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can impact a wide range of applications, where the knowledge of the user’s emotional
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1. Introduction

Intelligent emotion monitoring systems play an important role in improving the mental health conditions of the
general public. They help inform the general population of their own mental states. They also provide psychiatrists and
psychotherapists a means to monitor and diagnose their patients’ mental health problems remotely. This is particularly
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Fig. 1. Left: The SPIDERS+ glasses platform including hardware sensors (red), PCB boards (blue), frame components (yellow), and optional attachments
(green). Right: SPIDERS+ glasses on a mannequin.

critical during the current COVID-19 global pandemic, as it is difficult to schedule in-person and mask-off doctor visits.
Emotion monitoring platforms also have immense impacts on businesses, providing companies with another measure
of the effectiveness of their products and advertisements. Additionally, a low-cost and portable solution would enhance
the lives of the general population by bringing, for example, enhanced entertainment experiences when movies/games/tv
shows present dynamic content to users based on emotions experienced by the user in real-time and affordable mental
health services to people who have access and cost barriers to mental health care [3-6].

However, predicting emotions is challenging, let alone detecting emotions on a resource-constrained and wearable
device. There are commercial products and research platforms developed for monitoring specific signals that provide
insight into a user’s real emotion. However, many of the existing commercial products and sensors such as EEG caps are
bulky, expensive, wired, and require constant skin contact, limiting their use to clinical or controlled environments. All
of the existing vision-based approaches and products for detecting facial expressions utilize static features found within
a single image to detect whether a person is smiling, sad, disgusted, etc. Whereas, each person’s eye and facial features,
such as skin tone and eye shape, vary widely. This makes it difficult to create an algorithm or train a classifier that can
generalize to unseen examples well.

Additionally, it is even more challenging to implement semi-real-time vision-based facial expression detectors on a
resource-constrained, wearable, embedded platform. We observe that the facial and eye movements made by a person
as he/she transitions into a new expression is more consistent across different demographics, and we leverage this
information to develop our facial expression (apparent emotion) algorithm.

Pupillometry has been shown to be a strong indicator of real emotions [7-9]. However, even the state-of-art algorithms
and systems that utilize pupillometry, such as the Tobii Pro Glasses 2, cannot reliably predict real emotions due to the
inherent measurement noise caused by lighting changes, reflections, rapid eye movements, blinking, etc. As a result, in
addition to real emotions, we provide facial expression (apparent emotion) as a direct output to support applications
where apparent emotions are sufficient or preferred.

Our contributions in this paper are summarized below:

e We present SPIDERS+, a low-cost, energy-efficient, and portable wearable platform (see Fig. 1) that collects data from
a variety of non-contact sensors to detect: (1) eye & eyebrow shape, (2) pupillometry, (3) zygomaticus muscle (smile
muscle) movements and (4) head movements. SPIDERS+ can also be extended to include functionalities provided by
contact-based sensors, such as (5) heart rate and (6) multi-channel EEG monitoring. We demonstrate the robustness
of our sensing modalities by comparing against commercial products.

e We present novel and robust vision-based techniques to perform pupillometry and eye & eyebrow shape detection
using infrared (IR) band gray-scale images, from an IR camera positioned at a low angle from the eye as to not block
the user’s field of view.

e We develop and implement a data processing pipeline that intelligently partitions tasks and computation across the
glasses wearable and more powerful processing units (e.g., computer, cloud, smartphone) to maintain high accuracy,
long battery life, and to ensure that our emotion recognition algorithms run in semi-real-time. We demonstrate that
our wearable is able to last up to 9 h.

e We propose a novel optical-flow based algorithm for estimating facial expressions (apparent emotions) leveraging
movements in the user’s eyes as he/she transitions into a new facial expression. We experimentally show that our
algorithm achieves an average classification accuracy of 83.87%, which outperforms the state-of-the-art approach
(e.g., [6]). We also demonstrate SPIDERS+'s capability of estimating a user’s affective state (real emotions), achieving
a classification accuracy of 49.32%, which outperforms the results presented in [10].
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e We demonstrate that SPIDERS+ can estimate user facial expressions and stream the results in semi-real-time to
user-facing desktop and smartphone applications via WiFi. This end-to-end pipeline can enable a wide range of user
applications such as fatigue detection and mental health monitoring.

e We provide the community with (1) an anonymized dataset of biometrics measured from subjects during our
controlled experiments; (2) the circuit design and 3D model design for our eyeglasses wearable; and (3) a suite
of algorithms and libraries that enable everyone to easily build their own emotion-based applications based on
SPIDERS+.

The rest of this paper is organized as follows. Section 2 presents related work and discusses limitations in current works
and products that SPIDERS+ addresses. Section 3 details the sensing modalities included in SPIDERS+ and the hardware
platform. Section 4 describes the library of core functions, including the eye and eyebrow shape detection, pupillometry,
and zygomaticus movements, that SPIDERS+ enables. Section 5 prototypes and evaluates the facial expressions (apparent
emotion) detection and real emotion classification. Section 6 introduces the potential applications SPIDERS+ could enable.
Section 7 illustrates basic smartphone and desktop applications for visualizing the semi-real-time results of SPIDERS+.
Section 8 discusses limitations and future work, and Section 9 concludes the paper.

2. Related work

In this section, we first analyze related commercial products that track physiological data in order to identify issues
in price, portability, and usefulness. We then analyze different modalities of data that would be useful for emotion
classification purposes and explore algorithms that derive the types of data that cannot be directly measured by minimal
Sensors.

2.1. Bio-signal acquisition by wearable devices

There are a variety of commercial bio-signal acquisition devices on the market, but all have specific problems
that make them unsuitable candidates for a low-cost, energy-efficient, and portable platform for monitoring user
emotion. For instance, Fitbit is a wireless wearable activity tracker, but only measures three-axis acceleration data, and
photoplethysmography (PPG), both of which are not reliable measures of emotional states by themselves [11]. Muse is
a headband that provides five-channel electroencephalogram (EEG) data, heart-rate, and gyroscope sensors [12]. Both
heart-rate and EEG sensors require skin contact, which is difficult to maintain in a mobile wearable where the user may
be on the move. Pupillometry is well-known as an indicator of affective states, and there are eye-tracking cameras on
the market that measure these signals. For example, the Tobii Pro Glasses 2 leverages a wide-angle camera, microphone,
gyroscope, and accelerometer to track the wearer’s eye [13]. However, Tobii Pro Glasses 2 system is not truly wireless
(requires an external recording unit) and very expensive ($10,000+). To summarize, commercial products measure a
limited amount of bio-signals that often require direct skin contact, or are very expensive and not portable.

There are a number of research platforms and glasses developed to provide a wearable platform for emotion
monitoring. However, most of these systems focus exclusively on pupillometry [14-16], but not apparent emotion.
The second category of works leverages photo reflective IR sensors integrated within the eyeglasses frames to detect
facial expressions [17,18]. However, using IR sensors provides limited resolution about the position of the cheeks/brows
and no pupillometry measurements, making it difficult to perform robust facial expression recognition or real emotion
classification across a varied population. [10] leverages sensor fusion, combining facial features extracted from a camera
pointed at the user’s eye and other physiological signals, such as skin conductance and PPG, to obtain a more accurate
estimation of real emotions. However, we recognize that facial expressions are not reliable indicators of real emotions;
for example, a user can easily fake a smile even if s/he is depressed. Additionally, measuring skin conductance and PPG
requires direct contact between the skin and sensor, which is not stable if the wearer is on-the-move.

2.2. Vision-based apparent emotion classification

Research about facial expression classification based on images of the whole face is abundant. Nevertheless, these
approaches require continuous capturing user’s entire face with a camera looking from a distance, which is not portable
and can lead to privacy concerns. On the other hand, wearable devices are becoming more and more popular, and provide
in-situ sensing capabilities [ 19-22]. A camera mounted on the glasses can not only sense the pupil size and gaze angle, but
can also clearly see the eyelids and eyebrows. Previous work directly uses raw images as an input to a machine learning
classifier [10]. However, directly learning the features with raw images requires a large amount of labeled data and can
perform well within the dataset and perform poorly in real-world cases.

