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Abstract—Digital alloy and random alloy Al0.85Ga0.15As0.56
Sb0.44 avalanche photodiodes (APDs) exhibit low excess noise,
comparable to Si APDs. Consequently, this material is a promising
multiplication layer candidate for separate absorption, charge, and
multiplication structure APDs with high gain-bandwidth product.
Characterization of the impact ionization coefficients of electrons
(α) and holes (β) plays an important role in the simulation of
avalanche photodiodes. The multiplication gain curves of eight
p+-i-n+ and n+-i-p+ APDs covering a wide range of avalanche
widths have been used to determine the electric field dependence of
the impact ionization coefficients of Al0.85Ga0.15As0.56Sb0.44. A
large impact ionization coefficient ratio between that of electrons
to holes was seen across a wide electric field range. Simulations of
the avalanche multiplication in these structures using a random
path length (RPL) model gave good agreement with experimen-
tal results over almost three orders of magnitude, and a mixed
injection method was employed to verify the extracted impact
ionization coefficients. Interestingly, no difference in the impact
ionization coefficients was seen between digital alloy and random
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alloy Al0.85Ga0.15As0.56Sb0.44. This knowledge of impact ion-
ization coefficients is beneficial for the future utilization of the
AlxGa1-xAsySb1-y material system.

Index Terms—AlGaAsSb, avalanche photodiode, digital alloy,
impact ionization coefficient, random alloy.

I. INTRODUCTION

AVALANCHE photodiodes (APDs) have been widely used
in commercial, research, and military applications in-

cluding imaging, optical communications, and single photon
detection [1], [2]. Their internal gain enables higher receiver sen-
sitivity than p-i-n photodiodes. The internal gain originates from
serial impact ionization, a random process that also introduces
noise which is characterized by introducing a multiplicative
excess noise factor F(M) into the expression for the shot noise
current [3], [4]〈

i2shot

〉
= 2q (Iphoto + Idark) 〈M〉2F (M)Δf, (1)

where q is the electric charge, Iphoto is the photocurrent, Idark
is the dark current, <M> is the average gain, and Δf is the
bandwidth. The excess noise factor can be expressed as [5]

F (M) = k 〈M〉+ (1− k)

(
2− 1

〈M〉
)
, (2)

where k is the ratio of the impact ionization coefficients of holes
(β) to electrons (α) for the electron-initiated impact ionization
process. They represent a carrier’s mean rate of ionization per
unit distance and are also equal to the inverse of the mean
distance a carrier travels before ionizing. The excess noise factor
increases with gain, but the rate of increase is lower for a material
with a lower k-value. Therefore, the higher the gain the higher
the excess noise, resulting in a higher total noise. The tradeoff
between the receiver circuit noise suppression as a result of
the intrinsic APD gain and the concomitant increasing shot and
excess noise can be expressed by the signal to noise ratio (SNR),

SNR =
I2photo

2q (Iphoto + Idark)F (M)Δf +
σ2

circuit

〈M〉2
, (3)

where σcircuit is the RMS receiver circuit noise. Since the
receiver circuit noise is non-negligible and unavoidable, the
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benefit of the APD internal gain can be maximized by a lower
excess noise factor, i.e., a lower k-value, ultimately resulting in
higher receiver sensitivity.

Recently, APDs based on AlxIn1-xAsySb1-y and
AlxGa1-xAsySb1-y materials systems [2] have exhibited
low excess noise comparable to that of Si (k ∼ 0.01) [6], [7].
AlxIn1-xAsySb1-y APDs grown on GaSb as a digital alloy
with x = 0.5, 0.6, and 0.7 were reported with k values as low
as 0.01 [8]. Likewise, random alloy Al0.79In0.21As0.74Sb0.26
APDs on InP have shown a k value of 0.02 [9]. Digital
alloy AlAs0.56Sb0.44 APDs on InP were reported with a k
value of 0.005 [10]. However, AlAs0.56Sb0.44 APDs on InP
have oxidization issues due to the high Al content, leading
to a high surface dark current [11]. In order to mitigate
this oxidization issue, Ga was incorporated, resulting in
Al0.85Ga0.15As0.56Sb0.44 APDs [11]–[16]. The digital alloy
Al0.85Ga0.15As0.56Sb0.44 APDs, with a 1-μm multiplication
layer, have shown a dark current which is approximately two
orders of magnitude lower than AlAs0.56Sb0.44 APDs [14].
Both these Sb-based materials systems are promising candidates
for low-noise APD multiplication layers.

