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Abstract. Modelling the pressure in the Earth’s interior is

a common problem in Earth sciences. In this study we pro-

pose a method based on the conservation of the momentum

of a fluid by using a hydrostatic scenario or a uniformly mov-

ing fluid to approximate the pressure. This results in a partial

differential equation (PDE) that can be solved using classi-

cal numerical methods. In hydrostatic cases, the computed

pressure is the lithostatic pressure. In non-hydrostatic cases,

we show that this PDE-based approach better approximates

the total pressure than the classical 1D depth-integrated ap-

proach. To illustrate the performance of this PDE-based for-

mulation we present several hydrostatic and non-hydrostatic

2D models in which we compute the lithostatic pressure or an

approximation of the total pressure, respectively. Moreover,

we also present a 3D rift model that uses that approximated

pressure as a time-dependent boundary condition to simulate

far-field normal stresses. This model shows a high degree of

non-cylindrical deformation, resulting from the stress bound-

ary condition, that is accommodated by strike-slip shear

zones. We compare the result of this numerical model with

a traditional rift model employing free-slip boundary condi-

tions to demonstrate the first-order implications of consid-

ering “open” boundary conditions in 3D thermo-mechanical

rift models.

1 Introduction

In Earth sciences and geodynamic modelling, computing the

pressure can be essential. Specifically, numerous regional

thermo-mechanical studies use the lithostatic pressure or

a reference pressure based on some density structure as a

normal stress boundary condition (e.g. Baes et al., 2018;

Brune, 2014; Brune et al., 2012, 2014, 2017; Chertova et al.,

2012, 2014; Glerum et al., 2018; Ismail-Zadeh et al., 2013;

Popov and Sobolev, 2008; Quinteros et al., 2010; Yamato

et al., 2008). By imposing only the normal stress, material

is permitted to flow in and out of the domain in response to

the other boundary conditions and or deformation in the do-

main interior. This is inherently closer to the reality of the

dynamics within a regional segment of the Earth,compared

to a regional domain that is closed and in which neither in-

flow nor outflow is permitted. Hence, the ultimate intent of

imposing the normal stress is to provide dynamical behaviour

that is similar to that which would occur if the models were

performed in a much larger domain. Moreover, the reference

pressure can also be used as an initial guess for the pressure

when solving linear or non-linear system flow problems with

iterative methods.

The common approach to compute a reference pressure P

is to define a set of depth columns and integrate the rock den-

sity ρ(x) over each column to obtain the pressure at depth.

Thus, to compute the pressure P at some point of x′, we eval-

uate the 1D integral as follows:

P(x′) = Ps +
x′
∫

x′
s

ρ(x)||g(x)||dx, (1)

where x′
s is the projection of x′ onto the surface of the

Earth in the direction opposite to the gravity vector g and

Ps is the reference pressure at the surface x′
s. For the case

of a constant density and gravity, this expression reduces to

P(x′) = Ps +ρgD, where D is the distance (depth) given by

D = ‖x′
s −x′|| and g = ||g||. When the density is a function
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of space and gravity is constant, the 1D integral is decom-

posed into different segments Di and a suitable quadrature

rule is applied over each segment. For example using a one-

point Gauss quadrature rule we have

P(x′) = Ps +
∑

i

∫

Di

ρ(x)g dx ≈ Ps +
∑

i

ρigDi, (2)

where ρi is the density at the centroid of the segment Di .

For the case of a uniform mesh with cell edges aligned with

the gravity vector, all the cell edges and vertices are located

along straight lines that are parallel to the direction of gravity.

Hence, Eq. (2) can be simply evaluated by traversing along

a column associated with a set of cells (or vertices). In this

special case, the sub-division of the integral is naturally de-

fined by mesh cells. If the column sweep is performed from

the surface to depth, then only a single pass over each cell

in a column is required to compute the pressure at any depth

within that column by accumulating values from cells at shal-

lower depths. Therefore, if we traverse from segments i = 0,

1, 2, . . . , N , where the segments are ordered such that Di+1

is located at greater depth than Di , then we have the follow-

ing sequence P0 = Ps+ρ0gD0, P1 = Ps+ρ0gD0+ρ1gD1 =
P0 +ρ1gD1, . . . , PN = Ps +

∑N
i ρigDi = PN−1 +ρNgDN .

Although evaluating Eq. (2) may appear simple, its imple-

mentation may be inefficient or too algorithmically complex

for general use. Below we outline some common use cases

that render the column-wise integration difficult (or expen-

sive):

1. a mesh with cell edges (2D) or faces (3D) that are not

aligned with the gravity vector (Fig. 1a),

2. an unstructured mesh (Fig. 1b),

3. a density structure (or gravity vector) that is spatially

varying,

4. a parallel decomposition of the mesh (Fig. 1c),

5. time dependence in the density or mesh coordinates that

requires continual re-evaluation of the reference pres-

sure.

To compute P(x′) we first have to define the location x′
s.

In general this is non-trivial for use cases (1) and (2). If both

the density and gravity are constant, then the only complexity

associated with meshes identified in points (1) and (2) relate

to computing x′
s. Due to the fact that the path of the integral

(i.e. the “column”) does not coincide in general with a set of

mesh cells or vertices, the line integral must be performed for

each point x′ in the mesh, meaning that the single pass ap-

proach used in the gravity-aligned mesh is not possible. If the

density (or gravity) vary in space throughout the domain, the

integral must be approximated via a suitable sub-division in

space and/or a quadrature rule. Assuming that the density is

a piecewise constant over each cell, the simplest approxima-

tion would be to determine the intersection between the line

segment [x′,x′
s] and each cell and apply a one-point quadra-

ture rule over the intersecting segment times. In Fig. 1a and

b we depict the complexity of this procedure for a non-

coordinate-aligned and unstructured mesh. When performing

simulations in parallel where the mesh is distributed across

multiple Message Passing Interface (MPI) ranks, even for the

case of a uniform mesh aligned with the gravity vector, the

column-wise integration approach is somewhat complicated.

Individual MPI ranks may compute their local contribution

to the sum of accumulated pressures; however, the final pres-

sure requires a partial sum to be performed over mesh sub-

domains that intersect the 1D line integral. The global reduc-

tion (with the chosen MPI ranks overlapping with each 1D

line integral) is complicated to define for mesh types identi-

fied in points (1) and (2). Lastly, if the reference pressure as-

sociated with some density structure is to be used as a bound-

ary condition in a mechanical model, time dependence of that

density structure (or mesh) will require one to re-compute the

reference pressure at each time step. Hence, the efficiency of

the implementation used to compute the pressure is impor-

tant.

Moreover, when the density structure evolves with time

as deformation occurs, the pressure gradients may no longer

be aligned with the gravitational acceleration vector. In these

non-hydrostatic cases, this pressure is not lithostatic. How-

ever, to be able to provide an approximation for the total

pressure or to use stress boundary conditions, it is still im-

portant to approximate the total pressure in the best possible

way.

For these reasons, we propose an efficient mesh and nu-

merical method (finite elements, finite differences, finite vol-

umes, etc.) to compute a reference pressure associated with

the density structure of a domain in hydrostatic cases or an

approximation of the total pressure for non-hydrostatic cases

for all scenarios given above by solving a partial differential

equation (PDE) derived from the conservation of the non-

inertial momentum equation for an incompressible fluid. We

also present thermo-mechanical numerical models and static

numerical models applied to Earth sciences and geodynam-

ics to show the usefulness of this approach.