For eyelid and eyebrow detection, many previous works utilize RGB images, conducting adaptive thresholding,
luminance valley detection, and edge detection to detect the shape of the eyelids and eyebrows [23-25]. However, these
methods are computationally expensive and not robust. Also, in order to perform pupillometry, we have to use IR cameras
that produce gray-scale images, making the boundary between the sclera (white outer layer of the eye) and skin harder to
distinguish. Recent works also focus on leveraging IR cameras to conduct deep-learning-network-based facial expression
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Fig. 2. The four-layer system architecture of SPIDERS+. We designed the architecture in a top-down approach based on the types of applications
that SPIDERS+ aims to impact. All components and layers in SPIDERS+ work towards enabling or improving the top layer: Enabled Applications.

classification on resource-constrained platforms. However, the hardware form factors of many of these systems are bulky
and not comfortable for daily wear [26].

Convolutional neural networks (CNN) and regression tree models have been commonly used for generating facial
landmarks for facial expression recognition. These methods estimate facial landmark points that draw out the location
and curvature of the eyelids and brows [27,28], and some of these methods have been shown to run in real-time [29].
As such, we decide to adopt a similar approach in landmark generation. However, generating the shapes of the eyelids
and brows and determining the user’s expression and apparent emotions based on this information are two different
problems, the latter of which is not addressed by previous works.

2.3. Real emotion recognition

A variety of bio-signals have been explored for recognizing a person’s real emotional state. Pupillometry is one of the
most popular signals used to classify real emotional states due to its non-invasive nature and its high discriminatory
power between different classes of real emotion. To achieve high accuracy in classifying arousal and valence levels (two
measures of real emotions), the majority of works in the literature acquire the pupillometry and gaze information from
commercial eye trackers that are expensive and not truly wireless [8,30,31].

Other bio-signals that have been linked to real emotions are heart rate and EEG. Long-term heart rate variability
(HRV) has been shown to be correlated to emotional patterns and shifts [32,33]. EEG head caps are also widely used in
detecting emotion because it non-intrusively captures brain signals [34-36]. However both heart rate monitoring and
EEG monitoring require sensors to be in direct contact with the skin; in a wearable system, where a user could be
moving, maintaining contact is not guaranteed nor very comfortable for the wearer. Additionally, EEG-based methods
have achieved high-performance rates because of the sheer number of channels, employed in these works (often 32 or
more). It is difficult to incorporate even a few channels of EEG into a resource-constrained wearable.

3. System design

SPIDERS+ is a low-cost, long-lasting, and mobile platform for monitoring apparent and real emotions of the wearer.
In this section, we present our hardware design and data processing architecture that allows SPIDERS+ to achieve robust
apparent and real emotional recognition while being energy-efficient and maintaining a suitable latency.

Fig. 2 shows the functional system architecture of SPIDERS+. SPIDERS+ focuses on prototyping and enabling its
functionalities and applications based on inputs from non-contact sensors, while also providing extended features and
functionalities by enabling more intrusive, but optional, contact-based sensors. Each layer in the architecture directly
enables the applications or functionalities in the above layers. We take a top-down approach in designing SPIDERS+
based on the types of applications we aim to address. In particular, the Hardware Sensors layer, consists of a wide range
of contact-less and optional contact-based sensors that SPIDERS+ supports. SPIDERS+ uses outputs from its Hardware
Sensors to extract a common set of bio-signal measurements, such as pupillometry and eye shape, that form the Core
Function Library. The measurements that are extracted in the Core Function Library are all bio-signals that are correlated
with a user’s emotional state. These features are then utilized by the Advanced Functionalities layer, that runs novel
machine learning and signal processing algorithms (Section 5), to estimate aspects of user emotion, including facial
expressions and internal emotion. Outputs from the Advanced Functionalities layer are also the outputs of SPIDERS+, but
can be used to improve and enable a multitude of applications as illustrated in Section 6.

There are many applications and problems that untethered emotion monitoring could enable; our aim is to provide
the community with a platform that enables emotion monitoring and allows researchers to develop their own algorithms
to address a wide range of applications by leveraging the plethora of sensors and modalities that SPIDERS+ provides. In
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addition, we recognize that there are two facets of emotions that people exhibit, apparent and real emotion, provided at
the Advanced Functionalities layer. By providing a mobile platform that is capable of measuring these two dimensions of
emotion, we believe that we can impact some of the Enabled Applications shown in Fig. 2. We also develop user-facing
desktop and smartphone applications that leverage outputs from SPIDERS+'s Apparent Facial Expression Detection module
to enable applications such as real-time apparent emotion monitoring and fatigue detection.

3.1. Sensing modalities overview

We now discuss the types of bio-signals incorporated in SPIDERS+ based on what is needed to achieve robust apparent
and real emotion recognition. Pupillometry, EEG, HRV, skin conductance, and facial expressions are commonly used to
determine a person’s emotional state, as discussed in Section 2. Previous works generally leverage all or a subset of these
signals to classify emotional states. First, we recognize that there are two facets of emotion that people exhibit: apparent
and real emotion, and that knowing one does not necessarily provide the other. For example, people may hide their
internal feelings of sadness by smiling if he/she is celebrating or spending time with friends and family.

Common signals used to determine someone’s real emotions include pupillometry, skin conductance, EEG, and HRV.
We omit facial expressions, as people’s expressions may not accurately represent their real emotions. Skin conductance,
EEG, and HRYV are all commonly measured using sensors that require skin contact. However, in a mobile wearable system,
the contact between the sensor and skin can often be unstable, making these signals difficult to acquire. Pupillometry has
been shown to be powerful in discriminating between different emotional states and can be measured using a camera,
which is non-contact. The IR-filtered camera coupled with an IR illuminator usually has better performance in conducting
pupillometry than the commonly used RGB cameras. Hence, we integrate an IR-band gray-scale camera into SPIDERS+ to
perform pupillometry to classify real emotion. Our proposed methods for obtaining robust pupillometry in face of these
challenges are described in Section 4.2.

Facial expressions are representative of a person’s apparent emotion, or the emotion that people express through
visible body language. Facial expressions, head movements, and zygomaticus muscle movements can be adequately
captured using a camera, inertial measurement units (IMU), and proximity sensors pointed at a person’s face. Both are
non-contact sensors, and proximity sensors have negligible power consumption when compared to that of a camera. Our
novel algorithms for determining facial expressions and apparent emotion using signals from these sensors are detailed
in Section 4.1 and Section 5.

A summary of the different bio-signals that SPIDERS+ provides is shown in the Core Function Library layer in Fig. 2. A
summary of the different sensors integrated into SPIDERS+ to enable the measurement of these bio-signals can be found
in the Hardware Sensors layer.

3.2. Hardware platform

In this section, we describe the hardware platform implementation of SPIDERS+ that allows us to perform robust
apparent emotion detection and real emotion classification efficiently and with low latency. Additionally, we have open-
sourced our glasses designs, code, and assembly instructions to the community to allow anyone to build upon or use
SPIDERS+ for their own projects.!

3.2.1. Processing and wireless communication components

The system on a chip (SoC) module is responsible for sampling and transmitting sensor data from the glasses wearable
to the client application. A microcontroller with proper performance is required to sample and transmit data from all the
sensors with enough temporal resolution. To minimize the PCB layout area, we also prefer wireless SoC modules with
an integrated radio module. Based on these requirements, we chose the Espressif ESP32 as our processor and wireless
transmission module, which supports both WiFi and Bluetooth communication protocols, computational power at low
power consumption, and direct memory access (DMA).

3.2.2. Hardware sensors

The camera sensor captures eye & eyebrow shape as well as pupillometry. We chose the OV2640 camera module
because of its high sampling rate and moderate pixel resolution (320 x 240). Additionally, the OV2640 module performs
on-chip JPEG encoding, converting pixels into a machine-readable format without computation required from the MCU.
We also install an 850 nm band-pass IR filter and two IR LEDs in front of the camera lens to illuminate the areas directly
in front of the camera and to eliminate the influence of different iris colors and ambient light from our images.

