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Abstract—Digital alloy Al0.85Ga0.15As0.56Sb0.44, ran-
dom alloy Al0.85Ga0.15As0.56Sb0.44, and random alloy
Al0.79In0.21As0.74Sb0.26 are promising candidates for the
multiplication regions of avalanche photodiodes (APDs) due to
their low excess noise, which is comparable to that of Si APDs.
The temperature dependence of avalanche breakdown in these
materials has been investigated by measuring the multiplication
gain. A weak temperature dependence of the breakdown voltage
is observed, which is desirable to reduce the complexity of
temperature or reverse bias control circuits in the optical receiver.
Calculations of the alloy disorder potentials and alloy scattering
rates indicate that the temperature dependence of the avalanche
breakdown in these quaternary alloys is attributable to the
dominance of large mass variations and high alloy scattering
over phonon scattering. Impact ionization can also be impacted
by the temperature dependence of the bandgap energy which
affects the ionization threshold energy. Therefore, the temperature
dependence of the bandgap energy has been investigated by
temperature-dependent photoluminescence and external quantum
efficiency measurements to further explain the temperature
dependent breakdown characteristics of these materials.

Index Terms—AlGaAsSb, AlInAsSb temperature dependence,
avalanche breakdown, bandgap energy, digital alloy, random alloy.
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I. INTRODUCTION

AVALANCHE photodiodes (APDs) are beneficial for de-
tecting weak optical signals, leading to their utilization

in a wide range of commercial, research, and military appli-
cations [1], [2]. Their internal multiplication gain results from
the stochastic impact ionization process, and higher receiver
sensitivity can be achieved relative to unity-gain photodiodes.
Typically, in the impact ionization process, the carriers obtain
the ionization threshold energy by accelerating in a high electric
field multiplication region [3], and loss of energy occurs pri-
marily through scattering, with phonon scattering being dom-
inant. Phonon scattering exhibits strong positive temperature
dependence. This results in significant variation of the gain with
temperature; higher reverse bias is required to maintain the same
gain at higher temperature. In practice, in order to maintain a
stable gain, an active variable bias circuit or a thermoelectric
cooler is required to control either the applied reverse bias or
the operating temperature, increasing the cost and the system
complexity [4]. The simplest and most straightforward way to
simplify the bias or temperature control circuits is to choose a
multiplication material with weak temperature dependence of
avalanche breakdown. The temperature sensitivity is character-
ized by the temperature coefficient of breakdown voltage [5],
which is expressed as

Cbd =
ΔVbd

ΔT
, (1)

where ΔVbd is the change of the breakdown voltage, and ΔT
is the change of the temperature. The temperature coefficient
of breakdown voltage is determined by not only the material
but also the multiplication layer thickness. As the multiplication
layer thickness increases, Cbd increases due to increased phonon
scattering [6].

The choice of the multiplication layer material is determined
by various factors including dark current, excess noise, and the
temperature coefficient of the breakdown voltage. The excess
noise is typically included as a multiplicative term, referred to
as the excess noise factor, F(M), in the shot noise current, ishot,
which can be expressed as [7]〈

i2shot
〉
= 2q (Iphoto + Idark)M

2F (M)Δf, (2)

where Iphoto and Idark are the photocurrent and dark current,
respectively, M is the average value of the gain, and Δf is the
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bandwidth. In the local field model for pure electron injection
[7],

F (M) = kM + (1− k)