2 PDE-based pressure formulation

For an incompressible fluid in a domain �, the non-inertial

form of the conservation of momentum is given by the Stokes

equation

∇ · τ − ∇P + ρg = 0, (3)

where v is the velocity of the fluid, P is the total pressure,

τ = 2ηε̇(v) is the deviatoric stress tensor with η the viscos-

ity, ε̇(v) is the strain rate tensor, ρ := ρ(x, t) is the den-

sity, g := g(x, t) is the gravity vector, and x and t denote
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Figure 1. Schematic representation of meshes for which computing an integral in the vertical direction can be challenging: (a) mesh with a

grid not aligned with the gravity vector, (b) unstructured mesh, and (c) parallel distribution of a mesh. The dashed blue lines represent the

direction along which the integral must be performed. The blue crosses represent the points that have to be evaluated during the integration.

the space and time, respectively. The incompressibility con-

straint is given as follows:

∇ · v = 0. (4)

In the context of our problems we will decompose the bound-

ary of the domain into two non-overlapping segments: ∂�surf

that we will regard as the free surface and prescribe that tan-

gential and normal stresses are zero, i.e. τ−P I = 0, and ∂�i,

which denotes the interior parts of the boundary along which

we may impose any valid combination of velocity or stress

in the normal and tangential directions. Furthermore, ∂� =
∂�i ∪ ∂�surf and ∂�i ∩ ∂�surf = ∅. The outward-pointing

unit normal vector to ∂� will be denoted via n̂.

To define the pressure associated with the density struc-

ture we make the “ansatz” that v = 0; hence, Eq. (4) is triv-

ially satisfied, and Eq. (3) reduces to the usual hydrostatic

equilibrium problem

0 = −∇P + ρg. (5)

For spatial dimensions nd = 2,3, Eq. (5) is over-determined

as there are more equations (nd) than unknowns:







∂
∂x
∂
∂y
∂
∂z






P = ρ(x)





gx

gy

gz



 . (6)

As such, there is no unique solution to Eq. (5). To obtain

a unique solution to Eq. (5), we require a single equation for

P . This can be achieved by taking the divergence of Eq. (5):

∇ ·∇P = ∇ · (ρg). (7)

Eq. (7) will be referred to as the pressure Poisson equation

(PPE).

Equation (7) can be obtained in an alternative manner with

less restrictive assumptions. First, we assume that we have a

solution ((v),p) for Eqs. (3), (4). Then we take the diver-

gence of the momentum equation (as before) and integrate

over �

∫

�

∇ · (∇ · τ )dV −
∫

�

∇ ·∇P dV +
∫

�

∇ · (ρg)dV = 0. (8)

Then, applying the divergence theorem to the first term we

obtain
∫

∂�

(∇ · τ ) · n̂dS −
∫

�

∇ ·∇P dV +
∫

�

∇ · (ρg)dV = 0. (9)

If we assume the boundary term on the left-hand side is

small, we have

∫

�

∇ ·∇P dV ≈
∫

�

∇ · (ρg)dV (10)

which must be true for any arbitrary domain, thus resulting

in Eq. (7).
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Assuming that n̂ is constant or slowly varying and that τ

is symmetric yields

(∇ · τ ) · n̂ = ni

∂

∂xj

τij ≈ ∂

∂xj

(τjini) = ∇ · (τ n̂). (11)

Hence, dropping the first term in Eq. (9) is equivalent to say-

ing that τ n̂ ≈ 0 for all x ∈ ∂�. Alternatively, the term is zero

if ∇ · τ = 0 for all x ∈ ∂�. This condition is satisfied if the

fluid experiences either rigid body translations or rigid body

rotation along ∂�.

2.1 Boundary conditions

A unique solution to Eq. (7) requires boundary conditions

to be specified on P . Our choice of boundary conditions for

Eq. (7) is motivated by Earth-like bodies. The boundary con-

ditions will be specified in the usual manner, i.e. in terms of

a Dirichlet constraint in which we impose P and Neumann

constraints in which we impose the behaviour of ∇P · n̂.

Along the surface of the domain, which represents the free

surface of the Earth, we impose

P = 0 for all x ∈ ∂�surf. (12)

Equation (12) is a Dirichlet constraint and specifies that the

reference (or datum) pressure should be zero on the surface

of our geological body. This is consistent with the observa-

tion that the mean pressure on all points on the surface (above

sea level) are approximately equal. This Dirichlet boundary

condition is a natural extension of the free surface bound-

ary condition used for the flow problem in Eqs. (3), (4),

namely n̂ · (τ − P I)n̂ = n̂ · (τ − P I)t̂ = 0, which reduces to

n̂·τ n̂−P = 0 and n̂·τ t̂ = 0 with t̂ a tangent unit vector to the

boundary such that n̂ · t̂ = 0. Equation (12) is consistent with

a fluid at rest since τ = 0. In the non-hydrostatic case, we

require τ n̂ ≈ 0 to arrive at Eq. (12). We also note that n̂ · τ n̂

is proportional to the mean curvature κ of the boundary ∂�

(Barth and Carey, 2007). Hence, if there is zero topography,

κ = 0 and P = 0 on ∂�surf, and if the change in topography

is small, then κ ≈ 0 and P ≈ 0.

Two different boundary conditions are introduced to con-

strain ∇P · n̂. These are defined as a direct extension of the

1D hydrostatic assumptions to 2D and 3D domains. We first

introduce some additional quantities that will aid the defini-

tion of the Neumann boundary condition. First, we split ∂�i

into two parts, such that ∂�i = ∂�⊥ ∪ ∂�‖. Next, we define

the gravity unit vector ĝ such that

g = gĝ, (13)

and the unit vector ĝ⊥, which is perpendicular to ĝ, i.e.

ĝ · ĝ⊥ = 0. (14)

The first constraint states that P should increase only in

the direction of gravity. Hence, from Eq. (5) we have

∇P · ĝ = ρg‖ĝ‖2 = ρg, for all x ∈ ∂�‖. (15)

The second constraint states that P should not change along

directions perpendicular to the gravity; hence,

∇P · ĝ⊥ = 0, for all x ∈ ∂�⊥. (16)

Since the unit vector n̂ normal to the boundary ∂� can be

decomposed according to

n̂ = (n̂ · ĝ)ĝ + (n̂ · ĝ⊥)ĝ⊥, (17)

we have

∇P · n̂ = (n̂ · ĝ)∇P · ĝ + (n̂ · ĝ⊥)∇P · ĝ⊥. (18)

Hence, the two Neumann boundary conditions may be stated

as

∇P ·n̂ = (n̂·ĝ)ρg+(n̂·ĝ⊥)∇P ·ĝ⊥ for all x ∈ ∂�‖, (19)

and

∇P · n̂ = (n̂ · ĝ)∇P · ĝ for all x ∈ ∂�⊥. (20)

Equations (19) and (20) may appear peculiar since both

the left-hand side and right-hand side involve the gradient of

pressure. In principle, to obtain a unique solution to Eq. (7)

one can constrain the gradient in any direction, independent

of the boundary normal n̂, and our 1D inspired gradients do

exactly that.

