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ABSTRACT

Human experience involvement in existing operations of
airborne Light Detection and Ranging (LIDAR) systems and
off-line processing of collected LIDAR data make the acquisi-
tion process of airborne LIDAR point cloud less adaptable to
environment conditions. This work develops a deep reinforce-
ment learning-enabled framework for adaptive airborne LI-
DAR point cloud acquisition. Namely, the optimization of the
airborne LIDAR operation is modeled as a Markov decision
process (MDP). A set of LIDAR point cloud processing meth-
ods are proposed to derive the state space, action space, and
reward function of the MDP model. A DRL algorithm, Deep
O-Network (DON), is used to solve the MDP. The DRL model
is trained in a flexible virtual environment by using simulator
AirSim. Extensive simulation demonstrates the efficiency of
the proposed framework.

1. INTRODUCTION

The basic operation of a LIDAR is to determine ranges (vari-
able distance) by targeting an object or a surface with a laser
and measuring the time for the reflected light to return to the
receiver. Collected LIDAR data creates a 3-D point cloud
model of the scene. Within the realm of remote sensing,
airborne LIDARs have found popular uses in multiple ap-
plications, such as building detection, road extraction, dis-
aster management, power line patrol, and land cover map-
ping [1, 2]. Most of existing airborne LIDAR systems require
skilled humans to set up operational configurations. Also,
processing LIDAR point cloud and extracting information of
interest are challenging and involve a series of sophisticated
steps. As a result, most airborne LIDAR systems process data
in off-line steps after field scanning, making LIDAR data ac-
quisition and processing time-consuming and less adaptable
to field conditions. Furthermore, many applications require
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sensing within inaccessible or hazardous environments for
human. Therefore, adaptive airborne LIDAR data acquisition
and processing is preferred.

The decision-making process of operating an autonomous
airborne LIDAR can be modeled as a finite-horizon Markov
decision process (MDP) with finite state and action spaces,
but the curse of extremely high dimensionality of state space
makes it computationally infeasible to derive optimal action
using standard finite-horizon MDP algorithms [3]. To over-
come this challenge, in this work deep reinforcement learning
(DRL) is considered to handle the large dimensionality of the
state space and learn the optimal policy at the same time. As
a computational methodology for automatic decision-making
of intelligent agents in uncertain environments, DRL has pro-
gressed tremendously in the past decade [4]. The concern of
DRL is how the agent ought to take actions from a given state
of an environment so as to maximize some notion of cumu-
lative reward. The full potential of DRL requires an agent
to interact directly with the environment to attain a flow of
real-world experiences.

Some research has been done on adaptive mobile LIDAR
systems adopting DRL. Few work has been focused on air-
borne LIDAR systems. In [5], an end-to-end DRL-based au-
tonomous driving method was proposed for navigating unreg-
ulated urban intersections using raw LIDAR point clouds. It
was reported that the method was capable of handling imper-
fect partial observations such as occlusions. In [6], an end-
to-end DRL method was studied for collision avoidance for
mobile robots operating in dense and crowded environments
by using multiple perception sensors such as a 2-D LIDAR
along with a depth camera.

In this work, we propose a DRL framework for adaptive
acquisition of airborne LIDAR point cloud. The key contri-
butions are summarized as follows:

* We formulate the optimization of airborne LIDAR
point cloud acquisition as a sequential decision-making
problem which is further modeled as a Markov decision
process (MDP).
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Fig. 1: The proposed airborne LIDAR point cloud acquisition
framework.

* We develop a set of LIDAR point cloud processing
methods to formulate a DRL model. The state space,
action space, and a novel reward function of the DRL
model are derived.

* The DRL model is trained and tested in a flexible vir-
tual environment by using autonomous vehicles sim-
ulator AirSim. Extensive simulation demonstrates the
efficiency of the proposed framework.

2. OVERVIEW OF THE FRAMEWORK

This work aims to develop an autonomous LIDAR scanner
carried by a drone to navigate an area of interest and collect
point cloud data without prior knowledge of the environment.
As shown in Figure 1, we propose to adopt reinforcement
learning to allow the LIDAR agent to learn how to gather in-
formation efficiently without any collision with the environ-
ment.

The LIDAR agent is simulated and trained in a controlled
virtual environment to offer a simplified interface to control
the drone and retrieve LIDAR data. We used AirSim [7], a
simulator for various vehicles built on Unreal Engine. Unreal
Engine’s level editor also provides visualization and raycast-
ing, as well as the simulation/virtual environment, as shown
in Figure 2. We used the “Downtown West Modular Pack”
created by PurePolygons as the environment, which is avail-
able in the Epic Games Marketplace.

