known as multidisciplinary feasible (MDF') [27]
and simultaneous analysis and design (SAND) [28], respectively.

In the reduced-space method, only design variables x are treated as optimization variables, and
the state variables y are computed by Y(z), which is an explicit computation of the discipline
states. Considering only equality constraints, the reduced-space optimization problem is given by

min - F(z, Y(z))
st. Clz,V(z)) =0 (1)
with R(z,Y(x)) =0,

where F : R™” x R™ — R is the objective function, C : R” x R™ — R¢ is the vector-valued constraint
function and) : R™ — R™ is the vector-valued function to the implicit solution of R(x,Y(x)) = 0.

In the full-space method, both x and y are treated as optimization variables. Instead of eval-
uating)(x), the discipline residual equations (R(z,y) = 0) are treated as equality constraints of
the optimization problem. The full-space optimization problem is

I;l’iyn F(z,y)
st. C(z,y) =0 (2)
R(z,y) = 0.

Comparing these two methods, the full-space method results in a higher-dimensional optimiza-
tion problem, as it has both x and y as optimization variables. Thus, it takes more iterations for the
optimization problem to converge than in the reduced-space method. In contrast, the reduced-space
method requires more computation in each iteration as y must be solved via the interdisciplinary
equality constraints.

Another optimization formulation of interest is the strong unification of reduced space and full
space (SURF) method proposed by Joshy and Hwang [29| 130]. The SURF method is based on a
full-space formulation and provides a hybrid version of reduced-space and full-space methods. Using
a full-space formulation results in a high-dimensional optimization problem with a large number of
equality constraints, which necessitates a gradient-based method and provides the motivation for
the inexact approaches investigated here.

2.2 Newton’s method for equality constrained optimization

We assume the optimization problems formulated in engineering design optimization are con-
strained nonlinear optimization problems with continuous variables. Newton-type methods (e.g.
SQP and interior point methods) are the state-of-the-art to solve these optimization problems since
they can achieve a second-order convergence rate.

We now consider a general equality-constrained optimization problem (without distinguishing
between full-space and reduced-space formulations):

min F(x)
st. C(x)=0. ®)

For an optimization problem with only equality constraints, both SQP and interior point methods
are equivalent to applying Newton’s method to the KKT conditions. We first define the Lagrangian
function as
L(z,\) = F(z) + \TC(z), (4)

where A € R€ is the vector of Lagrange multipliers. For conciseness, we introduce the following
nomenclature for the gradients:

g(x) == 0, F(x)

N(z) := 0,C(x)

M(z, A) := O L(2, N).

The first-order optimality conditions (or KKT conditions) state that at a local minimum, the
gradients of the Lagrangian function are equal to zero; that is,

[gﬁi ig] B [g@) E(JZ;@TA] - ?

At each iteration in Newton’s method, it computes the search direction for the optimization vari-
ables and Lagrange multipliers by solving the Karush-Kuhn-Tucker (KKT) system, which is given

) i R] 0
7 e ;

where p, and p) are the search directions for the design variables and the Lagrange multipliers,
respectively. The matrix A is called the KKT matrix. Solving @ requires us to evaluate a Hessian
matrix M (z, A), which is expensive. Typically, the model only provides accurate first-order deriva-
tives; in this case, the quasi-Newton approach is attractive as it approximates the Hessian matrix
using recursive updates, e.g., the Broyden—Fletcher—-Goldfarb—Shanno (BFGS) formula. These up-
dates typically ensure hereditary positive definiteness of the Hessian matrix. One could point out
that using the inverse BEGS formula to update A~! avoids solving the linear system in @ How-
ever, the inverse BFGS formula is known to have an instability issue and may lead to convergence
problems [31].

Once the search directions are obtained, we consider a line search method to find an acceptable
step to update x and A. This strategy globalizes the quasi-Newton method, meaning it will converge
to a local minimum from any starting point. Another commonly used globalization strategy is the
trust region method. For interested readers, summaries of trust region methods used for equality
constrained optimization can be found in the literature [32-34].

The line search algorithm must achieve a sufficient decrease in the augmented Lagrangian merit
function, given by

o, \) == F(z) + \TC(x) + gC(m)TC(x), (7)

where p € R is a non-negative penalty parameter. Choosing the penalty parameter is crucial for the
line search algorithm. Furthermore, the merit function is only exact when the penalty parameter is
large enough, meaning the minimum for the merit function is also the minimum for the Lagrangian
function. However, having a large penalty parameter would affect the convergence rate of the
quasi-Newton algorithm, especially at the early iterations when the current point is not close to
the minimum point. Gill et al. [35] suggest to keep it as small as possible and only increase it to
assure the global convergence conditions.

We bound the penalty parameter in the same way as in the Lagrange-Newton—Krylov—Schur
(LNKS) method [36, 137], to ensure a descent direction. Ensuring a descent direction guarantees
the existence of a step length result to satisfy the Armijo condition which will be mentioned later.
A search direction p is a descent direction if

Volp <0. (8)
For the augmented-Lagrangian merit function, we have

Volp=(g+ NN+ pNTe)Tp, + N p,
=—g" Mg —pc"c+cpy,

(9)

assuming M is a positive-definite matrix. A descent direction is ensured if the penalty parameter

p satisfies
T
C P

> .
P = T

(10)

We consider a simple backtracking Armijo line search method to find the update step ¥, in which
o € (0,1] is chosen to satisfy the Armijo condition, given by

P(z" + apk, \F + aph) < ¢(2F, AF) + oFnpvp(aF, AF)TpP. (11)

Then, the optimization variables and the Lagrange multipliers are updated as

E-+1 k k
x T P
o] = [o) 12
We refer to this line-search-based quasi-Newton algorithm as the standard quasi-Newton method.
An outline of this algorithm is shown in Alg.

Algorithm 1 Standard quasi-Newton method

1: loop

2: Evaluate ¢, g, N at a*

3: Assemble A* and b*

4: Solve AFpk = bk

5 Update p to ensure a descent direction

6 Find o” via a backtracking line search method
k1 ok p

7 Update L\kﬂl \r pi]

8: Update M via the BFGS formula

+aF

2.3 Current inexact methods

In Alg. we need to solve a linear KKT system as in ([6). The KKT matrix, A, contains
a mixture of first-order and second-order gradient information. Even when the Hessian matrix is
positive definite, the larger KKT matrix is indefinite and can be severely ill-conditioned, which
makes solving the KKT system difficult.