We note for domains with boundaries parallel to either ĝ

or ĝ⊥ that the Neumann conditions (19) and (20) simplify

(and in some cases do not provide any) the information to

constrain ∇P · n̂. For example, consider a 2D Cartesian do-

main’s right and left boundaries 0r,l with normal n̂ = (±1,0)

and a bottom boundary 0b with normal n̂ = (0,−1) and

ĝ = g(0,−1). Invoking Eq. (19), we obtain

∇P ·n̂ =
{

∇P · ĝ⊥ = ∇P · n̂ for x ∈ 0l,r, (21a)

ρg for x ∈ 0b. (21b)

Invoking Eq. (20) we obtain

∇P ·n̂ =
{

0 for x ∈ 0l,r, (22a)

∇P · ĝ = ∇P · n̂ for x ∈ 0b. (22b)

Clearly conditions (21a) and (22b) are redundant. As such,

the usage of Eqs. (19) and (20) cannot be used arbitrarily.

One may also consider employing both Eqs. (19) and (20)

simultaneously. In this way we would obtain

∇P · n̂ = (n̂ · ĝ)∇P · ĝ + (n̂ · ĝ⊥)∇P · ĝ⊥
= (n̂ · ĝ)ρg + (n̂ · ĝ⊥)0

= ρgĝ · n̂ = ρg · n̂, (23)

which is identical to the result obtained by computing the dot

product of Eq. (5) with n̂. Equations (23) certainly avoids the

potential issue of using Eqs. (19) and (20). If we again con-

sider the 2D Cartesian domain example, imposing Eq. (23)

on all of ∂�i is equivalent to imposing Eqs. (21b) and (22a).
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Nevertheless, for an arbitrarily shaped domain, using

boundary conditions (15), (16) or (23) does not yield the

same result (see Sect. 3.3). For general use (i.e. when con-

sidering arbitrarily shaped domains), we suggest employing

Eqs. (15) and (16) as they are a direct extension of the 1D

hydrostatic assumptions to 2D and 3D domains.

2.2 Weak formulation

To define the weak formulation of the PPE we will use func-

tions that are square integrable in the sense of Lebesgue, i.e.

L2(�) :=







u : � → R

∣

∣

∣

∫

�

u2 dV < ∞







,

and functions from the H1(�) Sobolev space

H1(�) :=
{

u : � → R

∣

∣

∣
u,∇u ∈ L2(�)

}

.

Finally we will require the space of functions in H1(�) that

vanish on the Dirichlet boundary ∂�surf:

H d
1 (�) =

{

u ∈ H1(�)

∣

∣

∣
u = 0 on ∂�surf

}

.

Given a test function q ∈ H d
1 (�), the weak form of the PPE

is obtained by multiplying Eq. (7) by q and integrating both

sides over �
∫

�

q∇ ·∇P dV =
∫

�

q∇ · (ρg)dV. (24)

Applying integration by parts to the left- and right-hand sides

yields
∫

�

∇q · ∇P dV −
∫

∂�i

q∇P · n̂dS

=
∫

�

∇q · (ρg)dV −
∫

∂�i

qρg · n̂dS. (25)

Note that the boundary ∂�surf does not appear in Eq. (25)

since the test function q vanishes along the Dirichlet bound-

ary. We also note that Eq. (25) only requires ρg ∈ L2(�),

and thus the formulation is valid for cases when the density

ρ is discontinuous.

Splitting the surface integrals over the two segments

∂�i = ∂�⊥ ∪ ∂�‖ and using Eqs. (19), (20) we have

∫

�

∇q · ∇P dV −
∫

∂�‖

q
[

(n̂ · ĝ)ρg + (n̂ · ĝ⊥)∇P · ĝ⊥
]

dS

−
∫

∂�⊥

q
[

(n̂ · ĝ)∇P · ĝ
]

dS

=
∫

�

ρg∇q · ĝ dV −
∫

∂�i

qρgĝ · n̂dS. (26)

Noting that the second term of the left-hand side and part of

the last term on the right-hand side exactly cancel each other

yields the following

∫

�

∇q · ∇P dV −
∫

∂�‖

q
[

(n̂ · ĝ⊥)∇P · ĝ⊥
]

dS

−
∫

∂�⊥

q
[

(n̂ · ĝ)∇P · ĝ
]

dS

=
∫

�

ρg∇q · ĝ dV −
∫

∂�⊥

qρgĝ · n̂dS. (27)

From Eq. (25), the weak formulation obtained if using

Eq. (23) applied over all of ∂�i is simply

∫

�

∇q · ∇P dV =
∫

�

ρg∇q · ĝ dV. (28)

2.3 Implementation

The strong (Eq. 7) and weak (Eq. 25) formulations of the

pressure Poisson problem can be solved using the standard

spatial discretization techniques, e.g. finite differences or fi-

nite elements. Moreover, since the equation is of Poisson

type, it is readily amenable to being solved using standard

iterative multigrid and/or direct solvers. Lastly, because the

formulation is expressed in terms of a PDE, it is also straight-

forward to compute the pressure on parallel computing archi-

tecture as we can re-use existing discretization implementa-

tions that support domain decomposition.

3 Numerical examples

In this section we provide several numerical models to show

the following items:

1. the accuracy and consistency of the method for hydro-

static cases,

2. the accuracy of the approximation of the total pressure

in non-hydrostatic cases,

3. the effect of using the depth-integrated approach and the

pressure Poisson problem approach to impose boundary

conditions on the momentum equation,

4. the usefulness of the method for 3D geodynamic

thermo-mechanical modelling.

3.1 Hydrostatic pressure

To compare the numerical solution of Eq. (7) with the analyt-

ical solution obtained with Eq. (2), we designed four hydro-

static models (in 1D and 2D) for which the analytical solution

is easily obtained (Figs. 2 and 3).
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Figure 2. Pressure for non-dimensioned hydrostatic cases. Panels

(a, c, e) show the 1D pressure for (a) a constant density ρ = 1,

(c) a continuous y-dependent density ρ = 2−y, and (e) a discontin-

uous density. The blue line is the analytical solution computed with

Eq. (2), and the red circles represent the numerical solution com-

puted with Eq. (7). Panels (b, d, f) show the 2D numerical solution

for (b) a constant density ρ = 1, (d) a continuous y-dependent den-

sity ρ = 2 − y, and (f) a discontinuous density.

3.1.1 Box domain

We define the domain � = x ∈ [0,1]×y ∈ [0,1] and assume

that g = (0,−1). We consider three depth-dependent density

structures ρ = ρ(y) that thus admit a hydrostatic pressure so-

lution, i.e. satisfy ∂P/∂x = 0, ∂P/∂y = −ρ(y)g.

Case 1. This case assumes a constant density, ρ(y) = 1

(Fig. 2a, b). The analytic pressure solution is given by

P(y) =
ys=1
∫

y

ρg dy =
[

ρgy
]ys

y
= ρg(ys − y)

= ys − y = 1 − y. (29)

Case 2. This case assumes a continuous depth-varying den-

sity ρ(y) = 2 − y (Fig. 2c, d). The analytic pressure so-

lution is given by

Figure 3. Pressure for a hydrostatic case in a half annulus approx-

imating a simplified and idealized layered Earth. (a) Density struc-

ture for the half-annulus model. (b) Numerical solution of the 2D

half-annulus model. (c) The blue line shows the 1D analytical solu-

tion for the density structure shown in (a) along a line parallel to the

gravity vector. The red circles show the numerical solution extracted

from (b) at coordinate x = 0 along a line parallel to the gravity vec-

tor. (d) Green dots show the normalized error between the analytical

solution and the numerical solution at x = 0 as
|Pd−Pa|

Pd
.

