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Abstract

The nitrogen content in plant foliar tissues (foliar N) regulates photosynthetic

capacity and has a major impact on global biogeochemical cycles. Despite its

importance, a robust, time, and cost-effective methodology to estimate variation in

foliar N concentration across globally represented terrestrial systems does not exist.

Although advances in remote sensing data have enabled landscape-scale foliar N

predictions, improved accuracy is needed to effectively capture variation in foliar N

across ecosystems. Airborne remote sensing imagery was analyzed in conjunction

with ground-sampled foliar chemistry data (n = 692), provided by the NEON, to

predict foliar N at sites across the United States covering a variety of plant commu-

nities and climate types. We developed indices from novel two-band combinations

that predicted foliar N more accurately than existing indices (≈8% improvement

across all sites and a 45% improvement in arid sites). Compared with two-band

indices, we increased accuracy and decreased bias of foliar N predictions by using

full-spectrum reflectance information and partial least squares regression (PLSR)

models (R2 = 0.638; root mean square error = 0.440). Significant wavelengths

included red edge (720–765 nm), near infrared (NIR) reflectance at 1125 nm, and

shortwave infrared (SWIR) reflectance at 2050 and 2095 nm, which are regions

indicative of foliar traits such as growth type (e.g., leaf area index with NIR) and

photosynthetic parameters (e.g., chlorophyll and Rubisco with red and SWIR

reflectance, respectively). With the confluence of rapid increases in computing

power, several forthcoming or recently launched hyperspectral missions, and the

development of large-scale environmental research observatories worldwide, we

have an exciting opportunity to estimate foliar N across larger spatial areas covering

more diverse biomes than ever before. We anticipate that these predictions will

prove to be invaluable in helping to constrain biogeochemical model uncertainties

across a global range of terrestrial ecosystems.
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INTRODUCTION

Photosynthesis is a primary control on net primary
productivity (NPP) and determines rates of plant growth,
food production, and ultimately carbon (C) uptake and
storage, which has important implications for climate
change. Since it is a major component of the essential
photosynthetic machinery in leaves including light-
harvesting compounds (chlorophyll) and proteins, the con-
centration of nitrogen in plant tissue (foliar N) controls
these dynamics (Evans & Clarke, 2019; Field & Mooney,
1986). Foliar N is strongly correlated with photosynthetic
capacity such that ecosystems with plants that have lower
levels of foliar N can have a reduced C-uptake capacity
(Field & Mooney, 1986). Nitrogen supply can significantly
constrain plant productivity, with earth system model
(ESM) simulations from 1850 to 2100 estimating up to a 61%
reduction in net C uptake due to N limitation (Gastal &
Saugier, 1989; Goll et al., 2012; Wang & Houlton, 2009;
Wårlind et al., 2014). Notably, uncertainty in foliar N predic-
tions across ecosystems in ESMs contributes to large varia-
tions in NPP predictions (Bonan et al., 2011; Friend, 2010;
Rogers, 2014).

We currently lack a robust methodology to estimate
variation in foliar N across terrestrial ecosystems. Esti-
mates of foliar N concentrations typically involve in situ
sampling followed by laboratory analysis of plant tissue
using either the Dumas combustion or the Kjeldahl diges-
tion techniques (Dumas, 1831; Horneck & Miller, 1997;
Kjeldahl, 1883). Both of these techniques are time-inten-
sive, and application of these methods across large spatial
areas with an abundant and diverse community of plants
is not typically feasible. Under controlled laboratory condi-
tions, high spectral resolution data acquired from imaging
spectrometers (hyperspectral data) can capture the nar-
rowband absorption features leaf proteins exhibit and be
used to predict foliar N content (Curran, 1989). At larger
scales, remote sensing of hyperspectral data has advan-
tages over traditional laboratory-based foliar N methods
by capturing massive amounts of information regarding
the plant N content of many different species across large
areas and time frames. This methodology has been used to
successfully model foliar N in a variety of systems
(e.g., Chen et al., 2010; Clevers & Kooistra, 2012; Kalacska
et al., 2015; Ollinger & Smith, 2005; Serrano et al., 2002;
Skidmore et al., 2010). More challenging still is developing
approaches to predicting foliar N that can be applied
across diverse sites and biomes. Successful efforts include
partial least squares regression (PLSR) approaches devel-
oped using sites in boreal forests (Ollinger et al., 2008),
temperate and tropical forests (Martin et al., 2008), and
temperature and sub-boreal forest ecosystems (Lepine
et al., 2016; Singh et al., 2015). Recently, Wang et al. (2020)

successfully predicted foliar N from airborne hyperspectral
data across eastern North American ecoregions (Wang
et al., 2020). Arid systems are often excluded from cross-
biome foliar N imaging spectroscopy studies (Lepine et al.,
2016; Martin et al., 2008; Ollinger et al., 2008; Singh et al.,
2015; Wang et al., 2020). Arid systems, defined as areas
where total annual potential evapotranspiration greatly
exceeds the average annual precipitation, cover 40% of the
terrestrial land area and provide ecosystem services to
more than 2 billion people (Millennium Ecosystem
Assessment, 2005; UNEP-WCMC, 2011). They account for
30%–35% of terrestrial NPP and have large roles in both
the trend and interannual variability in global carbon,
water, and nitrogen cycles (Ahlstrom et al., 2015;
Field, 1998; Poulter et al., 2014). The vegetation dynamics
of arid systems such as patchiness, senescence, and rapid
pulse-driven responsiveness to water availability cause
many challenges in remote sensing analytics (Smith et al.,
2019). Despite these obstacles, accurate retrieval of plant
traits from remote sensing is possible and can provide valu-
able insight into changing plant dynamics in these arid sys-
tems (Eisfelder et al., 2012; Schmidt & Karnieli, 2000;
Vicente-Serrano, 2007). Accurate cross-biome plant trait
predictions from imaging spectroscopy require the inclusion
of these arid systems in model building and validation.