When the KKT system is large in size (say, 1,000 x 1,000 or larger), Krylov iterative solvers are
preferred over direct solvers. Widely used Krylov methods include the classic conjugate gradient
(CG) method, biconjugate gradient stabilized (BiCGStab) method [38] and generalized minimal
residual (GMRES) method [39]. Note that the CG method requires the KKT matrix to be positive
definite. Most of the time, this can be satisfied by adding a small number to the diagonal elements.
In many cases, a preconditioner is used to increase the convergence rate of the Krylov solver. With
a preconditioner, the KKT system becomes

P~ lAp =P, (13)

where P is a preconditioner.

The effectiveness of a preconditioner is usually case-dependent. For instance, the active-set
sequential quadratic programming (SQP) algorithm, Sparse Nonlinear OPTimizer (SNOPT) [40],
uses a CG method without a preconditioner. In contrast, LNKS uses a preconditioner equivalent
to the block LU factorization. Other possible preconditioners include block Jacobi, incomplete LU,
and incomplete Cholesky.

Even with a preconditioner, a Krylov solver can still take tens or hundreds of iterations to solve
the large-scale KKT system. One way to accelerate it is to solve the KKT system inexactly, which
may take significantly fewer iterations. We define the residual vectors r as

r=Ap—b. (14)

When we solve the KKT system exactly, we stop the Krylov solver when the norm of the residuals
becomes small, e.g. |[|r|| < 107, When we solve it inexactly, the tolerance is less tight, e.g.
[r]] < 107, which may save tens of iterations of the Krylov solver. The most commonly used
inexactness criterion is

Irll < mllrll, (15)

where n € [0,1) is the forcing parameter that is chosen differently from iteration to iteration.
This criterion has been used in many full-space Lagrange-Newton algorithms for solving PDE-
constrained optimization problems [41, 42]. However, choosing 7 is purely heuristic, and this crite-
rion does not guarantee that the search direction calculated is a descent direction for the augmented
Lagrangian merit function. Overall, albeit this criterion is easy to use and good performance is
observed on many problems, this is not a rigorous way to compute the tolerance. Thus, it is not
used in most widely used optimizers (e.g. SNOPT).

A more rigorous criterion is used in the inexact LNKS method [26], the criterion ensure a
descent direction on the augmented Lagrangian merit function. However, it assumes a particular
LU-equivalent preconditioner, and the criterion is not easy to compute.

3 METHODOLOGY

In this paper, we build on the idea of the inexact LNKS method to compute the inexact tolerance
in a rigorous way to ensure a descent direction, but our proposed method is more generalized and
can be used with any or without preconditioner. The criteria we used to compute the tolerance,
under certain approximations, are easy to compute. We also propose an extension to the inexact
methods to adaptively choose the stopping criteria for the Krylov solver and make best use of the
Krylov solver’s convergence rate.

3.1 Criteria for inexact tolerance

We first present the criteria we derived for inexact tolerance that ensures a descent direction on
the augmented Lagrangian function. When we solve the KKT system inexactly with or without a
preconditioner, the search direction we compute satisfies

IR e R as)
— T

We refer to p as the inexact search direction. We want to ensure that the inexact search direction
is a descent direction for the augmented Lagrangian merit function, which means

Vo'p < 0. (17)
We can express V¢! as a function of p, 7, and ry. It follows that
Volp=(g+NIXN+ pNTe)Tp, + cLpy
= (~Mpz — N"pr+12) Bo + pc’ Np + ¢y (18)

= —pL M Py + 11 pe + pct (rx —) + (2¢" —r))Pa

To ensure a descent direction, we choose to satisfy
~py M7 Py + 1y By <0 (19)

and
ch(m —¢)+ (2¢— r)\)Tﬁ,\ < 0. (20)

To satisfy , we use the Cauchy-Schwarz inequality and bound the norm of r, as

T2l < omin (M) [|P2|] » (21)
where 0., (M) denotes the minimum singular value of the matrix M. We write as
)" B (22)

We satisfy in two steps. First, we choose r) to ensure

pcl(c—1y) > (2¢ — 7

c(c—ry) >0. (23)

This can be satisfied by choosing ||7x|| < ||¢||. Then we choose p as

2¢Tpy — plry

c'(e—ry) (24)

If we solve the KKT system exactly, namely, ry = 0, then this criterion to bound the penalty
parameter is equivalent to the criterion for the exact quasi-Newton method in .

Note that at the k th iteration, we do not know H pﬁH before we solve the KKT system. There-
fore, in our method, we approximate it using the value from the previous iteration. We set the
tolerances for the Krylov solver at k th optimization iteration as

[r&|| < nllell, me .

7"; < Omin(M) i,’ffl

)

(25)

We decide on the penalty parameter after we solve the KKT system, and we can use p’f\ to bound
the penalty parameter as
20— 714
c'(e—rk)
This criterion to bound the penalty parameter does not greatly increase the penalty parameter
value, and it will not affect the convergence rate of the optimization algorithm. The outline for the
inexact quasi-Newton algorithm is shown in Alg.

In our numerical experiments, we used the singular value decomposition (SVD) to find the
smallest singular value of the matrix M, and the computation time is tolerable. However, in larger
problems, applying SVD could require a significant amount of time. One alternative method to
be considered is to use the inverse BFGS method to approximate M ~!. The M matrix is real
and symmetric. Therefore, by the spectral theorem, we know that the eigenvalues are equal to the
singular values. Thus,

(26)

Algorithm 2 Inexact quasi-Newton method

1: loop

2 Evaluate ¢, g, N at z*

3: Assemble AF and b*

4: Compute the inexact tolerance as in

5 Solve AFpF ~ bF

6 Update p to satisfy

7 Find o via a backtracking line search method

k+1 .I‘k

. _ k
8: Update Vet = [y + «

ph
P

9: Update M via the BFGS formula

where A, denotes the minimum eigenvalue. Since Ay (M) > 0, the minimum eigenvalue of M
is equal to the inverse of the maximum eigenvalue of M ~!, namely,
1

Amin(M) = PSS Y= (28)

With M~! being approximated by the inverse BFGS method, we can apply the power iteration
method to find A\ (M1).