(
2− 1

M

)
, (3)

where k is the ratio of the hole impact ionization coeffi-
cient to the electron impact ionization coefficient. A lower
k value is desirable to reduce the excess noise, leading to
higher receiver sensitivity and higher gain-bandwidth prod-
uct. Recently, AlxIn1-xAsySb1-y and AlxGa1-xAsySb1-y ma-
terial systems [2] have been reported k values comparable
to that of Si (k ∼ 0.01) [7], [8] and lower than that of
In0.52Al0.48As (k ∼ 0.2) [9], [10] or InP (k ∼ 0.45) [11].
These two Sb-based material systems are promising candi-
dates for the multiplication regions in the separate absorption,
charge, and multiplication (SACM) APDs. Furthermore, thick
digital alloy (DA) AlxIn1-xAsySb1-y lattice-matched to GaSb
with x = 0.6, 0.7, 0.8, [12]–[14] and thin random alloy (RA)
AlxGa1-xAs0.56Sb0.44 lattice-matched to InP with x = 1, 0.95,
0.9, 0.85 [15], [16] have shown a weak temperature depen-
dence of avalanche breakdown. Recently, we have reported
low k values for thick random alloy Al0.79In0.21As0.74Sb0.26
APDs [17], thick digital alloy Al0.85Ga0.15As0.56Sb0.44 APDs
[18], and thick random alloy Al0.85Ga0.15As0.56Sb0.44 [19]
APDs lattice-matched to InP. It follows that it is useful to
determine the temperature characteristics of these material
systems.

In this work, the avalanche breakdown with temperature varia-
tion was studied for digital alloy Al0.85Ga0.15As0.56Sb0.44, ran-
dom alloy Al0.85Ga0.15As0.56Sb0.44 (hereafter Al0.85GaAsSb),
and random alloy Al0.79In0.21As0.74Sb0.26 (hereafter
Al0.79InAsSb) p+-i-n+ APDs. An explanation for the weak
temperature dependence of avalanche breakdown is provided by
calculating alloy disorder potentials and alloy scattering rates.
In addition, the variation of the bandgap with temperature was
investigated with photoluminescence and quantum efficiency
measurements.

II. EPITAXIAL CRYSTAL GROWTH AND DEVICE FABRICATION

All three wafers were grown as p+-i-n+ structures by molec-
ular beam epitaxy. One of the Al0.85GaAsSb wafers lattice-
matched to InP was grown as a digital alloy [18] and the
other as a random alloy [19]. The Al0.79InAsSb wafer lattice-
matched to InP was grown as a random alloy [17]. The layer
structures are shown in Table I, and the multiplication layer
thickness were taken from capacitance-voltage (C-V) measure-
ments [20]. Be and Si were used as p-type and n-type dopants,
respectively.

Circular mesa structures were defined by photolithography
and formed by the chemical etching with a solution of citric and
phosphoric acid [21]. The top and bottom Ti and Au contacts
were then deposited by electron-beam evaporation. Finally, the
sidewalls were passivated by SU-8 to suppress the surface dark
current.

TABLE I
EPITAXIAL STRUCTURES OF P+-I-N+ APDS

III. TEMPERATURE-DEPENDENT AVALANCHE BREAKDOWN

APDs were placed in a nitrogen-cooled cryogenic chamber,
and a temperature controller was used to monitor the tem-
perature. The current-voltage (I-V) characteristics of 150-um-
diameter APDs were measured under dark and illuminated
conditions. A 520-nm fiber-coupled laser source was used
to illuminate the device. The gain, M, was calculated from
the photocurrent, and the breakdown voltage can be deter-
mined by the extrapolation of the inverse gain, 1/M, to zero.
This 1/M extrapolation method has been utilized in various
AlxGa1-xAsySb1-y and AlxIn1-xAsySb1-y samples, and a good
linear fitting of 1/M data has been obtained [12]–[16]. Due to
the absence of temperature-dependent impact ionization coef-
ficients for Al0.85GaAsSb and Al0.79InAsSb, the breakdown
voltage cannot be directly determined by the simulation of
multiplication gain for these three samples [4]. Finally, the
temperature coefficient of breakdown voltage, Cbd, is the slope
of the linear fitting to the breakdown voltages under different
temperatures.