Unfortunately, the availability of remotely sensed hyper-
spectral data is a major obstacle to achieving large-scale,
cross-biome, foliar N mapping (Serbin & Townsend, 2020).
Foliar N can exhibit high degrees of plasticity mediated by a
variety of biotic and abiotic factors, which can add further
complications to large-scale predictions (Abdala-Roberts
et al., 2016; Chen et al., 2013; Osnas et al., 2018). For accu-
rate predictions, the spatial resolution and spectral resolu-
tion of data need to capture subtle reflectance differences
that result from variation both within and among species.
Furthermore, consistent data collection from a variety of
ecosystems is required for cross-biome comparisons. Nei-
ther requirement is trivial—imaging spectrometer sensors
are costly, and acquisition of these data across space in a
regular manner brings monetary, time, and logistical chal-
lenges. One emerging resource is the NEON, which is pro-
viding long-term open access data from ecological research
sites across the United States. NEON is collecting both
remote sensing and the plant chemistry data needed to esti-
mate foliar N across broadscales (Johnson et al., 2010;
Kampe, 2010).

Another popular approach in remote sensing is the use
of vegetation indices to predict plant traits. Vegetation
indices are designed to enhance spectral contribution from
desired vegetation characteristics while minimizing the
interference of other factors (Liang et al., 2012). Generally,
vegetation indices are calculated from a discrete number
of reflectance bands linked to a specific plant trait and are
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used to develop relationships between the trait of interest
and reflectance properties of vegetation (Carlson &
Ripley, 1997; Sims & Gamon, 2003). Two common vegeta-
tion indices, the Normalized Difference Vegetation Index
(NDVI) and the Ratio Vegetation Index (RVI), have been
repeatedly used in foliar N predictions (Lepine et al., 2016;
van Deventer et al., 2015; Xue et al., 2004; Zhu et al., 2008).
Both indices can be sensitive to soil brightness, however,
especially when there is a small amount of vegetation cover.
The Soil-Adjusted Vegetation Index (SAVI) can overcome
this limitation and increase prediction performance by
accounting for soil background effects (Huete, 1988). Many
vegetation indices have also been developed to predict foliar
N (Table 1). Most foliar N indices have been tested in specific
systems—mainly the agriculture sector (Chen et al., 2010;
Clevers & Kooistra, 2012; Reyniers et al., 2006; Tian et al.,
2010; Wang, Yao, Tian, et al., 2012; Wang, Yao, Yao, et al.,
2012; Xue et al., 2004; Zhu et al., 2008). As such, the applica-
bility of these indices across diverse biomes has not been ade-
quately evaluated.

In this study, we assessed the performance of published
foliar N indices and the utility of imaging spectroscopy to
estimate foliar N concentration across a range of ecosystems
in the United States. Accurate plant trait predictions across
broad spatial scales are needed to understand how plant
community dynamics are responding to changing climate
regimes. Our goal was to evaluate the ability of imaging

spectroscopy data to create generalizable predictions of
variability in foliar N concentrations across ecosystems
encompassing a range of climatic patterns and plant
community types. We compared ground-sampled foliar N
concentrations with high-resolution airborne imaging spec-
troscopy data and identified wavelength regions that related
most strongly to foliar N concentration. Our analysis con-
sisted of three components: First, the performance of previ-
ously published foliar N indices was evaluated across a
diversity of sites; second, indices were calculated for all novel
two-band combinations from NEON reflectance data and
used to predict foliar N both within and across biomes; and
last, the performance of these indices was compared with
foliar N predictions using whole-spectrum statistical models
to determine how the accuracy of predictions changed based
on utilization of full-spectrum reflectance data and model
complexity. We then highlight the implications of this
improved approach for C-uptake modeling.

MATERIALS AND METHODS

Study sites, airborne imaging spectroscopy
data, and foliar N

Foliar chemistry data (NEON, 2021a) were downloaded
from the NEON data portal for all sites where foliar N

TAB L E 1 Previously published foliar N vegetation indices included in analysis

Number Citation Vegetation index
Wavelengths included in
vegetation index (nm) System