3.2 Adaptive Stopping Criteria for Krylov Solver

For the inexact quasi-Newton methods, we can think of the inexactness as a trade-off between
efficiency and accuracy. Tighter tolerance can lead to more accurate search direction but it takes
more time for the Krylov solver to converge. For all of the current inexact quasi-Newton methods,
the Krylov solver stops when the inexact tolerance is satisfied. However, in some cases, we observe
a large convergence rate at the iteration where the inexact tolerance is satisfied, and by running the
solver for a few additional iterations, the norm of the residuals can decrease dramatically, resulting
in a much more accurate search direction.

In practice, the convergence of the Krylov solver differs from case to case. It depends on the
dimension of the problem and also the preconditioner used to solve the KKT system. We want to
propose a general idea to extend the inexact quasi-Newton methods to also consider the convergence
rate and adaptively select the stopping criteria for the Krylov solver.

We want to design our algorithm in this way: the earliest iteration in which our algorithm
stops is when the inexact tolerance (the tolerance used for the inexact method) is first satisfied; the
latest iteration our algorithm stops is when the exact tolerance (the tolerance used for the exact
method) is first satisfied. In this way, at each optimization iteration, the number of iterations our
Krylov solver takes is always in between that of the regular inexact method and exact method. We
refer to the inexact tolerance as the upper bound tolerance and exact tolerance as the lower bound
tolerance.

We achieve this by defining a value n; as the number of extra Krylov iterations we are willing
to execute in order to get an exact search direction. At the jth Krylov solver iteration when the
upper bound tolerance is satisfied, we measure the current convergence rate of ||r|| by fitting a
linear regression using the values from the previous three iterations, ‘rj H, Hrj_lH, Hrj _2H and
estimate the number of additional iterations required to satisfy the lower bound tolerance as no. If

the expected number of additional iterations is more than tolerable, meaning ne > ni, we stop the
Krylov solver at the current iteration. If not, the Krylov solver proceeds one more iteration, and
reduce ny by 1. The Krylov solver terminates when either the lower bound tolerance is satisfied or
ny < ng. The algorithm is outlined in Alg.

Algorithm 3 Krylov solver with adaptive stopping criteria

1: Specify the number of extra iterations we are willing to execute, nq
2: while lower bound tolerance is not satisfied do
3: if upper bound tolerance is satisfied then
Estimate the convergence rate using ||7"J|| , ||7"j’1 || , ||7'7*2H
Estimate the number of extra iterations required to satisfy the lower bound tolerance, ng
if no > ny then
stop
end if
end if
10: ny=ny—1

11: Update r using the Krylov method

One difficulty with Alg. [3]is defining a heuristic for ni. From our numerical experiments with
the algorithm, if solving the exact KKT system takes 30-40 Krylov iterations, it is effective to define
n1 as n1 = 20 — j, where j is the current iteration number. We refer to the inexact quasi-Newton
algorithm with the adaptive stopping criteria for the Krylov solver as the adaptive quasi-Newton
algorithm. The algorithm is outlined in Alg.

Algorithm 4 Adaptive inexact quasi-Newton method

1: Specify the lower bound tolerance

2: loop

3: Evaluate ¢, g, N at a*

Assemble A* and b*

Compute the upper bound tolerance as in
Solve AFp* ~ b* using Alg.

Update p to satisfy

Find o via a backtracking line search method

k+1 E 2
+ - pk
k

DX

9: Update [x = +aF
10: Update M via the BFGS formula

)\k—i—l)\k

4 NUMERICAL RESULTS
4.1 Analytical optimization test problems

We first show the results from applying our method to six analytical, equality-constrained
optimization problems with at least hundreds of optimization variables. All problems are selected
from the CUTEst [43] test suite. The properties of the problems are shown in Tab. (I} where n

10

denotes the number of optimization variables and m denotes the number of equality constraints.
The analytical test problems are solved using the standard quasi-Newton method, forcing parameter
inexact quasi-Newton method, inexact quasi-Newton method, inexact quasi-Newton method using
the alternative method to compute the tolerance and the adaptive inexact quasi-Newton method.
For all five methods, we add 1073 on the diagonal elements of the KKT matrix to increase its
condition number, and the KKT systems are solved using the CG method without a preconditioner.
We use 10~ for the exact tolerance for the standard quasi-Newton and the adaptive inexact
quasi-Newton methods. For the forcing parameter method, we use n = min(0.5,/||r||), which
is a commonly used inexact method described in [44]. We choose the parameters introduced in
our algorithms based on the parameter tuning results shown in Fig. In the parameter tuning
results, we compare the average percent reduction in total CG iterations relative to the standard
quasi-Newton method. The results show that the optimal values are n = 0.7 and n; = 3. The
results of the five methods on the six analytical test problems are shown as bar graphs in Fig.
where we show detailed comparison on each test problem in terms of total optimization iterations,
total CG iterations, and total optimization time, along with the average percentage reduction
in total CG iterations among all six test problems The three inexact methods proposed in this
paper perform better than the standard quasi-Newton method on each of the test problems. In
contrast, the forcing parameter inexact quasi-Newton method performs better than the standard
quasi-Newton method on only four test problems. This is because the forcing parameter approach
does not guarantee a descent direction on the augmented Lagrangian function for the equality-
constrained optimization problems. Thus, the performance can be unstable—it can greatly reduce
the CG iterations on certain problems but may lead to significantly more optimization iterations on
other problems. On average, the forcing parameter inexact quasi-Newton method results in a 52.8%
increase in CG reduction, while all the inexact methods we proposed show significant decrease. The
inexact quasi-Newton method using the alternative approach shows an average of 47.9% reduction
in CG iterations, which is slightly worse than the inexact quasi-Newton method which has 59.9%
reduction. However, the computation time is slightly better than the inexact quasi-Newton method
on most of the problems, especially the ones with larger size. This indicates a great potential of this
method on very large-scale problems. Considering now the adaptive inexact quasi-Newton method,
we see an average reduction of 61.5% in CG iterations. This is only a 1.6% improvement compared
to the non-adaptive inexact quasi-Newton method; however, we note that all cases considered show
an improvement. As these results suggest, the addition of the adaptive criterion does not always
provide a significant improvement, but generally, it does not hurt the total computation time.

