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Abstract—Exascale computing enables unprecedented, detailed
and coupled scientific simulations which generate data on the
order of tens of petabytes. Due to large data volumes, lossy
compressors become indispensable as they enable better compres-
sion ratios and runtime performance than lossless compressors.
Moreover, as (high-performance computing) HPC systems grow
larger, they draw power on the scale of tens of megawatts. Data
motion is expensive in time and energy. Therefore, optimizing
compressor and data I/O power usage is an important step
in reducing energy consumption to meet sustainable computing
goals and stay within limited power budgets. In this paper, we
explore efficient power consumption gains for the SZ and ZFP
lossy compressors and data writing on a cloud HPC system
while varying the CPU frequency, scientific data sets, and system
architecture. Using this power consumption data, we construct
a power model for lossy compression and present a tuning
methodology that reduces energy overhead of lossy compressors
and data writing on HPC systems by 14.3% on average. We
apply our model and find 6.5 kJs, or 13%, of savings on average
for 512GB I/O. Therefore, utilizing our model results in more
energy efficient lossy data compression and 1/0.

I. INTRODUCTION

As high-performance computing (HPC) approaches ex-
ascale, computing centers consume significant amounts of
power, on the scale of tens of MWs [1]. These HPC systems
run highly complex applications that evolve large volumes
of data. Scientific workloads now require moving data for
analysis and processing, yet large-data I/O is a computationally
expensive operation. For example, Hardware/Hybrid Accel-
erated Cosmology Code (HACC) [2], can generate enough
snapshots to require 10 hours to transmit at a 500 GB/s
bandwidth [3]. To mitigate I/O bottlenecks, applications use
lossy compressors such as SZ [4]-[7] and ZFP [8] to compress
floating point data, reduce the storage size, and save I/O time.
Lossy compressors have the advantage of better space-savings
and runtime efficiency over lossless compressors, making them
more desirable for compressing petabytes of floating-point
data.

However, compressing large datasets can require a non-
trivial amount of time. Consider the situation of needing to
write a large amount of data. For dumping data one can
compress and then write the compressed data, or simply
transmit without compressing. I/O runtime savings on data-
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dumping can be up to 25% with lossy compression, yet
there are cases where the compression itself can outweigh the
runtime for reading and writing the compressed data [3]. A
smaller, compressed file transports faster, but how long it takes
to compress that data can mitigate those advantages.

How does this affect the energy involved in the I/O? That is,
if compression takes significant runtime, how does that affect
how much energy is drawn for the I/O operation? Assuming
single CPU compression and 1/O, the CPU usage and clock
frequency of the cores directly correlates with the energy-draw
of that CPU [9]. Since power draw is a given for any system,
our goal is then to minimize the compression and data transit
energy usage by lowering the clock frequency of the chip.

The motivation for focusing on compression and I/O with
respect to CPU frequency is that in HPC workloads, I/O
is not as performance-sensitive as a simulation running. As
one lowers CPU frequency, applications execute more slowly
despite saving energy. When a user runs simulations, one
needs the full CPU power as these jobs are computationally
exhaustive and time can be limited due to competitive resource
schedules. On the other hand, compression and I/O can afford
a longer runtime in many use cases, as this data transit process
is several orders of magnitude shorter than most scientific
simulations. Therefore, finding where runtime and energy
consumption are optimized via trade-off based on the CPU
frequency is possible in the context of compression and data
dumping.

In this paper, we measure the energy usage of SZ and ZFP
compressing floating point data on a cloud HPC system with a
network file system (NFS). Also we measure the energy usage
of moving different-sizes data on an NFS. With these results
we construct models of energy and average power that provide
a CPU frequency tuning framework to optimize energy usage
for lossy compression and data transmission, characterizing
an I/O workflow. Using our models we demonstrate energy-
savings in the use-case of lossy compression and then trans-
mitting data.