Compared to the camera, the proximity sensor and IMU are relatively compact and low-power. We decided to use a
VL6180X proximity sensor to measure the distance between the sensor and zygomaticus muscle (smile muscle) and an
MPUG050 gyroscope and accelerator sensor to detect the head movements.

In addition to the non-contact sensors that are used to extract features to estimate facial expressions and internal
emotions in the Advanced Functionalities layer, SPIDERS+’s hardware platform also supports several optional contact-based

1 https://github.com/Columbia-ICSL/SPIDERS.
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Fig. 3. PCB layout of the mainboard (right) and biopotential measurement board (left).

Fig. 4. Thermal image of SPIDERS+ in the active mode.

sensors to measure heart rate and EEG. In particular, SPIDERS+ uses the MAX30102 photoplethysmography (PPG) sensor
for heart rate detection and also incorporates the TI ADS1298, a low-power, high accuracy 8-channel ADC for sampling
EEG signals. SPIDERS+ is capable of maintaining a sampling rate of 250 Hz across all 8 EEG channels, even while sampling
from all other sensors on the platform. This sampling rate is comparable to the Muse EEG headband [12]. The sampling
rate is further increased to more than 2400 Hz if other sensors are not being used. Due to the high sampling granularity
of our sensors, SPIDERS+ is capable of supporting numerous advanced research projects in neuroscience.

3.2.3. Customized PCB board

To ensure that all of our circuitry could fit onto a single glasses frame, we separate the whole system into three PCBs:
mainboard, biopotential measuring board, and power board. Each PCB is fitted onto a different part of the glasses. The
mainboard features an ESP32 module and an MPU6050 gyroscope-accelerometer sensor. The other sensors listed in Fig. 1
are not mounted on the mainboard as they measure signals from specific areas of the face (e.g. the IR camera is placed just
under the eye to monitor eye and eyebrow movements). The EEG board features the ADS 1298 sensor and its supporting
circuitry and can be easily stacked with the mainboard. Fig. 3 shows the layout of the mainboard as well as the optional
biopotential measuring board.

3.2.4. Eyeglasses frame design and sensor placement

In order to make the circuit board compact to fit onto the glass frame, we separate the whole system into two miniature
PCBs: the mainboard and the power board, as illustrated in Fig. 1. The mainboard features our processing and wireless
transmission SoC (ESP32-Wrover), as well as the gyroscope and accelerometer sensor (MPU6050). The power board houses
a 2000 mAh lithium polymer battery to power the system.

The assembled SPIDERS+ glasses platform is shown in Fig. 1. The frame itself was 3D printed, and we use 6 mm wide
metal hinges to join the glasses temples to the frontal frame to allow for foldability just like a normal pair of glasses.
We include two compartments, which we labeled PCB compartments, on both of the temples to house the mainboard and
power board.

The proximity sensor is placed below the right lens, pointing towards the left cheek (zygomaticus muscle) of the user.
Placing the proximity sensor in this location allows SPIDERS+ to detect movements of the cheek muscle as a person
changes facial expressions. The camera module + IR lights are placed in a similar position below the left lens and angled
upwards to capture images of the user’s left eye and brow. The two extensions where the sensors are mounted have a
certain degree of freedom to rotate, which enables customized sensor placement.

All boards and sensors are connected with wires running along with the frame of the glasses. The total weight of
SPIDERS+, with all boards, sensors, and battery installed, is below 100 g, which is around a quarter of the weight of the
Tobii Pro Glasses 2.

3.3. Price breakdown

Table 1 summarizes the retail unit price and wholesale unit price for each major hardware component integrated into
SPIDERS+. All software packages and programs used to develop SPIDERS+ is freely available at no cost. The total price to
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Table 1

Price breakdown and power consumption.
Module Unit price Unit price Active power Sleep power

(Retail) [US$] (Wholesale) [U$]
MCU (ESP-32) 4.80 4.80 128.00 mW 2.64mW
ESP32 WiFi Connection N.A. N.A. 286.40 mW 0
Proximity Sensor (VL6180X) 4.50 2.18 82.10 mW 330uW
IMU (MPU-6050) 7.28 3.52 16.30 mW 16.50 W
CAMERA (0V2640) 8.50 8.50 168.00 mW 1.98 mW
Voltage Regulators (TPS63031DSKR) 1.87 0.79 N.A. N.A.
Glasses (PLA Filament) 0.01 0.01 N.A. N.A.
PPG (MAX30102) (optional) 8.60 4.75 66.6 mW 231puW
EEG (ADS1298) (optional) 36.91 29.9 12.5mW 20 pW
Total (w/o optional contact-based sensors) 26.96 19.80 730.30 mW 4.6398 mW
Total (all) 72.47 54.45 809.4 mW 4.66121 mW
IR Image
A/ L
Pupillometry Eyebrow Shape Eye Shape

— v

Apparent Emotion Detection
(Real-time and Cumulative)

Fatigue Detection

Yes )
N ) Warning in
° > Continue Smartphone App

Fig. 5. The flow diagram of the functions in SPIDERS+ client application and the user-facing smartphone/desktop application.

produce a single SPIDERS+ glasses hardware platform is as low as $19.80, which is low-cost. Adding in the optional
contact-based sensors increases the price to around $50 under mass production. Compared to existing commercial
products like the Tobii Pro Glasses 2, SPIDERS+ is orders of magnitude less expensive.

3.4. Power consumption

The active and idle power consumption for all major components of SPIDERS+ are also included in Table 1. When
sampling and transmitting data from all sensors, SPIDERS+ consumes around 759.9 mW and 839 mW with and without
the optional contact-based sensors, respectively. Powering the total system using a 2000 mAh battery allows SPIDERS+
to continuously run for more than 9 h in a battery life test. Additionally, we allow users to turn off specific sensors when
not needed to further reduce power consumption. Turning all sensors and the MCU processing unit to the sleep mode
consumes less than 5 mW of energy.

3.5. Heat dissipation and comfort

To verify that SPIDERS+’s temperature would not cause discomfort for the wearer, we measure the heat dissipation of
the entire system for one hour. To measure the temperature of the mainboard (the area with the highest temperature on
SPIDERS+) platform during one hour of continuous operation, we use the Fluke TIS75 Thermal Imager. In the steady-state,
the highest temperature of the inward-facing side of the frame is approximately 35 °C, which is close to the normal body
temperature of a person. The thermal images shown in Fig. 4 suggests that the heat is mostly generated by the wireless
MCU and the camera module. Since the temperature of SPIDERS+ is no higher than the human body temperature, the
user would not feel any discomfort from heat dissipation.

3.6. System pipeline and typical usage

SPIDERS+ senses a wide range of bio-signals using multiple sensors, as summarized in Fig. 2. Processing all of this data
on a resource-constrained wearable to perform robust apparent and internal emotion classification, while maintaining
semi-real-time and low power consumption, is not possible. Additionally, we propose novel algorithms for extracting
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Table 2
Expressions and eye area features.
Platform Eye & Eyebrow Pupillometry Zygomaticus Heart rate Head EEG Ac- Price [U$]
shape muscle movements quisition
movements
Fitbit Inspire 2 v 99.00
Muse 2 v v v 249.00
Tobii Pro v >10,000.00
Glasses 2
SPIDERS+ v v v v v v 19.80
2 < " A A P - A - A - .
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Fig. 6. Breakdown of our proposed CNN for eye shape and eyebrow landmark generation.

pupillometry and facial expressions, which are detailed in Section 5. These algorithms, including a facial expression
detector that captures eye sizes and movements in the eyebrows, as a person changes expressions to more robustly classify
apparent emotion, are too expensive to compute on the SPIDERS+ glasses efficiently and in real-time. As such, we offload
all of our computation, via WiFi, onto the SPIDERS+ client application running on an internet-connected desktop server.

The client application computes the functions listed in Core Function Library and Advanced Functionalities layer and
stores bio-signal data extracted from all of the sensors on the SPIDERS+ glasses platform. We also deploy user-facing
desktop/smartphone applications to further process outputs from the client application, depending on the application.
Specifically, the desktop/smartphone applications not only display the outputs from the client application, but also
leverage these outputs to conduct fatigue detection. In addition, users are able to set alarms and view results from the
fatigue detector in their smartphone and desktop applications. The client application to user-facing smartphone/desktop
application flow is shown in Fig. 5.

