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Immersive Real-Time Biofeedback Optimized With Enhanced
Expectancies Improves Motor Learning: A Feasibility Study
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Context: An Optimizing Performance through Intrinsic Motivation and Attention for Learning theory-based motor learning
intervention delivering autonomy support and enhanced expectancies (EE) shows promise for reducing cognitive-motor dual-
task costs, or the relative difference in primary task performance when completed with and without a secondary cognitive task,
that facilitate adaptive injury-resistant movement response. The current pilot study sought to determine the effectiveness of an
autonomy support versus an EE-enhanced virtual reality motor learning intervention to reduce dual-task costs during single-leg
balance. Design: Within-subjects 3 X 3 trial. Methods: Twenty-one male and 24 female participants, between the ages of 18
and 30 years, with no history of concussion, vertigo, lower-extremity surgery, or lower-extremity injuries the previous
6 months, were recruited for training sessions on consecutive days. Training consisted of 5 x 8 single-leg squats on each leg,
during which all participants mimicked an avatar through virtual reality goggles. The autonomy support group chose an avatar
color, and the EE group received positive kinematic biofeedback. Baseline, immediate, and delayed retention testing consisted
of single-leg balancing under single- and dual-task conditions. Mixed-model analysis of variances compared dual-task costs for
center of pressure velocity and SD between groups on each limb. Results: On the right side, dual-task costs for anterior—
posterior center of pressure mean and SD were reduced in the EE group (mean A=-51.40, Cohen d=0.80 and SD
A=-66.00%, Cohen d=0.88) compared with the control group (mean A=-22.09, Cohen d=0.33 and SD A=-36.10%,
Cohen d =0.68) from baseline to immediate retention. Conclusions: These findings indicate that EE strategies that can be
easily implemented in a clinic or sport setting may be superior to task-irrelevant AS approaches for influencing injury-resistant

movement adaptations.

Keywords: OPTIMAL, cognitive-balance control, cognitive load, autonomy support

Approximately 23% to 25% of patients with anterior cruciate
ligament (ACL) reconstruction patients will retear the previously
injured or contralateral ACL in the early return to play phase.!
Increased reinjury or secondary ACL injury rates may result from
traditional ACL rehabilitation that fails to address the primary injury
risks factors that led to the initial injury that are compounded with
demands of a dynamic competitive environment. For instance, an
athlete following ACL reconstructed may demonstrate an acceptable
level of dynamic joint stability in a controlled clinical environment,
but deficient neuromuscular control may be exposed in a chaotic
sport environment that imposes rapidly changing cognitive and
motor demands. Similar phenomena are observed in concussed
individuals, in which postconcussive assessments reveal motor
impairments when burdened with an additional cognitive load.?
Scenarios during which cognitive and motor demands occur simul-
taneously are often termed “dual-tasks,” and robust evidence de-
monstrates that primary motor task performance is impaired when
completed concurrently with a secondary cognitive task.>* The
relative difference in primary task performance when completed
with and without a secondary cognitive task is termed the “dual-task
cost.” A greater dual-task cost is considered undesirable, as it
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signifies more neuromotor resources are being allocated to the
secondary cognitive task rather than the primary motor task. Fur-
thermore, primary task performance decrements are further pro-
nounced during cognitive dual tasking in individuals with a history
of sport-related injury relative to noninjured matched controls.’
The incorporation of motor learning principles is promising for
improving dual-tasking capabilities. Specifically, focusing exter-
nally, while minimizing internal focus, is a purported benefit for
ACL injury risk reduction. An external focus of attention, or
directing the learner’s attention to their effect on the environment
rather than to internal body movement cues,® has shown promise
for improving biomechanics associated with ACL injury risk.”-
An external focus of attention is a key pillar within the
Optimizing Performance through Intrinsic Motivation and Atten-
tion for Learning (OPTIMAL) theory®—the most current motor
learning framework. Recent application frameworks have expanded
on the potential for OPTIMAL theory pillars to be particularly
beneficial within injury prevention strategies, injury rehabilitation,
exercise, and play by capitalizing on neural principles associated
with movement mechanics (OPTIMAL prevention strategies, injury
rehabilitation, exercise, and play).'%!2 In addition to an external
focus, OPTIMAL prevention strategies, injury rehabilitation, exer-
cise, and play theorize that autonomy support (AS) and enhanced
expectancies (EE) will further support injury-resistant movement by
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increasing motivation and movement automaticity through dopa-
minergic principles for more robust retention,’ though these pillars
have been studied to a lesser degree than external focus. AS refers to
allowing participants control over their practice conditions; for
example, allowing participants to choose the color of golf ball
for a putting task.!3 Specific to balance, giving participants the
option of when to use a physical assistance device to maintain
stability promoted learning'4 and giving participants control over
stance order contributed to improved (lower) center of pressure
(COP) velocity during a standardized Balance Error Scoring System
assessment.'> EE refers to an increase in participants’ expectation of
success, which often takes the form of positive feedback. Previous
literature supports investigating the potential benefits of EE for
lower-extremity movement and postural control tasks, as well as
supplementing previous autonomy-supportive literature using sin-
gle rather than dual-leg balance tasks.

