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ABSTRACT

Human experience involvement in existing operations of

airborne Light Detection and Ranging (LIDAR) systems and

off-line processing of collected LIDAR data make the acquisi-

tion process of airborne LIDAR point cloud less adaptable to

environment conditions. This work develops a deep reinforce-

ment learning-enabled framework for adaptive airborne LI-

DAR point cloud acquisition. Namely, the optimization of the

airborne LIDAR operation is modeled as a Markov decision

process (MDP). A set of LIDAR point cloud processing meth-

ods are proposed to derive the state space, action space, and

reward function of the MDP model. A DRL algorithm, Deep

Q-Network (DQN), is used to solve the MDP. The DRL model

is trained in a flexible virtual environment by using simulator

AirSim. Extensive simulation demonstrates the efficiency of

the proposed framework.

1. INTRODUCTION

The basic operation of a LIDAR is to determine ranges (vari-

able distance) by targeting an object or a surface with a laser

and measuring the time for the reflected light to return to the

receiver. Collected LIDAR data creates a 3-D point cloud

model of the scene. Within the realm of remote sensing,

airborne LIDARs have found popular uses in multiple ap-

plications, such as building detection, road extraction, dis-

aster management, power line patrol, and land cover map-

ping [1, 2]. Most of existing airborne LIDAR systems require

skilled humans to set up operational configurations. Also,

processing LIDAR point cloud and extracting information of

interest are challenging and involve a series of sophisticated

steps. As a result, most airborne LIDAR systems process data

in off-line steps after field scanning, making LIDAR data ac-

quisition and processing time-consuming and less adaptable

to field conditions. Furthermore, many applications require
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sensing within inaccessible or hazardous environments for

human. Therefore, adaptive airborne LIDAR data acquisition

and processing is preferred.

The decision-making process of operating an autonomous

airborne LIDAR can be modeled as a finite-horizon Markov

decision process (MDP) with finite state and action spaces,

but the curse of extremely high dimensionality of state space

makes it computationally infeasible to derive optimal action

using standard finite-horizon MDP algorithms [3]. To over-

come this challenge, in this work deep reinforcement learning

(DRL) is considered to handle the large dimensionality of the

state space and learn the optimal policy at the same time. As

a computational methodology for automatic decision-making

of intelligent agents in uncertain environments, DRL has pro-

gressed tremendously in the past decade [4]. The concern of

DRL is how the agent ought to take actions from a given state

of an environment so as to maximize some notion of cumu-

lative reward. The full potential of DRL requires an agent

to interact directly with the environment to attain a flow of

real-world experiences.

Some research has been done on adaptive mobile LIDAR

systems adopting DRL. Few work has been focused on air-

borne LIDAR systems. In [5], an end-to-end DRL-based au-

tonomous driving method was proposed for navigating unreg-

ulated urban intersections using raw LIDAR point clouds. It

was reported that the method was capable of handling imper-

fect partial observations such as occlusions. In [6], an end-

to-end DRL method was studied for collision avoidance for

mobile robots operating in dense and crowded environments

by using multiple perception sensors such as a 2-D LIDAR

along with a depth camera.

In this work, we propose a DRL framework for adaptive

acquisition of airborne LIDAR point cloud. The key contri-

butions are summarized as follows:

• We formulate the optimization of airborne LIDAR

point cloud acquisition as a sequential decision-making

problem which is further modeled as a Markov decision

process (MDP).



Fig. 1: The proposed airborne LIDAR point cloud acquisition

framework.

• We develop a set of LIDAR point cloud processing

methods to formulate a DRL model. The state space,

action space, and a novel reward function of the DRL

model are derived.

• The DRL model is trained and tested in a flexible vir-

tual environment by using autonomous vehicles sim-

ulator AirSim. Extensive simulation demonstrates the

efficiency of the proposed framework.

2. OVERVIEW OF THE FRAMEWORK

This work aims to develop an autonomous LIDAR scanner

carried by a drone to navigate an area of interest and collect

point cloud data without prior knowledge of the environment.

As shown in Figure 1, we propose to adopt reinforcement

learning to allow the LIDAR agent to learn how to gather in-

formation efficiently without any collision with the environ-

ment.

The LIDAR agent is simulated and trained in a controlled

virtual environment to offer a simplified interface to control

the drone and retrieve LIDAR data. We used AirSim [7], a

simulator for various vehicles built on Unreal Engine. Unreal

Engine’s level editor also provides visualization and raycast-

ing, as well as the simulation/virtual environment, as shown

in Figure 2. We used the ªDowntown West Modular Packº

created by PurePolygons as the environment, which is avail-

able in the Epic Games Marketplace.