In this work, the gain characteristics of two digital alloy (DA)
and six random alloy (RA) Al0.85Ga0.15As0.56Sb0.44 (hereafter
AlGaAsSb) APDs with different multiplication layer thickness
were used to determine the electron and hole ionization co-
efficients of the AlGaAsSb over a wide electric field range.
The electric field dependent impact ionization coefficients were
extracted from these gain characteristics using a “local” model
where the carrier ionization is assumed to be only a function
of the electric field at that point [17]–[19], and no allowance
is made for any “dead-space” [20] or history dependence of the
carrier energy [21]. The experimental gain curves of p+-i-n+ and
n+-i-p+ APDs under pure electron and hole injection profiles
respectively were compared to simulations of the multiplication
using these impact ionization coefficients. The extracted impact
ionization coefficients were further verified through a mixed
injection method [22] where the multiplication occurs due to
the creation of electrons and holes within the depletion region
of the p+-i-n+ APDs. The determination of impact ionization
coefficients for AlGaAsSb is beneficial for the future design
of high gain-bandwidth-product and low-noise separate absorp-
tion, charge, and multiplication (SACM) APDs [23]; it is also
advantageous for the understanding of the physical mechanisms
that contribute to low noise in Sb-based APDs.

II. EPITAXIAL CRYSTAL GROWTH AND DEVICE FABRICATION

The APDs were grown as p+-i-n+ and n+-i-p+ structures with
different multiplication layer thickness on semi-insulating InP
substrates by molecular beam epitaxy. The epitaxial structures
are shown in Table I, and APDs with symmetrical p+-i-n+ and
n+-i-p+ structures are listed in the same row. The multiplication
layer thickness ranges from 87 nm to 1 μm with the growth
details of some layers provided previously [13]–[16]. Doping
and thickness of various layers shown in Table I were either taken
from capacitance-voltage (C-V) measurements or the literature
[13]–[16]. All samples employ InGaAs as the contact layer

TABLE I
EPITAXIAL STRUCTURES OF P+-I-N+ AND N+-I-P+ ALGAASSB APDS

material, and their p-type and n-type layers were doped with Be
and Si (or Te), respectively. With the exception of the 890-nm
thick p+-i-n+ and n+-i-p+ multiplication layer structures which
were grown as digital alloys [8], [10], [14], other samples in this
study were grown as random alloys [11]–[13], [15], [16].

The gain characteristics of the thinner structures have been re-
ported previously [13], [15], so data from the literature was used
in our analysis. For the three thickest samples, circular mesas
were defined by UV lithography, and a solution of citric acid
(10 g), phosphoric acid (6 mL), hydrogen peroxide (3 mL), and
deionized water (60 mL) was used to chemically etch the mesas.
Ti/Au contacts were deposited by electron-beam evaporation on
the top and bottom InGaAs contact layers. Finally, SU-8 was
spun on the sidewall to reduce the surface dark current.