Table 1: Properties of the CUTESst test problems

AIGTRIG INTEGREQ FERRISDC HUES-MOD BRATU3D BROYDN3D
(n, m) (200, 300) (502, 500) (2200, 210) (5000, 2) (3375, 3375) (5000, 5000)
n is the number of optimization variables, m is the number of equality constraints.

11

standard QN

forcing parameter inexact QN
inexact QN

inexact QN (alt.) 10° 4
adaptive inexact QN

standard QN

forcing parameter inexact QN
inexact QN

inexact QN (alt.)

adaptive inexact QN

Optimization iteration
Total CG iterations

AIGTRIG INTEGREQ FERRISDC ~ HUES-MOD BRATU3D BROYDN3D AIGTRIG INTEGREQ FERRISDC ~ HUES-MOD BRATU3D BROYDN3D
Test problem Test problem
(a) Total optimization iterations (b) Total CG iterations

standard QN
forcing parameter inexact QN
inexact QN

inexact QN (alt.)
adaptive inexact QN

,_.
2

102 4

Time (s)

= forcing parameter inexact QN
Em inexact QN

= inexact QN (alt.)

mmm adaptive inexact QN

10' 4

Avg. percentage reduction in total CG iterations

AIGTRIG ~ INTEGREQ ~ FERRISDC ~ HUES-MOD ~ BRATU3D ~ BROYDN3D
Test problem

(d) Average percentage reduction in total CG itera-
(c) Total optimization time tions

Figure 1: Comparison of results of the five methods applied to the CUTESst test problems

4.2 Bar thickness optimization
The first engineering design optimization problem we use is a one-dimensional bar thickness
optimization problem. In this problem, we optimize the thickness (height) distribution of a bar
under a load assuming a circular section. The bar is assumed to have a non-linear stress strain
behavior, and is subject to an equality constraint to bound the volume of the bar. The optimization
problem can be formulated as .
min ¢ d
s.t. V(h) = (29)
with K(h,d)d = q,

where h is the thickness distribution vector; d is the displacement vector; ¢ is the force vector; V is
the function that computes the volume of the cantilever bar; vg is the allowable volume; K is the
function that computes the stiffness matrix. This problem is formulated using the full-space method,

12

Avg. % reduction in total CG iterations (%)
g
Avg. % reduction in total CG iterations (%)

03 0.4 0.5 0.6 0.7 0.8 0.9 3 4 5 6 7 8 9
n n

(a) n for inexact quasi-Newton method (b) ny for adaptive quasi-Newton method

Figure 2: Parameter tuning results on the CUTESst test problems

and the optimization problem is solved using standard quasi-Newton, inexact quasi-Newton and
adaptive inexact quasi-Newton methods.

Table [2]shows the results for various problem sizes. The results are also plotted in Figure[d The
total number of optimization iterations, total number of CG iterations and the total optimization
time are compared for the three methods. For this problem, the total CG iterations for the two
inexact quasi-Newton methods are 2-3 times less than the standard quasi-Newton method. However,
for the 1000-element and 1500-element cases, the total computing time of the inexact quasi-Newton
methods are slightly greater than the standard quasi-Newton method. This is because, for certain
problems that are not large-scale, the time spent to perform one CG iteration is too small, and
for the inexact methods, they require extra time to compute for the inexact tolerance in each
optimization iteration. Therefore, applying inexact methods does not give any benefits when the
problem size is not large enough.

In the larger problems, with 2000 and 3000 elements, the inexact quasi-Newton methods take
15% - 30% less computing time than the standard quasi-Newton method. Comparing the inexact
quasi-Newton method with the adaptive inexact quasi-Newton method, the inexact quasi-Newton
method takes around two times more optimization iterations to converge than the adaptive inexact
quasi-Newton method. In the inexact quasi-Newton method, we only use the inexactness tolerance
as the stopping criteria for the CG solver, this tolerance guarantees that the search direction is
a descent direction, but it does not assure a good convergence rate. In this case, this results in
taking more optimization iterations to converge. In the adaptive inexact quasi-Newton method,
we use the inexact tolerance with the adaptive stopping criteria algorithm. The adaptive stopping
criteria ensure the robustness of the inexact method as it also makes the best use of the CG solver’s
performance.

In our implementation, the majority of the running time is spent on model evaluations. Thus,
a better metric to demonstrate the effectiveness of our algorithm is to look at the total computing
time for solving the KKT system, which is directly related to the total number of CG iterations.
The inexact quasi-Newton method takes 50% less CG iterations than the standard quasi-Newton
method, while the adaptive inexact quasi-Newton method takes 65% less CG iterations than the

13

standard quasi-Newton method.

For all the cases with different number of elements, the three quasi-Newton methods converged
to the same solution. Figure [3] shows the thickness distribution of the initial design and the
optimized design when the bar is modeled with 1000 elements. The convergence history of the
three methods for the 3000-element case is shown in Figure

Table 2: Comparison of results of the three methods applied to the bar thickness optimization
problem of various problem sizes

Design State KKT matrix Method Optimization Total CG Time (s)
variables variables size iteration iterations

1000 1002 3006 x 3006 standard quasi-Newton 139 2852 154
inexact quasi-Newton 131 944 160

adaptive inexact quasi-Newton 129 933 156

1500 1502 4506 x 4506 standard quasi-Newton 186 4445 557
inexact quasi-Newton 209 1765 610

adaptive inexact quasi-Newton 179 1585 602

2000 2002 6006 x 6006 standard quasi-Newton 184 4705 1532
inexact quasi-Newton 316 2537 1309

adaptive inexact quasi-Newton 166 1558 1068

3000 3002 9006 x 9006 standard quasi-Newton 226 6803 3868
inexact quasi-Newton 448 3305 3520

adaptive inexact quasi-Newton 207 2288 3117

0.52 4

e
]
=

o
~
L

o
o
L

=4
n
L

o
S
L

Thickness
o
w
o

e
=
©

0.48 4

Thickness
o
w

L

o
[N
L

o
=

o
o
L

T
200

T
400

T
600

Lengthwise position

T
800

T
1000

T
200

T
400

T
600

Lengthwise position

T
800

T
1000

(a) Initial Design (b) Optimized Design

Figure 3: Thickness distribution plots of the initial and optimized designs for the bar thickness
optimization problem with 1000 elements