The user-facing desktop/smartphone application displays a user panel that streams a semi-real-time visualization of
some of the outputs of the Core Function Library and Advanced Functionalities layers provided by the client application.
The user panel also presents information on detected categories of facial expressions, mental health, and fatigue. The
smartphone application will also send an alert to the user if it detects the user is fatigued. This is critical in scenarios
where the users’ attention is essential (e.g., safe driving). The details of fatigue detection pipeline and the desktop and
smartphone applications will be presented in Sections 6 and 7, respectively.

Users are able to view their processed bio-signal and sensor readings on the desktop and smartphone applications
in semi-real-time (on the order of seconds in delay). Although there is a noticeable delay between when the glasses
platform samples from its sensors to when a user can see his/her sensor and bio-signal readings, we posit that most
of the applications that utilize SPIDERS+ do not require sub-second-level latency. For example, knowing when a person
becomes depressed 200 ms or 2 s after the fact would likely not change the outcome or quality of care the person receives.

4. Core function library

In this section, we discuss the algorithms we employ to extract bio-signals listed in the Core Functionality Library in the
system architecture shown in Fig. 2. SPIDERS+ is capable of measuring a wide range of bio-signals and factors correlated
to a person’s emotional state. Table 2 compares the different functionalities between SPIDERS+ and existing emotion
monitoring platforms. We can see from this table that SPIDERS+ is capable of much more functionalities at a fraction
of the price of existing products. These signals can be freely used by developers building upon SPIDERS+ for their own
applications. Additionally, SPIDERS+ leverages the measurements of these signals to detect facial expressions (apparent
emotion) and real emotion.

4.1. Eye & eyebrow shape detection

4.1.1. Shape detection

The shapes of the eye and eyebrow are detected to extract features for facial expression classification. Additionally,
determining the shape of the eye allows us to better detect and localize the pupil, which is an important preprocessing
step in pupillometry.

To determine the shape of the wearer’s eye and eyebrow, we leverage a convolutional neural network (CNN) based
approach to determine landmark points that outline the wearer’s eyelids and eyebrows from gray-scale and partial eye
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et

Fig. 7. Left: Example raw image of the eye. Right: Eye image with 27 landmark points generated by the CNN (9 points on the upper eyelid, 9 points
on the lower eyelid, and 9 points on the eyebrow).
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Fig. 8. Training and validation loss during the training process of the landmark generation CNN, where the validation loss (red line) converges in

around 300 epochs.

(a) Regular clear images captured by (b) Extreme cases with blurry images
SPIDERS+. with squint eye.

Fig. 9. Comparison between the ground-truth landmarks and the landmarks output by the CNN model (red: hand-labeled ground truth; green:
output of the CNN model).

images. First, we construct a dataset of over 6000 images using our IR camera taken from 10 human subjects of varying
ages, genders, and ethnicities. During the experiment, subjects are instructed to express six facial expressions reflecting
the six basic human emotions indicated in [37]: angry, disgusted, fearful, happy, sad, and surprised, as well as a neutral
facial expression, while wearing SPIDERS+. The details of subject demographic distribution and experiment setup are
illustrated in Section 5.1. We manually label each image with 27 landmark points per image, as shown in Fig. 7. Generating
27 landmark points provides us with enough resolution to make out the shape of the eye and position of the brow, while
not being too computationally expensive.

The implemented CNN consists of 8 convolutional layers, 4 max pooling layers, and 2 fully connected layers that
output the predicted locations (x and y coordinates) of the 27 landmark points for each input image. The structure of
the CNN model is shown in Fig. 6, which takes a single 320 x 240 image and outputs the coordinates the landmark
points. Finally, we obtain the final contours of the eyelids and brows by fitting the generated landmark points onto a
fifth-order polynomial curve.

4.1.2. Training

We select 6000 IR images as the dataset used for training and validation of the landmark generation CNN network
(5400 images as the training set and 600 images as the validation set). To ensure that our training and validation sets
are balanced, we randomly select images to include for both sets, but ensure that frames from each subject are present
in both sets as well. We used the stochastic gradient descent optimizer (SGD) with 0.5 momenta and a fixed learning
rate of 0.01. We terminated the training process when the validation loss becomes stable (the change in mean square
error (MSE) loss is less than 0.02) over the last 10 epochs. As shown in Fig. 8, validation and training loss decrease as the
network is trained with more data over more epochs. This suggests that the CNN model for generating eyebrow and eye
shape landmarks has become more generalized.

4.1.3. Evaluation
We test the eye and brow shape detector on approximately 200 gray-scale eye images outside of the training set. Since
the CNN model is light, consisting of only 8 convolutional layers, we are able to generate the shape of the eyelids and
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Fig. 10. Pupil data processing pipeline. (a) The original image captured by SPIDERS+. (b) The 27 landmarks generated by the CNN model mentioned
in Section 4.1. (c) The cropped eye area image is based on the landmarks for upper and lower eyelids. (d) The color histogram of (c), which is used
to detect the threshold of the pupil light intensity. (e) Binary image based on the threshold (white: pupil). (f) The raw contour of the pupil. (g) The
raw contour curvature and its segmentation according to the negative peaks. (h) The contour of the pupil. (i) The elliptic contour of the pupil.

brows in less than 5 ms per input image. The average root means square error (RMSE) of all the estimated landmarks in
the test set is 4.90 pixel. Fig. 9 shows the decent performance of our CNN model, even in the case of squinted eyes or blurry
pictures. Additionally, we tested our model on people of varying races, skin tone, and facial characteristics (e.g., different
eyelash or hair lengths) and found similar performance across a wide range of demographics.

We show a set of eyelid and brow shape landmarks output by our model, compared to our hand-labeled ground truth,
in Fig. 9. Overall, our model is able to find the contours of eye and eyebrows with high accuracy, even in the case of as
shown in Fig. 9.

4.2. Pupillometry

Our approach for robust pupillometry using our gray-scale camera is outlined in Fig. 10 and Algorithm 1. Determining
the shape of the eye is a crucial first step in determining pupillometry as it helps in localizing the pupil by constraining the
area to search for the pupil. First, we apply the eye and eyebrow shape detector, described in Section 4.1. The results of this
step are shown in (a) and (b). The extracted IR eye-area image and landmarks are used as the input to the pupillometry
module. Next, we crop out the eye area and discard the rest of the image with the knowledge of eyelid shape in (c) to
get the cropped_image, since the pupil can only be located within the eye area.

Next, we generate a histogram of the light intensity of the pixels (d). We note that the pupil is generally a much darker
color (lower intensity) than any part of the surrounding eye, and is thus located in the valley of the histogram of light
intensities. Having this information, we set the threshold of light intensity to be the intensity corresponding to the first
local minimum in the valley, as labeled in (d). Following the rule that any pixel in the image has lower light intensity
than the threshold is set to be white (within the pupil area), otherwise is set to be black, we threshold the image to
generate (e) get the binary_image. We remove light reflections outside and inside of the pupil area by applying standard
morphological image operations and image filling algorithms. An example of the results after these operations is shown
in (e). Next, we extract the raw contour (raw_contour) of the pupil (f). This is only a rough and noisy contour of the pupil
since this contour includes part of the eyelids and effects due to light reflection.