P(y) =
ys=1
∫

y

ρg dy =
ys=1
∫

y

g(2 − y) dy

=
[

g

(

−1

2
y2 + 2y

)]ys

y

= g

(

1

2

(

y2 − ys

)

+ 2(ys − y)

)

= 1

2
y2 − 2y + 3

2
. (30)

Case 3. This case assumes a discontinuous density such that

ρ(y) = 1 for y ∈ [0.5,1] and ρ(y) = 2 for y ∈ [0,0.5)

(Fig. 2e, f). The analytic pressure solution is given by
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P(y) =































ρ(y)g(1 − y) = (1 − y) ∀y>0.5

ρ(y>0.5)gD ∀y < 0.5

+ρ(y)g(0.5 − y)

= D + 1 − 2y,

(31)

with D the distance between the surface and the y coor-

dinate at which the pressure is computed.

A finite-element (FE) method employing an unstructured

triangular mesh with a P2 function space was used to obtain

the numerical solution for each case. The FE method was

applied to Eq. (27) using boundary conditions described by

Eq. (15) at the base and Eq. (16) on the lateral sides. Along

the upper surface we impose the Dirichlet constraint P = 0.

Unless otherwise stated, when solving the PPE with FEs the

Dirichlet constraints are imposed strongly (i.e. point-wise),

whereas Neumann constraints are imposed weakly via sur-

face integrals defined on facets of the FE cells that live on

the boundary of the domain. Accordingly, all points living

on ∂�surf (including corner points) will be associated with

the Dirichlet constraint. Figure 2a–f shows the 1D and 2D

solution of these three models. On the 1D models both the

numerical and analytical solutions of Eqs. (7) and (2) are

shown, whereas on the 2D models only the numerical so-

lution is provided. Since the P2 FE approximation contains

the monomials 1, y, and y2, the FE solution exactly repro-

duces the analytic solution for case 1 and case 2 indepen-

dent of the number of finite elements used in the domain

(e.g. sub-dividing the box into two triangles would be suf-

ficient to obtain an exact solution). For case 3, the analytic

pressure solution is piecewise linear, and provided that the

density discontinuity is exactly resolved by the faces of the

triangular FE mesh (which was the case here), the FE method

exactly reproduces the analytic solution.

3.1.2 Half-annulus domain

The 2D half-annulus model aims to show the efficiency of

the method when computing the lithostatic pressure in a body

with a radial gravity vector and concentric density structure

(Fig. 3a). This model represents a domain extending from

{

θ ∈ [−π
2
, π

2
],

r ∈ [RE − 2891,RE] km,
(32)

where θ is the polar angle, r is the radius in po-

lar coordinates, RE is the approximative Earth radius

(6371 km), and RE − 2891 km is the approximative core-

mantle boundary. Mapped into Cartesian coordinates this

gives x = r sin(θ) and y = r cos(θ). The gravity vector

pointing to the centre (x = (0,0)) is defined as g =
−9.8

(

x√
x2+y2

,
y√

x2+y2

)

ms−2, and the density is defined

as five concentric layers with a constant density in each

(Fig. 3a). The pressure was computed by solving Eq. (27)

with the boundary condition of Eq. (15) on the core–mantle

boundary and the conditions of Eq. (16) on the sides parallel

to ĝ. At the surface of the domain we impose the Dirichlet

constraint P = 0. As in Sect. 3.1 we use a finite-element dis-

cretization employing an unstructured mesh of triangles em-

ploying a P2 function space. Pressure values vary from 0 to

180 GPa with a concentric distribution following the density

distribution and the gravity vector orientation (Fig. 3b).

The numerical solution extracted at x = 0 along a line

parallel to the gravity vector field reproduces the analyti-

cal solution computed for a 1D profile using Eq. (2) for

the density distribution displayed in the half-annulus model

(Fig. 3c). The difference between the pressure obtained us-

ing the depth-integrated approach and the PPE is very small

(Fig. 3d). Unlike the analytic solution for the box models, the

analytic solution for P here is non-polynomial (in Cartesian

coordinates); hence, the FE solution (which was discretized

in Cartesian coordinates) cannot exactly reproduce the ana-

lytic solution.

The four hydrostatic models clearly illustrate that the so-

lutions obtained using the depth-integrated approach and the

pressure Poisson equation (with one set of boundary con-

straints) are equivalent for scenarios that admit a hydrostatic

solution.

3.2 Non-hydrostatic pressure

Here, we show the differences and accuracy of the depth-

integrated equation (Eq. 2) and the pressure Poisson equa-

tion (Eq. 7) approaches to approximate the total pressure.

First, we compute and compare the pressure from the dif-

ferent methods in a large domain (referred to as the “global”

model) containing a topographic perturbation (Fig. 4). Fol-

lowing this, we compute the pressure in a smaller domain

(referred to as the “regional” model) and show the accuracy

of the different methods to approximate the total pressure

from the large domain (Figs. 5a, c and 6). Finally, we show

the velocity field resulting from applying these approximated

pressures as boundary conditions to solve the conservation

of momentum in the small domain (Fig. 5b, d). The pres-

sure Poisson problem was discretized and solved using the

same FE method described in Sect. 3.1. The flow field was

computed using the same underlying FE mesh and a mixed

P 2-P1 function space for velocity and pressure, respectively.

3.2.1 “Global” model

We define a large domain �G = x ∈ [−10,10] × y ∈ [0,1]
representing a global model, i.e. 20 times larger than the

domain of interest, in order to avoid boundary condition in-

fluence (Fig. 4). In this domain, we introduce a topographic

perturbation through a slope defined as ys(x) = − 1
4
x, where

ys is the surface between x = 0 and x = 1. For demonstra-
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Figure 4. Non-dimensional “global” model for a large domain with a topographic perturbation. (a) The background colour shows the velocity

field computed with the Eq. (3). The coloured curves show the total pressure P iso-values every 0.1 computed with Eq. (3). (b) Comparison

between the total pressure from Eq. (3) and the pressure Pd computed from Eq. (7). The coloured background shows the difference log10|P −
Pd|. The coloured curves show the pressure Pd iso-values every 0.1 computed with Eq. (7). (c) Comparison between the total pressure from

Eq. (3) and the pressure Pa computed from Eq. (2). The coloured background shows the difference log10|P −Pa|. The coloured curves show

the pressure Pa iso-values every 0.1 computed with Eq. (2).

tion purposes this topography is highly exaggerated with re-

spect to the depth of the domain compared with the actual

regional geodynamic models. Moreover, we use a constant

density ρ = 1 and a vertical gravity vector g = (0,−1).

We solve the flow problem described by Eqs. (3), (4) us-

ing a constant viscosity and density, along with the following

boundary conditions: no-slip at base, free-slip on the right

and left faces, and a free surface along the top of the model

domain. Due to the topography, a non-vertical pressure gra-

dient that will drive flow is generated below that perturbation

(Fig. 4a). The generated flow shows a velocity field charac-

teristic of a gravitational collapse. Figure 4b shows the dif-

ference between the total pressure solution from Eq. (3) with

the pressure Pd obtained by solving Eq. (7) using the bound-

ary conditions described by Eq. (16) on the vertical sides,

Eq. (15) on the bottom boundary, and Pd = 0 on the upper

surface. Figure 4c shows the difference with the pressure Pa

obtained with Eq. (2).

The difference between the total pressure and the approxi-

mated pressure Pd is negligible in the non-perturbed domain

and increases with the topography perturbation. It shows that

as the system tends towards a hydrostatic state the total pres-

sure and the approximated pressure Pd tends to the same

value, i.e. the hydrostatic pressure. However, in the vicin-

ity of the topographic perturbation the differences between

the total pressure and the approximated pressure can be ex-

tremely small (Fig. 4b). In contrast, the difference between

the total pressure and depth-integrated approximated pres-

sure Pa is larger below the topographic slope, particularly

below the points at which the slope begins and ends (Fig. 4c).

