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Abstract—Exascale computing enables unprecedented, detailed
and coupled scientific simulations which generate data on the
order of tens of petabytes. Due to large data volumes, lossy
compressors become indispensable as they enable better compres-
sion ratios and runtime performance than lossless compressors.
Moreover, as (high-performance computing) HPC systems grow
larger, they draw power on the scale of tens of megawatts. Data
motion is expensive in time and energy. Therefore, optimizing
compressor and data I/O power usage is an important step
in reducing energy consumption to meet sustainable computing
goals and stay within limited power budgets. In this paper, we
explore efficient power consumption gains for the SZ and ZFP
lossy compressors and data writing on a cloud HPC system
while varying the CPU frequency, scientific data sets, and system
architecture. Using this power consumption data, we construct
a power model for lossy compression and present a tuning
methodology that reduces energy overhead of lossy compressors
and data writing on HPC systems by 14.3% on average. We
apply our model and find 6.5 kJs, or 13%, of savings on average
for 512GB I/O. Therefore, utilizing our model results in more
energy efficient lossy data compression and I/O.

I. INTRODUCTION

As high-performance computing (HPC) approaches ex-

ascale, computing centers consume significant amounts of

power, on the scale of tens of MWs [1]. These HPC systems

run highly complex applications that evolve large volumes

of data. Scientific workloads now require moving data for

analysis and processing, yet large-data I/O is a computationally

expensive operation. For example, Hardware/Hybrid Accel-

erated Cosmology Code (HACC) [2], can generate enough

snapshots to require 10 hours to transmit at a 500 GB/s

bandwidth [3]. To mitigate I/O bottlenecks, applications use

lossy compressors such as SZ [4]–[7] and ZFP [8] to compress

floating point data, reduce the storage size, and save I/O time.

Lossy compressors have the advantage of better space-savings

and runtime efficiency over lossless compressors, making them

more desirable for compressing petabytes of floating-point

data.

However, compressing large datasets can require a non-

trivial amount of time. Consider the situation of needing to

write a large amount of data. For dumping data one can

compress and then write the compressed data, or simply

transmit without compressing. I/O runtime savings on data-

dumping can be up to 25% with lossy compression, yet

there are cases where the compression itself can outweigh the

runtime for reading and writing the compressed data [3]. A

smaller, compressed file transports faster, but how long it takes

to compress that data can mitigate those advantages.

How does this affect the energy involved in the I/O? That is,

if compression takes significant runtime, how does that affect

how much energy is drawn for the I/O operation? Assuming

single CPU compression and I/O, the CPU usage and clock

frequency of the cores directly correlates with the energy-draw

of that CPU [9]. Since power draw is a given for any system,

our goal is then to minimize the compression and data transit

energy usage by lowering the clock frequency of the chip.

The motivation for focusing on compression and I/O with

respect to CPU frequency is that in HPC workloads, I/O

is not as performance-sensitive as a simulation running. As

one lowers CPU frequency, applications execute more slowly

despite saving energy. When a user runs simulations, one

needs the full CPU power as these jobs are computationally

exhaustive and time can be limited due to competitive resource

schedules. On the other hand, compression and I/O can afford

a longer runtime in many use cases, as this data transit process

is several orders of magnitude shorter than most scientific

simulations. Therefore, finding where runtime and energy

consumption are optimized via trade-off based on the CPU

frequency is possible in the context of compression and data

dumping.

In this paper, we measure the energy usage of SZ and ZFP

compressing floating point data on a cloud HPC system with a

network file system (NFS). Also we measure the energy usage

of moving different-sizes data on an NFS. With these results

we construct models of energy and average power that provide

a CPU frequency tuning framework to optimize energy usage

for lossy compression and data transmission, characterizing

an I/O workflow. Using our models we demonstrate energy-

savings in the use-case of lossy compression and then trans-

mitting data.

Our contributions in this paper are as follows:

• We derive and compare power consumption models of SZ

and ZFP to enable CPU-frequency tuning to find optimal

power and energy consumption.
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• We provide recommendations to reduce energy usage

of lossy compression in I/O by 19.4% on average by

lowering the CPU frequency by 12.5%.

