- 1 An ecosystem-based natural capital evaluation framework that combines environmental and
- 2 socio-economic implications of offshore renewable energy developments

3

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

- 4 Keywords: marine ecosystem, ecosystem service valuation, fisheries production, climate change,
- 5 marine renewable developments, human well-being, marine spatial planning, energy policy
- 6 **Abstract**

There is about to be an abrupt step-change in the use of coastal seas around the globe, specifically by the addition of large-scale offshore renewable energy developments to combat climate change. Developing this sustainable energy supply will require trade-offs between both direct and indirect environmental effects, as well as spatial conflicts with marine uses like shipping, fishing, and recreation. However, the nexus between drivers, such as changes in the bio-physical environment from the introduction of structures and extraction of energy, and the consequent impacts on ecosystem services delivery and natural capital assets is poorly understood and rarely considered through a whole ecosystem perspective. Future marine planning needs to assess these changes as part of national policy level assessments but also to inform practitioners about the benefits and trade-offs between different uses of natural resources when making decisions to balance environmental and energy sustainability and socio-economic impacts. To address this shortfall, we propose an ecosystem-based natural capital evaluation framework that builds on a dynamic Bayesian modelling approach which accounts for the multiplicity of interactions between physical (e.g., bottom temperature), biological (e.g., net primary production) indicators and anthropogenic marine use (i.e., fishing) and their changes across space and over time. The proposed assessment framework measures ecosystem change, changes in ecosystem goods and services and changes in socio-economic value in response to offshore renewable energy deployment scenarios as well as climate change, to provide objective information for decision processes seeking to integrate new uses into our marine ecosystems. Such a framework has the potential of exploring the likely outcomes in the same metrics (both ecological and socio-economic) from alternative management and climate scenarios, such that objective judgements and decisions can be made, as to how to balance the benefits and trade-offs between a range of marine uses to deliver long-term environmental sustainability, economic benefits, and social welfare.

INTRODUCTION

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

Complexity of marine ecosystems

Marine ecosystems consist of complex dynamic interactions among species and the environment, the understanding of which has significant ecological and societal implications for predicting nature's response to changes in climate and biodiversity (Barange et al., 2014; Battisti and Naylor, 2009; Molinos et al., 2016). Such interactions are further exacerbated by spatial and temporal variation of the ecosystem and its components (Doney et al., 2012; Hunsicker et al., 2011; Polis et al., 1996). Stressors such as, climate change, fishing, and resource exploitation have also been shown to modify the driving forces in ecosystems (Blanchard et al., 2012; Cheung et al., 2018; Lotze et al., 2019). In fact, the effects of fishing may have been exacerbated by climate warming and climate-induced changes in primary production, leading to impacts on demersal fish and seabirds in the North Sea (Lynam et al., 2017). One of the more likely solutions to combat climate change is the introduction of large-scale offshore renewable energy (ORE) developments (wind, tidal and wave) of 100s of gigawatts (GW) (IRENA, 2019). Such developments will not only reduce reliance on importing fossil fuels, and reduce emissions, but will also provide socio-economic benefits and job creation. However, the introduction of so many new structures and the extraction of so much energy either from wind, wave or tides will have cumulative effects within the world's shallow seas and therefore will also influence whole ecosystems with potentially far-ranging societal consequences (Boon et al., 2018; Dalton et al., 2015; De Dominicis et al., 2018; Hooper and Austen, 2013; Hooper et al., 2015; Sadykova et al., 2020; White et al., 2012). There are significant gaps in our understanding of the socio-economic impacts of physical and biological changes, associated with both climate change and ORE developments (Mooney et al., 2009; Polasky et al., 2011; Seppelt et al., 2011).

In 2019, the UK parliament passed legislation: The Climate Change Act 2008 (2050 Target Amendment¹) to reduce the UK's net emissions of greenhouse gases by 100% relative to 1990 levels by 2050 (Net zero). The UK is the current global leader in offshore wind with 8.5 GW currently installed and a commitment to increase its capacity to 40 GW by 2030². However, that level has just recently been increased to 50 GW (UK Energy Security Strategy, UK GOV³) with an accompanying dramatic shift to planning reforms to cut the approval times for new offshore wind farms from 4 years to 1 year. In the U.S., the Biden Administration has released an executive order ⁴ targeting 30 GW of offshore wind energy capacity by 2030, with an additional target of 110 GW by 2050, and all coming from a current capacity of 42 megawatts (MW). Achieving these lofty goals in the UK, U.S., and the many other countries with offshore wind energy ambitions will require a significant transition in our economy and society, if they are to be deployed at the scale needed to have a meaningful impact on climate change. Many trade-offs will need to be evaluated rapidly for the future sustainable management of marine ecosystems between different uses of our seas, e.g., ORE developments, fisheries, commercial transport, and marine protected areas (MPAs). Moreover, the diversity of economic drivers of change, such as changes in costs, technology, trade, substitute goods, and demand, can make assessments of socio-economic impacts problematic, especially when projecting out into the future (Fernandes et al., 2017). To ensure management is sustainable and meeting desired societal goals, and to avoid unintended consequences, it is essential to move toward identifying and measuring all environmental, social, and economic impacts, both short and long term (Daily et al., 2000).