To clean the contour in (f), we extract the curvature (g) along the raw contour starting from the lowest point on the
contour and calculated pixel by pixel clockwise as demonstrated in (f). The negative peaks in (g) are the sharp turning
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Algorithm 1: Pupillometry

Input:
image: IR eye image
landmarks: Output of the CNN model

Output:

detected_pupil_pixels: The number of pixels inside the portion of the pupil not covered by eyelid

uncovered_pupil_pixels: The number of pixels inside the exposed pupil

pupil_ellipse_parameter: Parameters of the whole pupil, including the center coordinates, length of the fitting ellipse’s axes and

angle of rotation compared to the vertical axis
Crop the image based on the eye shape part of landmarks and get cropped_image.
binary_image = binary of the cropped_image with adaptive threshold based on pixel value histogram of cropped_image.
Morphology open operation for the binary_image.
Morphology close operation for the binary_image.
Remove the holes in binary_image by applying the image fill algorithm;
uncovered_pupil_pixels = number of white pixels in binary_image;
raw_contour = boundary of the white pixel block in binary_image;
Calculate the raw_contour curvature and get the negative_peak_set, filter the raw_contour by negative_peak_set to get detected_point_set;
Ellipse fitting detected_point_set to generating the pupil_ellipse_parameter;
Generate the ellipse shaped detected_boundary by pupil_ellipse_parameter;
detected_pupil_pixels = number of pixels bounded by detected_boundary;
Output uncovered_pupil_pixels, detected_pupil_pixels, and pupil_ellipse_parameter;

-
-0 ©® NSO U A WN =

-
N

points when we “walk” along the contour in (f). We use the negative peaks (negative_peak_set) as the critical points to
chop the curvature into several segments. The sharp positive peak corresponds to the portion where the raw contour
is distorted by reflecting light. Those smoother curvature segments either correspond to the contour of the pupil or
occlusions caused by eyelids. The latter factor can be identified by calculating the average distance between the contour
segment and the eyelids, remembering the coordinates of the eyelids are provided by the eye and eyebrow shape detector
in a previous step. After we exclude the segments regarding the light reflections and eyelid occlusions, the segments for
the pupil contour (detected_point_set) can be detected, as shown in (h). Finally, we fit an ellipse to the contour segments
to obtain the final denoised contour of the pupil shown in (i). In addition to the parameters of the fitted ellipse that
delineates the shape of the pupil, Algorithm 1 also calculates the number of pixels of the pupil that is not covered by
the eyelid (uncovered_pupil_pixels) and estimates the area of the entire pupil (detected_pupil_pixels). These values are
used for fatigue detection, which is described in Section 6.1.

Sometimes the contour of the extracted pupil is of low quality due to a number of reasons (e.g., a person blinks, closes
his eyes, or squints). To filter out frames where the state of the eye prevents SPIDERS+ from estimating the shape of
the eye accurately, we compare the shape of the true contour extracted in step (h) and the fitted ellipse extracted in
step (i) using an error of fit function (EOF,) [38]. If the quality is deemed too low using this test, we discard this frame,
as most likely the user has closed his eyes, blinked, squinted, etc. In the end, we use a Hampel filter with a threshold
of 10 times the Median Absolute Deviation (MAD) to remove the points where there is a rapid and unnatural change
in pupil size. The removed values are then replaced with new values through linear interpolation. Though we provide
our own implementation of pupillometry, we allow users and developers to save raw images on the client application to
design and test their own algorithms. It is hard to detect the absolute size of the pupil, which is heavily dependent on
the placement of the SPIDERS+.

To evaluate our pupil detection algorithm, we compare our measurements with those from a commercial product,
the Tobii Pro Nano ($10000+ with the software), which is a bar-shaped, screen-based device that remotely tracks the
user’s gaze and pupillometry with a sampling rate of 60 Hz from its installation point underneath a computer monitor.
No additional equipment is needed to be worn by the user (aside from SPIDERS+), which ensured that the Tobii Pro Nano
do not interfere with SPIDERS+. The sampling rate for SPIDERS+ is 10 Hz.

We use both SPIDERS+ and Tobii Pro Nano (a table-mounted eye tracker) to take measurements on six subjects from
different genders and ethnicities simultaneously, with each subject being measured for five minutes. The data collected
from both Tobii and SPIDERS+ are timestamped. Unlike Tobii Pro Nano, which has multiple IR-band cameras to enable a
3-D model of the pupil and calculate the diameter of the pupil in millimeter, SPIDERS+ only contains one camera module.
The pupil size output by SPIDERS+ could only be in the unit of the pixel. The correlation between the two time-series
data with different units from SPIDERS+ and the Tobii Pro Nano is 0.946, demonstrating the accuracy of our pupillometry
approach. Fig. 11 exhibits an example of the pupil diameters provided by both platforms.

4.3. Zygomaticus muscle movements

As described in Section 3.2, the VL1680X proximity sensor is placed below the right lens of the glasses, facing the
zygomaticus (cheek) muscle. This muscle flexes when a person smiles, resulting in a decrease in the distance between the
proximity sensor and muscle [39]. To evaluate whether the proximity sensor could detect movements in the zygomaticus
muscle, we ask six subjects to wear SPIDERS+ and design a stimulus to guide the subject to alternate between smiling
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Fig. 11. A 60-s segment of pupil diameters measured by both Tobii Pro Nano and SPIDERS+.
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Fig. 12. The relative distances between the proximity sensor and the zygomaticus muscle while a subject alternates smile and calm facial expressions
for 10 repetitions among 5 different trials (red shades: the ground truth when the subject is asked to smile).
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Fig. 13. The filtered and smoothed PPG (blue solid line), estimated heart beat peaks (pink circles), calculated heart rate in BPM (orange stars), and
the ground truth provided by a commercial heart rate monitor (blue dashed line).

for 10 s and remaining neutral for another 10 s for 10 repetitions. At the beginning of each experiment, the position of
the proximity sensor is adjusted for each subject to face the zygomaticus muscle of each subject. To analyze the amount
of calibration required for each user among different trials, each subject repeats the experiment procedure five times.

After the client application receives the sensor values, we first use a high pass filter with a cutoff frequency of 0.02 Hz
to get rid of the artifacts due to the relative distance change between the zygomaticus muscle and the sensor. A lowpass
filter is utilized to remove the random noise, and the filtered data were normalized (« = 0 and o = 1). Fig. 12 shows the
example readings from the proximity sensor for one subject among five different trials. The red shades indicate the periods
when the subject was asked to smile. From visual inspection, there is a noticeable difference between a smiling and a
neutral face with the signals being highly correlated between different trials. We conducted a two-sample t-test between
the processed data of the smiling and calm trials from all subjects (p < 0.01). This shows that with simple adjustments on
the position of the proximity sensor for each user before the first use, SPIDERS+ is able to robustly capture movements
in the zygomaticus muscle to detect when a person is smiling, frowning, etc.

4.4. Heart rate

SPIDERS+ measures the heart rate of a user using the MAX30102 PPG sensor. Since this is a contact-based sensor, we
do not expect users to be comfortable using this sensor all day long; as such, heart rate is only an optional module. PPG is
an inherently noisy signal. SPIDERS+ employs a few methods to clean estimate heart rate from these noisy measurements.

First, we remove any outliers that are more than three standard deviations away from the mean PPG reading and apply
a high-pass filter with a cut-off frequency of 0.9 Hz to remove low frequency drift [40]. Once the PPG signal is filtered and
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Fig. 14. Eye images of seven common facial expressions. The constraints from the gray-scale image captured by a wearable eye tracker make it
difficult to distinguish subtle differences among different emotions (e.g. happy and disgusted).

Table 3

Expressions and eye area features.
Facial expression Eye state Brow movement
Angry/Fearful Non-Squinting Brow Head Moves Up
Neutral/Sad Squinting/Normal No Movement/Move Down
Surprised Non-Squinting Moves Up
Disgusted Squinting Brow Head Moves Down
Happy Squinting No Movement/Moves Up

smoothed, we estimate the heart rate by counting the number of peaks that occur in the raw PPG signal over a period of
time. These peaks within the PPG signal correspond to heartbeats. We note that people generally have a heart rate of 120
beats per minute or below. As such, once SPIDERS+ identifies a heartbeat (peak), it searches for the next peak beginning
at least 0.5 s later. This constraint helps reduce detecting false positive peaks that may yield heart rates that are too high.