• We construct a model for data transit power consumption

and achieve reduced energy usage by 11.2% on average

by lowering the CPU frequency by 15%.

• We utilize our frequency tuning models for energy-

optimizing lossy compression and data transmission and

demonstrate 14.3% overall energy savings.

• We apply our model to a real-world example of com-

pressing and writing 512GBs of floating point data on an

NFS, saving 6.5 kJs on average, which equates to 13%

energy savings.

We organize our paper as follows. In Section II we describe

related works to our project, as well as motivation concerning

past studies in energy-efficiency, lossy compression, and data

movement. In Section III we outline the different methods,

softwares, and datasets we use in our experiments. In Sections

IV, V we develop our model of power consumption for lossy

compression and data transit, respectively. In Section VI we

discuss how we optimize the power consumption of I/O using

our models. Section VII then shows use-case driven examples

of tuning an HPC system for energy-savings.

II. RELATED WORK

A. Lossy Compression and Data Dumping

As HPC systems approach exascale, the question of how

to transport data on cloud systems for analysis becomes

important. Lossy compressors, such as SZ [4]–[7] and ZFP

[8] provide the advantage of decreasing size with impres-

sive compression ratios. Lossy compressors achieve this by

eliminating redundancies in chunks of scientific, floating-point

data via encoding the binary representation of each datum.

Based on the granularity required, an error bound can be

set to preserve more or less data. These space savings make

lossy compression a valuable tool in scientific computing,

particularly in data movement.

Previous work [3] has shown the possibility for lossy com-

pression to decrease transit time on an I/O-bound operation.

Liang et al. focused on the different configurations of SZ and

ZFP in the context of runtime optimization for transporting

large datasets, finding time-savings when compressing before

disk writing. A primary interest in data dumping is sending a

small number of larger files over a large number of smaller

files due to I/O bottlenecking in HPC systems [10]. Lossy

compression on large scientific datasets achieves this by re-

taining the number of files and reducing their size, rather than

increasing the number of files with smaller size. Using lossy

compression on large scientific datasets, our study looks to

take a similar approach, however taking energy savings in

place of time-savings for transporting large volumes of data

via tuning CPU frequency.

B. Energy Optimization Techniques in HPC

Large supercomputers in the age of exascale computing

can have a power rating on the order of tens of MWs [11]–

[13]. One approach in particular is CPU frequency scaling, as

previous work in [11], [12] have shown to be effective. These

studies focus on how dynamic voltage and frequency scaling

are used to achieve energy savings, much like what we work to

achieve in our study. Mòran et al., have proven success in not

only optimizing the energy consumption of checkpoint/restart

systems but also parameterizing it. Using CPU frequency as

an independent variable, they explore different experimental

settings to then characterize the system’s energy consumption.

Other work [13] demonstrates similar results to Mòran, finding

a critical power slope. This curve shape denotes a sharp ex-

ponential increase in power over the range of CPU frequency,

meaning energy savings can be achieved by lowering CPU

frequency.

Similarly, estimation of energy consumption proves to be

a useful tool in optimizing the energy efficiency of an HPC

system [14]. Studies which perform this analysis focus on

surveying a large number of energy optimized algorithms to

then select, per-system, which algorithm is the best fit for a

specific use case [14]. With this study we add the perspective

of energy estimation in the context of lossy compression and

data dumping towards exascale systems, adding a technique

for that area of software.

In our work, we use frequency scaling for energy reduction

in the context of lossy compression. We focus on parameteri-

zation and also a discussion about how to optimize I/O energy

usage with efficient lossy compression. We look to evaluate the

impact that the CPU clock frequency can have on the power

usage of the HPC system.

III. METHODS

The total energy, Etotal, of a process is a product of average

power, Pavg, and runtime, trun:

Etotal = Pavg · trun. (1)

To establish a model for power consumption, one needs to

measure the energy and runtime of that operation over a

range of frequencies. Using perf, a Linux performance-

measurement tool, we sample the total energy and runtime

of compression. In our case, we model power consumption of

I/O by recording energy and runtime of compression and data

transmission.