The purpose of this pilot study was to determine the relative
effectiveness of OPTIMAL-based, single-leg squat interventions to
promote single-leg balance control, as indicated by reduced dual-
task costs (less impairment when completed concurrently with a
complex cognitive task) among individuals exhibiting excessive
2-dimensional knee valgus angle. We hypothesized (1) lower dual-
task costs in balance control at immediate and delayed retention for
athletes who additively trained with EE compared with athletes
who trained with the standard biofeedback stimulus (control) and
(2) lower dual-task costs in balance control at immediate and
delayed retention for athletes who additively trained with AS
compared with athletes who trained with the control biofeedback.

Methods
Study Design

This was a 2 session repeated-measures design. Each participant
attended sessions on consecutive days. All data were collected
between November 2019 and February 2020. Day 1 included baseline
and immediate retention testing, and day 2 included delayed retention
testing. Independent variables were group membership and session,
resulting in a 3 X3 research design. Dependent variables were the
dual-task costs of anterior—posterior (AL) COP mean velocity, AL
COP SD, medial-lateral (ML) COP SD, and ML COP mean velocity.

Patients or Participants

A total of 45 subjects (21 male and 24 female) were recruited through
email and word of mouth. Exclusion criteria were history of concus-
sion, vertigo, lower-extremity surgery, and any lower-extremity
injuries within the previous 6 months. Inclusion criteria were
between the ages of 18 and 30 years and suboptimal frontal plane
biomechanics, as determined by a prescreening session. Frontal plane
biomechanics were selected as screening criteria. Determination
of frontal plane biomechanics was assessed by video-recorded
performance of single-leg squats bilaterally. Frontal plane angles
of 2-dimensional knee valgus angle, contralateral pelvic drop, and
lateral trunk lean at the point of maximum knee flexion were assessed
offline with ImageJ software (National Institutes of Health).!® Ex-
hibiting 2 of the 3 following criteria defined suboptimal frontal plane
biomechanics: 2-dimensional knee valgus angle >10° for males or
>13° for females,!” contralateral pelvic tilt >5°, and ipsilateral trunk
lean >5°. Only individuals exhibiting suboptimal prescreening bio-
mechanics were included in the study. All participants provided
written informed consent approved by the University of Tennessee at

Chattanooga’s institutional review board. Participants were quasi-
randomly assigned to 1 of 3 groups (control, AS, and EE) such that
each group contained 15 participants, and the ratio of male to female
participants was constant across groups. Group randomization was
based upon order of recruitment, wherein the first participant was
allocated to the control group, the second participant to the AS group,
and so on. Each participant attended 2 sessions, which included
baseline testing, intervention, and immediate retention (~5—10 min
following the cessation of the intervention) on day 1, and delayed
retention (24 h postintervention) on day 2.