For each time step of the DQN, the virtual LIDAR agent
sends its received LIDAR data to a LIDAR processing unit
that analyzes the observation and calculates a reward for the
agent. The LIDAR processing unit is built on the Compu-
tational Geometry Algorithms Library (CGAL). For each in-
coming LIDAR data point to be considered as new valid infor-
mation, it needs to be at least somewhat distant from the rest
of the already collected points. To process and represent the

Fig. 2: A virtual environment generated by AirSim.

observations from the agent, we propose two generic matrices
that describe the surrounding of the agent. Each entry of the
matrix represents a segment of the agent’s surrounding. One
matrix describes the density of points and the other describes
the distance of the closest point in each segment. The obser-
vation also includes the position of the LIDAR agent since
the agent is rewarded for acquiring the points that are closer
from the origin. The observation and reward of each time step
are sent to the replay memory module of the DQN. The DQN
decides the action of the LIDAR agent of the next time step
based on a balanced exploitation and exploration strategy and
sends the action back to the agent in the AirSim environment.

It is worth noting that the trained DQN model could be
deployed with a real airborne LIDAR in real-world environ-
ments. The point cloud acquired by the LIDAR can be pro-
cessed within the LIDAR processing unit through rendering
and surface reconstruction in a game engine for real time vi-
sualization.

Algorithm 1 Updating of point cloud O

Require: Newly captured points: P} at time step ¢, the point
cloud at previous time step: O;_1, and the predetermined
cut-off distance J,,

1: Initialize the valid newly captured point set: V; := {};
2: for each newly collected point p € P; do
3 min_dist = argmingeo, ,uy,|lp — 4|
4 if min_dist > J,; then

5: Vi VU {p};
6 end if
7: end for
8: Oy = O;_1 UV

3. NAVIGATION OPTIMIZATION BASED ON DRL

Given the environment and the airborne LIDAR agent, a pol-
icy needs to be constructed for the agent to act to maximize
the information acquired about the environment.

Since the state and action spaces are finite, we can model
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Fig. 3: Projection of points to the projection map

the optimization of the operation of the agent as a sequential
decision-making problem, which can be further modeled as
a Markov decision process (MDP). The MDP model is de-
scribed as follows:

* State space S: the set of the states about the LIDAR
agent’s operational status and the observed environ-
ment. Lets; = («;,'¥;) € S represent the state of
the agent and its observation about the environment
at time t. Here x; represents the newly acquired LI-
DAR points, and ¥y represents the operating state of
the agent, which may include the drone’s orientation,
position, velocity, and throttle of each fan.

 Action space A: a set of actions of the agent. Let
a; = (i, jr, ki) denote the agent’s action of moving in
at most one of three orthogonal directions in the three
dimensional space at any time t. Thus, only up to one
of i, jt, and k¢ can be 1. Then the position of the
agent at time t + 1 can be denoted as Pt + at - Cstep,
where P; represents the position of the agent at time f,
and Cstgp is a constant that represents the drone’s flight
distance for each time step.

* State transition probability Pr¢(s,a,s’) = Pr(s;11 =
s'|st = s,a; = a): the probability of transition from
state s to state s’ under action a.

 Reward 7¢(s,a,s"): the immediate reward received by
the agent after transitioning from state s to state s, due
to action a, at time t.

* T: the horizon over which the drone will act.

Then, the goal of the optimization problem is to find
a policy for the agent: a function 7 : & — A that,
given the state s;, outputs an action a; that maximizes
the accumulative knowledge about the environment in the
given finite horizon. Mathematically, we need to maximize
E[Y_ov'ri(st,a)], where E[-] is the expectation taken over
St41 ~ Pr(sii1|se,a¢) and (0 < o < 1) is the discount
factor of the reward r; at different time steps. Due to the
extreme curse of dimensionality in the state space S and

the immense challenge of identifying transition probability
P(s¢q1|st,ar), it is impractical to use exact methods such
as linear programming and dynamic programming to solve
the MDP problem. To address this challenge, we investigate
a DRL framework where the agent is reinforced to learn a
policy in the virtual environment.

3.1. State Definition

In this paper, we assume that the agent has no prior knowl-
edge of the environment. Therefore, the state of the agent can
only be derived by collected LIDAR points and the operat-
ing information itself, such as the position of the drone. As
mentioned previously, the state is characterized by two parts:
the information about the environment through the collected
LIDAR points, x, and the operating state of the agent, Y.

3.1.1. LIDAR Point Information Processing

Since the goal of the LIDAR agent is to gather as much in-
formation of the environment as possible, a definition of valid
information is needed.