1 Chen et al., 2010 Double-peak canopy nitrogen
index (DCNI)

720, 700, 670 Agriculture

2 Clevers & Kooistra, 2012 Red-edge chlorophyll index
(CIred edge)

780, 710 Grassland and agriculture

3 Lepine et al., 2016 Average NIR reflectance 800:850 and 800:1250 Temperate and boreal forests

3 Ollinger et al., 2008; Average NIR reflectance 800:850 and 800:1250 Temperate and boreal forests

3 Wang et al., 2016 Average NIR reflectance 800:850 and 800:1250 Temperate forest

4 Reyniers et al., 2006 Optimal vegetation index
(VIopt)

800, 670 Agriculture

5 Serrano et al., 2002 Normalized Difference
Nitrogen Index (NDNI)

1510, 1680 Mediterranean

6 Tian et al., 2010 Blue N index 430, 495, 400 Agriculture

7 Wang, Yao, Yao, et al., 2012 Three broadband index 920, 700, 420 Agriculture

8 Wang, Yao, Tian, et al., 2012 SAVI (R822,R738) 820, 735 Agriculture

8 Wang, Yao, Tian, et al., 2012 RVI (R822,R738) 820, 735 Agriculture

9 Xue et al., 2004 RVI (R810,R560) 810, 560 Agriculture

10 Zhu et al., 2008 RVI (R950,R660) 950, 660 Agriculture

10 Zhu et al., 2008 RVI (R870,R660) 870, 660 Agriculture

10 Zhu et al., 2008 RVI (R810,R660) 810, 660 Agriculture
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was sampled in conjunction with NEON’s Airborne
Observation Platform campaign from 2017 to 2019
(N = 692) (Figure 1, Appendix S1: Tables S1 and S2)
using the neonUtilities package in R version 4.0.2 (Lunch
et al., 2021; R Core Team, 2021). Full details regarding
NEON protocols for canopy foliage sampling can be
found in NEON.DOC.001024 revisions D and E (for
2017–2018 sites) and revision F (2019 sites; Weintraub &
Hinckley, 2017). Briefly, the majority of plant samples
included in the present analysis were collected from a
subset of the “Distributed Base Plots” (40 � 40 m) and
“Tower Plots” (sizes differ by location) for a total of
14–20 plots per site. When there was more than 25% aeri-
ally visible woody species in a plot, a maximum of the
top three most abundant species were identified and fully
sun-lit vegetation from a single individual of each of
these species was sampled. When there was less than 25%
of aerially visible woody species or more than 25% aeri-
ally visible nonwoody herbaceous species, herbaceous
clip strips were also collected from plots. Herbaceous clip
strips were representative of the herbaceous plant bio-
mass and randomly collected from a 0.1 � 2-m area of
sun-lit vegetation (not located under overstory canopy) in
the plot area and homogenized. Plant sample locations
were determined with the geoNEON R package (NEON,
2020). A threshold of 85% cover was applied to the herba-
ceous clip strips to ensure inclusion of samples with suffi-
cient foliar coverage over an area captured by a single pixel
of the remote sensing data while excluding nonfoliated
areas (Asner et al., 2015). Woody plant sample locations
were determined based on vegetation structure data
(NEON, 2021b; Appendix S1: Table S1).

Biome delineations for sample locations were deter-
mined from the Köppen-Geiger climate classifications
defined in Kottek et al. (2006) using the downscaling
algorithms defined in Rubel et al. (2017) (Figure 1). We
chose this biome classification scheme because it predicts
biome distributions based on monthly and annual pat-
terns in temperature and precipitation while considering
plant threshold values to these trends; it has been widely
used in ecological modeling and climate change research
(Franks et al., 2018; Köppen, 2011; Mahlstein et al., 2013;
Poulter et al., 2011). Delineating sites according to biome
allowed us to produce generalizable prediction models
where sites were grouped according to similar vegetation
types, cover, and climatic conditions (Appendix S1:
Table S2). When available, high-resolution red, green, and
blue imagery for each site was used to calculate the Green
Leaf Index (GLI) of sample locations (NEON, 2021c).
Values for GLI range from �1 to +1 with negative values
indicating soil and nonliving vegetation and positive values
indicating green vegetation (Louhaichi et al., 2001). Leaf
Area Index (LAI) was calculated from the hyperspectral

imagery for the sample locations using the equation out-
lined in NEON protocols (Hulslander, 2019). Additional
meta-data for each site including sample type and number,
National Land Cover Database classification, dates samples
were collected, location, GLI, and LAI are included in
Appendix S1: Table S2.

NEON’s imaging spectrometer measures spectral
radiance in 426 channels across a wavelength range of
385–2510 nm in 5-nm increments at 1-m2 spatial resolu-
tion. The orthorectified surface reflectance data product
from individual flight lines was used in the analysis
(NEON, 2021d; Appendix S1: Table S1). This data prod-
uct is calibrated and atmospherically corrected (ATCOR)
with ATCOR reflectance processing. Whenever possible,
data products were selected from low cloud cover (<10%)
conditions. Corrections for topographic illumination
effects were performed using the modified sun-canopy
sensor topographic method (Soenen et al., 2005).

To normalize between and within scenes for differen-
tial illumination and reflectance due to sun-target-sensor
geometry, we performed a bidirectional reflectance distri-
bution function (BRDF). For both topographic and BRDF
corrections, we modified code from the openly available
python package HyTools (Chlus et al., 2019) to work
directly on .h5 files (Farella, 2021), which is the native
format of NEON hyperspectral reflectance data. We
used semi-empirical radiative transfer approximations to
derive our kernel-based BRDF correction model (Colgan
et al., 2012; Hilker, 2018; Wanner et al., 1995; Weyermann
et al., 2015). Similar to the BRDF model developed for
Moderate Resolution Imaging Spectrometer reflectance
and albedo data products, we determined reflectance with
the Li-sparse model to compute the geometric scattering
kernel and the Ross-thick model to compute the volumet-
ric scattering kernel as functions of viewing and illumina-
tion geometry (Li & Strahler, 1992; Los et al., 2005;
Ross, 1981; Schaaf et al., 2002). Li kernel canopy parame-
ters were fixed according to Colgan et al. (2012) as 2.0 and
10.0 for object shape (h/b) and height (b/r), respectively.
Correction factors for reflectance anisotropy at each reflec-
tance band were calculated as a function of the modeled
reflectance at the actual view angle and the modeled
reflectance at nadir (Weyermann et al., 2015). The preva-
lent solar zenith angle at the time of data acquisition was
between 35� and 40� with ≈90% of the flight lines having
solar zenith angles <45�.

Reflectance spectra were extracted from a 3-m area
centered on the plant clip location to account for geo-
location errors. These nine reflectance readings were then
averaged to a single reflectance reading for each plant
clip. The GLI and LAI for this area were calculated to
ensure reflectance represented live vegetation and did not
consist primarily of nonliving plant and soil reflectance.
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Distance between sample locations was determined with
Euclidean distance with less than 0.2% of samples
included in the analysis being closer than 3 m to other
samples (Appendix S1: Table S2), ensuring unique

reflectance spectra from each sample for comparison with
measured foliar N.