To evaluate the performance of the heart rate module, we recruited 10 subjects and measured their heart rates for
60 min using the PPG sensor and heart rate module on SPIDERS+. We compared readings from SPIDERS+ with a Wellue
FS20F Bluetooth Finger Oximeter [41]. We averaged 12-s windows of readings from the commercial device to use as
ground truth. Over 95% of the BPM rates estimated from SPIDERS+- is within &3 BPM of the ground truth values collected
by the commercial device. Fig. 13 shows the data and measurements extracted for one 12-s trial. The blue solid line
indicates the smoothed the PPG signal; the pink circles represent the detected peaks that correspond to heartbeats; the
orange stars represent the calculated BPM at each prominent peak, and the blue dashed line shows the ground truth
obtained from the commercial pulse oximeter. It can be seen that the heart rates estimated by SPIDERS+ match closely
with those obtained from the commercial device.

5. Advanced functionalities prototyping

In this section, we prototype and evaluate our algorithms for facial expression (apparent emotion) detection and
real emotion classification in the Advanced Functionality Layer to demonstrate the adequate performance of SPIDERS+
compared to other platforms, which are usually more expensive and bulky [13,42,43]. These make up the Advanced
Functionalities layer of SPIDERS+ in Fig. 2. All experiments presented in this section are approved by the Human Research
Protection Office and IRBs at our institution.

5.1. Facial expression detection

Previous works focus on facial expression (apparent emotion) detection using colored images of the entire face.
Few works have explored facial expression detection using gray-scale images and even fewer have investigated facial
expression extraction using images only contain the eye area. Fig. 14 shows images captured from our IR camera with
a user making common facial expressions. The camera is angled very low and captures only the area around the eye
and part of the eye brow. The partial view of the brow, subtle differences in the shape of the eye between different
expressions, and the inherent variations in the shape of the eye among different demographics all make it difficult for
traditional algorithms, that match the shape of the eye to an expression, to perform well.

Two features we observed that were more consistent among people of different races + gender and showed greater
variation among different facial expressions are the movement of the eyebrow and the size change of the eye. Table 3
shows the relative state of the eyes and the movement of the eyebrows for the different facial expressions we studied. For
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Fig. 15. The pipeline of eye-image-based facial expression (apparent emotion) detection.
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Fig. 16. Example of binary thresholding conducted on baseline corrected eye size data (green shades: the ground truth when the subject is asked
to smile to express happy).

instance, when a person becomes surprised, the head of the eyebrow (the portion of eyebrow closest to the nose ridge)
raises and the eyes become wide open. Next, we present and evaluate our novel facial expression detection pipeline as
shown in Fig. 15, that leverages both the movement of the eyebrow and the shape of the eye, to classify facial expressions
(apparent emotion) into one of five expressions listed in Table 3.

5.1.1. Expression detection approach
We propose that SPIDERS+ can perform facial expression (apparent emotion) detection with the following high-level
approach:

1. Extract eye landmark features that provides the rough shape of the eyelids and eyebrows (Section 4.1).

2. Estimate the size of the eye (wide open vs. squinting).

3. Track the movement of the eyebrow (moving up vs. moving down).

4, Estimate facial expressions based on the size of the eye, movements of the eyebrow, and a binary decision tree.

Eye size estimation: The goal of this step of the algorithm is to determine if the eye is squinting or non-squinting. To
accomplish this, we need to determine the location and the outline of the eye. The area encompassed by the outline
of the eye is directly correlated to the state of the eye; if the area is large, the eyes are wide open, and if the eyes
are narrow, then the person is squinting. The eye landmark generation algorithm we proposed in Section 4.1 generates
discrete points that outline the shape of the eye and brow. Next, we interpolate between these points to draw the outline
that encompasses the area of the eye. Once the area is computed, we manually set a threshold that achieves the greatest
separation between squinting and non-squinting; eye areas above this threshold are considered non-squinting, and eyes
below this threshold are considered squinting (see Fig. 16).

Eyebrow movement tracking: Besides checking for squinting eyes, tracking the movement of eyebrows is helpful in
providing information about when the subject frowns or raises the eyebrows. Fig. 17 shows two consecutive frames taken
when a user’s facial expression changing from angry to neutral, and the corresponding motion vector map generated with
a naive exhaustive search algorithm. From the motion map, We can easily observe that the eyebrow is moving towards
the left. In order to achieve real-time performance, we adapt the PWC-Net proposed in [44] to calculate the optical flow
between frames. The mean of the motion vectors close to the previously generated eyebrow position is taken as the
eyebrow movement vector.

As the visualization in Fig. 18 shows, the motion of the eyebrow between frames is manifest in the form of short,
high-magnitude pulses. Here, the spikes and plunges of the horizontal and vertical motion components represent the
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Fig. 17. Motion tracking between two consecutive image frames (top). As shown in the motion vector map (bottom), the eyebrow region moves
primarily leftwards from the image on the left to the image on the right.

derivative of general eyebrow states, i.e. the acceleration with which the eyebrow changes from one state to another. An
equal-magnitude expansion outwards in both the x- and y-direction may represent a raise of the eyebrow (potentially
induced by surprise), while a prominent contraction inwards in the x-direction, usually accompanied by a less prominent
y-direction movement, may signify a frown.

We utilize these pulses of movements for analyzing the eyebrow state along the temporal dimension. Based on the
observations made previously, three states of the eyebrow are considered in this model: neutral (state 0), raised (state
1), and frown (state —1). In order to construct the state model of the eyebrow, a few assumptions are made. First, since
eyebrow movements involve the involuntary contraction and expansion of muscles, they happen over short periods of
time, and thus each movement is always signaled by a short, high-power pulse. Second, we assume that each time the
eyebrow state diverges from state 0, it will return to state O from either state 1 or state —1 before it diverges again.
Third, as a result of the previous two assumptions, motion pulses are processed in pairs, with each eyebrow movement
complete only after the appearance of both a positive diversion (a spike) and a negative diversion (a plunge). Hence, if
two spikes or plunges appear consecutively on the time-series motion, the second signal succeeds the first in becoming
the first of the following pair of movement, while the state of the eyebrow between the two spikes is still seen as the
one signified by the first spike. A state diagram along the time axis is thus constructed, with 3 discrete y value levels of
—1, 0, and 1, which tracks the state of the eyebrow at any time point during a trial.

5.1.2. Experiment setup

Participants: 10 adults, including 5 males and 5 females, from different ethnicities (6 Asian, 3 White, and 1 African
American) with self-reported normal hearing are recruited. Participants with impaired vision do not wear corrective lenses
throughout the experiments since no reading is required.

Stimuli and procedure: The subjects are asked to express seven different apparent facial expressions indicated in Table 3.
For each apparent expression category, each subject is guided to repeat the process of explicitly performing a certain facial
expression while images are taken with a 10 fps frame rate. Each subject is directed to repeat the process of explicitly
performing a certain facial expression for 50 frames and 50 frames of neutral facial expression for ten times, resulting in
1000 images for one emotion.

We take the 10 frames in every 50 frames between the transitions as the ground truth for a certain facial expression
or a neutral state. By directly calculating the eyebrow movement from an image with a neutral state to an image with a
certain facial expression, we obtain the eyebrow movement of each facial expression compared to the neutral baseline.
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Fig. 18. Tracking of eyebrow region motion in the form of overall motion vector components over time (green shades: the ground truth when the
subject is asked to perform disgusted).
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Fig. 19. (a) Eye brow motion distribution and (b) eye size histogram for a same subject, we can see the feature of movements and size change
described in Table 3.

The eye sizes of the images are also calculated using the method previously described. The eyebrow movement plots and
the histogram of the eye sizes are shown in Fig. 19. The results in these two figures support what we describe in Table 3.

5.1.3. Facial expression detection results

By directly training a support vector machine (SVM) classifier on the eye size and eyebrow motion features mentioned
before, we can get a classification accuracy ranging up to 94.47% for different subjects. However, the high accuracy results
from over-fitting to the position of the glasses when taking certain trials of the experiment. Using a 3D pupil model or
other computer vision method to compensate for glasses frame movements might solve this problem, but it is reserved
for future work.