Our contributions in this paper are as follows:

o We derive and compare power consumption models of SZ

and ZFP to enable CPU-frequency tuning to find optimal
power and energy consumption.



e« We provide recommendations to reduce energy usage
of lossy compression in I/O by 19.4% on average by
lowering the CPU frequency by 12.5%.

o We construct a model for data transit power consumption
and achieve reduced energy usage by 11.2% on average
by lowering the CPU frequency by 15%.

o« We utilize our frequency tuning models for energy-
optimizing lossy compression and data transmission and
demonstrate 14.3% overall energy savings.

o We apply our model to a real-world example of com-
pressing and writing 512GBs of floating point data on an
NFS, saving 6.5 kJs on average, which equates to 13%
energy savings.

We organize our paper as follows. In Section II we describe
related works to our project, as well as motivation concerning
past studies in energy-efficiency, lossy compression, and data
movement. In Section III we outline the different methods,
softwares, and datasets we use in our experiments. In Sections
IV, V we develop our model of power consumption for lossy
compression and data transit, respectively. In Section VI we
discuss how we optimize the power consumption of I/O using
our models. Section VII then shows use-case driven examples
of tuning an HPC system for energy-savings.

II. RELATED WORK
A. Lossy Compression and Data Dumping

As HPC systems approach exascale, the question of how
to transport data on cloud systems for analysis becomes
important. Lossy compressors, such as SZ [4]-[7] and ZFP
[8] provide the advantage of decreasing size with impres-
sive compression ratios. Lossy compressors achieve this by
eliminating redundancies in chunks of scientific, floating-point
data via encoding the binary representation of each datum.
Based on the granularity required, an error bound can be
set to preserve more or less data. These space savings make
lossy compression a valuable tool in scientific computing,
particularly in data movement.

Previous work [3] has shown the possibility for lossy com-
pression to decrease transit time on an 1/O-bound operation.
Liang et al. focused on the different configurations of SZ and
ZFP in the context of runtime optimization for transporting
large datasets, finding time-savings when compressing before
disk writing. A primary interest in data dumping is sending a
small number of larger files over a large number of smaller
files due to I/O bottlenecking in HPC systems [10]. Lossy
compression on large scientific datasets achieves this by re-
taining the number of files and reducing their size, rather than
increasing the number of files with smaller size. Using lossy
compression on large scientific datasets, our study looks to
take a similar approach, however taking energy savings in
place of time-savings for transporting large volumes of data
via tuning CPU frequency.

B. Energy Optimization Techniques in HPC

Large supercomputers in the age of exascale computing
can have a power rating on the order of tens of MWs [11]-

[13]. One approach in particular is CPU frequency scaling, as
previous work in [11], [12] have shown to be effective. These
studies focus on how dynamic voltage and frequency scaling
are used to achieve energy savings, much like what we work to
achieve in our study. Moran et al., have proven success in not
only optimizing the energy consumption of checkpoint/restart
systems but also parameterizing it. Using CPU frequency as
an independent variable, they explore different experimental
settings to then characterize the system’s energy consumption.
Other work [13] demonstrates similar results to Moran, finding
a critical power slope. This curve shape denotes a sharp ex-
ponential increase in power over the range of CPU frequency,
meaning energy savings can be achieved by lowering CPU
frequency.

Similarly, estimation of energy consumption proves to be
a useful tool in optimizing the energy efficiency of an HPC
system [14]. Studies which perform this analysis focus on
surveying a large number of energy optimized algorithms to
then select, per-system, which algorithm is the best fit for a
specific use case [14]. With this study we add the perspective
of energy estimation in the context of lossy compression and
data dumping towards exascale systems, adding a technique
for that area of software.

In our work, we use frequency scaling for energy reduction
in the context of lossy compression. We focus on parameteri-
zation and also a discussion about how to optimize I/O energy
usage with efficient lossy compression. We look to evaluate the
impact that the CPU clock frequency can have on the power
usage of the HPC system.

III. METHODS

The total energy, Fyotq1, Of @ process is a product of average
power, Fy,4, and runtime, ,q,:

Eiotar = Pavg “Lrun- (D

To establish a model for power consumption, one needs to
measure the energy and runtime of that operation over a
range of frequencies. Using perf, a Linux performance-
measurement tool, we sample the total energy and runtime
of compression. In our case, we model power consumption of
I/O by recording energy and runtime of compression and data
transmission.