We generalize our power experiments for compression with

the usage of (1) the SZ and ZFP lossy compressors with

different error bounds, (2) CPU frequency scaling, (3) data size

and dimension to compress, and (4) hardware specifications

for our experimental platforms.

A. Lossy Compressors and Error Bound

We use two leading HPC lossy compressors SZ and ZFP.

ZFP [8] compresses by transforming floating-point data to

fixed-point values block-by-block and adopts an embedded

coding to encode generated coefficients. SZ [4]–[6] com-

presses blocks of data using a series of steps: data prediction,

error quantization, Huffman encoding, and lossless compres-

sion. An important component of lossy compression is the
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error bound: the tolerance of how well the data should be

reconstructed at decompression. A smaller error bound in

general yields lower compression ratios and is more runtime

expensive.

We use the absolute error bound in SZ and the ZFP

fixed-accuracy mode, both of which bound the compression

error at a fixed level. The error-bounds we target for both

compressors are 1e−1, 1e−2, 1e−3, 1e−4. These bounds are

used to generalize compressor use-cases for the energy-tuning

model, as different users utilize different granularity depending

on the level of accuracy needed in data reconstruction.

B. CPU Frequency

We set the CPU frequency for all CPU cores using the Linux

system call, cpufreq-set. Changing the CPU frequency

affects the amount of voltage supplied to the chip. The

range of frequencies we consider in this study goes from the

the minimum clock speed (800MHz) to the maximum clock

frequency for the given CPU with a step size of 50MHz.

This step size was chosen as it would provide a sufficient

granularity to notice trends in the total energy measured for

each compression job conducted.

C. Data Characteristics

The dimensionality and size of data has a large impact on

compression and data I/O. For example, a 10GB 4-D array of

floating-point data is generally more difficult to compress than

a 100MB 1-D array [15], because there are more points and

dimensions to encode and process. SDRBench [16] provides

floating-point, scientific data sets to assist in benchmarking

compressor performance. In Table I we summarize the char-

acteristics of the data we compress.

Domain Dimensions Size of Fields

CESM-ATM [17] 26× 1800× 3600 673.9MB
HACC [2] 1× 280953867 1046.9MB
NYX [18] 512× 512× 512 536.9MB

TABLE I
DATA SETS CONSIDERED IN STUDY

We utilize diverse data as it better generalizes the runtime

and total energy the system consumes for a given compression

operation. This step ensures greater ubiquity of results for

scientific, floating-point data.

Note that for data transmission, only the size of the data

matters. Therefore, for our experiments involving transmitting

different chunks of data, we vary the size without worrying

about dimension or domain.

D. CloudLab Hardware

We utilize different hardware platforms to better generalize

our power consumption results. CloudLab is a cloud system

which provides HPC nodes with remote, root access [19]. All

experiments are run using CloudLab on the m510 and c220g5

node types. We summarize the pertinent, single-core hardware

specifications in Table II.

CloudLab CPU CPU Min - Base Clock Series

m510 Xeon D-1548 0.8GHz - 2.0GHz Broadwell
c220g5 Xeon Silver 4114 0.8GHz - 2.2GHz Skylake

TABLE II
HARDWARE UTILIZED

IV. MODELING POWER CONSUMPTION

In this Section, we develop models of lossy compressor

and data writing power consumption using regression. This

model has the purpose of providing an objective function to

minimize the amount of energy lossy compression and data

dumping consume. With a model parameterized in terms of

CPU frequency, we predict and therefore simulate compressor

behavior ab initio. We then understand how a system’s power

and runtime behaves with respect to compression and data

writing, informing energy-savings for HPC system-users. First,

using the data collected from compressing data at different

frequencies with SZ and ZFP, we develop models for the

power draw of lossy compression. Then we perform the same

analysis for the power draw of writing data on an NFS.

A. Proposed Models for Compression Power Draw

Our goal is to create a general model for lossy compressor

power consumption that provides the ability to estimate trade-

offs in power and runtime for energy-efficiency. To achieve this

we collect energy and runtime results for lossy compression.