At the beginning of each episode, an empty set Oy will
be initialized, which represents that there is no information
gained at time 0. At each time ¢, the agent receives LIDAR
data P from its surrounding. Algorithm 1 uses P; and O;_1
as input, filters out points that are clustered, and outputs an
updated point cloud O;. For each collected point p € Py, we
check if there are any points in O;_q that are in the vicinity
of p. If none, p is regarded as newly acquired information
about the environment. We define a hyperparameter J,, as
the smallest distance for point p to be away from the closest
point in O;_1 so that p can be considered as newly acquired
information.

In order to speed up the process of finding points, we use
the k-d tree data structure to store ;. As a result, for each
point p, the computational complexity of finding the closest
point in Oy to p is only O(log |Oy]).

3.1.2. Observation Representation

In this paper, we propose a novel method of representing the
point cloud collected by the agent. The observation of the
agent should only consist of the points that are in the mea-
surement range of the LIDAR laser. Furthermore, as shown
in [8], most deep learning techniques applied to point clouds
need to extract features from those point clouds, instead of us-
ing raw data sets, due to the nature of point cloud data, such as
high dimensionality, sparseness of the data, and irregularity of
its shapes. Such characteristics make point cloud data ineffi-
cient to be represented. Therefore, it is preferred to transform
the point cloud data into lower dimensional spaces for better
performance in deep learning.

In this paper, we construct two IR"*™ matrices to rep-
resent the points surrounding the LIDAR agent. The sphere



around the agent is segmented into n X m equal sized seg-
ments, and the points in each segments are used to calcu-
late the entry of the matrices. For the first matrix, we rep-
resent the density of the surrounded points in each segment
around the agent. Since there is a minimal distance between
points, moving the LIDAR too close to an object (such as a
wall) would result in a segment containing less points, and the
drone would be in greater risk of colliding with the environ-
ment. Therefore, the agent is incentivized to find distances to
the object that are optimal for point collection. The second
matrix represents the closest point of the surrounded points in
each region. The rationale behind this matrix is to make the
agent avoid moving in certain directions when it detects some
points that are too close to it.

To project the points onto the matrices, we employ the
Gall-Peters projection [9] which is a rectangular map projec-
tion that preserves the size of each shape on the sphere.

We first project the surrounding points in 3D to a 2D rect-
angle. Let E; C Oy be the points that are at most Cyapge away
from the LIDAR agent. Assume the agent is at point x. For
each pointy € Ey, let (x,y/,z") := y — x. Then the point’s
position on the rectangle (1, v) can be derived as:

u= arctan2(y/,x’) n
v= 22|y x|

where arctan?2 is the two-argument function that gives the
unambiguous angle for the polar coordinates when converting
from Cartesian coordinates.

To apply machine learning, we convert the rectangle into
matrices so that the number of inputs are finite and constant.
Therefore, we further partition the rectangle into partitions,
where entries of the two matrices regarded as the observation
of the agent will extract information from points in each par-
tition. As shown in Figure 3, to construct the partitions, we
need to determine which row and column each point will be
in. Let the position of point p on the rectangle be (1, v). Then
the index (i, j) of the point in the partitions is:

g g

= \im

u+nw

which indicates that point p is in the ith row and the jth col-
umn in the partition. As Figure 3 shows, this process results
in a projection map M that has n X m partitions, where each
partition contains the list of points. Then a density matrix
M,; can be constructed as:

MG, j)|

My(i, ) = =5 3)

and a closeness matrix M, can be constructed as:

M, (i,j) = min({[p[ : p € M(i,j)}) @

where Cy,;x is a constant that can be calculated using the de-
tecting range Crange of the LIDAR agent, the minimum close-
ness of each point d,;,, and the dimensions (n and m) of the
matrices.

3.2. Action Definition

The set of actions include the movement of the drone in one of
the three orthogonal directions in the three dimensional space.
To reduce the action space, action values are discretized. In
addition, we may restrain the drone from moving up and down
and control the drone to stay at a constant height if it is unnec-
essary for the drone to move vertically in collecting LIDAR
points.

Given the position of the drone x; = (xt,y;,z¢) € ¥y at
time ¢, the position of the drone for the next time step can be
generally derived as:

(xt + Cstep, Y1, 2¢) or
(xt,yt + Cstep,zt) or
(x tYt, 2t + Cstgp> or
xt11 = 4§ (Xt — Cstep, Yt,2¢) or (@)
(xt,yt — Cstep,zt) or
(xtr]/t/Zt Cstep) oOr
(xt,Yt,2t)

3.3. Reward Function

The agent is rewarded based on the newly observed informa-
tion gain and penalized if it collides with the environment.
Specifically, the reward function r(s;,a;) : S X A — R is
decided by the amount of newly acquired information V; and
the collision status of the agent. Thus, the reward function at
time ¢ is

= ). R(p)

PEV:

t(st,ar) + Ceor - 1s(xt) (6)

where V; is the newly acquired valid points and is defined
in Algorithm 1; R(p) is the scaled information gain function
and will be defined below in Eq. (8); and 1g is the collision
indicator function and is defined as

if x; contacts the environment

1s(x) = {1 . )

0 otherwise;

C,o; 1s a negative constant representing the penalty when the
agent is collided with the environment.