We generalize our power experiments for compression with
the usage of (1) the SZ and ZFP lossy compressors with
different error bounds, (2) CPU frequency scaling, (3) data size
and dimension to compress, and (4) hardware specifications
for our experimental platforms.

A. Lossy Compressors and Error Bound

We use two leading HPC lossy compressors SZ and ZFP.
ZFP [8] compresses by transforming floating-point data to
fixed-point values block-by-block and adopts an embedded
coding to encode generated coefficients. SZ [4]-[6] com-
presses blocks of data using a series of steps: data prediction,
error quantization, Huffman encoding, and lossless compres-
sion. An important component of lossy compression is the



error bound: the tolerance of how well the data should be
reconstructed at decompression. A smaller error bound in
general yields lower compression ratios and is more runtime
expensive.

We use the absolute error bound in SZ and the ZFP
fixed-accuracy mode, both of which bound the compression
error at a fixed level. The error-bounds we target for both
compressors are le—1,1le—2, 1le—3, le—4. These bounds are
used to generalize compressor use-cases for the energy-tuning
model, as different users utilize different granularity depending
on the level of accuracy needed in data reconstruction.

B. CPU Frequency

We set the CPU frequency for all CPU cores using the Linux
system call, coufreg-set. Changing the CPU frequency
affects the amount of voltage supplied to the chip. The
range of frequencies we consider in this study goes from the
the minimum clock speed (800MHz) to the maximum clock
frequency for the given CPU with a step size of 50MHz.
This step size was chosen as it would provide a sufficient
granularity to notice trends in the total energy measured for
each compression job conducted.

C. Data Characteristics

The dimensionality and size of data has a large impact on
compression and data I/O. For example, a 10GB 4-D array of
floating-point data is generally more difficult to compress than
a 100MB 1-D array [15], because there are more points and
dimensions to encode and process. SDRBench [16] provides
floating-point, scientific data sets to assist in benchmarking
compressor performance. In Table I we summarize the char-
acteristics of the data we compress.

Domain Dimensions Size of Fields
CESM-ATM [17] 26 x 1800 x 3600 673.9MB
HACC [2] 1 x 280953867 1046.9MB
NYX [18] 512 x 512 x 512 536.9MB

TABLE I
DATA SETS CONSIDERED IN STUDY

We utilize diverse data as it better generalizes the runtime
and total energy the system consumes for a given compression
operation. This step ensures greater ubiquity of results for
scientific, floating-point data.

Note that for data transmission, only the size of the data
matters. Therefore, for our experiments involving transmitting
different chunks of data, we vary the size without worrying
about dimension or domain.

D. CloudLab Hardware

We utilize different hardware platforms to better generalize
our power consumption results. CloudLab is a cloud system
which provides HPC nodes with remote, root access [19]. All
experiments are run using CloudLab on the m510 and ¢220g5
node types. We summarize the pertinent, single-core hardware
specifications in Table II.

CloudLab CPU CPU Min - Base Clock Series
m510 Xeon D-1548 0.8GHz - 2.0GHz Broadwell
c220g5 Xeon Silver 4114 0.8GHz - 2.2GHz Skylake

TABLE II
HARDWARE UTILIZED

IV. MODELING POWER CONSUMPTION

In this Section, we develop models of lossy compressor
and data writing power consumption using regression. This
model has the purpose of providing an objective function to
minimize the amount of energy lossy compression and data
dumping consume. With a model parameterized in terms of
CPU frequency, we predict and therefore simulate compressor
behavior ab initio. We then understand how a system’s power
and runtime behaves with respect to compression and data
writing, informing energy-savings for HPC system-users. First,
using the data collected from compressing data at different
frequencies with SZ and ZFP, we develop models for the
power draw of lossy compression. Then we perform the same
analysis for the power draw of writing data on an NFS.