Testing Instrumentation

Outcome data (COP velocity and SD) were collected using Vicon
Nexus software synced with 2 side-by-side embedded Bertec
force plates recording COP data during baseline and posttesting.
Kinetic data were sampled at 1000 Hz. The cognitive component of
the dual task was delivered with VR goggles (Vive Pro, HTC, with
Pupil Labs’ HTC Vive Binocular Add-on eye tracker) and consisted
of the Eriksen flanker test.'® Each flanker test consisted of 20 trials that
generated randomly ordered presentation of 5-arrow sets
(ie, incongruent: <<><< or congruent: >>>>>). The participant
was instructed to react only to the middle arrow in the set by directing
their gaze to a target that corresponded with the direction of the central
arrow. The stimulus was shown every 2000 milliseconds, disappear-
ing when the participant hit the target or 250 milliseconds passed—
whichever occurred first. Targets were positioned 30° horizontally left
and right from the center of the participant’s field of view. The flanker
test was used solely for its cognitive load and dual-tasking application
and was thus not analyzed. Adherence to and completion of flanker
cognitive task was monitored real time via pupil tracker streaming.
Kinematic data for biofeedback delivery were collected using
the Microsoft Azure Kinect DK. Through kinect, we obtained joints’
transient position (x, y, z)¥ and corresponding Quaternion rotation
(6, ¥)k, where @ is an angle around unit axis vector V, 7 is the time
step, and k is the joint identifier. Quaternions are considered to
represent the rotation of a rigid body in 3-dimensional space using 4
degrees of freedom. Preprocessing included noise removal, tempo-
ral, and spatial normalization, occlusion fixing using a Kalman filter
and spherical linear interpolation and 3D kinematic data format
transformation (from Kinect version to Unit3D version). Following
which, the resulting kinematic data ({x, y, z)¥,(0, V)¥) were recon-
structed over virtual reality goggles using Unit3D software.

Testing Procedures

Participants were instructed to complete a single-task balance
assessment for 20 seconds followed by a dual cognitive-balance
task assessment for 20 to 25 seconds at 3 different time points:
baseline, immediate retention (~5—10 min following the cessation
of the intervention), and delayed retention (24 h postintervention).
The first session consisted of baseline testing, the intervention, and
immediate retention testing. Delayed retention testing was con-
ducted on the following day. The balance task consisted of a single-
leg squat hold and was conducted for the left limb first and then the
right. With their eyes open and standing on the force plate,
participants placed their hands on their hips and flexed their
knee to approximately 30°. Instructions were given to remain as
still as possible for 20 seconds. For the dual task, participants wore
VR goggles and performed the Eriksen flanker cognitive task while
maintaining the single-leg squat hold balance task. The same was
done for a retention test the following day.

(Ahead of Print)



Intervention Procedures

We employed a 1-day intervention consisting of single-leg squats
while participants viewed a visual biofeedback stimulus that was
mapped onto participants’ lower-extremity kinematics and dis-
played in real time through a virtual reality headset. The same
investigator delivered all interventions to reduce bias in the deliv-
ery of feedback to participants. This investigator could not be blind
to group allocation but intentionally delivered standardized in-
structions to all participants. The intervention consisted of 5 sets of
8 single-leg squats on each leg, with adequate rest between sets.
During the single-leg squats, participants wore VR goggles on
which were displayed an avatar. All participants were instructed to
mimic the avatar as closely as possible. The control group received
no other feedback or autonomy. The EE group received real-time
biofeedback in the form of green highlights strategically placed on
the avatar. The highlights remained on as long as the participant did
not exceed knee valgus or pelvic drop thresholds. Participants in
the EE group were instructed to move in such a way as to retain the
green lights on the avatar but were given no explicit feedback on
how to do so (Figure 1). The AS group was allowed to choose the
color of their avatar for each set but did not receive feedback
(Figure 2). In keeping with OPTIMAL theory, both the EE and AS
manipulations were designed to maximize learner motivation.

Figure 1 — Representation of the avatar with positive feedback (green
highlights over the right knee, left hip, and middle of trunk) as seen by the
participants in enhanced expectancies group.

#17FFO0

<

Real-Time Biofeedback With Enhanced Expectancies 3

Postural Control Data Processing

Alterations to participants’ COP are commonly used to quantify
performance during balance tasks. Specifically, COP mean veloc-
ity, and SD in the AP and ML planes have been used as indicators
of change in dual-task costs.!” Greater COP mean velocities and
SDs reflect poorer balance control. For the present study, analog
data were exported from Vicon Nexus into Visual 3-D, where data
were filtered with a low-pass 5-Hz fourth-order Butterworth filter.
Filtered COP coordinates were trimmed to the middle 10 seconds
of each trial and exported. The COP displacement time series was

converted to a velocity time series using the formula, v; = %,
where v = velocity, d = displacement, and ¢ = time. Means and SDs
were then computed for the velocity time series in both the AP and
ML directions, resulting in the variables APVel, APSD, MLVel,

and MLSD. All variables were computed in R.