III. EXPERIMENTS AND RESULTS

A. Random Path Length Simulation

The current-voltage (I-V) characteristics of the three thick-
est AlGaAsSb p+-i-n+ and n+-i-p+ APDs measured at room
temperature under dark and illuminated conditions were used
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Fig. 1. Comparison between measured gain (symbols) under 450 nm illu-
mination and simulated gain (solid lines) from the random path length model
for p+-i-n+ and n+-i-p+ AlGaAsSb APDs with different multiplication layer
thickness at room temperature.

to determine the gain curves. A 450 nm semiconductor laser
was used to illuminate the top cladding layer of the devices
to provide a pure carrier injection profile [24]. Measurements
were undertaken on several devices with different diameters and
under different optical powers to ensure the reproducibility of
the results. For the cladding layer doping in these structures,
the depletion edge moves towards the top surface by 30–45 nm
between 0 V and breakdown voltage, resulting in a small increase
in the primary photocurrent. The multiplication gain was deter-
mined from the photocurrent after accounting for this increasing
primary photocurrent using the technique advocated by Woods
et al. [25]. Although these changes are small, they can have a
significant effect on the very low values of multiplication. These
gain results are plotted as log (M – 1) verse reverse bias to show
the full range of multiplication obtained in Fig. 1. The impact
ionization coefficients were extracted from the gain curves using
an iterative numerical technique [17]–[19] and based on an
accurate knowledge of the electric field profiles in the range of
structures investigated (including the background doping in the
intrinsic region and depletion into the doped cladding layers).
The impact ionization coefficients were assumed to be functions
only of the electric field in the structures, and starting with the
impact ionization coefficients of AlAsSb [26], the coefficients
were adjusted until they gave good agreement with the experi-
mentally measured multiplication characteristics.

These impact ionization coefficients for electrons and holes
are shown in Fig. 2. The pure electron (p+-i-n+) and hole (n+-
i-p+) initiated multiplication gains were simulated using these
impact ionization coefficients and a random path length (RPL)
model [17]–[19] for all the eight structures. As shown in Fig. 1, a
good agreement is obtained between the measured and simulated
gain curves over three orders of magnitude. The corresponding
analytical expressions cover a wide electric field range from
260–1000 kV/cm for impact ionization coefficients of electrons
and 200–1000 kV/cm for impact ionization coefficients of holes,

Fig. 2. Comparison of impact ionization coefficients of electrons and holes for
AlGaAsSb, AlAsSb [26], Si [27], and InAlAs [28]. α of AlGaAsSb is similar
to that of AlAsSb and InAlAs, and these lines overlap at low electric fields.

and they are given by

α =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

5.5 × 105 exp

(
−
(

1.21×106

E

)1.43
)

cm−1,

when 260 kV/cm < E < 500 kV/cm

8.0 × 105 exp

(
−
(

1.30×106

E

)1.43
)

cm−1,

when 500 kV/cm < E < 1000 kV/cm

, (4)

β =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2.5 × 105 exp

(
−
(

1.70×106

E

)1.44
)

cm−1,

when 200 kV/cm < E < 500 kV/cm

4.5 × 105 exp

(
−
(

1.92×106

E

)1.38
)

cm−1,

when 500 kV/cm < E < 1000 kV/cm

, (5)

where E is the electric field in kV/cm.
The impact ionization coefficients of electrons in AlGaAsSb

were found to be similar to AlAsSb except at very high electric
fields (>500 kV/cm) as shown in Fig. 2. The bandgap changes
slightly from AlAsSb to AlGaAsSb, with the X-valley bandgap
changing from 1.64 eV to 1.56 eV and the Γ-valley bandgap
changing from 1.95 eV to 1.77 eV [11]. This explains the similar
impact ionization coefficients of electrons to AlAsSb but not
the larger hole impact ionization coefficients. Similar behavior
has been reported in AlxGa1-xAs and (AlxGa1-x)0.52In0.48P
lattice-matched to GaAs [18], and for high Al composition, the
breakdown voltage and impact ionization coefficients do not
change much with Al variations. Fig. 2 shows that the α in
AlGaAsSb is not only similar to that of AlAsSb [26] over much
of the electric field range but also similar to α seen in InAlAs
[28] and InP [29] (not shown for clarity). While theα at a typical
electric field of 350 kV/cm in these four semiconductors is
effectively identical at 1648 cm−1, β shows orders of magnitude
difference with β = 3300 cm−1 in InP, 167 cm−1 in InAlAs,
19 cm−1 in AlGaAsSb and 1.5 cm−1 in AlAsSb.
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Fig. 3. (a) Dark current, photocurrent, and gain under 445, 543, 633 nm
illumination for a 150-μm-diameter p+-i-n+ digital alloy AlGaAsSb APD with
the 890-nm multiplication layer at room temperature. (b) Comparison between
measured gain curves (solid lines) and simulated gain curves (points) based on
the mixed injection method.