A. Proposed Models for Compression Power Draw

Our goal is to create a general model for lossy compressor
power consumption that provides the ability to estimate trade-
offs in power and runtime for energy-efficiency. To achieve this
we collect energy and runtime results for lossy compression.
In our experimental setup, we performed single-core SZ and
ZFP compression on the datasets in Table I on the two nodes
in Table II. We perform compression on the range of CPU
frequencies in Table II with a step size of S0MHz. To ensure
our model accounts for many different use cases we compress
the data with four error bounds, as outlined in Section III-A.
Finally, to ensure validity we also repeat each compression 10
times per frequency step and average the results.

Since we use two compressors on two sets of hardware,
we evaluate the five models of power draw which combine
these variables. For each model we either regressed one
compressor with both chips, or two compressors on a singular
hardware configuration. We detail our five models for power
consumption in Table III.

Model Data  Compressor(s) CPU(s)
Total SZ, ZFP Broadwell, Skylake
SZ SZ Broadwell, Skylake
ZFP ZFP Broadwell, Skylake
Broadwell SZ, ZFP Broadwell
Skylake SZ, ZFP Skylake
TABLE III

MODELS PRODUCED FOR TUNING

As shown in Figures 1 and 2, the power consumption
data with respect to frequency is non-linear. Choosing the
correct non-linear model is a matter of minimizing root-mean-
squared-error (RMSE), sum-of-squared-error (SSE). Note that
R2 is not always accurate for non-linear modeling; however, it
can still explain model variance [20]. From observing Figure



2, it is clear that there is a constant region with a sudden
jump. We use the MATLAB™ Curve Fitting Toolbox [21] to
find the model of frequency versus power, sliced along the
partitions outlined in Table III. This toolbox finds the most
optimal model, minimizing SSE and RMSE. In this case all
equations correspond with the following equation

Pru(f) = af’ +c, 2)

where f is CPU-frequency, and a, b, ¢ are model fit parameters.

In Table IV we present the models for power consumption
of lossy compresssion, along with the goodness of fit metrics
(GF), demonstrating how well each model predicts the power
usage of compression.

Model Data Pcompress(f) SSE  RMSE R2
Total 0.0086 4038 4+ 0.757 11407 0.0442 0.5771
SZ 0.0107f3-788 4 0.754 5964  0.0441 0.5864
ZFP 0.0062 %414 4+ 0.7589 5359  0.0440 0.5725
Broadwell 0.0064f5-315 1 0.7429 2463 0.0279 0.8731
Skylake 2.235e—9f23-31 1-0.7941  1.372  0.0226  0.8185

TABLE IV
MODEL EQUATIONS AND GF FOR COMPRESSION

From the models and GF in Table IV, the Broadwell and
Skylake power consumption models have a lower SSE and
RMSE and an R? closer to 1, meaning power consumption is
less dependent on the choice of lossy compressor. Therefore,
power consumption results and energy-savings should turn
towards hardware specifications when using the model-based
tuning technique.

B. Proposed Models for Data Writing Power Draw

Here we continue our modeling of power consumption and
extend these results to modeling data transit in terms of CPU
frequency. With a power consumption model for data writing,
we can optimize the energy usage of sending data over a NFS.

In our experiments for data transit, we measure the energy of
transmitting floating point data. First, we allocate fixed sizes
of data from 1GB to 16GB and then we copy that data to
an NFS, using single-core data movement. During the data
transport we measure the total energy and runtime. We perform
this same operation over a range of frequencies for the single-
core processes on both the Skylake and Broadwell chips. To
reduce variance in results, we repeat each data transit at each
frequency-step 10 times, averaging the results.

In our experiments, we vary the data size being written and
the chip where we perform our tests. To find a regression
model for power consumption, we must consider the power
results from each CPU separately. Staying consistent with
compression, our models are (1) all of the aggregated power
results for data transit on both chips, (2) the power results
from just the Broadwell chip, and (3) the power results from
just the Skylake chip.

Regression of the power comes from plotting frequency and
power from these different data partitions in the MATLAB™
Curve Fitting Toolbox [21]. In the case of our models for

power consumption of data transit, this was of the same form
as Eqn. 2.