Three different sensors were used to collect the
hyperspectral data across the NEON sites included in

F I GURE 1 Map of sample locations across the United States and Puerto Rico symbolized according to biomes (a). Numbers on map

represent the number of samples at each site. Boxplot shows median foliar nitrogen (N) percent distribution for each biome with ANOVA

and Tukey’s honestly significant difference post hoc analysis results (b). Outliers are symbolized as open points, and whiskers extend to

lower and upper quartiles 1.5 times the interquartile range. Individual graphs for each biome display the average (line) and standard

deviation (shaded region) spectral reflectance values across wavelengths (c)
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this analysis, and band centers between the sites did
not always align due to shifts that can occur during
the sensor calibration process (Green et al., 1998). As
such, we resampled reflectance readings from 385 to
2510 in 5-nm increments to ensure all reflectance
spectra could be analyzed together. Prior to analysis,
reflectance spectra were trimmed at the far ends of the
spectrum and noisy regions dominated by water
absorption leaving 340 of the 426 bands of reflectance
data over the 385–2510-nm region. The resulting
reflectance bands used in the analyses spanned the
wavelengths: 410–1330 nm, 1460–1790 nm, and 2005–
2440 nm (Figure 1).

Foliar nitrogen indices and analyses

Many vegetation indices have been developed to predict
foliar N concentration. Fourteen previously published
indices that specifically measure foliar N (in contrast to
vegetation indices that measure chlorophyll or photosyn-
thesis as proxies for foliar N) were selected for compara-
tive analysis in this study (Table 1).

We also calculated foliar nitrogen indices (FNI) with
three commonly used vegetation index calculations
(Equations 1–3) using all two-band combinations of
reflectance data. Combinations of the 340 bands included
in the data analyses according to Equations (1)–(3)
resulted in 115,260 unique band combinations. Analysis
was done across all sites and on data subdivided by
biome. The optimum FNI was chosen as the two-band
combination that had the highest average R2 as long as
the average root mean square error of prediction
(RMSEP) values across biomes fell within the lowest 25%
(first quartile) of values.

FNINDVI ¼Rband1�Rband2

Rband1þRband2
ð1Þ

FNISAVI ¼ 1:5 Rband1�Rband2ð Þ
0:5þRband1þRband2

ð2Þ

FNIRVI ¼Rband1

Rband2
ð3Þ

where R is the reflectance value from a single band
of data.

In addition to two-band indices, PLSR models were
run on full-spectrum reflectance and all FNI two-band
combinations. We performed 100 permutations of the
data with 80% of the data used for model training and
20% used for model testing. Models were validated using
10-fold cross-validation. To avoid model overfitting, the

number of components for each model was chosen as the
minimum RMSEP for up to 20 components. The models
that had the best performance for foliar N predictions
with the testing data (test R2 > average test R2 for the
100 iterations and test RMSEP < average test RMSEP)
were used to calculate coefficient values and generate
model statistics such as R 2, RMSE, and variable impor-
tance in projection (VIP) scores (Chadwick &
Asner, 2016). To improve spectra consistency, cross-
spectrum brightness normalization was applied to
reflectance spectra before running the single-band PLSR
models. Brightness normalization helps minimize differ-
ences among spectra due to variations in structure, view-
ing angle, and LAI (Feilhauer et al., 2010). To accurately
evaluate model performance, PLSR coefficients were
applied to four novel sites (BONA, JERC, NIWO, and
WREF) completely excluded from model building. PLSR
was implemented using the pls package in R (Mevik
et al., 2020). VIP scores were calculated with the plsVarSel
R package (Mehmood et al., 2012).

Heat graphs of R2 linear regressions and PLSR VIP
scores were used to illustrate the importance of two-band
combinations as predictors of foliar N from hyperspectral
data using the gplots R package (Warnes et al., 2020).
Maps were created in ArcGIS Pro version 2.4.1.

RESULTS

There was variation in both reflectance spectra and foliar
N concentration among the biomes included in the anal-
ysis (Figure 1). Samples from sites in the arid biome had
the highest foliar N values (x = 2.33%), while continental
biome sites had the lowest (x = 1.68%). In total, 594 sam-
ples were included in model building and 98 samples
were included in model testing from sites across
the United States with most of the samples coming from
temperate biomes (N = 470) and the least coming from
arid and tropical biomes (N = 37 from each biome;
Figure 1).

When samples across biomes were pooled, all 14 pre-
viously published foliar N indices captured less than 18%
of the variation in foliar N (Table 2, Figure 2). The best
index across all sites was the SAVI foliar N index publi-
shed in Wang, Yao, Tian, et al. (2012) using reflectance at
820 and 735 nm (R2 = 0.178). Considering individual
biomes, the SAVI foliar N index also had the highest per-
formance in the temperate biome (R2 = 0.294). In the
arid biome, the Normalized Difference Nitrogen Index
using reflectance at 1510 and 1680 nm had the best per-
formance (R2 = 0.130). The RVI using reflectance at
950 and 660 nm performed best in the continental
biome (R2 = 0.203). Across the board, foliar N indices
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in tropical biomes performed poorly—there was a maxi-
mum of 16.7% of the variance explained in foliar N by
the double-peak canopy N index using reflectance at
670, 700, and 720 nm.

Compared with previously published indices, the FNI
calculations evaluated in this study had improved perfor-
mance metrics. The optimum two-band calculation for
all three indices showed modest improvement across all
sites pooled (~8% increase), with a large improvement in
sites from arid biomes (R2 increased from 0.130 to 0.586;
Table 3, Figure 2). For all three FNI calculations, the
optimum two-band combination used bands from the
SWIR around 2050 nm and 2100 nm and explained over
20% of the variance in foliar N when all sites were
pooled. Sites in arid biomes had over 50% of the variance
in foliar N explained by optimum two-band indices with
all three FNI calculations. The FNINDVI and FNIRVI cal-
culations also performed well in sites from temperate
biomes with ~40% of the variance in foliar N explained.
The FNISAVI calculation had the best performance in sites
from the continental biome (Table 3). Again, indices did

not perform as well in sites from the tropical biome, with
a maximum of 1.2% of the variance in foliar N explained
by the FNINDVI calculation.