We propose a new evaluation method that measures the
information gain of each new point. From the experiment, we
observed that the drone prefers to go in one general direction
because going any other direction may cause overlap between
some of the scanned points and previous points. However, in
this paper, we aim to have a holistic picture of the surrounding



Table 1: Configuration of DQN

Learning rate 0.0001
Batch size 64

Train frequency | 5 episodes
Buffer size 103

Polyak update 1
Discount factor | 0.99
Train frequency | 10 episodes

environment, rather than a corridor of LIDAR points stretch-
ing in one direction. To that end, we introduce an exponen-
tially scaled point evaluation system that assigns more reward
to the points that are closer to the origin.

For any point p, the reward given by that point is defined

' R(p)

where a denotes the unscaled reward for each point. In this
paper, it is assumed that « is a constant that represents the
information gain of a point without scaling. ¢ denotes the
regression factor, and J;; denotes the threshold distance. For
example, if { = 2 and J;; = 10, the information gain given
by 1 point 10 units away is equivalent to the information gain
given by 2 points 20 units away, which is also equivalent to
that given by 1000 points 100 units away.

14
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3.4. Optimal Q-value Approximation by DQN

With the defined state, action, and reward, the DRL pro-
cess can be further described. The expected accumulated
discounted reward of policy 7t is defined as #(71):

§(m) = E[Y 'ri(ss,an)] ©
=0

where [E[-] is the expectation taken over sy 11 ~ Pr(s;11]s¢, ar)

and y(0 < 7y < 1) is the discount factor of the reward at
different time steps.

The goal of the learning algorithm is to determine the op-
timal policy 77* by estimating the optimal Q-function, which
is defined as:

Q*(s,a) =E[n(m")|st = s,a; = a. (10)

To approximate the optimal function, we use DQN with ex-
perience replay [10].

4. SIMULATION RESULTS

We evaluated the DRL-based airborne LIDAR navigation op-
timization method by conducting simulation using AirSim

Fig. 4: Acquired point cloud during an episode of the early
learning phase of the agent

Fig. 5: Acquired point cloud during the agent training with
high scale

Fig. 6: Points collected without scaling

Fig. 7: Points collected with scaling
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Fig. 8: Immediate rewards with different learning episode

[7]1. AimSim is a simulator platform for Al research to ex-
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Fig. 9: Comparison of immediate rewards of random-walk
and DQN-enabled navigation at different learning time steps

periment with deep learning, computer vision and reinforce-
ment learning algorithms for autonomous vehicles such as
drones and cars. AirSim provides APIs to retrieve data and
control drones/vehicles in a platform-independent way. Table
1 shows the configuration of DQN.

As shown in Fig. 4, the agent can collect a small number
of points during the earlier episodes due to colliding in the
environment. When evaluating the agent after the training, the
agent is able to avoid obstacles and collect plentiful LIDAR
data of the environment, showing significant improvement.
In contrast to Fig. 4 showing the point cloud acquired by the
agent during an episode of the early learning phase, Fig. 5
shows the acquired point cloud during the agent training with
high scale.

Before the scaled information gain function is employed,
the reward function will count each newly added point as
equal and valid information. As shown in Fig. 6, the agent
moves in one direction and ensures that there are objects
around it when possible to maximize the reward. The agent
started from the right side of the figure and moved left un-
til there is no tree around it, then it moved up to detect the
wall, then continued to move left for the rest of the episode.
However, we want the agent to provide a holistic view around
the origin. Therefore, the scaled information gain function is
introduced to disincentivize the agent from moving in only
one direction. As shown in Fig. 7, the agent navigates around
the origin and acquires a more comprehensive environment
than that obtained in Fig. 6.

Figure 8 shows the immediate reward obtained with the
proposed reinforcement learning method and random walk,
respectively, at different learning episode. Figure 9 shows the
comparison of the immediate rewards of random-walk and the
DQN-enabled navigation with respect to learning steps. It can
be observed that the DRL method has achieved better result
than random walk.

5. CONCLUSION

We present a framework for adaptive acquisition of airborne
LIDAR point cloud based on deep reinforcement learning

(DRL). Novel LIDAR point cloud processing methods are
developed to derive the state space, action space, and reward
function of the DRL model. The model is trained and tested
in a flexible virtual environment by using autonomous vehi-
cles simulator AirSim. Extensive simulation demonstrates the
efficiency of the proposed framework. As part of future work,
we will evaluate the framework through field experiment.
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