14

—— standard QN
4x10? | —— inexact QN
—— adaptive inexact QN

6x10%

—e— standard QN
—e— inexact QN
—e— adaptive inexact QN

4x10°
3x10?
3x10°

CG iterations

2
8
g
g B0
= s £
Sl 2x10? 2x10 E

—e— standard QN

—e— inexact QN

10° 4 —e— adaptive inexact QN
10‘00 12‘50 15‘00 17‘50 20‘00 22‘50 25‘00 27‘50 30‘00 1060 12‘50 15b0 17‘50 20b0 22‘50 25b0 27‘50 30‘00 r T T T T T y T J
Number of elements Number of elements 1000 1250 1500 1750 2000 2250 2500 2750 3000
Number of elements

(a) Total optimization iterations (b) Total CG iterations (c) Total optimization time

Figure 4: Comparison of the three methods across various number of elements on the bar thickness

optimization problem

10% 4 —— standard QN —— standard QN
—— inexact QN 102 4 —— inexact QN
; —— adaptive inexact QN —— adaptive inexact QN
102
10° 4
2 >
=< 100 =
]
8 .,
_g g 1072 4
j=3 9]
© 102 w
107 A
]
10 10-6 4
0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
Number of CG iterations Number of CG iterations
(a) Optimality convergence history (b) Feasibility convergence history

Figure 5: Convergence history with number of CG iterations for the 3000-element bar thickness

optimization problem

4.3 Topology optimization

The second engineering design optimization problem we use is a 2D topology optimization
problem. In this problem, we optimize the material layout of a linear-elastic cantilever beam under
a traction load on the right face of the beam. The beam is modeled in FEniCS [45, 46], with its
domain modeled using uniform quadrilateral elements. We optimize the compliance of the beam
subject to a constraint to bound the average density of the material. The optimization problem is

formulated as
min ¢’d
h
s.t. pave(h) < 0.4pmax (30)
with KC(h)d = q,
where h is the density distribution vector; d is the displacement vector; g is the force vector; payg
is the average material density; pmax maximum material density allowed; K is the function that

computes the stiffness matrix.

15

This is a practical design optimization problem to demonstrate our algorithm, but our current
method is only applicable for equality-constrained optimization problems. Thus, we use SNOPT to
compute a local optimum and use the corresponding active set to convert the inequality constraints
into equality constraints. This problem is formulated in the full-space method and solved using
standard quasi-Newton, inexact quasi-Newton and adaptive inexact quasi-Newton methods.

Table 3: Comparison of results of the three methods applied to the topology optimization problem
of various problem sizes

Design KKT matrix Method Optimization Total CG Time (s)
variables size iteration iterations

40 x 20 4275 x 4275 exact quasi-Newton 84 1544 266
inexact quasi-Newton 84 834 241
adaptive inexact quasi-Newton 84 850 245
60 x 30 9440 x 9440 exact quasi-Newton 120 4117 1001
inexact quasi-Newton 149 3364 947
adaptive inexact quasi-Newton 123 2588 780
80 x 40 19646 x 19646 exact quasi-Newton 137 12911 3000
inexact quasi-Newton 142 4311 2123
adaptive inexact quasi-Newton 137 4087 2011

1.0

0.8

0.6

- 0.4

F0.2

—L 0.0

Figure 6: Material layout plot of the optimized design for the topology optimization problem with
3200 elements.

16

2
15x10 —e— standard QN
104 | —*— inexact QN

—e— adaptive inexact QN

1.4x10? —e— standard QN
—e— inexact QN

—e— adaptive inexact QN

1.3x10?

ions

1.2x10?

1.1x10?

Opt. iterati
CG iterations

1024

—— standard QN
—— inexact QN 103
—— adaptive inexact QN

1000 1500 2000 2500 3000 1000 1500 2000 2500 3000
Number of elements Number of elements

1000 1500 2000 2500 3000
Number of elements

(a) Total optimization iterations (b) Total CG iterations (c) Total optimization time

Figure 7: Comparison of the three methods for the topology optimization problem across various
number of elements

1071 4
—— standard QN —— standard QN
—— inexact QN —— inexact QN
1071 4 —— adaptive inexact QN 10-2 4 —— adaptive inexact QN
E 1072 4 E 10-3 4
= =
a
£ s 2
1073
) @ 10744
10—4 4
1075 4
10—5 4
0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000
Number of CG iterations Number of CG iterations
(a) Optimality convergence history (b) Feasibility convergence history

Figure 8: Convergence history with number of CG iterations for the 3200-element topology opti-
mization problem.

Table [3] shows the results for various problem sizes. The results are also plotted in Figure [7]
The three methods are compared on total number of optimization iterations, total number of CG
iterations and total optimization time. For this problem, we observe similar performance results
for the two inexact quasi-Newton methods as in the bar thickness optimization problem. The two
inexact quasi-Newton methods demonstrate better performance than the standard quasi-Newton
method in terms of total computation time. For the 800-element case, the total computation time
of the inexact methods is only 10% less than the exact method. In the larger-size problems, with
1800 and 3200 elements, the inexact methods become more effective. In the 3200-element case,
the adaptive inexact quasi-Newton method can save more than 30% of the computation time.
However, in the 1800-element case, the inexact quasi-Newton method takes 29 more optimization
iterations to converge. As a result, it only saves 5% of the computing time compared to the exact
quasi-Newton method. However, with the use of the adaptive criteria, the adaptive inexact quasi-
Newton method, takes fewer optimization iterations to converge than the inexact quasi-Newton
method. Particularly in the 1800-element case, an extra 15% computing time is saved as a result.