72

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

¹ https://www.legislation.gov.uk/uksi/2019/1056/contents/made

² https://www.gov.uk/government/publications/energy-white-paper-powering-our-net-zero-future

³ https://www.gov.uk/government/publications/british-energy-security-strategy/british-energy-security-strategy

⁴ https://www.whitehouse.gov/briefing-room/statements-releases/2021/03/29/fact-sheet-biden-administration-jumpstarts-offshore-wind-energy-projects-to-create-jobs/

Decision frameworks

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

Given the various ambitions for ORE as a source of clean energy, economic development, job growth, national security enhancement, and more, all, while managing environmental issues and use conflicts in already crowded waters, decision making needs to account for a wide array of factors to meet goals and avoid unintended outcomes. Multicriteria analysis (MCA) is the most widely decision framework used to assess trade-offs in settings like this, and includes a process of scoring, ranking, or weighting the importance of different objectives to provide a numerical basis on which to select between different options (Britain, 2009; Hooper and Austen, 2013). Examples include the development of fisheries management plans, which are also part of the management strategy evaluation ⁵(MSE), in which stakeholders and managers identify and score risks to the delivery of ecological, social, and economic objectives (Fletcher et al., 2010), and mapping areas of optimal resource, overlapping with technical constraints, environmentally sensitive sites, and potential conflicts with other marine users to aid wave energy development (Nobre et al., 2009). An increasingly important part of the multicriteria decision processes for offshore wind energy in many countries is to measure cumulative environmental effects. In the UK, cumulative effects of ORE developments need to be evaluated through cumulative impact assessments (CIAs). CIAs are defined as: "An assessment of potential cumulative impacts arising from a proposed development or activity, usually completed as part of an environmental impact assessment (EIA)" (Broderick et al., 2013). The UK Marine Policy Statement (UK-MPS), in line with the Sustainability Appraisal (SA), sets the process for developing marine plans, which should be based on an ecosystem approach and obliges decision-making bodies to ensure that potential cumulative effects are considered and managed by setting targets or limiting development (MMO, 2014; Woolley, 2015). In the U.S., the Bureau of Ocean Energy Management (BOEM) is charged with investigating cumulative impacts by the National Environmental Protection Act. However, despite the recent increase in ORE deployments, countries have been slow in measuring cumulative impacts of ORE developments (Diaz

https://www.pewtrusts.org/-/media/assets/2019/07/harvest-strategies/hs mse update.pdf

and Soares, 2020; Gusatu et al., 2020, 2021). In the U.S., BOEM conducted a qualitative classification of potential avenues for cumulative impact on the North Atlantic continental shelf, but no attempts were made to measure these⁶. Some of the challenges with this work include different assessment methodologies, the mismatch between spatial scales at which ecosystems function, the different time scales of the ORE-related impacts, the need for a long-term monitoring of effects across the ORE development timeline, and the differences between how regulatory agencies operate (Gusatu et al., 2020; Willsteed et al., 2017). As a result, decisions presently lack accurate information for assessing marine animal populations and large-scale ecosystem changes. This ultimately exacerbates uncertainties regarding ORE developments, climate change and other anthropogenic impacts on marine ecosystems and their societal implications, which in turn fails to inform future ORE developments (Therivel and González, 2019). When uncertainties regarding the effects of marine activities arise, the UK-MPS prescribes a risk-based decision-making approach but without providing any methodological guidelines (Woolley, 2015). The tools currently available tend to neglect future climate changes and the complexity of ecosystem dynamics (Burdon et al., 2018; Gissi et al., 2018; Willsteed et al., 2018), thus they are insufficient to reach broader ambitions to implement an ecosystem approach for the sustainable management of marine waters (Willsteed et al., 2017). Measuring the change in societal well-being from ORE policy is also a critical factor for consideration in an MCA. Cost-benefit analysis (CBA) is a structured valuation technique that provides a quantification of all the costs and benefits (including non-market goods) associated with projects or policies to establish their likely impact (Pacific Community Policy Brief, 2017⁷). It has been widely used in policy deliberations in the UK (Atkinson et al., 2018), including siting MPAs and as part of the Marine Strategy Framework Directive, and has been a critical part of policy in the U.S. since President Ronald Regan's Executive Order 12291 of 1981, which mandated its use as part of major

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

⁶ https://www.boem.gov/sites/default/files/environmental-stewardship/Environmental-Studies/Renewable-Energy/IPFs-in-the-Offshore-Wind-Cumulative-Impacts-Scenario-on-the-N-OCS.pdf

⁷ http://www.spc.int/DigitalLibrary/Doc/FAME/Brochures/Anon 17 PolicyBrief30 Economics.pdf

federal decision making. Rarely is CBA used as the sole factor in decisions, even for measuring human well-being; rather it is often considered alongside other important criteria, such as job growth, changes in gross value added (GVA) or gross domestic product (GDP), economic impact analysis, distributional impact analysis, and a wide array of other decision aids (Harrison et al., 2018; OECD, 2018). For example, in Australia CBA is regularly used to choose between policy alternatives in natural resource management, whilst in fisheries and aquaculture, its use is less systematic (Coglan et al., 2020). The use of social indicators in an CBA approach has been identified as important to ensure sustainability in the use of marine resources and other environmental contexts (Olander et al., 2018; Oleson et al., 2020; Schaar and Cox, 2021).