In our experimental setup, we performed single-core SZ and

ZFP compression on the datasets in Table I on the two nodes

in Table II. We perform compression on the range of CPU

frequencies in Table II with a step size of 50MHz. To ensure

our model accounts for many different use cases we compress

the data with four error bounds, as outlined in Section III-A.

Finally, to ensure validity we also repeat each compression 10

times per frequency step and average the results.

Since we use two compressors on two sets of hardware,

we evaluate the five models of power draw which combine

these variables. For each model we either regressed one

compressor with both chips, or two compressors on a singular

hardware configuration. We detail our five models for power

consumption in Table III.

Model Data Compressor(s) CPU(s)

Total SZ, ZFP Broadwell, Skylake
SZ SZ Broadwell, Skylake

ZFP ZFP Broadwell, Skylake
Broadwell SZ, ZFP Broadwell
Skylake SZ, ZFP Skylake

TABLE III
MODELS PRODUCED FOR TUNING

As shown in Figures 1 and 2, the power consumption

data with respect to frequency is non-linear. Choosing the

correct non-linear model is a matter of minimizing root-mean-

squared-error (RMSE), sum-of-squared-error (SSE). Note that

R2 is not always accurate for non-linear modeling; however, it

can still explain model variance [20]. From observing Figure
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2, it is clear that there is a constant region with a sudden

jump. We use the MATLABTM Curve Fitting Toolbox [21] to

find the model of frequency versus power, sliced along the

partitions outlined in Table III. This toolbox finds the most

optimal model, minimizing SSE and RMSE. In this case all

equations correspond with the following equation

Pfit(f) = af b + c, (2)

where f is CPU-frequency, and a, b, c are model fit parameters.

In Table IV we present the models for power consumption

of lossy compresssion, along with the goodness of fit metrics

(GF), demonstrating how well each model predicts the power

usage of compression.

Model Data PCompress(f) SSE RMSE R2

Total 0.0086f4.038 + 0.757 11.407 0.0442 0.5771

SZ 0.0107f3.788 + 0.754 5.964 0.0441 0.5864

ZFP 0.0062f4.414 + 0.7589 5.359 0.0440 0.5725

Broadwell 0.0064f5.315 + 0.7429 2.463 0.0279 0.8731

Skylake 2.235e−9f23.31 + 0.7941 1.372 0.0226 0.8185

TABLE IV
MODEL EQUATIONS AND GF FOR COMPRESSION

From the models and GF in Table IV, the Broadwell and

Skylake power consumption models have a lower SSE and

RMSE and an R2 closer to 1, meaning power consumption is

less dependent on the choice of lossy compressor. Therefore,

power consumption results and energy-savings should turn

towards hardware specifications when using the model-based

tuning technique.

B. Proposed Models for Data Writing Power Draw

Here we continue our modeling of power consumption and

extend these results to modeling data transit in terms of CPU

frequency. With a power consumption model for data writing,

we can optimize the energy usage of sending data over a NFS.

In our experiments for data transit, we measure the energy of

transmitting floating point data. First, we allocate fixed sizes

of data from 1GB to 16GB and then we copy that data to

an NFS, using single-core data movement. During the data

transport we measure the total energy and runtime. We perform

this same operation over a range of frequencies for the single-

core processes on both the Skylake and Broadwell chips. To

reduce variance in results, we repeat each data transit at each

frequency-step 10 times, averaging the results.

In our experiments, we vary the data size being written and

the chip where we perform our tests. To find a regression

model for power consumption, we must consider the power

results from each CPU separately. Staying consistent with

compression, our models are (1) all of the aggregated power

results for data transit on both chips, (2) the power results

from just the Broadwell chip, and (3) the power results from

just the Skylake chip.

Regression of the power comes from plotting frequency and

power from these different data partitions in the MATLABTM

Curve Fitting Toolbox [21]. In the case of our models for

power consumption of data transit, this was of the same form

as Eqn. 2.