As for now, we validate the previously described more robust method, where time-series eye image data are passed
into the two processing pipelines to obtain eye area data and eyebrow state data separately. With the 2 x 3 combinations
of eye and eyebrow states, a facial expression classification is generated for each time point in the test set, with the
logic shown in Fig. 15. The result is a continuous prediction along the time dimension that specifies the subject’s facial
expression at every time point. The result thus generated for the test dataset is validated against the ground truth and
an evaluation score is calculated for each trial, based on the percentage of time point-specific predictions made by the
classification model. The results are shown in Fig. 20.

The results show that our classification model, based solely on the detection of eye shape and the tracking of the
eyebrow state with raw, gray-scale, partial images of the eye, achieves a satisfactory accuracy for facial expression
classification, with the balanced average accuracy reaching up to 83.87% for the test dataset, exceeding the performance
of Eyemotion, a state-of-the-art method for eye-area facial expression detection with IR cameras positioned in front of
eyes (which will block the user’s field of view) [6]. It is worth noting that instead of providing a probability distribution,
our method provides a direct classification of each facial expression. It takes less than 100 ms to process each frame, so
the proposed method can achieve a frame rate of more than 10 fps.

5.2. Real emotion classification

To show SPIDERS+'s effectiveness in discerning real emotional states, we implemented two 3-class Support Vector
Machines (SVM), with pupil size measured from SPIDERS+ as input, to detect three classes of arousal and valence levels,
which are two measures of real emotion.
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Fig. 20. Confusion matrix for facial expression classification.
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Fig. 21. GUI of the application used to collect data for training and evaluating our real emotion classifier. Users are shown a stimulus through the
GUI and are asked to select their arousal and valence level after each stimulus.

To obtain data for training and evaluation, we recruited 12 adults with self-reported normal hearing, right-handed, and
varying ages. Participants with impaired vision wore corrective lenses throughout the experiments, while everyone else
had normal vision. Half of the subjects were males and the other half were females. During the experiment, all subjects
were exposed to picture/sound/video test on a MATLAB graphical user interface (GUI) shown in Fig. 21, while wearing
SPIDERS+. Picture and sound tests were taken from the International Affective Picture System (IAPS) and International
Affective Digital Sounds (IADS) datasets, while videos were selected from Youtube [45,46].

During each trial, the subject would first observe a grayscale picture with a black cross in the center of the screen
for 6 s, followed by a target picture, sound, or video stimuli for 6 s on the MATLAB GUI. Afterwards, users would enter
their arousal and valence levels using the Self-Assessment Manikin (SAM), a 9-point scale commonly used to measure
arousal (excited vs. calm) and valence (pleasant vs. unpleasant) levels [47]. We consider one 12 s segment followed by a
self-report of valence and arousal to be a single sample. The responses provided by the subjects would be used as labels
to train and test the SVM model. Subject responses on the 9-point SAM scale were scaled to fit in a range from —1 to 1,
and we divided the range into three classes for both valence and arousal. The classes for valence are “Pleasant” (> 0.4),
“Neutral” (< 0.4, > —0.4), and “Unpleasant” (< —0.4). The classes for arousal are “Excited” (> 0.4), “Neutral” (< 0.4,
> —0.4), and “Calm” (< —0.4).

We trained our SVMs on 800 samples and tested on 150 samples of pupil size and valence/arousal pairs. The confusion
matrices of our results for both valence and arousal are shown in Fig. 22. Classification for multi-class valence and arousal
levels based on physiological responses is difficult. Even commercial products that use EEG sensing devices that cost over
$10,000 can only achieve an accuracy of around 70% [48,49]. The average prediction accuracy across different subjects for
three-class valence and arousal in SPIDERS are 49.32% and 47.25%, which is higher than the accuracy of other low-cost
wearable devices ([10] achieved 34.2% for detecting four-class states using physiological data collected by contact-based
Sensors).

6. Enabled applications

In this section, we discuss areas and applications where SPIDERS+ can make potential impacts. In particular, we focus
on an example application, fatigue detection, and describe its detailed algorithms and implementations. We also briefly
describe other applications that can be enabled by SPIDERS+.
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Fig. 22. Confusion matrix for the (a) arousal and (b) valence-based classes.
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Fig. 23. The processing pipeline for fatigue detection.

6.1. Fatigue detection

People often exhibit specific facial expressions and cues when they are tired, such as yawning or squinting their
eyes. These actions generally change the shape and position of the eyelids, eyebrows, and facial muscles. As such
SPIDERS+ is capable of detecting these changes to infer fatigue in a user. The processing pipeline for our fatigue
detection application is shown in Fig. 23. In particular, SPIDERS+ generates two measurements using images from its IR
camera (uncovered_pupil_pixels and detected_pupil_pixels) that is used by the smartphone and desktop applications to
compute PERCLOS (Percentage of eyelid closure over the pupil, over time), which is a widely used metric for measuring
fatigue in drivers [50]. The PERCLOS metric is computed as follows:

# of instant-fatigue frames

PERCLOS = x 100%.
# of total frames

The smartphone and desktop applications estimate whether the user is fatigued or not using Algorithm 2. In general,
people tend to squint or close their eyes when fatigued. As such, we determine instant-fatigue frames to be frames
where the area of the pupil currently exposed (uncovered_pupil_pixels) is less than 20% of the total size of the pupil
(detected_pupil_pixels). In other words, these are frames where the eyes are mostly closed. If the fraction of instant-
fatigue frames is very high over a certain period of time, then we detect that the person is fatigued and send an alert
through the smartphone/desktop applications. We evaluate the PERCLOS metric every 30 s (cumulative_results, K =
30 sx 10 fps = 300 frames in total an image sampling rate of 10 Hz). Through experimentation, we determine that setting
the PERCLOS threshold for fatigue to 70% ensures that our application detects most cases of fatigue while maintaining a
low false detection rate (e.g. scenarios where a user is blinking rapidly may yield many frames where the user has his/her
eyes closed and cause the detector to falsely detect fatigue). In other words, if the PERCLOS metric is greater than 70%,
then the smartphone/desktop application detects fatigue (fatigue_output = 1). The results of the fatigue detection are
displayed on the user panel in both the desktop and smartphone applications described in Section 7.
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Algorithm 2: Fatigue Detection

Input: uncovered_pupil_pixels: The number of pixels inside the portion of pupil not covered by eyelid (output of Algorithm 1).
detected_pupil_pixels: The number of pixels inside the fitted ellipse (output of Algorithm 1).
cumulative_results: Vector of the instant fatigue detection results (instant_result) over the past K frames of eye images.
Output: fatigue_output: A Boolean value indicating fatigue (=1) or not fatigue (=0).

Initialize cumulative_results = 6 PERCLOS _threshold = 70% x K ;

1
2 while True do

3 | pupilfraction = einaLe:

4 instant_result = pupil_fraction < 20%;

5 cumulative_results right shift by 1;

6 First element of cumulative_results = instant_result;

7 PERCLOS _value = SUM(cumulative_results)

8 fatigue_output= PERCLOS _value > PERCLOS_threshold;
9 end

6.2. Safe driving and concentration monitoring

The number of vehicles has increased drastically in recent years. Additionally, there are approximately 100,000 police-
reported crashes involving drowsy driving per year according to the National Highway Traffic Safety Administration [51].
SPIDERS+ can help reduce incidents of drowsy driving through fatigue detection, as described in Section 6.1. If a user is
detected to be fatigued, the smartphone application will send a five-second audio alert to wake up the driver. SPIDERS+
is also comfortable to wear, wireless, and does not block the driver’s field of view.

In addition, the fatigue detection system we outlined in Section 6.1 can also be used in other application scenarios,
where monitoring user attention is important. For example, in various scientific studies, different levels of human subject
attentiveness can cause significant differences in observed results (e.g., in neuroscience experiments, visual attention will
affect neural processing in different ways [52]).

6.3. Mental health monitoring

According to the World Health Organization, more than 300 million people suffer from depression and other emotional
health disorders worldwide [53]. Proper treatment may require continuous monitoring of the patients, which currently
happens only when patients come in for appointments [54,55]. Intelligent wearable devices that can monitor aspects of
emotion and mental health, like SPIDERS+, allow doctors to continuously monitor their patients’ even outside doctor
visits. Additionally, many psychiatric and psychological diagnoses currently rely on subjective observations. SPIDERS+
provides measurements of critical bio-signals that are correlated with emotion that can give healthcare providers a more
objective view of their patients’ mental and emotional health. In many scenarios, patients are unable to make frequent
trips to their healthcare provider (e.g., elderly patients with trouble moving, or patients living in rural/isolated areas) [3].
It is especially difficult, during the current COVID-19 global pandemic, to arrange mask-off doctor visits and mental status
exams.