Considering all two-band combinations, rather than
just the optimum two-band FNI calculations, heat
graphs illustrate correlations between foliar N and the
FNI calculations for each of the 115,260 two-band com-
binations (Figure 3, Appendix S1: Figures S1 and S2).
Similar FNI regions performed well across biomes: 600–
700 nm with both 1500–1750 and 2100–2300 nm; 2020–
2050 nm with 2075–2320 nm. There was also a small
interval at 710–720 nm with 800–1250 nm, especially con-
sidering the tropical biome. Overall, the highest R2 values
were seen in sites from temperate, arid, and continental
biomes. The tropical biome had a maximum of 31.1% of the
variance explained in foliar N with the FNINDVI calculation
using a visible light reflectance band combination (755 and
765 nm).

Utilizing the full-spectrum reflectance in PLSR analy-
sis led to further improvements in model performance
(Table 3). When all sites were pooled together, 63.8% of

TAB L E 2 Comparison of previously published foliar N index performance (R2) by biome

Citation Formula All sites Temperate Arid Continental Tropical

1 R720�R700ð Þ
R700�R670ð Þ/ R720�R670þ0:03ð Þ 0.005* 0.012* 0.000 0.012 0.167**

2 R780
R710

� �
� 1 0.125** 0.246** 0.003 0.011 0.095*

3 1
11

P850
i¼800

Ri
0.152** 0.181** 0.084* 0.116** 0.000

3 1
91

P1250
i¼800

Ri
0.132** 0.134** 0.049 0.144** 0.000

4 1:45� R800
2þ1ð Þ

R670þ0:45
0.095** 0.231** 0.000 0.100** 0.000

5 log 1
R1510

� �
� log 1

R1680

� �

log 1
R1510

� �
þ log 1

R1680

� �
0.119** 0.289** 0.130* 0.196** 0.000

6 R430
R495�R400

0.005* 0.003 0.059 0.117** 0.000

7 R920�R700þ2�R420
R920þR700�2�R420

0.006* 0.057** 0.000 0.000 0.000

8 1:5 R820�R735ð Þ
R820þR735þ0:5

0.178** 0.294** 0.000 0.187** 0.066

8 R820
R735

0.091** 0.191** 0.000 0.036* 0.140*

9 R810
R560

0.140** 0.260** 0.091* 0.111** 0.031

10 R950
R660

0.008* 0.012* 0.000 0.203*** 0.054

10 R870
R660

0.045 0.012* 0.000 0.079** 0.045

10 R810
R660

0.009* 0.013* 0.000 0.087** 0.050

Note: Asterisks (* and **) indicate significance (p < 0.05 and 0.01). “R” in the formula column refers to reflectance at the wavelength identified as a subscript.
Citations refer to the citation numbers listed in Table 1.
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the variance in foliar N was explained by the PLSR model
using all reflectance bands. The best single-band PLSR
performance occurred in sites from arid and continental
biomes where over 69% of the variance in foliar N was
explained by the PLSR models. The tropical biome had
31.6% of the variance in foliar N explained by the PLSR
using individual reflectance bands. Similar regions of the

spectrum emerged as having strong predictive power for
foliar N both within and among biomes (Figure 4). Con-
sistently, reflectance at 2005, 1125, 940, 765, and 720 nm
had high VIP scores. In the arid biome, reflectance from
1475 nm also scored highly. In the temperate biome,
reflectance around 765 nm was also an important predic-
tor of foliar N.

F I GURE 2 Comparison of foliar nitrogen index (FNI) performance (R 2) by biome. Darker and lighter colors indicate FNI that had

better and worse (respectively) predictive power. (a) Performance of the Normalized Difference Nitrogen Index (NDNI) published in Serrano

et al. (2002) and (b–d) the best-performing two-band indices analyzed in the present analysis according to the Normalized Difference

Vegetation Index (NDVI)-style calculation (b), Soil-Adjusted Vegetation Index (SAVI)-style calculation (c), and Ratio Vegetation Index

(RVI)-style calculation (d)

TAB L E 3 Comparison of foliar N index performance (R2 and root mean square error [RMSE]) by biome

Model

All sites Temperate Arid Continental Tropical

R 2 RMSE R 2 RMSE R 2 RMSE R 2 RMSE R 2 RMSE

FNINDVI ¼R2050�R2100
R2050þR2100

0.260 0.653 0.409 0.580 0.586 0.530 0.301 0.581 0.012 0.665

FNISAVI ¼ 1:5 R2055�R2100ð Þ
0:5þR2055þR2100

0.239 0.662 0.361 0.603 0.516 0.573 0.338 0.566 0.006 0.668

FNIRVI ¼R2050
R2100

0.261 0.652 0.411 0.579 0.585 0.530 0.303 0.581 0.011 0.666

PLSR426 0.638 0.440 0.625 0.433 0.697 0.474 0.695 0.391 0.316 0.610

PLSRNDVI 0.636 0.456 0.617 0.457 0.725 0.512 0.664 0.420 0.235 0.615

PLSRSAVI 0.656 0.434 0.667 0.430 0.725 0.459 0.708 0.389 0.258 0.942

PLSRRVI 0.240 0.663 0.363 0.601 0.619 0.554 0.506 0.521 0.240 0.689

Note: Foliar nitrogen index (FNI) reflectance (R) wavelengths represent the best two-band combination for each calculation. Partial least squares regression
(PLSR) results are presented for the single bands (PLSR426) and two-band calculations (PLSRNDVI, PLSRSAVI, and PLSRRVI).
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Considering PLSR models run on FNI two-band combi-
nations, there was a slight improvement in foliar N predic-
tions for the FNISAVI but not for FINNDVI or FNIRVI

calculations across all sites (Table 3). In addition to the best
performance when all sites were pooled, FNISAVI also had
the best performance in all individual biomes (Table 3).