Model Data PData(f) SSE RMSE R2

Total 0.0133f3.379 + 0.7985 0.8446 0.05631 0.4361

Broadwell 0.0261f3.395 + 0.7097 0.03423 0.01675 0.9578

Skylake 9.095E−9f20.9 + 0.888 0.07875 0.02355 0.5992

TABLE V
MODELS AND GF DATA TRANSIT

From Table V we notice that the SSE and RMSE are

minimized for the CPU specific models, as compared to

combining the results. This implies that data transit power

savings should be modeled on a hardware to hardware basis.

The lower values of error do show that one can find the optimal

frequency for power over the range of available frequencies

per chip. The low R2 for the Skylake data transit model

is persistent among repeated tests, and shows that R2 is an

inconsistent metric for non-linear regression, as statistics like

SSE and RMSE better characterize the error in a given model.

Using the models found in Tables IV and V, we are able to

optimize data I/O. Treating I/O in two steps as compression

and then data writing, different optimal frequencies are chosen,

creating a piecewise model for I/O optimization.

V. POWER OPTIMIZATION OF COMPRESSED I/O

We propose the use case of tuning a CPU to achieve a more

efficient power-state during compression and I/O for an HPC

workflow. As noted in Sections IV-A and IV-B, the choice

of the hardware has the greatest influence on the model of

power. In this Section, we analyze the energy consumption

and runtime results to show how one can use the power model

to improve I/O on a per CPU basis.

A. Characteristic Plot Results Analysis

Energy consumption and power draw can vary in magnitude

on different systems. For example, the Intel Xeon D-1548 has

a thermal design power (TDP) of 45W, as compared to the

Intel Xeon Silver 4114’s 85W TDP [19]. To make power

and energy results comparable, we scale power-usage and

energy consumption down by the max clock frequency’s power

consumption and total energy, respectively. Scaling down the

power results has the advantage of putting all of the power

on the same range as a percentage. Power as a percentage

better illustrates the change in power over increasing clock

frequency.

We note that for consistency in comparison, we also scale

the runtime by the compression runtime at the max clock

frequency. This has the added advantage of discerning the

impact of a lower clock frequency on the runtime. Therefore,

all results presented are in terms of their scaled value, not their

magnitude, easing the analysis of changing clock frequency.

We also note that in Figures 1 and 2 we display the

error bounds we compressed at, yet the trends are close to

indiscernible as we found no significant difference between

these results when scaling the power and runtime by the peak
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values on their range. However, one should note that there

is a difference based on error bound in the magnitude of

energy consumed, as shown in Figure 6. Similarly, we found

no significant difference in the power consumption or runtime

based on data size for Figures 3 and 4 after scaling results.

Therefore, we do not show the different lines for data size.
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Fig. 1. Compression Scaled Power Characteristics.

Figures 1–4, summarize our scaled power and runtime result

by plotting the scaled power consumption and runtime over

frequency for compression and data writing. The two graphs

also show different lines for the CPU and compressor. Around

each trend we shade a 95% confidence interval, to account for

possible noise or error in results.

1) Power Dissipation: The characteristic in Figure 1 rep-

resent the scaled power consumption of SZ or ZFP on the

Broadwell and Skylake architectures. Since we seek power

savings, any percentage below 1 is considered power savings.

Therefore, when optimizing for only power consumption we

look for where the plot reaches its minimum. This occurs at the
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Fig. 2. Compression Scaled Runtime Characteristics.

lowest frequency for both chips and all compressors. However,

after analyzing runtime, we find that this is not the best choice

for CPU frequency, as this is when the runtime is the greatest.

The error bounds that are included for the compression

results do not greatly influence the scaled power consumption

of either compressor or CPU. However, in Figure 6, one

can see the effect of error bound on the magnitude of the

energy without scaling. Based on the method of scaling, the

calculation of power from Eqn. 1 factors out the magnitude

of difference in runtime and energy that occurs between

error bounds. One should note that with a more fine error

bound, compression will typically take longer and have a lower

compression ratio [5]. To represent different error bounds in

the data transit case, we vary the size of the data being sent.