For each time step of the DQN, the virtual LIDAR agent

sends its received LIDAR data to a LIDAR processing unit

that analyzes the observation and calculates a reward for the

agent. The LIDAR processing unit is built on the Compu-

tational Geometry Algorithms Library (CGAL). For each in-

coming LIDAR data point to be considered as new valid infor-

mation, it needs to be at least somewhat distant from the rest

of the already collected points. To process and represent the

Fig. 2: A virtual environment generated by AirSim.

observations from the agent, we propose two generic matrices

that describe the surrounding of the agent. Each entry of the

matrix represents a segment of the agent’s surrounding. One

matrix describes the density of points and the other describes

the distance of the closest point in each segment. The obser-

vation also includes the position of the LIDAR agent since

the agent is rewarded for acquiring the points that are closer

from the origin. The observation and reward of each time step

are sent to the replay memory module of the DQN. The DQN

decides the action of the LIDAR agent of the next time step

based on a balanced exploitation and exploration strategy and

sends the action back to the agent in the AirSim environment.

It is worth noting that the trained DQN model could be

deployed with a real airborne LIDAR in real-world environ-

ments. The point cloud acquired by the LIDAR can be pro-

cessed within the LIDAR processing unit through rendering

and surface reconstruction in a game engine for real time vi-

sualization.

Algorithm 1 Updating of point cloud Ot

Require: Newly captured points: Pt at time step t, the point

cloud at previous time step: Ot−1, and the predetermined

cut-off distance δob

1: Initialize the valid newly captured point set: Vt := {};
2: for each newly collected point p ∈ Pt do

3: min dist = argminq∈Ot−1∪Vt
∥p− q∥

4: if min dist ≥ δob then

5: Vt ← Vt ∪ {p};
6: end if

7: end for

8: Ot = Ot−1 ∪ Vt;

3. NAVIGATION OPTIMIZATION BASED ON DRL

Given the environment and the airborne LIDAR agent, a pol-

icy needs to be constructed for the agent to act to maximize

the information acquired about the environment.

Since the state and action spaces are finite, we can model



Fig. 3: Projection of points to the projection map

the optimization of the operation of the agent as a sequential

decision-making problem, which can be further modeled as

a Markov decision process (MDP). The MDP model is de-

scribed as follows:

• State space S : the set of the states about the LIDAR

agent’s operational status and the observed environ-

ment. Let st = (κt, Ψt) ∈ S represent the state of

the agent and its observation about the environment

at time t. Here κt represents the newly acquired LI-

DAR points, and Ψt represents the operating state of

the agent, which may include the drone’s orientation,

position, velocity, and throttle of each fan.

• Action space A: a set of actions of the agent. Let

at = (it, jt, kt) denote the agent’s action of moving in

at most one of three orthogonal directions in the three

dimensional space at any time t. Thus, only up to one

of it, jt, and kt can be ±1. Then the position of the

agent at time t + 1 can be denoted as Pt + at · Cstep,

where Pt represents the position of the agent at time t,
and Cstep is a constant that represents the drone’s flight

distance for each time step.

• State transition probability Prt(s, a, s′) = Pr(st+1 =
s′|st = s, at = a): the probability of transition from

state s to state s′ under action a.

• Reward rt(s, a, s′): the immediate reward received by

the agent after transitioning from state s to state s′, due

to action a, at time t.

• T: the horizon over which the drone will act.

Then, the goal of the optimization problem is to find

a policy for the agent: a function π : S → A that,

given the state st, outputs an action at that maximizes

the accumulative knowledge about the environment in the

given finite horizon. Mathematically, we need to maximize

E[∑T
t=0 γtrt(st, at)], where E[·] is the expectation taken over

st+1 ∼ Pr(st+1|st, at) and γ(0 ≤ γ ≤ 1) is the discount

factor of the reward rt at different time steps. Due to the

extreme curse of dimensionality in the state space S and

the immense challenge of identifying transition probability

P(st+1|st, at), it is impractical to use exact methods such

as linear programming and dynamic programming to solve

the MDP problem. To address this challenge, we investigate

a DRL framework where the agent is reinforced to learn a

policy in the virtual environment.

3.1. State Definition

In this paper, we assume that the agent has no prior knowl-

edge of the environment. Therefore, the state of the agent can

only be derived by collected LIDAR points and the operat-

ing information itself, such as the position of the drone. As

mentioned previously, the state is characterized by two parts:

the information about the environment through the collected

LIDAR points, κ, and the operating state of the agent, Ψ.

3.1.1. LIDAR Point Information Processing

Since the goal of the LIDAR agent is to gather as much in-

formation of the environment as possible, a definition of valid

information is needed.

At the beginning of each episode, an empty set O0 will

be initialized, which represents that there is no information

gained at time 0. At each time t, the agent receives LIDAR

data Pt from its surrounding. Algorithm 1 uses Pt and Ot−1

as input, filters out points that are clustered, and outputs an

updated point cloud Ot. For each collected point p ∈ Pt, we

check if there are any points in Ot−1 that are in the vicinity

of p. If none, p is regarded as newly acquired information

about the environment. We define a hyperparameter δob as

the smallest distance for point p to be away from the closest

point in Ot−1 so that p can be considered as newly acquired

information.