Dual-Task Costs

Consistent with previous literature, we defined dual-task costs as
the difference in single-leg postural control with (dual task) and
without (single task) the secondary cognitive task at a given testing
interval (baseline, immediate retention, and delayed retention).
This difference was then normalized to single-task performance
and thus represents a percentage change from single-task perfor-
mance. The formula for dual-task costs is provided below, and each
dependent variable of interest was entered as a dual-task cost for all
statistical analyses.

DTperformance,;,,—STperformance .;on

Dual—taskcost= x100.

STperformanceegon

As we were interested in the relative pretraining to posttraining
changes in dual-task costs following the respective interventions
(ie, baseline dual-task cost — immediate retention dual-task cost), a
reduction in dual-task cost was signified with a negative delta
percentage value to indicate improvements in dual-task costs.
Conversely, an increase in dual-task cost was noted with a positive
delta percentage value to indicate worsening of dual-task costs. For
example, A =-200.00% would be interpreted as a desirable, 2-fold
improvement in dual-task cost from baseline to retention; whereas,
A=+200.00% would be interpreted as an undesirable, 2-fold
deterioration in dual-task cost from baseline to retention.

Statistical Analyses

One-way analysis of variances for each of the 4 cost variables
(APVel, MLVel, APSD, and MLSD) was conducted to determine
the presence of baseline differences. Mixed-model (between-factor:

Figure 2 — Representation of the avatar with examples of various color choices (red, green, and blue) as seen by the participants in autonomy support

group.
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group, within-factor: session) 3 x 3 repeated-measures analysis of
variances was used to determine differences between groups over
time. Left and right sides were analyzed separately to avoid potential
confounding effects associated with limb dominance for motor
control and learning. Tukey post hoc testing was conducted where
appropriate. As this was a pilot study, effect sizes were used to
determine clinical meaningfulness instead of P values. The omnibus
generalized eta-squared (né) effect size was considered meaningful
when greater than or equal to .04 (small to moderate effect). In the
event of a meaningful né, Cohen d values were also computed and
reported to aid in interpretability. All analyses were conducted in R
using the ggpubr?® and rstatix?! packages.

Results

Demographic characteristics for each group are presented in
Table 1. No dual-task costs for any dependent variables were
significantly different between the 3 groups at baseline (P range =
.11-.63; Table 2).

For APVel, there was a main effect for time on the left side
(né =.04). Post hoc testing revealed this effect to occur between
baseline (dual-task cost=103.43% [66.43%]) and immediate
retention (dual-task cost=79.07% [48.63%]) (A=-24.36%; Co-
hen d=0.42). There was a group by time interaction on the right
side (17; =.04). Post hoc testing revealed this effect to occur
between the control and EE groups primarily between baseline
(control dual-task cost=100.00% [74.00%]; EE dual-task cost=
102.00% [82.10%]) and immediate retention (control dual-task
cost=77.01% [63.90%]; EE dual-task cost=50.60% [38.60%])
(control A=-22.09, Cohen d=0.33; EE A=-51.40, Cohen
d=0.80) (Figure 3).

With regard to APSD, there was a main effect for time on the
left side (né =.08). Post hoc testing revealed this effect to occur
between baseline (dual-task cost=128.13% [79.63%]) and
immediate retention (dual-task cost=99.70% [58.47%])
(A=-28.43%, Cohen d=0.41) and baseline and delayed reten-
tion (dual-task cost=89.87% [71.43%]) (A=-38.26%, Cohen
d=0.51). There was a group by time interaction for the right side
(né =.07). Post hoc testing revealed this effect to occur between
the control and EE groups primarily between baseline (control
dual-task cost=111.00% [58.5%]; EE dual-task cost=143.00%
[87.00%]) and immediate retention testing (control dual-task
cost=74.90% [46.5%]; EE dual-task cost=77.00% [60.50%])
(control A=-36.10%, Cohen d=0.68; EE A=-66.00%, Cohen
d=0.88) (Figure 4).