B. Mixed Injection Method

Determining the impact ionization coefficients of electrons
and holes from multiplication gain under a pure electron injec-
tion profile (Me) and under a pure hole injection profile (Mh)
taken on different p+-i-n+ and n+-i-p+ structures respectively
has the risk that small changes in the electric field profiles in the
structures or the Al:Ga composition can introduce errors. There-
fore, as a check, mixed injection [22] was employed to initiate the
multiplication by both electrons and holes in the same structure
and thereby extract the impact ionization coefficients for the
digital alloy AlGaAsSb APD with the 890-nm multiplication
layer. The only requirement with this technique is the accurate
knowledge of absorption coefficients of this material. A similar
technique was used to obtain the gain characteristics as described
before. In order to obtain pure electron injection and mixed
injection profiles, the light sources included a semiconductor
laser to provide the 445 nm illumination and a He-Ne laser
to provide the 543 and 633 nm illumination. Multiplication
gain under three different carrier injection profiles were then
calculated from the photocurrent, as shown in Fig. 3(a). With the
illumination wavelength increasing, the pure electron injection

Fig. 4. Comparison of impact ionization coefficients of electrons and holes
for AlGaAsSb extracted by the mixed injection method and by the random path
length simulation.

profile transitions to the mixed injection profile, and a lower gain
is obtained, an indication that the impact ionization coefficients
of holes (β) are lower than those of electrons (α) [26].

The gain for an electron-hole pair created at position x of an
ideal p+-i-n+ APD can be expressed by the local field model as
[30]

M (x) =
(α− β) e−(α−β)x

αe−(α−β)w − β
, (6)

where w is the depletion width. Combining the injection profile
with the location-dependent gain, the mixed injection multipli-
cation Mmix is expressed by [22]

Mmix =

∫ w

0 M (x)G (x) dx∫ w

0 G (x) dx
, (7)

G (x) ∝ e−γx, (8)

where G(x) is the carrier-generation rate, and γ is the ab-
sorption coefficient. The absorption coefficients of AlGaAsSb
were extracted via ellipsometry and verified by external quan-
tum efficiency (EQE) measurements [24]. This mixed injection
method has been used to extract the impact ionization coeffi-
cients for In0.53Ga0.47As [22], Al0.7In0.3As0.3Sb0.7 [31], and
Al0.8In0.2As0.23Sb0.77 [32].

By inserting the absorption coefficients of every layer and the
measured gain curves into (7), the impact ionization coefficients
of electrons and holes can be extracted [31], [32], and the
simulated gain curves agree well with measured gain curves
under 445, 543, and 633 nm illumination as shown in Fig. 3(b).
Then, the impact ionization coefficients of electrons and holes
extracted from two different methods are compared in Fig. 4.
These two results of impact ionization coefficients agree well,
with the small difference seen possibly due to the assumption
of a constant electric field profile in the multiplication region
in the mixed injection analysis. Mixed injection measurements
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were also undertaken on the 890-nm DA n+-i-p+ and 1020-
nm RA p+-i-n+ structures which gave results that could be
accurately replicated by the impact ionization coefficients that
were derived.