Similarly, in Figure 3 we present scaled power consumption

of writing different sizes of data on Broadwell and Skylake

architectures of a series of frequencies. We find that the lowest

power consumption comes at the lowest frequency value. The
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Fig. 3. Data Transit Scaled Power Characteristics.

primary difference between the Skylake and Broadwell is the

Skylake doesn’t have as large of a range as the Broadwell.

This is consistent with the compression results. The reason

for a power percentage of 0.9 in data writing as compared

to 0.8 during compression is that data writing can be more

intensive than the steps to compress. Therefore, we do not see

as significant of power savings during data writing.

Figures 1 and 3 demonstrate the critical power slope which

is discussed in [13]. The critical power slope is a sharp,

increasing curve of CPU power draw over a set of frequencies.

In this model, the values in the curve are nearly constant for

a large range of frequencies. This is the same behavior seen

in Figures 1 and 3.

By utilizing the models found in Table IV and the data
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Fig. 4. Data Transit Scaled Runtime Characteristics.

in Figure 1, we compute that for compression on both CPUs

and both compressors we achieve approximately 19.4% power

savings during compression, by lowering frequency by 12.5%.

Similarly, using the data in Figure 3 and models from Table

V, we achieve approximately 11.2% power savings on average

during data writing, by lowering the CPU frequency of both

chips by 15%.

2) Runtime: The values in Figure 2 represent the scaled

runtime of SZ or ZFP compressing data over a range of

clock frequencies. In this graph, we interpret a percent runtime

below 1 as runtime savings. Notice that the best compressor

runtime in Figure 2 comes at the highest clock frequency,

meaning that if a user desires very fast compression, they

should utilize the max clock on a CPU. However, this is not the
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minimal power consumption, as this occurs at the lowest clock

frequency. Therefore, we find where power is minimized and

runtime is minimized. This is at the point of 12.5% frequency

reduction for compression.

Yet again, the included error bounds for the scaled runtime

in compression do not influence the trend. This is again due

to the technique of scaling, as the magnitude of runtime is

higher for finer error bounds.

Similarly, in Figure 4 we show the scaled runtime of

writing different sizes of data over a range of frequencies. The

lowest runtime still occurs at the max clock frequency. Yet,

as mentioned above this is not where power is minimized as

well. This point then occurs for data transit at 15% frequency

reduction during data writing.

We note also that in Figure 2, the trends overlap showing

consistent runtimes between SZ and ZFP. We find that the

runtime is stagnant in data writing for the Skylake processor,

as this is similar to the power in Figure 3 not scaling during

this operation. This is likely indicative of the load data writing

puts on a single-core for the Skylake generation. Also we

note that energy and power analysis of the Skylake chips

have not shown major improvement in energy efficiency over

older generations, despite being newer and having better

performance [22]. Therefore, the stagnant scaling is indicative

of this lack of energy efficient scaling.

An important note about reducing clock speeds is with a

lower clock speed, there is an increase in the runtime of an

application, as seen in Figure 2. The equation for average

power, Eqn. 1, factors out time, meaning those results are

invariant of runtime. Therefore, one must notice the affect that

the intertwined metrics have on the energy of the system.

3) Energy-Aware Trade-off: As mentioned previously, the

goal of this study is to optimize the energy consumption of

lossy compression and writing data with CPU frequency for

HPC I/O. In Figures 1–4 we present an approach for monitor-

ing the system power and time usage during compression. In

our analysis of the runtime and power dissipation separately,

we find that the best power and time savings are at opposite

ends of the frequency spectrum. The most power is saved at

the lowest clock frequency, whereas runtime is optimal at the

highest clock frequency.

Decreasing energy through lowering power with clock

frequency is a trade-off. Would a user benefit from faster

compression? or less energy-consumed? This trade-off is a

user and system consideration, yet the decreased runtime

nets significant energy-savings during data I/O. We achieve

a maximal 19.4% power savings with a net 7.5% increase in

runtime, by decreasing the CPU clock speed by 12.5% in both

models of compression. For data writing we achieve 11.2%

average power savings with a net 9.3% increase in runtime,

by decreasing the CPU frequency by 15%. Symbolically, we

represent our recommendations for tuning the CPU frequency

f in Eqn. 3, with respect to the maximum clock frequency

fmax.

fI/O =

{

0.875fmax lossy compression

0.85fmax data writing
(3)

Averaging these two savings, we find that on average these

savings are equivalent to 14.3% energy savings with a net

increase of 8.4% in runtime during lossy compression and

data writing.