There were no meaningful interactions or main effects for
MLSD or MLVel (all 1} = .04).

Discussion

The purpose of this pilot study was to determine the relative
effectiveness of OPTIMAL-based, single-leg squat interventions

to promote learning of single-leg balance control (as indicated by
reductions in dual-task costs) among individuals exhibiting exces-
sive 2-dimensional knee valgus angle. Dual-task cost was chosen
because reductions in dual-task costs indicate automaticity, which
is a key mediator identified by the OPTIMAL theory. As the
beneficial effects of visual biofeedback for injury-resistant move-
ment has been established with respect to an external focus, we
additively included either AS or EE through manipulation of the
biofeedback stimulus during single-leg squat training to uncover
the unique effects of these motivational, OPTIMAL-based factors.
In support of our first hypothesis, the additive inclusion of EE, in
the form of positive feedback, to a real-time biofeedback interven-
tion enhanced motor learning relative to the control intervention.
However, contrary to our second hypothesis, providing individuals
AS, in the form of a task-irrelevant choice, during the intervention
was not additively beneficial to motor learning compared with the
control intervention.

These preliminary data may provide novel insights to inform
ACL injury risk reduction strategies, particularly through (1) the
inclusion of positive feedback and (2) future exploration of more
relevant and effective methods of supporting an individual’s
autonomy. The present findings also support the extant literature
regarding the benefits of visual biofeedback systems, which are
theorized to induce an external focus and reinforce injury-resistant
movement mechanics.”-2223 There is strong evidence supporting
EE for improving motor learning, but prior literature is generally
constrained to performance-based outcome measures. The pres-
ent data expand previous findings by indicating EE—specifically
by providing positive feedback when participants achieved the
desired movement—to also support the retention of global bio-
mechanical-based dual-task cost outcome measures in those who
exhibit poor frontal plane knee motor control. Enhancing individ-
ual expectancies through simple green highlights on the knee and
hip of the avatar stimulus during single-leg squatting elicited
~50% improvement in dual-task costs relative to the control
intervention. Providing positive feedback in response to desirable
motor performance adds to previous motor learning literature
typically constrained to discrete tasks (eg, dart throwing) and
expands its potential utility for use during continuous tasks
(balance control).

Interestingly, in the current pilot study, the benefits of EE for
single-leg balance control was uniquely beneficial to the right limb
—the preferred stance limb for over 90% of participants. This may
be due to participants having greater neuromuscular control of their
stance limb; thus, the preferred stance limb may possess a greater
likelihood of responsiveness to the biofeedback stimulus providing
EE. Further research is warranted to deconstruct why the stance
limb may have greater responsiveness; we hypothesize the stance
limb to be more finely tuned to postural considerations and thus
more adaptable to the EE biofeedback. Importantly, changes in
postural capabilities that occur following a single-leg dynamic
training intervention would reasonably transfer to other postural
single-leg activities.

Table 1 Demographics of Participants by Group

Mean (SD) Control Autonomy support Enhanced expectancies Analysis of variance P
Age, y 21.3 (1.9) 21.8 (1.8) 22.7 (2.1) 33

Height, cm 172.5 (10.5) 1722 (9.4) 171.5 (5.3) 49

Weight, kg 71.1 (17.1) 70.9 (14.3) 70.6 (12.8) 28

Note: Each group consisted of 8 females and 7 males.
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Figure 4 — Anterior—posterior SD dual-task cost changes over time between groups.

Unlike EE, AS did not elicit meaningful motor learning
improvements in dual-task costs compared with the control inter-
vention; we propose 2 explanations for these null AS findings.
First, we additively included AS to a standard visual biofeedback