In order to speed up the process of finding points, we use

the k-d tree data structure to store Ot. As a result, for each

point p, the computational complexity of finding the closest

point in Ot to p is only O(log |Ot|).

3.1.2. Observation Representation

In this paper, we propose a novel method of representing the

point cloud collected by the agent. The observation of the

agent should only consist of the points that are in the mea-

surement range of the LIDAR laser. Furthermore, as shown

in [8], most deep learning techniques applied to point clouds

need to extract features from those point clouds, instead of us-

ing raw data sets, due to the nature of point cloud data, such as

high dimensionality, sparseness of the data, and irregularity of

its shapes. Such characteristics make point cloud data ineffi-

cient to be represented. Therefore, it is preferred to transform

the point cloud data into lower dimensional spaces for better

performance in deep learning.

In this paper, we construct two R
n×m matrices to rep-

resent the points surrounding the LIDAR agent. The sphere



around the agent is segmented into n × m equal sized seg-

ments, and the points in each segments are used to calcu-

late the entry of the matrices. For the first matrix, we rep-

resent the density of the surrounded points in each segment

around the agent. Since there is a minimal distance between

points, moving the LIDAR too close to an object (such as a

wall) would result in a segment containing less points, and the

drone would be in greater risk of colliding with the environ-

ment. Therefore, the agent is incentivized to find distances to

the object that are optimal for point collection. The second

matrix represents the closest point of the surrounded points in

each region. The rationale behind this matrix is to make the

agent avoid moving in certain directions when it detects some

points that are too close to it.

To project the points onto the matrices, we employ the

Gall-Peters projection [9] which is a rectangular map projec-

tion that preserves the size of each shape on the sphere.

We first project the surrounding points in 3D to a 2D rect-

angle. Let Et ⊆ Ot be the points that are at most Crange away

from the LIDAR agent. Assume the agent is at point x. For

each point y ∈ Et, let (x′, y′, z′) := y− x. Then the point’s

position on the rectangle (u, v) can be derived as:

{

u = arctan 2(y′, x′)

v = 2z′∥y− x∥−1
(1)

where arctan 2 is the two-argument function that gives the

unambiguous angle for the polar coordinates when converting

from Cartesian coordinates.

To apply machine learning, we convert the rectangle into

matrices so that the number of inputs are finite and constant.

Therefore, we further partition the rectangle into partitions,

where entries of the two matrices regarded as the observation

of the agent will extract information from points in each par-

tition. As shown in Figure 3, to construct the partitions, we

need to determine which row and column each point will be

in. Let the position of point p on the rectangle be (u, v). Then

the index (i, j) of the point in the partitions is:







i =
⌈

u+π
2π/n

⌉

j =
⌈

v+2
4/m

⌉ (2)

which indicates that point p is in the ith row and the jth col-

umn in the partition. As Figure 3 shows, this process results

in a projection map M that has n×m partitions, where each

partition contains the list of points. Then a density matrix

Md can be constructed as:

Md(i, j) =
|M(i, j)|

Cmax
(3)

and a closeness matrix Mc can be constructed as:

Mc(i, j) = min({|p| : p ∈ M(i, j)}) (4)

where Cmax is a constant that can be calculated using the de-

tecting range Crange of the LIDAR agent, the minimum close-

ness of each point dob, and the dimensions (n and m) of the

matrices.

3.2. Action Definition

The set of actions include the movement of the drone in one of

the three orthogonal directions in the three dimensional space.

To reduce the action space, action values are discretized. In

addition, we may restrain the drone from moving up and down

and control the drone to stay at a constant height if it is unnec-

essary for the drone to move vertically in collecting LIDAR

points.

Given the position of the drone xt = (xt, yt, zt) ∈ Ψt at

time t, the position of the drone for the next time step can be

generally derived as:

xt+1 =















































(xt + Cstep, yt, zt) or

(xt, yt + Cstep, zt) or

(xt, yt, zt + Cstep) or

(xt − Cstep, yt, zt) or

(xt, yt − Cstep, zt) or

(xt, yt, zt − Cstep) or

(xt, yt, zt)

(5)

3.3. Reward Function

The agent is rewarded based on the newly observed informa-

tion gain and penalized if it collides with the environment.