In general, the pressure Pa obtained by applying the 1D so-

lution is less accurate than Pd within both the interior and

along the left, right, and bottom boundaries.

3.2.2 “Regional” model

Nevertheless, modelling a domain 20 times larger than the

domain of interest can hardly be achieved in practice, mainly

due to the numerical cost it represents. Thus, the boundary

conditions are a first-order component of regional models in

order to best capture the global behaviour and interactions in

a region without having to model the whole Earth. Therefore,

we define a smaller domain �R = x ∈ [0,1]×y ∈ [0,1] rep-

resenting a regional model (Fig. 5). This domain represents

the portion of the large domain in which the topographic

slope is defined.

In this case we aim to apply a normal stress on the bound-

aries of our regional model that will generate a flow sim-

ilar (or close) to the flow generated in the global model. To

achieve this we present two models using Eqs. (7) and (2), re-

spectively, to compute an approximated pressure that is then

used as a boundary condition for the momentum equation
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Figure 5. Non-dimensional “regional” model for a small domain

with a varying topography. (a) The coloured curves show the total

pressure P iso-values computed with Eq. (3) in the global model

every 0.1 and the pressure Pd computed with Eq. (7) in the re-

gional model every 0.1. (b) The coloured background shows the

velocity field computed with Eq. (3) with stress boundary condi-

tions described by Eq. (33) using Pd computed with Eq. (7). The

black arrows show the velocity vectors. (c) The coloured curves

show the total pressure P iso-values computed with Eq. (3) in the

global model every 0.1 and the pressure Pa computed with Eq. (2) in

the regional model every 0.1. (d) The coloured background shows

the velocity field computed with Eq. (3) with stress boundary con-

ditions described by Eq. (33) using Pa computed with Eq. (2). The

black arrows show the velocity vectors.

(Eq. 3) on vertical boundaries as follows:

σn = −Pα n̂, α = d,a, (33)

where Pα = {Pd,Pa} denote the pressure computed using

the pressure Poisson equation and the 1D depth-integrated

approach, respectively. The viscous flow problem for the

regional domain setting employs the following additional

boundary conditions: a free surface on the top boundary and

a no-slip condition at the base. To solve for the pressure Pd

using Eq. (7), we impose the following boundary conditions:

Pd = 0 on the surface, ∇Pd · n̂ = (n̂ · ĝ)∇Pd · ĝ on vertical

sides, and ∇Pd · n̂ = (n̂ · ĝ)ρg + (n̂ · ĝ⊥)∇Pd · ĝ⊥ at the bot-

tom.

Figure 5a shows the pressure field Pd computed on the re-

gional domain and the total pressure P extracted from the

global model. The approximated pressure Pd highlights dif-

ferences with the total pressure from the global model, espe-

cially those regarding depth along the boundaries (blue lines

in Fig. 6b, d). These differences are mainly due to the size

of the domain that defines only the perturbed region without

providing information about the domain in which it is en-

closed. The boundary condition described by Eq. (16) used to

solve Eq. (7) enforces the idea that the pressure gradient must

be co-linear with the gravity vector on the boundary. There-

fore, given the definition of g, ∇P is enforced to be vertical

on the vertical sides, whereas the deflection of the pressure

field due to the topographic perturbation should occur in spa-

tial offset from the topographic perturbation, as shown by the

total pressure in the global model (Fig. 4a).

In Fig. 5b we show the velocity field resulting from solving

the Stokes equation (Eqs. 3, 4) using Pd in Eq. (33). The flow

field highlights velocities of around 5 × 10−2 (velocity unit)

at the surface pointing toward the right side of the domain,

i.e. the bottom of the slope. Velocities progressively decrease

at depth. While the orientation of the velocity field is more

laminar than in the global model, its magnitude is very close,

with the highest velocities being only 1.5× higher than in the

global model.

Figure 5c displays the pressure field Pa computed from the

depth-integrated approach (Eq. 2) within the regional domain

and the total pressure P extracted from the global model. Be-

cause of the 1D behaviour of that method, the differences be-

tween the approximated pressure Pa and the total pressure

P (red lines in Figs. 5c and 6b, d) are independent of the

domain size and boundary conditions, and thus they are ex-

actly the same as in the global model (Fig. 4c). The velocity

field (Fig. 5d) resulting from using these approximated pres-

sure values as a boundary condition to solve the momentum

equation is approximatively 4 times higher than velocities

obtained while using the pressure Pd (Fig. 5b) and approxi-

matively 6 times higher than in the global model (Fig. 4a). As

for the velocity field orientation, the vectors at the top of the

slope show that the material uplifts, whereas in the global

model velocities at the same location show a gravitational

sliding. This orientation results from a stress value that is too

high being imposed in the boundary conditions by the value

of the pressure Pa at the boundaries (Fig. 6).

These simple tests demonstrate that the approximated

pressure Pd computed from the Eq. (7) is more accurate for

approximating the total pressure P than the pressure Pa com-

puted from the Eq. (2). The only area where this is not true

is located in the bottom-left corner of the regional model,

and this is again due to the boundary condition not capturing

the deflection of the pressure due to the size of the domain.

Thus, the pressure computed with the pressure Poisson prob-

lem should be preferred for use as a boundary condition for

the momentum equation. Moreover, as the domain size in-

creases the error with the total pressure decreases, which is

not the case with the depth-integrated approach due to its 1D

nature.
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Figure 6. Curves showing the pressure from the regional and global

models along the profiles (a) x = 0 and (c) x = 1. Absolute value of

the difference between the total pressure P in the global model and

the different pressures in the global and regional models along the

profiles (b) x = 0 and (d) x = 1.

3.3 Influence of the boundary condition type

The boundary conditions used to solve the pressure Poisson

problem are stated in Eqs. (15), (16), and (23). To show the

influence of the boundary conditions choices on the resulting

pressure field, we define an irregular quadrilateral domain

with the same topographic perturbation as the one described

in Sect. 3.2, with a constant density ρ = 1, a gravity vector

g = (0,−1), and a Dirichlet boundary condition Pd = 0 at

the top surface (0s). The irregular domain (shown in Fig. 7)

is constructed such that none of the three boundary segments

defining ∂�i = 01 ∪02 ∪03 are parallel or perpendicular to

g. The PPE was solved using the same FE method described

in Sect. 3.1.

In Fig. 7 we show different pressure fields Pd obtained

using several different boundary condition configurations.

These results show that the boundary conditions described

by Eq. (16) (or Eq. 20) force the pressure gradient to be par-

allel to g, i.e. ∂xPd = 0 (Fig. 7b segment 03, Fig. 7c seg-

ments 01,3, and Fig. 7d segments 01,2). We also confirm

that boundary conditions described by Eq. (15) (or Eq. 19)

constrain ∇Pd to be equivalent to the 1D solution of Eq. (2)

on the boundary (Fig. 7a segments 01,2,3, Fig. 7b segments

01,2, Fig. 7c segment 02, and Fig. 7d segment 03). Figure 7a

Figure 7. Pressure field Pd computed using Eq. (7) for different

boundary conditions applied to the individual boundary segments

0i , i = 1,2,3. The boundary conditions were defined according to

(a) Eq. (15) on 01, 02, and 03; (b) Eq. (15) on 01 and 02 and

Eq. (16) on 03; (c) Eq. (15) on 02 and Eq. (16) on 01 and 03; and

(d) Eq. (15) on 03 and Eq. (16) on 01 and 02.

highlights that the solution of the PPE can be identical to that

obtained using the depth-integrated approach with a specific

choice of boundary conditions.