Model Data Ppata(f) SSE RMSE R?
Total 0.0133f3-379 1.0.7985  0.8446  0.05631  0.4361
Broadwell — 0.0261f3-395 40.7097  0.03423  0.01675 0.9578
Skylake 9.095E—9f20-9 1. 0.888  0.07875  0.02355  0.5992

TABLE V
MODELS AND GF DATA TRANSIT

From Table V we notice that the SSE and RMSE are
minimized for the CPU specific models, as compared to
combining the results. This implies that data transit power
savings should be modeled on a hardware to hardware basis.
The lower values of error do show that one can find the optimal
frequency for power over the range of available frequencies
per chip. The low R? for the Skylake data transit model
is persistent among repeated tests, and shows that R? is an
inconsistent metric for non-linear regression, as statistics like
SSE and RMSE better characterize the error in a given model.

Using the models found in Tables IV and V, we are able to
optimize data I/O. Treating I/O in two steps as compression
and then data writing, different optimal frequencies are chosen,
creating a piecewise model for I/O optimization.

V. POWER OPTIMIZATION OF COMPRESSED I/0

We propose the use case of tuning a CPU to achieve a more
efficient power-state during compression and I/O for an HPC
workflow. As noted in Sections IV-A and IV-B, the choice
of the hardware has the greatest influence on the model of
power. In this Section, we analyze the energy consumption
and runtime results to show how one can use the power model
to improve I/O on a per CPU basis.

A. Characteristic Plot Results Analysis

Energy consumption and power draw can vary in magnitude
on different systems. For example, the Intel Xeon D-1548 has
a thermal design power (TDP) of 45W, as compared to the
Intel Xeon Silver 4114’s 85W TDP [19]. To make power
and energy results comparable, we scale power-usage and
energy consumption down by the max clock frequency’s power
consumption and total energy, respectively. Scaling down the
power results has the advantage of putting all of the power
on the same range as a percentage. Power as a percentage
better illustrates the change in power over increasing clock
frequency.

We note that for consistency in comparison, we also scale
the runtime by the compression runtime at the max clock
frequency. This has the added advantage of discerning the
impact of a lower clock frequency on the runtime. Therefore,
all results presented are in terms of their scaled value, not their
magnitude, easing the analysis of changing clock frequency.

We also note that in Figures 1 and 2 we display the
error bounds we compressed at, yet the trends are close to
indiscernible as we found no significant difference between
these results when scaling the power and runtime by the peak



values on their range. However, one should note that there
is a difference based on error bound in the magnitude of
energy consumed, as shown in Figure 6. Similarly, we found
no significant difference in the power consumption or runtime
based on data size for Figures 3 and 4 after scaling results.
Therefore, we do not show the different lines for data size.
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Fig. 1. Compression Scaled Power Characteristics.

Figures 14, summarize our scaled power and runtime result
by plotting the scaled power consumption and runtime over
frequency for compression and data writing. The two graphs
also show different lines for the CPU and compressor. Around
each trend we shade a 95% confidence interval, to account for
possible noise or error in results.

1) Power Dissipation: The characteristic in Figure 1 rep-
resent the scaled power consumption of SZ or ZFP on the
Broadwell and Skylake architectures. Since we seek power
savings, any percentage below 1 is considered power savings.
Therefore, when optimizing for only power consumption we
look for where the plot reaches its minimum. This occurs at the
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Fig. 2. Compression Scaled Runtime Characteristics.

lowest frequency for both chips and all compressors. However,
after analyzing runtime, we find that this is not the best choice
for CPU frequency, as this is when the runtime is the greatest.

The error bounds that are included for the compression
results do not greatly influence the scaled power consumption
of either compressor or CPU. However, in Figure 6, one
can see the effect of error bound on the magnitude of the
energy without scaling. Based on the method of scaling, the
calculation of power from Eqn. 1 factors out the magnitude
of difference in runtime and energy that occurs between
error bounds. One should note that with a more fine error
bound, compression will typically take longer and have a lower
compression ratio [5]. To represent different error bounds in
the data transit case, we vary the size of the data being sent.