Fig. 1 shows (a) the gain versus voltage, (b) the inverse
gain curves, and (c) the dark current in the range of 78 K
to 360 K for DA Al0.85GaAsSb APDs. Fig. 2 shows similar
curves for RA Al0.85GaAsSb APDs in the temperature range
of 200 K to 340 K. The measurements on RA Al0.79InAsSb
APDs in the temperature range of 200 K to 320 K are shown
in Fig. 3. Based on the linear regression approach, the fitting
curves of breakdown voltages under different temperatures are
calculated in Fig. 4, and the Cbd is determined to be (4.22 ±
0.08) mV/K, (5.92 ± 0.36) mV/K, and (5.91 ± 0.37) mV/K for
DA Al0.85GaAsSb, RA Al0.85GaAsSb, and RA Al0.79InAsSb
APDs. Values of Cbd for these three materials, commercially
available materials (including InP, InAlAs, Si [5], [6]), and
recently reported Sb-based materials [4], [12]–[16] are shown
in Fig. 5. The temperature coefficient of breakdown voltage of
these three materials are significantly lower than InP, InAlAs, or
Si [5], [6] with the same multiplication layer thickness.
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Fig. 1. (a) Measured gain curves, (b) Inverse gain (symbols) and linear fitting
(solid lines) under 520-nm illumination, and (c) Dark current curves for 150-
µm-diameter p+-i-n+ DA Al0.85GaAsSb APDs from 78 K to 360 K.

IV. DISCUSSION

A. Role of Alloy Scattering in Sb-Based Quaternary Alloys

Previously, it has been observed that ternary alloys have lower
Cbd compared to binary compounds [22]. The low Cbd of ternary
alloys was attributed to the dominance of alloy scattering over
phonon scattering. In a random alloy, for example a ternary alloy,
the constituent atoms are distributed in a random manner which
leads to fluctuations in the crystal potential. This fluctuating

Fig. 2. (a) Measured gain curves, (b) Inverse gain (symbols) and linear fitting
(solid lines) under 520-nm illumination, and (c) Dark current curves for 150-
µm-diameter p+-i-n+ RA Al0.85GaAsSb APDs from 200 K to 340 K.

potential results in an effective scattering process, referred to
as alloy scattering, which impacts the movement of electrons
through the crystal [23]. In contrast, the digital alloys are short-
period superlattices that consist of binary alloy layers stacked
alternately in a periodic manner. Due to the small thickness
of these binary layers, there is interface roughness, leading to
fluctuations of the crystal potential at the interfaces. This paper
has demonstrated that Sb-based quaternary alloys exhibit even
lower Cbd in comparison to both ternary and binary alloys.
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Fig. 3. (a) Measured gain curves, (b) Inverse gain (symbols) and linear fitting
(solid lines) under 520-nm illumination, and (c) Dark current curves for 150-
µm-diameter p+-i-n+ RA Al0.79InAsSb APDs from 200 K to 320 K.

Thus, it appears that alloy scattering also plays a significant role
in the temperature dependence of the breakdown voltage for
these materials. To understand the significance of this scattering
mechanism in these materials, their alloy disorder potentials and
alloy scattering rates were studied.

The alloy scattering rate for a quaternary alloy is given by
[24]

1

τ
=

3π

8
√
2

(m∗)3/2

�4
γ (E)

dγ

dE
Ω|ΔUQ (x, y)|2S (4)

Fig. 4. Temperature dependence of avalanche breakdown for p+-i-n+ DA
Al0.85GaAsSb, RA Al0.85GaAsSb, and RA Al0.79InAsSb APDs. Symbols are
measured breakdown voltages, and solid lines are linear fitting curves.