17

In terms of the total CG iterations, the inexact quasi-Newton method takes 18% and 66% less
CG iterations than the standard quasi-Newton method in the 1800-element and 3200-element cases,
respectively. The adaptive quasi-Newton method takes 37% and 68% less CG iterations than the
exact quasi-Newton method in the 1800-element and 3200-element cases, respectively.

The three quasi-Newton methods converged to the same solution for all the cases with different
problem sizes. Figure [6] shows the material layout of the optimized design when the beam is
modelled with 3200 elements. The convergence history of the three methods for the 3200-element
case is shown in Figure

5 CONCLUSION

In this paper, we presented an inexact quasi-Newton method with an adaptive extension. This
method targets large-scale optimization problems with thousands or more optimization variables
and equality constraints. This kind of optimization problem often appears when solving engineering
design problems in the full-space formulation. In our proposed method, we derived new criteria to
compute inexactness tolerance for the Krylov solver in a manner that ensures a descent direction for
the line search. We also proposed an extension to this method that adaptively selects the stopping
criteria to consider the Krylov solver’s convergence rate. Thus, it goes beyond the minimum
required to guarantee a descent direction when the convergence rate is high.

We used several test problems with various problem sizes to show indicative results. The test
problems include six constrained optimization problems from the CUTESst test suite, a bar thickness
optimization problem, and a 2D topology optimization problem. For all the test problems, using
the new inexactness tolerance can consistently reduce the total number of CG iterations by roughly
50% and additionally using the adaptive extension can further reduce the total number of CG
iterations in certain problems. In the largest-size topology optimization problem, using the new
inexactness tolerance with the adaptive extension saves more than 30% of the computing time and
65% of the total CG iterations.

A limitation of our method is that our algorithm only applies to equality-constrained opti-
mization problems, but many practical engineering design optimization problems have inequality
constraints. The future work is to extend this idea to the inequality-constrained optimization al-
gorithms such as the sequential quadratic programming and interior point methods. The expected
significance of this work is the potential to make the full-space methods and similar the SAND ar-
chitecture feasible on a broader class of problems by reducing the cost of solving the larger systems
that arise.

ACKNOWLEDGMENTS

The first author was partially supported by the First Year Fellowship from the Department
of Mechanical and Aerospace Engineering at the University of California San Diego. The second
author was supported by the National Science Foundation under grant no. 1917142. The mate-
rial presented in this paper is, in part, based upon work supported by NASA under award No.
S8ONSSC21MO0070.

REFERENCES

[1] Bijan Mohammadi and Olivier Pironneau. “Shape optimization in fluid mechanics”. In: Annu.
Rev. Fluid Mech. 36 (2004), pp. 255-279. DOI: 10.1146/annurev.fluid.36.050802.121926.

18

https://doi.org/10.1146/annurev.fluid.36.050802.121926

[12]

[13]

[14]

[15]

Yusuke Tahara, Satoshi Tohyama, and Tokihiro Katsui. “CFD-based multi-objective opti-
mization method for ship design”. In: International journal for numerical methods in fluids
52.5 (2006), pp. 499-527. DOI: 10.1002/£1d.1178.

Garret N Vanderplaats. “Structural design optimization status and direction”. In: Journal of
Aireraft 36.1 (1999), pp. 11-20. poI: 10.2514/6.1997-1407.

Bret K Stanford and Peter D Dunning. “Optimal topology of aircraft rib and spar structures
under aeroelastic loads”. In: Journal of Aircraft 52.4 (2015), pp. 1298-1311. DOI: 10.2514/
6.2014-0633.

Kai A James, Graeme J Kennedy, and Joaquim RRA Martins. “Concurrent aerostructural
topology optimization of a wing box”. In: Computers & Structures 134 (2014), pp. 1-17. DOI:
10.1016/j.compstruc.2013.12.007.

Antony Jameson. “Aerodynamic shape optimization using the adjoint method”. In: Lectures
at the Von Karman Institute, Brussels (2003).

Marian Nemec, David W Zingg, and Thomas H Pulliam. “Multipoint and multi-objective
aerodynamic shape optimization”. In: ATAA journal 42.6 (2004), pp. 1057-1065. DOI: 10.
2514/1.10415.

Vassilis Sakizlis, John D Perkins, and Efstratios N Pistikopoulos. “Parametric controllers in
simultaneous process and control design optimization”. In: Industrial & Engineering Chem-
istry Research 42.20 (2003), pp. 4545-4563. DOI: |10.1021/1e0209273.

Holt Ashley. “On making things the best-aeronautical uses of optimization”. In: Journal of
Aireraft 19.1 (1982), pp. 5-28. DOI: [10.2514/3.57350.

Tlan Kroo, Steve Altus, Robert Braun, Peter Gage, and Tan Sobieski. “Multidisciplinary op-
timization methods for aircraft preliminary design”. In: 5th symposium on multidisciplinary
analysis and optimization. 1994, p. 4325. DOI: [10.2514/6.1994-4325.

Nicolas E Antoine and Ilan M Kroo. “Framework for aircraft conceptual design and environ-
mental performance studies”. In: ATAA journal 43.10 (2005), pp. 2100-2109. DOT: 10.2514/
6.2004-4314.

Charles D McAllister and Timothy W Simpson. “Multidisciplinary robust design optimization
of an internal combustion engine”. In: J. Mech. Des. 125.1 (2003), pp. 124-130. pO1: 10.1115/
detc2001/dac-21124]

S Kodiyalam, RJ Yang, . Gu, and C-H Tho. “Multidisciplinary design optimization of a
vehicle system in a scalable, high performance computing environment”. In: Structural and
Multidisciplinary Optimization 26.3-4 (2004), pp. 256-263. DOI: 110.1007/s00158-003-0343~
2.

Namwoo Kang, Michael Kokkolaras, Panos Y Papalambros, Seungwon Yoo, Wookjin Na,
Jongchan Park, and Dieter Featherman. “Optimal design of commercial vehicle systems using
analytical target cascading”. In: Structural and Multidisciplinary Optimization 50.6 (2014),
pp. 1103-1114. por: [10.2514/6.2012-5524.