stimulus intervention. The existing literature has established such
interventions to be effective as they are theorized to capitalize on a
primary pillar of OPTIMAL theory: an external focus. An external
focus is generally considered the most robust pillar to elicit motor
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learning and, to the authors’ knowledge, is the only pillar with
empirical supporting evidence for eliciting desirable biomechanics
related to ACL injury risk biomechanics.?3-?* The visual biofeed-
back system and associated external focus was further present
during the entire duration of the intervention, and AS was only
provided prior each set. Thus, EF may have simply superseded any
unique effect of the presented AS manipulation. As meaningful
improvements were observed for EE (also provided throughout the
entire duration of the intervention), a higher dosage of AS may be
needed to elicit dual-task cost learning benefits. Alternatively, the
failure to observe meaningful effects by providing AS to indivi-
duals may be attributed to fask relevance. We manipulated AS by
allowing individuals to choose the color of the avatar; however, this
would be considered a tfask irrelevant choice, as avatar color
reasonably has no direct effect on the task goal of improving
single-leg balance control. A recent study revealed that providing
AS through the use of task-relevant choices is more effective for
motor learning than task-irrelevant choices.?> For instance, letting
individuals choose when to receive visual biofeedback during the
intervention (eg, letting individuals “turn the stimulus off” as
desired) may have elicited more direct, motivational influences
on dual-task cost learning. Though we cannot confirm whether task
relevance was a contributing factor to the present findings, future
research is primed to investigate such a possibility by capitalizing
on emergent technologies and associated gamification capabilities
that can provide AS with ease.?3:26:27

The present findings support the additive inclusion of EE—but
not AS—to visual biofeedback interventions, which can be readily
implemented in a clinical setting. To incorporate EE for instance,
following “good” repetitions, a clinician or coach can seamlessly
provide positive feedback (eg, “your posture is significantly
improved from last week”). There are various forms of EE, includ-
ing self-modeling and perceived task difficulty. Though compre-
hensive data on the various forms of EE are lacking, the provision of
EE as positive feedback has been demonstrated to improve learner
motivation and self-efficacy.?® This is arguably an important con-
sideration, as fear of reinjury is the most commonly cited reason for
not returning to play following ACL injury.?® Of note, provision of
general kinematic feedback, not necessarily positive, has previously
been shown to attenuate high-risk lower-extremity biomechanics.>°
Although the OPTIMAL theory has robustly demonstrated positive
feedback to maximize learner potential, provision of any feedback is
likely to result in improvement.

Despite the novel contributions of this pilot investigation, the
present findings must be considered in light of study limitations.
First, dual-task costs during single-leg balance control does not
reflect the rapid acceleration/deceleration and/or landing mechan-
ics associated with typical ACL injury events. However, the
purpose of this pilot study was to establish proof of concept
effectiveness and or differential effects of isolated EE and AS
for motor learning, which necessitated a slow continuous task to
provide the real-time biofeedback during the intervention consis-
tent with prior literature,?® and we are aware that such methods may
have implications for other conditions such as patellofemoral pain
or concussion. While we did intervene upon angular kinematics
and assess static postural balance in a static squat at 30° knee
flexion, observing effects on balance as a result of kinematic
feedback is encouraging for evidence of transfer between single-
leg motor control tasks. Future research should consider more
dynamic tasks and associated biomechanical measures to assess the
transferability of the present study findings to scenarios more
closely associated with ACL injury events. Although common
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in AS literature, this pilot study did not employ a yoking procedure
(linking environmental conditions between participants) between
the AS group and the control group. Nevertheless, as we did not
observe effects in the AS group, the lack of yoking does not affect
the interpretation of our results. The observed large SDs were
possibly the result of the cognitive task being performed in VR,
which occludes visual orientation and would thus disproportion-
ately affect individuals who heavily rely on vision for balance.
Although the large SDs limit our ability to establish strict differ-
ences, this represents a prime opportunity for future research to
parse out these large variances. Future studies should also expand
their data collection procedures to ensure representation of diverse
racial and ethnic populations. Finally, we did not assess errors in
the cognitive task performance during any testing period; however,
as the present pilot aims were to determine biomechanical-related
improvements associated with OPTIMAL-based motor learning
strategies, this did not affect the outcomes of this study.

Conclusions

The additive inclusion of EE in the form of positive kinematic
feedback to a visual-biofeedback intervention (theorized to pro-
mote an external focus of attention) facilitated the retention of
desirable dual-task cost reductions during single-leg balance con-
trol for those with suboptimal frontal plane knee biomechanics.
However, task-irrelevant AS was not additively beneficial for
improving dual-task costs relative to a standard visual biofeedback
stimulus. These preliminary data support the use of enhanced
expectancy strategies for emergent ACL risk reduction programs,
but future research is needed to refine how AS is implemented for
those at high risk for musculoskeletal injury to enhance its potential
efficacy.
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