Fig. 5. Comparison of the temperature coefficient of breakdown voltage
between studied DA Al0.85GaAsSb (green star), RA Al0.85GaAsSb (pink star),
RA Al0.79InAsSb (blue square), and other materials including InP [5], InAlAs
[5], Si [6], AlAsSb [4], thin RA Al0.85GaAsSb lattice-matched to InP [16], and
thick DA AlxIn1-xAsySb1-y lattice-matched to GaSb with x = 0.6, 0.7 [12].
Symbols are measured values, and solid lines are linear fits.

with

|ΔUQ (x, y)|2 = x (1− x) y2|ΔUABD|2 + x (1− x) (1− y)2

× |ΔUABC |2 + x2y (1− y) |ΔUBCD|2

+ (1− x)2y (1− y) |ΔUACD|2,
where the ΔUQ is the alloy disorder potential of the quater-
nary alloy. The ΔU’s on the right hand side of the equation
represent the disorder potential of ternary alloys. For example,
the potential ΔUABD is for a ternary alloy with composition
A1-xBxD, and the potential ΔUBCD is for BC1-yDy. The alloy
disorder potential arises due to the potential fluctuations created
by the different nuclei sizes of the constituent atoms. In (4), m∗

is the carrier effective mass, Ω is the primitive cell volume, and
γ(E) = E(1 + σE) describes the non-parabolic nature of the
electronic band structure with E representing the carrier energy
and σ describing the non-parabolicity. The ordering of atoms is
described by the factor S. For completely random systems S= 1,
and S = 0 for perfectly ordered systems. In our simulations, we
assume S= 1. For a ternary alloy A1-xBxC, the disorder potential
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Fig. 6. Comparison of Cbd vs. ΔU2 for various III-V binary, ternary, and
quaternary alloys.

can be calculated by

ΔU =
bZ

4πε0

(
1

rA
− 1

rB

)
exp (−ksR) , (5)

where b accounts for the fact that the Thomas Fermi theory
overestimates the screening in the semiconductor and has a
value of 1.5 for most zinc blende binary semiconductors. Z is
the valence number of A and B, ε0 is the vacuum permittivity,
and the covalent radii of the atoms A, B and C are given by rA,
rB, and rC, respectively.ks =

√
4kF /πaB is the Thomas Fermi

screening wave number in a three-dimensional system, where aB
is the Bohr radius, and kF = (3π2Nval)

1/3 is the Fermi wave
number in a three-dimensional system. The valence electron
density Nval = 32/a3, and the bond length of this ternary alloy
R = 0.5[xrA + (1− x)rB + rC ].

In (5), it is seen that the alloy disorder potential primarily
depends on the difference in covalent radii of the constituent
atoms and their valence number. Fig. 6 shows the comparison
of Cbd vs. ΔU2 for various III-V binary, ternary, and quaternary
alloys. The ternary alloy potentials are scaled by the factor x(1-x),
where x is the mole fraction for atom B in ABxC1-x, to make
a valid comparison with quaternary alloy potentials [22]. The
Cbd values for the binary and ternary alloys are obtained from
the literature [4], [22], and they are for the APDs with 1-µm
multiplication layer thickness. A larger radii difference leads
to a higher alloy disorder potential. For example, InAlAs has
a larger potential in comparison to AlGaAs because there is a
large difference in the Al and In covalent radii whereas the Al and
Ga covalent radii are similar. Also, alloys with different group
V elements have a higher disorder potential in comparison to
alloys with varying group III elements due to the larger valence
number of group V elements.

We computed the alloy disorder potentials for the Sb-
based quaternary alloys by using (5). ΔU = 0.46 eV for RA
Al0.85GaAsSb and ΔU = 0.45 eV for RA Al0.79InAsSb were
obtained. TheΔU2 of the Sb-based ternary and quaternary alloys
are significantly larger than other III-V alloys shown in Fig. 6.
Consequently, the breakdown voltage of the Sb-based alloys has
the weakest temperature dependence due to the large difference
in the covalent radii of As and Sb atoms, which are also group

Fig. 7. Comparison of scattering rates for random alloys of InAlAs,
Al0.79InAsSb, Al0.85GaAsSb, and AlAsSb.

V elements. The resulting higher disorder potential of these
alloys leads to an increased alloy scattering rate, given by (4),
which then dominates over the phonon scattering leading to a
weaker temperature dependence of the avalanche breakdown.
The underlying factor for the temperature dependence of the
avalanche breakdown is phonon scattering which can be altered
by the temperature-dependent phonon population. A more dom-
inant scattering mechanism, like alloy scattering, suppresses
the phonon scattering mechanism which ultimately reduces the
temperature dependence.