P Fuglsang and H Aagaard Madsen. “Optimization method for wind turbine rotors”. In:
Journal of Wind Engineering and Industrial Aerodynamics 80.1-2 (1999), pp. 191-206. DOTI:
10.1016/s0167-6105(98)00191-3.

19

https://doi.org/10.1002/fld.1178
https://doi.org/10.2514/6.1997-1407
https://doi.org/10.2514/6.2014-0633
https://doi.org/10.2514/6.2014-0633
https://doi.org/10.1016/j.compstruc.2013.12.007
https://doi.org/10.2514/1.10415
https://doi.org/10.2514/1.10415
https://doi.org/10.1021/ie0209273
https://doi.org/10.2514/3.57350
https://doi.org/10.2514/6.1994-4325
https://doi.org/10.2514/6.2004-4314
https://doi.org/10.2514/6.2004-4314
https://doi.org/10.1115/detc2001/dac-21124
https://doi.org/10.1115/detc2001/dac-21124
https://doi.org/10.1007/s00158-003-0343-2
https://doi.org/10.1007/s00158-003-0343-2
https://doi.org/10.2514/6.2012-5524
https://doi.org/10.1016/s0167-6105(98)00191-3

[21]

[22]

[23]

[25]

Gaetan Kenway and Joaquim RRA Martins. “Aerostructural shape optimization of wind tur-
bine blades considering site-specific winds”. In: 12th AIAA/ISSMO multidisciplinary analysis
and optimization conference. 2008, p. 6025. DOI: |10.2514/6.2008-6025.

Andrew Ning and K Dykes. “Understanding the benefits and limitations of increasing maxi-
mum rotor tip speed for utility-scale wind turbines”. In: Journal of physics: conference series.
Vol. 524. 1. IOP Publishing. 2014, p. 012087. DOI: |[10.1088/1742-6596/524/1/012087.

Mathieu Balesdent, Nicolas Bérend, Philippe Dépincé, and Abdelhamid Chriette. “A survey
of multidisciplinary design optimization methods in launch vehicle design”. In: Structural and
Multidisciplinary optimization 45.5 (2012), pp. 619-642. DO1:|10.1007/s001568-011-0701-4.

Cyrus Jilla and David Miller. “A multiobjective, multidisciplinary design optimization method-
ology for the conceptual design of distributed satellite systems”. In: 9th AIAA/ISSMO Sym-

posium on Multidisciplinary Analysis and Optimization. 2002, p. 5491. DOI1:[10.2514/6.2002-

5491.

John T Hwang, Dae Young Lee, James W Cutler, and Joaquim RRA Martins. “Large-scale
multidisciplinary optimization of a small satellite’s design and operation”. In: Journal of
Spacecraft and Rockets 51.5 (2014), pp. 1648-1663. DOI: https://doi.org/10.2514/1.
A32751l

John T Hwang and Andrew Ning. “Large-scale multidisciplinary optimization of an electric
aircraft for on-demand mobility”. In: 2018 AIAA/ASCE/AHS/ASC Structures, Structural
Dynamics, and Materials Conference. 2018, p. 1384. DOI: https://doi.org/10.2514/6.
2018-1384.

Tae H Ha, Keunseok Lee, and John T Hwang. “Large-scale multidisciplinary optimization
under uncertainty for electric vertical takeoff and landing aircraft”. In: AIAA Scitech 2020
Forum. 2020, p. 0904. DOI: |10.2514/6.2020-0904.

Joaquim RRA Martins, Peter Sturdza, and Juan J Alonso. “The complex-step derivative
approximation”. In: ACM Transactions on Mathematical Software (TOMS) 29.3 (2003),
pp. 245-262. DOI: [10.1145/838250.838251.

Justin S Gray, John T Hwang, Joaquim RRA Martins, Kenneth T Moore, and Bret A Nay-
lor. “OpenMDAOQO: An open-source framework for multidisciplinary design, analysis, and op-
timization”. In: Structural and Multidisciplinary Optimization 59.4 (2019), pp. 1075-1104.
DOI: https://doi.org/10.1007/s001568-019-02211-z.

John T Hwang and Joaquim RRA Martins. “A computational architecture for coupling het-
erogeneous numerical models and computing coupled derivatives”. In: ACM Transactions
on Mathematical Software (TOMS) 44.4 (2018), p. 37. DOL: https://doi.org/10.1145/
3182393.

George Biros and Omar Ghattas. “Inexactness issues in the Lagrange-Newton-Krylov-Schur
method for PDE-constrained optimization”. In: Large-scale PDE-constrained optimization.
Springer, 2003, pp. 93-114. por: [10.1007/978-3-642-55508-4_6.

Evin J Cramer, John E Dennis Jr, Paul D Frank, Robert Michael Lewis, and Gregory R
Shubin. “Problem formulation for multidisciplinary optimization”. In: SIAM Journal on Op-
timization 4.4 (1994), pp. 754-776. DOI: |10.1137/0804044.

20

https://doi.org/10.2514/6.2008-6025
https://doi.org/10.1088/1742-6596/524/1/012087
https://doi.org/10.1007/s00158-011-0701-4
https://doi.org/10.2514/6.2002-5491
https://doi.org/10.2514/6.2002-5491
https://doi.org/https://doi.org/10.2514/1.A32751
https://doi.org/https://doi.org/10.2514/1.A32751
https://doi.org/https://doi.org/10.2514/6.2018-1384
https://doi.org/https://doi.org/10.2514/6.2018-1384
https://doi.org/10.2514/6.2020-0904
https://doi.org/10.1145/838250.838251
https://doi.org/https://doi.org/10.1007/s00158-019-02211-z
https://doi.org/https://doi.org/10.1145/3182393
https://doi.org/https://doi.org/10.1145/3182393
https://doi.org/10.1007/978-3-642-55508-4_6
https://doi.org/10.1137/0804044

Raphael T Haftka. “Simultaneous analysis and design”. In: AIAA journal 23.7 (1985), pp. 1099—
1103. DOI: [10.2514/3.9043.