VI. FREQUENCY TUNING FOR ENERGY SAVINGS

In this Section, we utilize the findings of Sections IV and

V to show how our power model and recommendations for

tuning in Eqn. 3 are used to predict and lower energy usage

in HPC I/O. We present two examples that demonstrate the

versatility of our model and solution against non-optimized

clock frequency compression and data dumping. In the first

example, we show our model for the Broadwell chip against

different datasets not included in model regression, to demon-

strate how well our work estimates new results. In the second,

we measure energy consumption for data dumping on a file

system (NFS) through Cloudlab, utilizing our optimized CPU

frequency recommendations.

A. Estimating Power Consumption Model

To test our model for new results, we perform the same

experiment with the Hurricane-ISABEL dataset from SDR-

Bench [16]. Hurricane ISABEL represents a weather simula-

tion for different weather metrics by the National Center for

Atmospheric Research. The uncompressed floating-point data

snapshots have dimension 100× 500× 500; we compress six

95MB fields (PRECIP, P, TC, U, V, W) using both SZ and

ZFP with a 1e−4 error bound.

Measuring the average power across all frequencies, we

produce similar results to Figures 1 and 2. In Figure 5

we demonstrate how well our power-model fits against the

power dissipation in the new results. We calculate SSE =
0.1463,RMSE = 0.0256 for these curves, demonstrating that

the model estimates the data well with little error . From this,

we determine that our model estimates power behavior well,

even with data not factored into our model.

B. Data Dumping with Lossy Compression

Data dumping is a popular method for transferring data on

an HPC system. Lossy compression is often used to reduce

size and expedite data movement. However, compression can

take significant energy before data movement. As the impetus

for this study, we use our tuning framework in Eqn. 3 as a

test against non-optimized data movement.

As an experiment we simulate compressing and transmitting

512 GBs of NYX data, attained by concatenation, over an NFS

with and without tuning the clock frequency. In particular,

we lower the clock frequency by 12.5% for SZ compression

and then by 15% to tranport the data, as per Eqn. 3. In

both our frequency scaling and the base clock we record the

total energy dissipated in the experiment. We compress using

SZ over several error bounds (1e−1, 1e−2, 1e−3, 1e−4) to

demonstrate how the difference in compressed data size affects
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data transit and the magnitude of runtime results for large

datasets. In this example, we compress and transmit a 512GB

velocity-x field of the NYX dataset on a 10Gbps ethernet

connection.
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Fig. 6. Energy Dissipation for Data Dumping

As shown in Figure 6, our solution always reduces the

amount of energy consumed in data compression and move-

ment. The non-scaling compression and data transit is rep-

resented by the tag Base Clock. We show that compression

energy usage and data movement is reduced by lowering the

frequency. On average this is 6.5kJ, or 13%, of energy saved

over all of the error bounds using our solution. While future

studies will strive to address whether these trends hold on

different CPUs, with exascale data, these initial results show

promise in reducing the energy consumption of data transit

with a compression stage.

VII. CONCLUSION

In this study, we present a framework for modeling the

power consumption of lossy compressors and I/O on HPC

systems. We recommend lowering the CPU frequency by

12.5% during compression and by 15% during data writing to

minimize energy usage. Through our analysis of CPU power-

results, we optimize energy-usage of I/O bound jobs by 14.3%

on average, with only a net 8.4% increase in runtime. We

find this to be consistent across different CPU architectures,

datasets, error bounds, and compressors. We also demonstrate

that our model estimates power consumption accurately, and

saves 6.5kJs on average for compressing and writing 512GB

of floating point data. Applications of these findings in HPC

computing centers will help meet green-computing initiatives

and assist sustainable computing goals.
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