Similarly, in Figure 3 we present scaled power consumption
of writing different sizes of data on Broadwell and Skylake
architectures of a series of frequencies. We find that the lowest
power consumption comes at the lowest frequency value. The
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primary difference between the Skylake and Broadwell is the
Skylake doesn’t have as large of a range as the Broadwell.
This is consistent with the compression results. The reason
for a power percentage of 0.9 in data writing as compared
to 0.8 during compression is that data writing can be more
intensive than the steps to compress. Therefore, we do not see
as significant of power savings during data writing.

Figures 1 and 3 demonstrate the critical power slope which
is discussed in [13]. The critical power slope is a sharp,
increasing curve of CPU power draw over a set of frequencies.
In this model, the values in the curve are nearly constant for
a large range of frequencies. This is the same behavior seen
in Figures 1 and 3.

By utilizing the models found in Table IV and the data
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in Figure 1, we compute that for compression on both CPUs
and both compressors we achieve approximately 19.4% power
savings during compression, by lowering frequency by 12.5%.
Similarly, using the data in Figure 3 and models from Table
V, we achieve approximately 11.2% power savings on average
during data writing, by lowering the CPU frequency of both
chips by 15%.

2) Runtime: The values in Figure 2 represent the scaled
runtime of SZ or ZFP compressing data over a range of
clock frequencies. In this graph, we interpret a percent runtime
below 1 as runtime savings. Notice that the best compressor
runtime in Figure 2 comes at the highest clock frequency,
meaning that if a user desires very fast compression, they
should utilize the max clock on a CPU. However, this is not the



minimal power consumption, as this occurs at the lowest clock
frequency. Therefore, we find where power is minimized and
runtime is minimized. This is at the point of 12.5% frequency
reduction for compression.

Yet again, the included error bounds for the scaled runtime
in compression do not influence the trend. This is again due
to the technique of scaling, as the magnitude of runtime is
higher for finer error bounds.

Similarly, in Figure 4 we show the scaled runtime of
writing different sizes of data over a range of frequencies. The
lowest runtime still occurs at the max clock frequency. Yet,
as mentioned above this is not where power is minimized as
well. This point then occurs for data transit at 15% frequency
reduction during data writing.

We note also that in Figure 2, the trends overlap showing
consistent runtimes between SZ and ZFP. We find that the
runtime is stagnant in data writing for the Skylake processor,
as this is similar to the power in Figure 3 not scaling during
this operation. This is likely indicative of the load data writing
puts on a single-core for the Skylake generation. Also we
note that energy and power analysis of the Skylake chips
have not shown major improvement in energy efficiency over
older generations, despite being newer and having better
performance [22]. Therefore, the stagnant scaling is indicative
of this lack of energy efficient scaling.

An important note about reducing clock speeds is with a
lower clock speed, there is an increase in the runtime of an
application, as seen in Figure 2. The equation for average
power, Eqn. 1, factors out time, meaning those results are
invariant of runtime. Therefore, one must notice the affect that
the intertwined metrics have on the energy of the system.

3) Energy-Aware Trade-off: As mentioned previously, the
goal of this study is to optimize the energy consumption of
lossy compression and writing data with CPU frequency for
HPC 1/O. In Figures 1-4 we present an approach for monitor-
ing the system power and time usage during compression. In
our analysis of the runtime and power dissipation separately,
we find that the best power and time savings are at opposite
ends of the frequency spectrum. The most power is saved at
the lowest clock frequency, whereas runtime is optimal at the
highest clock frequency.