SPIDERS+ is an intelligent,low-power, wearable device that is not constrained to artificial lab settings or clinical
environments and can provide almost continuous emotional health monitoring of patients without the need to make
frequent trips to the doctor. SPIDERS+ is able to collect and process bio-signal measurements that can be used to
more accurately discern emotion and mental state in daily life. Patients would be able to live out their lives normally
while wearing SPIDERS+ because the SPIDERS+ glasses platform is truly wireless and portable. In addition to medical
use, SPIDERS+ is suitable for general users to conduct everyday mental health monitoring. Users can easily view the
distribution of the five classes of their facial expressions once they start wearing SPIDERS+ on the service panel either
running on the desktop or smartphone application. The details of the desktop and smartphone applications will be
discussed in Section 7.

6.4. Entertainment and gaming

There are many ways in which SPIDERS+ could enrich different categories of entertainment. For instance, a film-maker
could use the spectators’ emotional feedback to decide how to make the movie more sympathetic and impressive [56].
When facial expression recognition is integrated into an intelligent game system, the gaming experience can become more
interactive, vivid, and attractive. A video game could dynamically increase the difficulty of the game if it detects that the
player is getting bored or complacent [6]. A musical therapy system can utilize the real-time emotional state of the user
and adjust the music therapy to the patient’s needs [57]. Leveraging the optional contact-based sensors in SPIDERS+ can
also enable applications like providing real-time feedback on medication and relaxation through measuring brain activity
and HRV [58]. In general, media can dynamically change (and enrich) content based on the current user state of apparent
and real emotions.
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Fig. 24. The interface of the user panel on the web-page-based desktop application.

6.5. Marketing and advertisements

Companies can use emotion predictions provided by SPIDERS+ to enhance their marketing campaigns and better reach
their target audience. For example, companies can use the emotional response of large groups of people to determine
which advertisements generate more interest in their products to help them create better advertisements. Companies can
also use emotional responses to their advertisements to determine their target market and send targeted advertisements
only to the people that are most likely to buy their products [59]. Moreover, with customers’ emotional responses, the
government can enhance the impact of public service announcements, such as advertisements for safe driving and water
saving [5]. Customers would greatly benefit from this because they would only receive advertisements about products
and services they are more willing to explore, rather than receiving advertisements about products that are not of their
interests.

6.6. Elderly care

In the United States, there are more than 40 million people who are 65 and older, accounting for around 15% of the
total population. Around 20% of the elderly population have experienced some type of mental health issue. These mental
health issues may be from a variety of reasons, including changes in the environment, dementia-causing illnesses, chronic
illnesses, and physical illnesses [60]. It is difficult to continuously monitor the mental health conditions of elderly citizens
even after moving them into an assisted living community due to personnel and resource limitations. SPIDERS+ can
continuously monitor the mental health of seniors, reducing the burden of caregivers and family members. SPIDERS+ can
also monitor aspects of physical health by measuring HRV through its PPG sensor module. The information provided by
SPIDERS+ can provide early warnings for mental and physical health issues in senior citizens.

7. Desktop and smartphone applications

We developed a basic set of user-facing desktop and smartphone applications to enable the user to better visualize
information from SPIDERS+. The smartphone/desktop application can be modified by researchers and developers to
build custom applications on top of SPIDERS+, such as the fatigue detection application introduced in Section 6.1. The
smartphone/desktop application utilizes outputs from the bottom three layers of SPIDERS+'s architecture (Fig. 2) to enable
a wide range of applications.

Both the smartphone and desktop applications have a user panel that displays the key features extracted from the Core
Function Library and Advanced Functionalities. Specifically, the user panel displays the eye and eyebrow shape detection
results (the 27 landmark points) and pupillometry results (fitted ellipse) as an overlay on top of the IR image of the user’s
eye. The user panel also displays (1) pupil size, (2) eye size, and (3) eyebrow movements that were measured by the Core
Function Library. Additionally, current estimates of the user’s facial expression and a cumulative average of the user’s facial
expression over time from the Advanced Functionalities layer can also be viewed. Fig. 24 illustrates the desktop application
displaying the user panel. This example application was also adapted to estimate and display fatigue (Section 6.1).

The user panel is streaming to a web-page for the desktop application, while it is streaming to an embedded video
player in the smartphone application. As shown in Fig. 25, the homepage of the smartphone application allows the user
to input the URL of the SPIDERS+’s client application to obtain the video stream. The user can also choose whether to
turn on the alarm or not prior to use. The user can enable the fatigue alarm function by simply clicking on the radio
button next to alarm (outlined by the red box in the top picture in Fig. 25) before clicking on the start button to visualize
the user panel. The application page contains the user panel and notification messages with the alarm sound, where the
latter one will only appear if the users selected the alarm function on the homepage.
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URL

http://192.168.1.218:5000/video._feed

start  clearinput clear URL

Fig. 25. Screenshots of SPIDERS+'s phone application. Top: The homepage of the smartphone application. Bottom: The user panel with the same
layout as the desktop application. The alarm notification pops up along with a warning sound, if the user turns on the alarm on the homepage.

8. Limitations and future work

The current SPIDERS+ system has several limitations. First, the primary contribution of SPIDERS+ is addressing
the challenges of power consumption, cost, and portability, and creating a low-power wearable platform that enables
researchers and engineers to develop real-time applications that benefit or require continuous in-situ bio-signals moni-
toring. As such, in this paper, we prototype facial expression detection and emotion classification models and show that
these models can be run on SPIDERS+ with adequate performance compared to the works done by other groups in the
research community [6,10]. In the next phase, we will explore better feature engineering, modality fusion, and algorithmic
development strategies that could boost the performance of the classification models drafted in this paper.

To validate the performance of SPIDERS+, we conduct the experiments in controlled situations similar to the
experimental setups in [61,62]. We will perform further research to develop algorithms that are more robust to different
lighting conditions (indoor and outdoor), different users, and body movements based on the five functions in SPIDERS+’s
Core Function Library. We will also perform in-the-wild experiments with multiple days of continuous wearing. We
will continue adding more functionality and exploring more applications that can be built upon SPIDERS+. Specific
improvements include more efficient data processing algorithms and a communication platform that connects doctors
and patients. We are also working on improving the robustness and security of SPIDERS+ for future medical deployments
and studies with real patients. These improvements to SPIDERS+ will further reduce societal barriers to obtaining proper
and accessible mental medical services.

9. Conclusion

In this paper, we present SPIDERS+, a low-cost wearable glasses platform that provides four sensing modalities (eye
and brow shape detection, pupillometry, zygomaticus movements, head movements) from three non-contact sensors
(IR camera, proximity sensor, IMU), with the option of including sensors that require skin contact (heart rate, skin
conductance, EEG). We show that SPIDERS+ is able to robustly classify five different classes of facial expressions (apparent
emotions) and three levels of valence and arousal (real emotion). We also develop a basic desktop/smartphone application
for visualizing SPIDERS+'s data to enable various applications. SPIDERS+’s low cost, portability, and long battery life,
combined with its capability to estimate both facets of human emotion (apparent and real) make it the perfect platform
for exploring applications that can utilize human emotions.

Additionally, we present and discuss many high-level applications that SPIDERS+ will impact and plan to explore some
of these problems in future work. In addition to the applications discussed, there are many other concrete problems such
as detecting lies, detecting drowsy driving, or determining engagement levels in a class that SPIDERS+ has the chance to
impact. As such, we have open-sourced all of our code and designs to the public and will continue to promote SPIDERS+
to foster a community of developers and researchers who will collectively improve and develop new applications for
SPIDERS+. We envision SPIDERS+ as the go-to open-source platform for investigating applications in mobile emotion
monitoring.
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