IV. DISCUSSION

As shown in Fig. 2, a large impact ionization coefficient ratio
has been obtained for the AlxGa1-xAsySb1-y material system,
and while the electron ionization coefficients are similar to other
materials like InAlAs, the hole ionization coefficient appears
to be significantly reduced. This reduction in hole ionization
coefficient may however be due to the antimonide (Sb) content.
Generally in a semiconductor at high electric fields, holes gain
energy and scatter from the heavier heavy/light-hole bands to the
lighter split-off band from where they rapidly gain energy until
they ionize. The heavier group V Sb atom has high spin-orbit
coupling which pushes down the split-off band in the alloy band
structure deeper into the valence band. This leads to an increase
in the valence band spin-orbit splitting energy (Δso) [33]. Holes
in the heavy/light hole bands may now reach the Brilliouin
zone edge and not be able to scatter into the split-off band,
consequently the hole impact ionization rate is significantly
reduced. This creates a large asymmetry between the electron
and hole ionization coefficients, leading to a lower value of k.
It has been showed recently in GaAsBi, which also has strong
spin-orbit coupling due to the heavy Bi atom, that the increased
Δso makes it harder for holes to scatter from the heavy/light-hole
bands into the split-off band where their ionization threshold is
gained [34], hence reducing the hole ionization coefficients.

This work also suggests that there is no obvious difference in
impact ionization coefficients between digital alloy and random
alloy AlGaAsSb, which is different from the previous report
of impact ionization coefficients for InAlAs [35]. Both types
of AlGaAsSb alloy contain the heavy Sb atoms which leads
to a large Δso. For the AlGaAsSb system, we have a Δso of
0.5 eV for the random alloy and 0.44 eV for the digital alloy
[33]. TheΔso of this quaternary alloy is much larger than that of
other non-Sb containing alloys (e.g., InP, InAlAs). The slightly
smaller value for Δso in the digital alloy may be compensated
for by the presence of small minigaps [36] in these periodic
structures that localize holes and prevent hole impact ionization
from occurring. As a result, the two alloy types may effectively
have similar hole ionization coefficients.

It is interesting to note that the impact ionization coefficients
given by (4) and (5) appear to be capable of replicating the
avalanche multiplication in all the devices studied as shown in
Fig. 2, even those with very narrow avalanche widths. Fig. 5,
plotted so as to expand the voltage axis at low values, however
shows that for the two thinnest p+-i-n+ structures, the local
model actually overestimates the electron initiated multiplica-
tion at low values of multiplication. This is a clear indication that
the “dead-space”, the minimum distance cool carriers injected
into the avalanche region need to travel to be in equilibrium with
the high electric field, is suppressing the onset of electron impact
ionization at low biases in very thin structures as observed in
other materials like AlGaAs [37] and InAlAs [28]. This effect

Fig. 5. Measured (symbols) and simulated gain curves (solid lines) from the
random path length model for four p+-i-n+ AlGaAsSb APDs plotted on a log
voltage axis to enhance the low voltages. (The data is from Fig. 1.).

is strongest in the thinnest p+-i-n+ structure and is negligible
by the time the avalanche region width is ∼600 nm or larger.
A more in-depth analysis of the validity of the local model in
the determination of avalanche multiplication was undertaken
by Plimmer et al. [38] on GaAs p+-i-n+ structures, where
experimental measurements were compared to local and Monte
Carlo models. The results showed that the local model worked
well for the i-region thicknesses greater than 200 nm.

V. CONCLUSION

The gain characteristics under different injection profiles have
been investigated for digital alloy and random alloy AlGaAsSb
APDs with different multiplication layer thickness in p+-i-n+

and n+-i-p+ structures. The impact ionization coefficients of
electrons and holes have been determined from multiplication
gain curves obtained with pure carrier injection profiles and
by also employing a mixed injection method to independently
extract the impact ionization coefficients. Both approaches gave
effectively identical results. No discernable difference could be
seen between the impact ionization coefficients of the structures
grown as digital alloys and those grown as random alloys. The
results show that the α in AlGaAsSb (85%) is identical to that of
AlAsSb for electric fields up to 500 kV/cm while the β is larger,
especially at low electric fields. The parameterized impact ion-
ization coefficients are capable of replicating the multiplication
characteristics of avalanching widths down ∼600 nm, but for
structures that are <200 nm, corrections for the “dead-space”
are required to accurately predict the low values of electron
multiplication.
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