Moreover, Fig. 8a shows the pressure field Pd obtained us-

ing the boundary condition described by Eq. (23). The pres-

sure solution is relatively similar to the solution obtained in

Fig. 7c. However, as shown in Fig. 8b, the solution along

the boundary (and therefore also in the interior) differs since

Eq. (23) does not enforce the pressure gradient to be vertical

on the boundary compared with the condition (16).

As previously noted, discretizations employing the weak

form with Eq. (23) are certainly simpler to implement than

imposing the Eqs. (19) and (20) as all the surface integrals

cancel (see Eq. 28), and thus no surface integrals appear in

either the linear form or bilinear form. We also reiterate that

when the domain has boundaries that are aligned with g, us-

ing the boundary conditions (15) on the boundaries orthog-

onal to g and the condition (16) on the boundaries that are

parallel to g results in an identical formulation.
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Figure 8. Pressure field Pd computed using Eq. (7) with the bound-

ary conditions described by Eq. (23) for (a) Pd over the entire model

with boundary conditions defined by Eq. (23) applied on 01, 02,

and 03. (b) Closer view of the right-hand boundary region. The

black curves show the iso-values of the pressure computed with

boundary conditions using Eq. (23). The red curves show the iso-

values of the pressure computed using the boundary conditions used

in Fig. 7c.

3.4 Thermo-mechanical model

3.4.1 Physical model

To simulate the long-term evolution of the deformation of

the lithosphere, we solve the stationary, non-inertial form of

the conservation of momentum described by Eq. (3) with

the incompressible constraint (Eq. 4). Moreover, to consider

the temperature variations in the domain, the following time-

dependent conservation of energy is solved:

ρ0Cp

(

∂T

∂t
+ v · ∇T

)

= ∇ · (k∇T ) + H, (34)

where T is the temperature, t is the time, k is the thermal

conductivity, H is the heat source, ρ0 is the reference density,

and Cp the thermal heat capacity.

The numerical solution of Eqs. (3) and (4) is obtained us-

ing a mixed finite-element method that independently dis-

cretizes the velocity and pressure fields. Hence, the numeri-

cal velocity and pressure obtained are solutions of the weak

form of the Stokes problem given by

A(w,v) +B(w,p) +B(v,q) −
∫

0N

w · T (v,p)dS

= −
∫

�

ρ w · g dV

where w ∈ H1(�) and q ∈ L2(�) are test functions for the

velocity and pressure, respectively, 0N denotes the Neumann

boundary, T denotes the traction vector given by T (v,p) =
(τ (u) − pI)n̂, and n̂ is the outward pointing normal vector

from the boundary. The bilinear forms for the Stokes problem

are given by (Elman et al., 2014):

A(w,v) =
∫

�

2η ε̇(w) : ε̇(v)dV, ε̇(v) = 1

2
[∇v + (∇v)T ],

B(v,q) = −
∫

�

q∇ · v dV.

Both the Stokes and thermal problems were solved using

the parallel finite-element code pTatin3D (May et al.,

2014, 2015), which employs a mixed Q2-P1 discretization

for velocity and pressure.

3.4.2 Initial conditions and rheology

To model the strain localization we use non-linear visco-

plastic rheologies expressed in term of viscosity. The ductile

parts of the domain are simulated using an Arrhenius flow

law for dislocation creep

ηv = A− 1
n
(

ε̇II
)

1
n
−1

exp

(

Q + PV

nRT

)

, (35)

where A, Q, and n are material-defined parameters (see Ta-

ble 1); R is the universal gas constant; V is the activation

volume; and ε̇II is the square root of the strain rate second

invariant, computed as

ε̇II =
√

1

2
ε̇ij ε̇ij . (36)

The brittle parts of the domain are simulated using a

Drucker–Prager yield criterion adapted to continuum me-

chanics, which is given by

ηp = C cos(φ) + P sin(φ)

2ε̇II
, (37)

where C is the cohesion of the material and φ is the friction

angle.

The modelled domain contains four initial flat layers rep-

resenting the upper continental crust, the lower continental

crust, the lithosphere mantle, and the asthenosphere man-

tle, respectively (Fig. 9a). The upper crust extends from

the surface of the domain (y = 0 km) to y = −25 km and is

modelled with a dislocation creep quartz rheology (Ranalli,

1997). The lower crust extends from y < −25 km to y =
−35 km and is modelled with a dislocation creep anorthite

rheology (Rybacki and Dresen, 2000). The lithosphere man-

tle extends from y < −35 km to y = −120 km, whereas the

asthenosphere mantle extends from y < −120 km to y =
−450 km. They are both modelled using a dislocation creep

olivine flow law (Hirth and Kohlstedt, 2003).
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Figure 9. (a) A 3D view of the modelled domain. An initial plas-

tic strain with a Gaussian repartition is applied in the central part

of the domain in the lithosphere. (b) Map and cross section of the

boundary conditions for the model with free-slip boundary condi-

tions. (c) Map and cross section of the boundary conditions for the

model with normal stress boundary conditions. (d) Yield–stress en-

velope and initial temperature of the first 120 km.

The initial density distribution follows the lithologies and

is reported in Table 1. In addition, the density varies with

pressure and temperature following the Boussinesq approxi-

mation

ρ(P,T ) = ρ0(1 − α(T − T0) + β(P − P0)), (38)

where ρ0 is the reference density at T0 and P0, P is the to-

tal pressure computed from the conservation of momentum

(Eq. 3) and continuity equation (Eq. 4), α is the thermal ex-

pansion and β the compressibility. The Boussinesq approx-

imation states that perturbations of density, if sufficiently

small, can only be considered in the buoyancy term and ne-

glected elsewhere regardless of the origin of the perturbation.

Moreover, the initial temperature field is computed as a

steady-state solution of the heat equation

∇ · (k∇T ) + H = 0, (39)

using a surface temperature of T = 0 ◦C at y = 0 km and

T = 1450 ◦C at y = −450 km. Moreover, to simulate an adi-

abatic thermal gradient in the asthenosphere due to thermal

convection, the initial temperature field is solved with a con-

ductivity of k = 70 W m−1 K−1 in the asthenospheric mantle.

However, for the actual model run we used a more realistic

conductivity of k = 3.3 W m−1 K−1 to solve Eq. (34). Other

thermal parameters are reported in Table 1.

3.4.3 Boundary conditions

To show the influence of the normal stress boundary condi-

tion, we compare two rift models. In the reference model, an

extension velocity of vx = 1 cm yr−1 is applied on the whole

faces of normal x, whereas on faces of normal z a free-slip

boundary condition is applied (Fig. 9c). To ensure mass con-

servation we impose an inflow velocity on the bottom face of

normal y to balance any outflow that occurs due to the im-

posed extension. Along the surface of the model we use a free

surface (zero normal stress, zero tangential stress) boundary

condition.

The second rift model (Fig. 9b) uses the same Dirichlet

boundary conditions on faces of normal x. On the faces of

normal z we impose a Neumann boundary condition as

T = −Pd n̂, (40)

where Pd is the pressure computed with Eq. (7) and n̂ is the

normal vector pointing outward from the domain.