Decreasing energy through lowering power with clock
frequency is a trade-off. Would a user benefit from faster
compression? or less energy-consumed? This trade-off is a
user and system consideration, yet the decreased runtime
nets significant energy-savings during data I/O. We achieve
a maximal 19.4% power savings with a net 7.5% increase in
runtime, by decreasing the CPU clock speed by 12.5% in both
models of compression. For data writing we achieve 11.2%
average power savings with a net 9.3% increase in runtime,
by decreasing the CPU frequency by 15%. Symbolically, we
represent our recommendations for tuning the CPU frequency
f in Eqn. 3, with respect to the maximum clock frequency

fma7;~

f _ 0.875 frnax
110 = 0.85 frnas

Averaging these two savings, we find that on average these
savings are equivalent to 14.3% energy savings with a net
increase of 8.4% in runtime during lossy compression and
data writing.

lossy compression
data writing

3)

VI. FREQUENCY TUNING FOR ENERGY SAVINGS

In this Section, we utilize the findings of Sections IV and
V to show how our power model and recommendations for
tuning in Eqn. 3 are used to predict and lower energy usage
in HPC I/O. We present two examples that demonstrate the
versatility of our model and solution against non-optimized
clock frequency compression and data dumping. In the first
example, we show our model for the Broadwell chip against
different datasets not included in model regression, to demon-
strate how well our work estimates new results. In the second,
we measure energy consumption for data dumping on a file
system (NFS) through Cloudlab, utilizing our optimized CPU
frequency recommendations.

A. Estimating Power Consumption Model

To test our model for new results, we perform the same
experiment with the Hurricane-ISABEL dataset from SDR-
Bench [16]. Hurricane ISABEL represents a weather simula-
tion for different weather metrics by the National Center for
Atmospheric Research. The uncompressed floating-point data
snapshots have dimension 100 x 500 x 500; we compress six
95MB fields (PRECIP, P, TC, U, V, W) using both SZ and
ZFP with a 1le—4 error bound.

Measuring the average power across all frequencies, we
produce similar results to Figures 1 and 2. In Figure 5
we demonstrate how well our power-model fits against the
power dissipation in the new results. We calculate SSE =
0.1463, RMSE = 0.0256 for these curves, demonstrating that
the model estimates the data well with little error . From this,
we determine that our model estimates power behavior well,
even with data not factored into our model.

B. Data Dumping with Lossy Compression

Data dumping is a popular method for transferring data on
an HPC system. Lossy compression is often used to reduce
size and expedite data movement. However, compression can
take significant energy before data movement. As the impetus
for this study, we use our tuning framework in Eqn. 3 as a
test against non-optimized data movement.

As an experiment we simulate compressing and transmitting
512 GBs of NYX data, attained by concatenation, over an NFS
with and without tuning the clock frequency. In particular,
we lower the clock frequency by 12.5% for SZ compression
and then by 15% to tranport the data, as per Eqn. 3. In
both our frequency scaling and the base clock we record the
total energy dissipated in the experiment. We compress using
SZ over several error bounds (le—1,1e—2,1e—3,1e—4) to
demonstrate how the difference in compressed data size affects
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data transit and the magnitude of runtime results for large
datasets. In this example, we compress and transmit a 512GB
velocity-z field of the NYX dataset on a 10Gbps ethernet
connection.
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Fig. 6. Energy Dissipation for Data Dumping

As shown in Figure 6, our solution always reduces the
amount of energy consumed in data compression and move-
ment. The non-scaling compression and data transit is rep-
resented by the tag Base Clock. We show that compression
energy usage and data movement is reduced by lowering the
frequency. On average this is 6.5kJ, or 13%, of energy saved
over all of the error bounds using our solution. While future
studies will strive to address whether these trends hold on
different CPUs, with exascale data, these initial results show
promise in reducing the energy consumption of data transit
with a compression stage.

VII. CONCLUSION

In this study, we present a framework for modeling the
power consumption of lossy compressors and /O on HPC
systems. We recommend lowering the CPU frequency by

12.5% during compression and by 15% during data writing to
minimize energy usage. Through our analysis of CPU power-
results, we optimize energy-usage of I/O bound jobs by 14.3%
on average, with only a net 8.4% increase in runtime. We
find this to be consistent across different CPU architectures,
datasets, error bounds, and compressors. We also demonstrate
that our model estimates power consumption accurately, and
saves 6.5kJs on average for compressing and writing 512GB
of floating point data. Applications of these findings in HPC
computing centers will help meet green-computing initiatives
and assist sustainable computing goals.
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