Anugrah Jo Joshy and John T Hwang. “A new architecture for large-scale system design
optimization”. In: ATAA AVIATION 2020 FORUM. 2020, p. 3125. DOI: |10.2514/6.2020-
3125,

Anugrah Jo Joshy and John T Hwang. “Unifying Monolithic Architectures for Large-Scale
System Design Optimization”. In: ATAA Journal (2021), pp. 1-11. DOI: 10.2514/1. j059954.

Yonathan Bard. On a Numerical Instability of Davidon-like Methods. IBM Data Processing
Division (New York), 1967. poOI: [10.1090/s0025-5718-1968-0232533-5.

Richard H Byrd, Robert B Schnabel, and Gerald A Shultz. “A trust region algorithm for
nonlinearly constrained optimization”. In: STAM Journal on Numerical Analysis 24.5 (1987),
pp. 1152-1170. DOIL: [10.1137/0724076.

MJD Powell and Y Yuan. “A trust region algorithm for equality constrained optimization”.
In: Math. Program. 49.1 (1991), pp. 189-211. DOI: [10.1007/bf01588787.

Maria Rosa Celis. A trust region strategy for nonlinear equality constrained optimization.
Tech. rep. 1985. DOI: 110.21236/ada454933.

Philip E Gill, Walter Murray, Michael A Saunders, and Margaret H Wright. Some Theoretical
Properties of an Augmented Lagrangian Merit Function. Tech. rep. STANFORD UNIV CA
SYSTEMS OPTIMIZATION LAB, 1986.

George Biros and Omar Ghattas. “Parallel Lagrange-Newton—Krylov—Schur methods for
PDE-constrained optimization. Part I: The Krylov—Schur solver”. In: SIAM Journal on Sci-
entific Computing 27.2 (2005), pp. 687-713. DOI: 10.1137/s106482750241565x.

George Biros and Omar Ghattas. “Parallel Lagrange-Newton—Krylov—Schur methods for
PDE-constrained optimization. Part II: The Lagrange-Newton solver and its application to
optimal control of steady viscous flows”. In: SIAM Journal on Scientific Computing 27.2
(2005), pp. 714-739. DOI: [10.1137/51064827502415661!

Henk A Van der Vorst. “Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for
the solution of nonsymmetric linear systems”. In: STAM Journal on scientific and Statistical
Computing 13.2 (1992), pp. 631-644. DO1: 10.1137/0913035.

Christopher C Paige and Michael A Saunders. “Solution of sparse indefinite systems of linear
equations”. In: STAM journal on numerical analysis 12.4 (1975), pp. 617-629. DOI: 10.1137/
0712047.

Philip E Gill, Walter Murray, and Michael A Saunders. “SNOPT: An SQP algorithm for
large-scale constrained optimization”. In: SIAM review 47.1 (2005), pp. 99-131. DOI: https:
//doi.org/10.1137/30036144504446096.

Haijian Yang, Feng-Nan Hwang, and Xiao-Chuan Cai. “Nonlinear Preconditioning Techniques
for Full-Space Lagrange-Newton Solution of PDE-Constrained Optimization Problems”. In:
SIAM Journal on Scientific Computing 38.5 (2016), A2756—-A2778. DOI: https://doi.org/
10.1137/15M104075X.

21

https://doi.org/10.2514/3.9043
https://doi.org/10.2514/6.2020-3125
https://doi.org/10.2514/6.2020-3125
https://doi.org/10.2514/1.j059954
https://doi.org/10.1090/s0025-5718-1968-0232533-5
https://doi.org/10.1137/0724076
https://doi.org/10.1007/bf01588787
https://doi.org/10.21236/ada454933
https://doi.org/10.1137/s106482750241565x
https://doi.org/10.1137/s1064827502415661
https://doi.org/10.1137/0913035
https://doi.org/10.1137/0712047
https://doi.org/10.1137/0712047
https://doi.org/https://doi.org/10.1137/S0036144504446096
https://doi.org/https://doi.org/10.1137/S0036144504446096
https://doi.org/https://doi.org/10.1137/15M104075X
https://doi.org/https://doi.org/10.1137/15M104075X

Jason Hicken and Juan Alonso. “Comparison of reduced-and full-space algorithms for PDE-
constrained optimization”. In: 51st ATAA Aerospace Sciences Meeting including the New
Horizons Forum and Aerospace Exposition. 2013, p. 1043. DOI: [10.2514/6.2013-1043.

Nicholas IM Gould, Dominique Orban, and Philippe L Toint. “CUTEst: a Constrained and
Unconstrained Testing Environment with safe threads for mathematical optimization”. In:
Computational Optimization and Applications 60.3 (2015), pp. 545-557. DOI: https://doi.
org/10.1007/s10589-014-9687-3.

Nocedal Jorge and J Wright Stephen. Numerical optimization. 2006. DOI: [10.1007/b98874.

Martin Alnges, Jan Blechta, Johan Hake, August Johansson, Benjamin Kehlet, Anders Logg,
Chris Richardson, Johannes Ring, Marie E Rognes, and Garth N Wells. “The FEniCS project
version 1.5”. In: Archive of Numerical Software 3.100 (2015). DOI:|10.11588/ans.2015.100.
20553l

Anders Logg, Kent-Andre Mardal, and Garth Wells. Automated solution of differential equa-
tions by the finite element method: The FEniCS book. Vol. 84. Springer Science & Business
Media, 2012. DoI: [10.1007/978-3-642-23099-8.

22

https://doi.org/10.2514/6.2013-1043
https://doi.org/https://doi.org/10.1007/s10589-014-9687-3
https://doi.org/https://doi.org/10.1007/s10589-014-9687-3
https://doi.org/10.1007/b98874
https://doi.org/10.11588/ans.2015.100.20553
https://doi.org/10.11588/ans.2015.100.20553
https://doi.org/10.1007/978-3-642-23099-8

	Introduction
	Background
	Optimization Problem Formulation
	Newton's method for equality constrained optimization
	Current inexact methods

	Methodology
	Criteria for inexact tolerance
	Adaptive Stopping Criteria for Krylov Solver

	Numerical Results
	Analytical optimization test problems
	Bar thickness optimization
	Topology optimization

	Conclusion