To account for the density evolution through time due to

the deformation and material advection, Eq. (7) is solved at

every non-linear iteration for each time step, and the Neu-

mann boundary condition described by Eq. (40) is evaluated

at every non-linear iteration. Using ρ(P,T ) computed from

Eq. (38) to evaluate the pressure Pd going into the boundary

condition described by Eq. (40) adds a new non-linearity to

the system.

The bottom of the domain is prescribed as an inflow con-

dition balancing the outflow, and the surface of the domain is

a free surface where the mesh deforms according to the com-

puted velocity field. These Neumann boundary conditions al-

low material to flow both in and out through the boundary

depending only on the Dirichlet boundary conditions and de-

formation that occurs inside the modelled domain.

3.4.4 Pressure Poisson problem in the 3D geodynamic

model

In the context of our finite-element forward model, we also

solve the pressure Poisson problem using finite elements. As

such, to compute Pd we employ the weak formulation given

by Eq. (27) using boundary conditions from Eqs. (15) and

(16) on bottom boundary and vertical boundaries, respec-

tively. In our particular implementation, we employ Q1 for

Pd, and these Q1 elements overlap the Q2 elements used to

approximate the velocity.
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Table 1. Physical parameters for the thermo-mechanical rift model.

Parameter Units Upper crust Lower crust Lithosphere mantle Asthenosphere mantle

A MPa−n s−1 6.7 × 10−6 13.4637 2.5 × 104 2.5 × 104

n – 2.4 3.0 3.5 3.5

Q kJmol−1 156 345 532 532

φ ◦ 30 30 30 30

C MPa 20 20 20 20

V m3 mol−1 0 38 × 10−6 8 × 10−6 8 × 10−6

Cp m2 K−1 s−2 850 850 850 850

k W m−1 K−1 2.7 2.85 3.3 3.3

H µW m−3 1.5 0.3 0 0

ρ0 kgm−3 2700 2850 3300 3300

α K−1 3 × 10−5 3 × 10−5 3 × 10−5 3 × 10−5

β Pa−1 10−11 10−11 10−11 10−11

As a demonstration of the computed Pd using this ap-

proach, in Fig. 10c and d we show the approximated pressure

in our rift model at 8.7 Myr after large deformations that led

to mantle exhumation and differential thinning of the con-

tinental crust, causing a variable topography. In this model,

Pd was evaluated on a mesh consisting of 256×64×128Q1

finite elements on 1024 MPI ranks. The discrete pressure

Poisson system was solved using geometric multigrid. As a

rough estimate, solving for Pd required ∼ 0.2 % of the time

required to solve the non-linear viscous flow problem. Ob-

viously this value is strongly dependent on both the physi-

cal model (linear viscous versus non-linear viscous) and the

implementation details, as well as the efficiency of how the

discrete flow problem is solved. However, when considering

even the simplest flow problem imaginable (i.e. linear iso-

viscous flow laws), it remains true that solving the Poisson

problem will be far less expensive than solving either the lin-

ear or non-linear viscous flow problem.

3.4.5 Tectonics evolution

The model using free-slip boundary conditions displays a

cylindrical deformation pattern that could be reduced to a

two-dimensional model. As shown by the shear zone orien-

tation and strain regime, the deformation is only extensional

and perpendicular to the extension direction (Figs. 11a–d and

12). This strain localization is directly due to the free-slip

boundary condition stating that any flow perpendicular to the

boundary is prohibited.

In contrast, the model using the Pd pressure as a bound-

ary condition displays a non-cylindrical deformation. While

extensional shear zones perpendicular to the extension direc-

tion develop in the central part of the domain, the edges of the

rift experience oblique and strike-slip deformation (Fig. 11e

to h). As the extension goes on, the extensional deforma-

tion localizes along a spreading centre, causing an increas-

ing inflow on the boundaries of the domain with the normal

stress boundary condition (Fig. 13c). As a result, near these

boundaries the velocity field introduces non-cylindrical fea-

tures that are accommodated by strike-slip faults (Fig. 11g,

h). These strike-slip faults delimit a triangular region ter-

minating on a triple junction between two strike-slip faults

and a ridge (ridge–fault–fault, RFF, triple junction). Along

these strike-slip faults, the deformation is partitioned be-

tween purely vertical strike-slip shear zones and shallow-

dipping normal shear zones rooting into the strike-slip shear

zones (Fig. 12).

4 Discussion

4.1 Alternative PDE-based approaches

Recall that the starting point of defining the PPE was purely

algebraic, with the sole intention of removing the non-

uniqueness associated with Eq. (5). Here we discuss two al-

ternative PDE-based approaches constructed with a similar

rationale.

Rather than enforcing Eq. (15) only along the boundary,

suppose we wished to enforce it everywhere throughout the

domain,

∇P · ĝ = ρg, for x ∈ �. (41)

This constraint can be interpreted as the steady-state solution

of the following scalar hyperbolic PDE:

∂P

∂τ
+ ĝ · ∇P = ρg, (42)

where τ plays the role of a time-like parameter having

units of length and ĝ plays the role of a velocity-like quan-

tity. Along the “inflow segments” 0in = {x ∈ ∂� : ĝ · n̂ < 0}
we will impose P = 01. On the outflow segments 0out =

1“Inflow” in the context of Eq. (42) can be thought of as the

origin of “information” that enters the physical domain, while ĝ

defines the direction in which this information travels.
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Figure 10. (a) Cross section showing the density of the 3D rift model with normal stress boundary conditions in the x–y plane at z = 0.

(b) Cross section showing the density of the z–y plane at x = 500 km. (c) 3D view of the pressure computed with Eq. (7). (d) Cross section

of the z–y plane at x = 500 km for the reference pressure. The contour lines are plotted every 0.25 GPa.

∂� \ 0in; due to the hyperbolic nature of the PDE, no bound-

ary constraint are required. Since we seek the steady-state

solution of Eq. (42), no initial condition is required, but for

completeness we chose P(τ = 0) = 0. Hence, the solution of

Eq. (42) is equivalent to solving

dP

dτ
= ρg, (43)

along the family of characteristics given by

dx

dτ
= ĝ, (44)

with P(τ = 0) = 0 and x(τ = 0) ∈ 0in.

Compared to the PPE, the hyperbolic formulation has sev-

eral disadvantages.

1. We have less freedom to specify how ∇P varies along

the boundary. The choice of boundary conditions (BCs)

is largely dictated by the “inflow” and “outflow” seg-

ments. Along outflow segments, the only constraint

available is Eq. (41) evaluated on ∂�. If inflow occurs

on any part of ∂� not contained in ∂�surf, we have to

choose a flux BC, as using P = 0 does not make phys-

ical sense. Consistency may require the use of a con-

straint that is independent of the PDE, e.g. Eq. (16).

2. The formulation may place restrictions on the shape of

∂�. If we wish to avoid the definition of new flux BCs

(described above), the domain must be defined such that

for every xb ∈ ∂�\∂�surf there exists a characteristic

that intersects both xb and ∂�surf.

3. The lack of flexibility in controlling the boundary be-

haviour of ∇P will in general result in solutions of

Eq. (42) being identical to a family of 1D solutions to

Eq. (2) applied in directions parallel to the direction of

gravity; see Fig. 14b, d.

4. The spatial discretization required for the accurate so-

lution of Eq. (42) is arguably more complicated to im-

plement (on unstructured meshes) compared with dis-

cretizations for the Poisson equation. Scalable multi-

level solvers for the steady-state hyperbolic problem are

much more challenging to develop in comparison to the

Poisson problem.