To further highlight the role of Sb atoms in the quaternary
alloys, we plotted the alloy scattering rates of RA InAlAs, RA
Al0.79InAsSb, RA Al0.85GaAsSb and RA AlAsSb in Fig. 7.
The quaternary alloys containing Sb demonstrate much higher
scattering rates in comparison to that of the ternary InAlAs.
The higher scattering rates of the quaternary alloys arise from
their higher alloy disorder potentials, and potentially lower
electron-phonon coupling. This is consistent with experimen-
tal observation that InAlAs has a stronger temperature depen-
dence of avalanche breakdown than the quaternary alloys do. In
the simulation, we used effective masses of 0.072m0, 0.11m0,
0.15m0, and 0.098m0 for InAlAs, Al0.79InAsSb, Al0.85GaAsSb,
and AlAsSb, respectively. The corresponding bandgaps for these
four materials are 1.4 eV, 1.73 eV, 1.59 eV and 1.65 eV. The
lattice constant of InP (5.9117 Å), which is the substrate for all
three alloys, is used. The DA scattering rates cannot be included
here since their corresponding value of S is unknown. The values
can be extracted by carrying out Monte Carlo simulations with
alloy scattering for these alloys and calibrating with experimen-
tal results.

The origin of the weak temperature dependence of the quater-
nary Sb-based digital alloys can also be attributed to the domi-
nance of the alloy scattering mechanism. In the short-period dig-
ital alloys, the edges of the thin binary layers are not completely
abrupt. There is random variation in chemical composition at
the interfaces which leads to interface roughness. This results in
fluctuations of the crystal potential. In the Sb-based alloys, the
alternating Sb and As binary alloys with large nuclei difference,
create large potential fluctuations at the interface that lead to
a higher disorder potential. Consequently, the resulting higher
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alloy scattering rate in these quaternary digital alloys leads to
their weak temperature dependence of avalanche breakdown.
This mechanism potentially causes the Sb-based digital alloys
to have a lower Cbd in comparison to random alloys, as shown
in Fig. 4. This postulate can be confirmed by using Monte
Carlo based simulations, which are outside the scope of this
paper. In summary, phonon scattering is the dominant scattering
mechanism in materials with high Cbd, while alloy scattering is
the superior scattering mechanism in low Cbd materials.

B. Temperature Dependence of Bandgap Energy

The impact ionization process requires carriers to obtain the
ionization threshold energy which depends on the bandgap en-
ergy, and the bandgap changes with temperature. The threshold
energy determines the breakdown voltage of a material. There-
fore, the temperature dependence of the material bandgap has a
higher order effect on the breakdown voltage. The breakdown
voltage temperature dependence is primarily due to the scatter-
ing processes, like phonon and alloy scattering, as mentioned
earlier. Since the bandgap stability under different temperatures
has some impact on the temperature dependence of avalanche
breakdown, and it is instructive to investigate the bandgap sta-
bility of Sb-based quaternary materials as well.

Temperature-dependent photoluminescence (PL) [25] mea-
surement was used to investigate the temperature dependence of
the bandgap energy for DA Al0.5In0.5AsySb1-y lattice-matched
to GaSb [26], RA Al0.79InAsSb lattice-matched to InP [17], and
DA Al0.85GaAsSb lattice-matched to InP [18]. The measured
bandgap energy can be fitted by the Varshni equation [27],

E (T ) = E0 − αT 2

T + β
, (6)

where E(T) is the energy gap at temperature T, E0 is the energy
gap at 0 K, and α and β are constants.