Specifically, the reward function r(st, at) : S × A → R is

decided by the amount of newly acquired information Vt and

the collision status of the agent. Thus, the reward function at

time t is

rt(st, at) = ∑
p∈Vt

R(p) + Ccol · 1S (xt) (6)

where Vt is the newly acquired valid points and is defined

in Algorithm 1; R(p) is the scaled information gain function

and will be defined below in Eq. (8); and 1S is the collision

indicator function and is defined as

1S (xt) =

{

1 if xt contacts the environment

0 otherwise;
(7)

Ccol is a negative constant representing the penalty when the

agent is collided with the environment.

We propose a new evaluation method that measures the

information gain of each new point. From the experiment, we

observed that the drone prefers to go in one general direction

because going any other direction may cause overlap between

some of the scanned points and previous points. However, in

this paper, we aim to have a holistic picture of the surrounding



Table 1: Configuration of DQN

Learning rate 0.0001
Batch size 64

Train frequency 5 episodes

Buffer size 103

Polyak update 1

Discount factor 0.99

Train frequency 10 episodes

environment, rather than a corridor of LIDAR points stretch-

ing in one direction. To that end, we introduce an exponen-

tially scaled point evaluation system that assigns more reward

to the points that are closer to the origin.

For any point p, the reward given by that point is defined

as:

R(p) =
α

ξ∥p∥/δtd
(8)

where α denotes the unscaled reward for each point. In this

paper, it is assumed that α is a constant that represents the

information gain of a point without scaling. ξ denotes the

regression factor, and δtd denotes the threshold distance. For

example, if ξ = 2 and δtd = 10, the information gain given

by 1 point 10 units away is equivalent to the information gain

given by 2 points 20 units away, which is also equivalent to

that given by 1000 points 100 units away.

3.4. Optimal Q-value Approximation by DQN

With the defined state, action, and reward, the DRL pro-

cess can be further described. The expected accumulated

discounted reward of policy π is defined as η(π):

η(π) = E[
T

∑
t=0

γtrt(st, at)] (9)

where E[·] is the expectation taken over st+1 ∼ Pr(st+1|st, at)
and γ(0 ≤ γ ≤ 1) is the discount factor of the reward at

different time steps.

The goal of the learning algorithm is to determine the op-

timal policy π∗ by estimating the optimal Q-function, which

is defined as:

Q∗(s, a) = E[η(π∗)|st = s, at = a]. (10)

To approximate the optimal function, we use DQN with ex-

perience replay [10].

4. SIMULATION RESULTS

We evaluated the DRL-based airborne LIDAR navigation op-

timization method by conducting simulation using AirSim

Fig. 4: Acquired point cloud during an episode of the early

learning phase of the agent

Fig. 5: Acquired point cloud during the agent training with

high scale

Fig. 6: Points collected without scaling

Fig. 7: Points collected with scaling

Fig. 8: Immediate rewards with different learning episode

[7]. AimSim is a simulator platform for AI research to ex-



Fig. 9: Comparison of immediate rewards of random-walk

and DQN-enabled navigation at different learning time steps

periment with deep learning, computer vision and reinforce-

ment learning algorithms for autonomous vehicles such as

drones and cars. AirSim provides APIs to retrieve data and

control drones/vehicles in a platform-independent way. Table

1 shows the configuration of DQN.

As shown in Fig. 4, the agent can collect a small number

of points during the earlier episodes due to colliding in the

environment. When evaluating the agent after the training, the

agent is able to avoid obstacles and collect plentiful LIDAR

data of the environment, showing significant improvement.

In contrast to Fig. 4 showing the point cloud acquired by the

agent during an episode of the early learning phase, Fig. 5

shows the acquired point cloud during the agent training with

high scale.

Before the scaled information gain function is employed,

the reward function will count each newly added point as

equal and valid information. As shown in Fig. 6, the agent

moves in one direction and ensures that there are objects

around it when possible to maximize the reward. The agent

started from the right side of the figure and moved left un-

til there is no tree around it, then it moved up to detect the

wall, then continued to move left for the rest of the episode.

However, we want the agent to provide a holistic view around

the origin. Therefore, the scaled information gain function is

introduced to disincentivize the agent from moving in only

one direction. As shown in Fig. 7, the agent navigates around

the origin and acquires a more comprehensive environment

than that obtained in Fig. 6.

Figure 8 shows the immediate reward obtained with the

proposed reinforcement learning method and random walk,

respectively, at different learning episode. Figure 9 shows the

comparison of the immediate rewards of random-walk and the

DQN-enabled navigation with respect to learning steps. It can

be observed that the DRL method has achieved better result

than random walk.

5. CONCLUSION

We present a framework for adaptive acquisition of airborne

LIDAR point cloud based on deep reinforcement learning

(DRL). Novel LIDAR point cloud processing methods are

developed to derive the state space, action space, and reward

function of the DRL model. The model is trained and tested

in a flexible virtual environment by using autonomous vehi-

cles simulator AirSim. Extensive simulation demonstrates the

efficiency of the proposed framework. As part of future work,

we will evaluate the framework through field experiment.
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