F I GURE 3 Heat graph of linear Pearson’s coefficient of determination (R 2) of leaf-sampled foliar nitrogen (N) to airborne imagery

spectra between all combinations of two bands with the Normalized Difference Vegetation Index calculation for all sites (a), and sites in the

temperate (b), arid (c), continental (d), and tropical (e) biomes. Strong (dark purple) and weak (light orange) coefficients exist in several

broad spectral regions. Figure in the top left corner is a conceptual diagram illustrating the location of band combination regions on the heat

graph area
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There were band combinations throughout the spec-
trum that were important in explaining the variance in
foliar N (Figure 5, Appendix S1: Figures S3 and S4).
Across all biomes, the visible portion of the spectrum
(410–710 nm) in combination with parts of the SWIR
portion of the spectrum (2005–2440 nm) was an impor-
tant region in the FNINDVI PLSR models. In the temper-
ate and continental biomes, band combination regions
from the visible portion of the spectrum (410–550 nm
with 440–725 nm) were also important regions in the
FNINDVI and FNISAVI PLSR models (Figure 5, Appendix S1:
Figure S3). In the continental and tropical biomes, wave-
lengths centered around 1460 nm combined with reflec-
tance throughout the visible spectrum (380–750 nm) were
important in the FNINDVI PLSR model. The tropical biome
NIR and SWIR band combinations were important predic-
tors of foliar N in the FNISAVI PLSR model (Appendix S1:
Figure S3). In the FNIRVI PLSR models, visible light combi-
nations with NIR reflectance were important predictors of
foliar N (Appendix S1: Figure S4).

Single-band and FNINDVI PLSR models tested on four
sites excluded from model building have variable perfor-
mance (Figure 6). The two PLSR models performed
poorly in sites from continental biomes with less than

20% of the variance in foliar N predicted. Sites from polar
biomes, which were biomes completely excluded from
model building, had 26% and 40% of the variance in foliar
N predicted by the single-band and FNINDVI PLSR
models, respectively. PLSR models captured over a third
of the variance in foliar N at sites in temperate biomes
(Figure 6). Overall, the two-band PLSR model performed
better than the single-band model for all testing sites
evaluated (R2 for all testing samples combined = 0.168
and 0.236 for single-band and FNINDVI PLSR models,
respectively).

DISCUSSION

Collectively, these results show the utility of a single statisti-
cal model built on imaging spectroscopy data at capturing
spatial variation in foliar N concentration across a range of
ecosystems in the United States Both fine spatial resolution
data and narrowband reflectance patterns across the spec-
trum (visible, NIR, and SWIR) were important in accurately
capturing the subtle differences in foliar N concentrations.
Specifically, SWIR wavelength regions previously shown to
correspond to high N concentration plant tissue continually

F I GURE 4 Partial least squares regression (PLSR) variable importance in the projection (VIP) scores for all spectral wavelengths from

models predicting foliar nitrogen (N) as a function of reflectance for all sites (a), temperate (b), arid (c), continental (d), and tropical

(e) biomes. Values plotted are mean VIP scores based on the models from 100 permutations where test root mean square error (RMSE)

< average test RMSE and test R 2 > average test R 2
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emerged as an important predictor of foliar N across
biomes. Our analysis moves beyond past foliar N predic-
tions from imaging spectroscopy by investigating unique

two-band indices and by including sites from arid biomes.
Our results have broad implications for ESMs and provide
insight into future spaceborne missions.

F I GURE 5 Variable importance scores for all spectral wavelengths from partial least squares regression (PLSR) models predicting foliar

nitrogen (N) as a function of foliar nitrogen index (FNI) two-band combinations using the Normalized Difference Vegetation Index (NDVI)-style

foliar N calculation for all sites for all sites (a), and sites in the temperate (b), arid (c), continental (d), and tropical (e) biomes. Values plotted are

mean variable importance in the projection (VIP) scores based on the models from 100 permutations where test root mean square error (RMSE)

< average test RMSE and test R2 > average test R2. Darker red colors indicate regions that are more important in relation to the explanation of foliar

N variance. Figure in the top left corner is a conceptual diagram illustrating locations of band combination regions on the heat graph area
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Enhanced foliar N predictions (PLSR
model)

Models linking spectral signatures to plant traits are fre-
quently built at a single location or point in time and,
subsequently, may not effectively capture variation in
plant reflectance patterns that result from differences in
plant type, vegetation structure, or phenology (Gamon
et al., 2019; Serbin & Townsend, 2020). As such, the suit-
ability of these context-specific empirical models should
not be assumed without first testing their applicability
(Ustin & Jacquemoud, 2020), and often, models display
reduced performance metric when applied to novel
datasets (Glenn et al., 2008; Lepine et al., 2016; Wang
et al., 2016). For plant trait models to provide accurate
predictions on novel datasets and systems, they need to
be developed on a wide range of variability in plant char-
acteristics. Due in part to the difficulty of obtaining coor-
dinated foliar N samples across biomes, most studies
evaluate a specific plant community (e.g., forests; Lepine
et al., 2016; Martin et al., 2008; Singh et al., 2015). Wang
et al. (2020) leveraged NEON data to successfully predict
foliar N from airborne hyperspectral imagery across east-
ern US ecoregions. Our study is the first to predict foliar
N in western US ecoregions, including arid biomes.
Given the coverage and importance of arid biomes in

global biogeochemical models, accurate representation of
these systems in cross-biome analyses is necessary. The
datasets provided by NEON covering a variety of sites,
edaphic characteristics, climate patterns, plant traits, and
community dynamics offered us and continue to offer a
unique opportunity for the potential development of
empirical models that are relevant across broad environ-
mental contexts.