As shown in Fig. 8(a) and (b), the bandgap of DA
Al0.5In0.5AsySb1-y and RA Al0.79InAsSb was determined in
the temperature range of 95 K–295 K and 160 K–300 K,
respectively. The data points were then fitted by the Varshni
equation [27]. The temperature-dependent bandgap curves of
these two Sb-based quaternary materials were compared with
binary materials (including AlAs, AlSb, InAs, InSb [28]); the
Sb-based materials exhibit smaller shifts with temperature.
Furthermore, the results show that both digital alloy growth
and random alloy growth can provide the weak temperature
dependence of bandgap for AlxIn1-xAsySb1-y. Therefore, the
digital alloy growth itself cannot explain the bandgap stability.
Fig. 8(c) shows the temperature-dependent bandgap for DA
Al0.85GaAsSb in the temperature range of 160 K to 300 K,
and the data points were fitted by the Varshni equation [27].
The same conclusion that the temperature dependence of the
bandgap of the quaternary material is weaker than binary ma-
terials (including AlAs, AlSb, GaAs, GaSb [28]) can be drawn
for DA Al0.85GaAsSb.

Temperature-dependent external quantum efficiency (EQE)
measurement [21] was carried out to investigate spectrum cutoff

Fig. 8. Temperature-dependent photoluminescence peaks (points) and the
Varshni fitting curves (solid lines) for (a) DA Al0.5In0.5AsySb1-y lattice-
matched to GaSb, (b) RA Al0.79InAsSb lattice-matched to InP, and (c) DA
Al0.85GaAsSb lattice-matched to InP. The dash lines represent the Varshni
fitting curves for the binary materials including AlAs, AlSb, InAs, InSb, GaAs,
GaSb [28], and the E0 of binary materials has been modified accordingly for a
better comparison with the investigated quaternary materials.

under different temperatures for DA Al0.7In0.3AsySb1-y lattice-
matched to GaSb [29]. As shown in Fig. 9, external quantum
efficiency measurements were carried out in the temperature
range of 258.15 K to 298.15 K for DA Al0.7In0.3AsySb1-y.
Based on shifts in the response near cutoff, the bandgap variation
with temperature was determined to be 0.29 meV/K, which
is consistent with the PL measurements. In summary, both
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Fig. 9. Temperature-dependent external quantum efficiency for DA
Al0.7In0.3AsySb1-y lattice-matched to GaSb.

temperature-dependent PL measurements and EQE measure-
ments demonstrate weak variation of the bandgap with tem-
perature for AlxIn1-xAsySb1-y and AlxGa1-xAsySb1-y material
systems, irrespective of growth method. The temperature depen-
dence of the material bandgap is primarily attributed to electron-
phonon interactions [30] that broaden the material energy states
and result in the creation of energy states within the bandgap. The
effect of thermal expansion on the temperature dependence is
very small for covalent compounds [31]. The weak temperature
dependence of bandgap for these Sb-based quaternary alloys
most likely arises from the weak electron-phonon coupling in
these materials. The weak coupling results in a small broadening
of the energy states and hence fewer energy levels created within
the bandgap. It is possible that such weak temperature depen-
dence of the material bandgap will somewhat lower the Cbd

primarily as a higher order effect. On the other hand, a stronger
electron-phonon coupling will most likely cause some increase
in Cbd. Further investigations are needed to be carried out to
determine the exact contribution of electron-phonon interactions
on Cbd.

V. CONCLUSION

Temperature dependence of avalanche breakdown has
been investigated for digital alloy Al0.85Ga0.15As0.56Sb0.44,
random alloy Al0.85Ga0.15As0.56Sb0.44, and random alloy
Al0.79In0.21As0.74Sb0.26. We observe weak dependence of the
avalanche breakdown voltage on temperature for the Sb-based
quaternary materials. Temperature-dependent photolumines-
cence and external quantum efficiency measurements reveal
weak temperature dependence of the bandgap. Modeling sup-
ports that these quaternary alloys have high alloy scattering
rates dominating over phonon scattering mechanisms that reduce
the temperature dependence of the avalanche breakdown. This
weak temperature dependence has the benefit of simplifying the
temperature or reverse bias control circuits while maintaining a
constant multiplication gain in an optical receiver.
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