From a linear algebra perspective, the non-uniqueness of

Eq. (5) can alternatively be addressed by (i) discretizing

Eq. (5) in space, yielding Gp = F, and then (ii) solving the

normal equations

GTGp̃ = GTF. (45)

This approach obtains a unique solution that minimizes the

following objective function:

‖Gp̃ − F‖2.
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Figure 11. Map view of the strain regime evolution in time and space of the model with (a–d) free-slip boundary conditions and (e–h) normal

stress boundary conditions.

In some senses, this approach is like the discrete counterpart

of the PPE, in so much as GTG are the discrete Laplacian

defined on the approximation space used to represent pres-

sure. The similarity between the pressure solution from the

PPE and p̃ are shown in Fig. 14a, c. Similar to the hyperbolic

formulation, obtaining the pressure via the normal equations

is restrictive from a modelling perspective as the formulation

does not allow for control of the behaviour of ∇P on the

boundary, and as such only the Dirichlet data on ∂�surf can

be specified. In Fig. 14a, c we provide snapshots of the pres-

sure obtained from solving Eq. (45) in two different domains.

Interestingly, the solutions indicate that ∇P · ĝ appears to be

approximately zero along the boundary despite the lack of a

constraint enforcing this.

4.2 Flexibility of the PPE with respect to boundary

conditions

Since the PPE is a second-order PDE, the formulation per-

mits a range of possible boundary constraints on ∇P to be
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Figure 12. Map view of the models with free-slip (left) and normal stress (right) boundary conditions. The dashed lines in the upper panels

indicated by (a–a′, b–b′, c–c′) correspond to the cross sections displayed in the lower panels with the same labelling. The cross sections

show the numerical lithologies with the second invariant of the strain rate (Eq. 36) and the strain regime.

imposed. Specific choices allow one to define whether (i) the

equivalent of 1D pressure profiles as would be obtained by

applying Eq. (2) along a boundary face or (ii) an approxima-

tion of the pressure field on the boundary would be obtained

if a complete flow field was computed in a much larger global

domain.

Experiments showed that the PPE approach better ap-

proximates the total pressure computed from the momentum

equation. Therefore, its use as a boundary condition (or as

an initial guess) for the pressure field to solve the momen-

tum equation is preferred over hydrostatic solutions associ-

ated with Eq. (2). Moreover, as the domain size increases,

the PPE formulation gives a more accurate approximation of

the total pressure than the 1D depth-integrated approach.

4.3 Implications for lithosphere deformation

In the geodynamic rift model, using the pressure computed

with Eq. (7) as a boundary condition produces a veloc-

ity field perpendicular to the extension direction in the rift

axis (Fig. 13). This velocity field introduces non-cylindrical

deformation accommodated for by oblique and strike-slip

structures (Fig. 11). The results of this study are very sim-

ilar to previous studies directly applying an inflow perpen-

dicular to the extension direction (Le Pourhiet et al., 2018;

Jourdon et al., 2020). At the tip of the rift, a triangular re-

gion delimited by strike-slip faults or very oblique rift devel-

ops to accommodate the oblique velocity field. The similarity

of these results shows that using open boundary conditions

instead of kinematic boundary conditions in 3D may reveal

first-order implications for the lithosphere strain localization.

In the case of geodynamic systems presenting the character-

istics of a propagating rift (or ridge) with oblique and strike-

slip deformation at its tip, considering the forces applied by

the surrounding material weight could be the first-order pro-

cess at the origin of non-cylindrical deformation.

4.4 Linear and non-linear density

Two approaches can be considered to compute the pressure

using Eq. (7). The first approach (also the simplest) is to con-

sider that the density ρ is defined as a reference density ρ0

that only depends on rock type for a reference state, e.g. T0

and P0. In that case, Eq. (7) is linear and only depends on

the reference density structure. The second approach is to

consider that the density ρ can vary with respect to other pa-

rameters. In our geodynamic example, we considered that the

density can vary with pressure and temperature according to
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Figure 13. Map view of the z component of the velocity (vz). Red curves represent the z component of the velocity along the boundary zmax

at the surface. Blue curves represent the z component of the velocity along the boundary zmin at the surface.

Eq. (38). In that case the Eq. (7) becomes non-linear. This

kind of non-linearity is not rare in geodynamics, and the for-

mulation of Eq. (38) may appear in the pressure computation

when solving for an incompressible Boussinesq approxima-

tion or a compressible Stokes problem (e.g. Dannberg and

Heister, 2016; King et al., 2010; Tackley, 2008).

5 Conclusions

In this study we presented a method to compute a refer-

ence pressure associated with the density structure of a do-

main in which we cast the problem in terms of a partial dif-

ferential equation (PDE). From a practical standpoint, the

PDE approach is generic (it is applicable to all spatial dis-

cretization and on any type of computational grid), efficient,

and applicable in parallel computing environments. From the

modelling perspective, the PDE approach has specific advan-

tages, for example in models with a variable density structure

(stationary or time-dependent) and models that employ a ref-

erence pressure as a boundary condition of the flow prob-

lem (stationary or time-dependent problems). Re-evaluating

that pressure in time-dependent problems is not problematic

(even if the mesh deforms) since solving the Poisson problem

can be performed using optimal preconditioners (e.g. geo-

metric or algebraic multigrid preconditioners). Importantly,

the time to solve the pressure Poisson problem is a small

fraction of the time required to solve the linear (or non-

linear) incompressible viscous flow problem. Moreover, we

also demonstrate that the PDE formulation results in a bet-

ter approximation of the total pressure than the 1D depth-

integrated approach in non-hydrostatic cases.

Lastly, we showed in the context of 3D geodynamic mod-

els of continental rifting that using a reference pressure as a

boundary condition within the flow problem resulted in non-

cylindrical velocity fields. These 3D velocity fields produced

strain localization in the lithosphere along large-scale strike-

slip shear zones and the formation and evolution of triple

junctions.

Code availability. The code pTatin3D used in this study to

produce the 3D thermo-mechanical models is an open-source

free software licensed under GPL3. The Supplement contains

the version of the code used to produce the models presented

in this study. To run the same models, users should use the
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Figure 14. Pressure in non-dimensional models with constant den-

sity ρ = 1. Pressure computed for a hydrostatic case in an irregu-

larly shaped domain using (a) the normal equations (Eq. 45) and

(b) the hyperbolic equation (Eq. 42). Pressure computed for a non-

hydrostatic case due to topography using (c) the normal equation

(Eq. 45) and (d) the hyperbolic equation (Eq. 42). The contour lines

show contours of iso-pressure values every 0.1.

driver named test_driver_checkpoint_fv.app and the

options files (.opts) provided in the Supplement. We also provide

Firedrake code (Firedrake team, 2022; Balay et al., 2019, 1997;

Dalcin et al., 2011; Rathgeber et al., 2016) to compute the pres-

sure Poisson problem in a half-annulus domain, in a deformed do-

main, and in the large and small domains with a topography per-

turbation used in this study. The version of Firedrake used is

0.13.0+4944.g22178416 and is freely available. We also pro-

vide FEniCS code (FEniCS team, 2022; Alnaes et al., 2015; Logg

et al., 2012b; Logg and Wells, 2010; Logg et al., 2012a) to repro-

duce the models solving for the normal and hyperbolic equations.

The version of FEniCS used is 2016.1.0 and is freely available.

Supplement. The supplement related to this article is available on-

line at: https://doi.org/10.5194/se-13-1107-2022-supplement.
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