When analysis was not limited to only two discrete
reflectance values (through the calculation of vegetation
indices) but all wavelength regions across the spectrum
were used to predict foliar N, the strongest results were
seen both within and across biomes (Tables 2 and 3). Our
results across diverse plant communities and biomes
(including arid sites) are comparable to other studies that
have used imaging spectroscopy with PLSR for foliar
N predictions (Lepine et al., 2016, Martin et al., 2008,
Singh et al., 2015). Correlations between foliar N and
indices showed that both narrowband and broadband
regions were strong predictors of foliar N. Furthermore,
these regions varied depending on the biome analyzed
(Figures 3–5). As such, the PLSR approach using the com-
plete spectrum produced the best results because it was
able to leverage important regions across the spectrum
and discern differences in foliar N both between and
within varying biomes. The full-spectrum PLSR can

F I GURE 6 Evaluation of model performance at testing sites. Single-band (a) and foliar nitrogen index (FNI) two-band combinations

using the Normalized Difference Vegetation Index (NDVI) calculation and (b) partial least squares regression (PLSR) model predictions (x-

axis) compared with measured values (y-axis) for the four sites excluded from model building. Sites are symbolized according to biome

classifications. Linear equations and R 2 values for each biome are provided in the lower right-hand corner of each graph
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capture both the direct effects of foliar N on plant spectra
and the indirect effects of foliar N on various associations
that impact light scattering and reflectance such as plant
structural features and C assimilation (Lepine et al., 2016).

Significant wavelength regions in our PLSR coincide
with regions that have been identified in past studies. For
example, the red edge contains strong chlorophyll absorption
and canopy scattering patterns making it a useful region for
predictions of chlorophyll and foliar N content (Cho &
Skidmore, 2006; Clevers & Gitelson, 2013; Mutanga &
Skidmore, 2007; Ramoelo et al., 2012; Smith et al., 2003).
Similarly, we found reflectance patterns in the red edge to be
important constituents in PLSR models both within and
across biomes with VIP values peaking at bands centered on
720 and 765 nm (Figure 4). Given the importance of these
regions, first derivatives of the red and NIR edges might be
useful for cross-biome foliar N predictions, though evalua-
tion of these calculations across space and time is required
(Cho & Skidmore, 2006; Mutanga & Skidmore, 2007). Other
important regions in the VIP graphs occurred in the NIR
region (930–965 and 1110–1160 nm). The NIR region can
contain spectral variation due to structural variables that
covary with foliar N concentrations and can influence overall
reflectance and absorption from this region (Figure 4;
Knyazikhin et al., 2013; Lepine et al., 2016; Ollinger, 2011;
Ollinger et al., 2008). Although narrowbands within the NIR
region continually emerged as important predictors of foliar
N (Figures 3–5), averaged reflectance values over this whole
region did not explain more than 20% of the variance in
foliar N (Table 2). Since only specific portions of the NIR
were important, this might be due to atmospheric effects
rather than broad structural changes with changing N con-
centrations. Together, results suggest that PLSR models,
which leverage reflectance patterns from both the NIR and
alternate portions of the spectrum, can capture the direct
and indirect effects of foliar N reflectance, absorption, and
light scattering patterns across disparate sites and biomes.

Past and present foliar N indices

Past indices evaluated in this study consistently predicted
less than 30% of the variance in foliar N on individual
biomes and less than 15% of the variance in foliar N
when sites from all biomes were pooled together
(Table 2, Figure 2). Vegetation indices reduce the total
amount of reflectance information obtained from a
remote sensing platform into a smaller number of optical
properties that are highly correlated with the trait of
interest. When this simplification occurs, portions of the
spectrum containing information relevant to the trait of
interest may be excluded from the final index calculation.
For example, 23 separate absorption features spanning

visible, NIR, and SWIR regions are associated with com-
pounds that influence plant N content (Curran, 1989;
Elvidge, 1990) and it would be impractical to include
information from all these regions into a single vegeta-
tion index calculation for foliar N. Even so, it is possible
to identify regions in reflectance spectra that help explain
significant proportions of variance in the desired trait of
interest.

The indices evaluated in this present study out-
performed previously published vegetation indices. All
three best FNI calculations included reflectance around
2050 and 2100 nm (Table 3, Figure 2). Laboratory-
controlled experiments on dried foliage have shown both
of these SWIR regions to be associated with foliar N
dynamics with D-ribulose 1,5-diphosphate carboxylase
(Rubisco) having strong absorption at 2050 nm and cellu-
lose, lignin, hemicellulose, and starch compounds having
absorption features at 2095 nm (Elvidge, 1990). Rubisco,
the enzyme needed for the first step of photosynthesis,
requires a significant amount of N and typically makes
up about 25% of the total N in photosynthetic cells
(Chapin et al., 2011). Despite these findings, further anal-
ysis is needed to determine whether airborne imaging
spectroscopy is directly sensing N-rich cellular compo-
nents or indirectly picking up foliar N absorption pat-
terns caused by variation in plant structural traits that
relate to adaptive strategies intended to optimize light
harvesting such as leaf area density and LAI (Knyazikhin
et al., 2013; Lepine et al., 2016; Ollinger, 2011; Ollinger
et al., 2008). Regardless, these findings suggest a cross-
site vegetation index can accurately capture variation in
plant N concentration based on narrowband reflectance
differences due to potential variations in plant traits that
relate to the concentration of N-rich compounds within
plant tissues.

The indices did not perform as well in sites from the
tropical biome compared with other biomes. The sample
size was smaller (n = 37) in the tropics than in many of
the other biomes, which possibly explains a portion of
the poor performance from these sites. Additively, none
of the published indices analyzed in the present study
were developed in tropical regions; they were mostly
developed in agriculture systems with some developed in
grasslands or temperate forests (Table 1). Plant structure,
which is generally more complex in tropical regions than
these other systems, may saturate the reflectance pattern
from N in these systems (Knyazikhin et al., 2013). It is
also worth noting that all of the tropical samples in this
analysis came from Puerto Rico in April 2018. This was
only 7 months after Hurricane Maria, which devastated
the island and could have impacted foliar N concentra-
tion and spectral reflectance patterns. NDVI, however,
returned to normal just 1.5 months after the hurricane,
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so it is more likely that the complex vegetation structure,
vegetation diversity, and low sample size are the possible
explanations for poor performance from these sites
(Hu & Smith, 2018).

When scaling up leaf traits such as foliar N, it is
important to consider that for an area at any given time,
top of canopy reflectance values represents not only
reflectance from the plant of interest but also reflectance
from a mixture of other plants, soil, and background
reflectance. Together, these confounding influences can
combine through complex light interactions including
nonlinear scattering. In a semiarid system, for example,
up to 95% of reflectance obtained from plot-level reflec-
tance may not come from the plant of interest, but rather
from the soil (Dashti et al., 2019). Although dataset limi-
tations made it unfeasible to comprehensively account
for reflectance from confounding factors, NEON sam-
pling protocols and the green vegetation indices analyzed
(GLI and LAI; Appendix S1: Table S2) provide support
that reflectance in our analysis represented the plant(s)
of interest. Furthermore, high spectral resolution data
can help overcome the influence of bare soil and more
accurately capture vegetation dynamics compared with
broadband vegetation indices in arid grasslands (Ren &
Zhou, 2019). Lepine et al. (2016) found that spatial reso-
lution was more important than spectral resolution for
foliar N estimates in closed-canopy forested sites. Evalua-
tion of plant traits across biomes with varying degrees of
vegetation cover will likely benefit from data with high
spatial and spectral resolutions. This type of data, how-
ever, is often costly, is geographically constrained, and
can strain data storage and computational resources.
Despite these limitations, advances in sensors, analytical
techniques, and computational resources offer promise in
the development of broadscale plant trait predictions that
are generalizable across ecoregions to inform global-scale
processes on the Earth’s surface.

Broader applications and future work

Improved estimates of foliar N, especially regarding our
PLSR results across and within biomes, will improve pre-
dictions of C dynamics in ESMs. Many ESMs use esti-
mates of foliar N to predict an important photosynthetic
parameter (maximum Rubisco activity, Vc,max), which is
then used to predict plant productivity and ultimately
plant C uptake in terrestrial systems (Kattge et al., 2009;
Rogers et al., 2017). Variations in C-sink predictions from
these models are partially due to variability in foliar N
estimates (Bonan et al., 2011; Friend, 2010). For example,
Ghimire et al. (2016) showed a 70% reduction in GPP bias
when root and foliar N traits acquired from a global plant

trait database were used in Community Land Model sim-
ulations. Unfortunately, however, these plant trait data-
bases are built on time-consuming measurements and, as
a result, have incomplete representation of species and
geographic areas (Jetz et al., 2016). The improved foliar N
estimates presented here could help fill these gaps and
reduce uncertainty in ESMs.

Remote sensing data availability, a lack of large-scale
ground sampling campaigns, and large processing
requirements have made scaling predictions of plant
traits to continental scales unfeasible in the past (Coops
et al., 2003). Narrowband reflectance patterns across the
EM spectrum were needed for high-quality foliar N pre-
dictions, but there has historically been a paucity of
spaceborne hyperspectral instruments that provide consistent
coverage of large areas of Earth’s surface (Transon et al.,
2018). Several forthcoming or recently launched hyper-
spectral missions, however, will present new opportunities
such as the Hyperspectral Imager Suite (HISUI) Japanese
mission, the Environmental Mapping and Analysis Program
(EnMAP) German program, the PRecursore IperSpettrale
della Missione Applicativa (PRIMSA) Italian mission, and
NASA’s Surface Biology and Geology (SBG) Designated
Observable (Matsunaga et al., 2019; Transon et al., 2018).
Ecological observatory networks similar to NEON are occur-
ring across the globe—Australia’s Terrestrial Ecosystem
Research Network (TERN), the South African Environmen-
tal Research Observation Network (SAEON), the Chinese
Ecological Research Network (CERN), the Critical Zone
Exploration Network (CZEN), Long Term Ecological Obser-
vatory Networks in the United States (LTER), Long-Term
Agroecosystem Research (LTAR), Europe (eLTER), Japan
(JaLTER), Philippines (PhilTER), the Korean Ecological
Observatory Network (KEON), and the global FLUXNET
network—and will significantly improve our ability to pre-
dict fine-scale biogeochemical dynamics across the globe
(Cleverly et al., 2019; Mirtl et al., 2018). As initiatives such as
NEON progress, we will continue to improve plant trait pre-
dictions and our understanding of how variations in plant
traits impact their light absorption and reflectance patterns
under current and future conditions. These insights, in turn,
can help inform and validate future satellite missions such as
NASA’s SBG and Earth Surface Mineral Dust Source
Investigation (EMIT) to continue improvements in foliar
N mapping across broad geographic areas. The results of
this present analysis from divergent biomes across the
United States, in combination with recent satellite, techno-
logical, and analytical advancements, support the develop-
ment of robust continental-scale predictions of foliar N.
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