Natural capital and ecosystem services

Natural capital is a concept that borrows from the traditional framing of built capital and other forms of capital to frame the environment as a scarce, but regenerative, life supporting asset with value to society (Beaumont et al., 2007; Daily et al., 2000). By accounting for the quantity, quality, function, and value of environmental assets and the goods and ecosystem services that flow from them, decisions can be oriented towards ensuring the sustainable use of natural resources through time and other social objectives (Guerry et al., 2015; Hooper et al., 2019). The modelling tools and approaches that support measurement of these stocks and flows rely on the concept of marginal changes, also often referred to as scenario analysis, to measure how an action or decision manifests from an ecological change into changes in ecosystem goods and services that people value, and finally measures that change in value itself (Olander et al., 2017). As coupled human-natural systems models, these assessments produce both environmental and socio-economic change estimates, measured in monetary terms and other benefit relevant indicators, and as a result are generally more encompassing than other decision aids like environmental impact assessments (Hooper et al., 2017, 2018). Such information can support communication with other sectors, such as the conservation and financial sectors, and guide policy decisions and planning (Arkema et al., 2014,

2015; Posner et al., 2016; Reyers et al., 2015; Schaefer et al., 2015). The notion of using ecosystemlevel processes and how they are affected by economic activity has recently been introduced in the ways in which we should account for nature in economics and decision-making: The Economics of Biodiversity: The Dasgupta Review⁸. In the UK, the Environment White Paper (HM Government, 2011) reaffirmed the use of the natural capital approach within UK environmental policy, and more recently the 25 Year Environmental Plan (HM Government, 2018) explicitly stated that "over the coming years the UK intends to use a 'natural capital' approach as a tool to help us make key choices and long-term decisions". However, existing frameworks are best fit to terrestrial environments and there are an array of research gaps remaining with these approaches for decision support in the marine environment (Milon and Alvarez, 2019). To minimise negative impacts and secure wider environmental benefits, a Marine Net Gain (MNG) approach, based on the value of the marine environment to people via ecosystem services and natural capital, is essential. The developing thinking on natural capital accounting is important to MNG as it provides a framework for articulating, defining, and measuring the impacts of energy related installations on environmental benefits and their relative importance in provision of wider ecosystem services. Natural Capital accounting also supports the implementation of economic mechanisms, such as incentives or market-based approaches to securing MNG. The MNG approach will enable future marine energy planning as part of national policy assessments. The MNG approach improves transparency, allowing practitioners to objectively understand the full benefits and tradeoffs between marine uses (including fisheries, MPAs and energy), improving decision making when balancing energy needs, and environmental, social, and economic impacts. In this paper, we examine the prospect of combining an ecosystem-based modelling approach that measures changes in natural capital to illuminate how ecosystem changes manifest into the socioeconomic outcomes to support decision-making of ORE developments in the marine environment in

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

⁸ https://www.gov.uk/government/publications/final-report-the-economics-of-biodiversity-the-dasgupta-review

the context of climate change. By allowing for interactions from the physical environment up through top predators (seabirds and marine mammals) and their links with delivery of ecosystem services, natural capital and socio-economic benefits, the proposed framework provides a datadriven whole system approach which supports identifying and assessing MNG. We describe the framework and the mechanisms needed to apply such a framework, with the potential changes from displacement of fisheries, as an example of direct and indirect changes, and a range of ORE deployment scenarios to assess and evaluate the usability of the framework for marine spatial planning. Through the use of scenario analyses, the framework can provide a dynamic assessment of alternative marine use management (e.g., ORE developments and changes in fishing catch) and climate change outcomes across spatial and temporal scales, given the interaction between changes in the physical environment up through the marine ecosystem, including impacts in a natural capital and ecosystem service context. In this way, the framework can produce outcomes in a range of comparative ecological (e.g., stock biomass in kilograms) and socio-economic (e.g., monetary value) metrics throughout different habitats within the North Sea, and their associated ecosystem-level changes over time. Such predictive outcomes would allow the exploration of trends (increase vs decrease) of ecosystem-level, natural capital, and socio-economic changes to be able to provide strategic advice on potential future response to natural and/or anthropogenic drivers. The usefulness of the potential outcomes from the framework has been discussed with respects to supporting marine spatial management but also in the context of reducing climate change and delivering sustainable use of our seas with socio-economic benefits and MNG. The UK has been chosen for its advantageous policy environment; however, we also bring localised examples from Scotland and international examples from the U.S. The study concludes with a discussion on whether the framework is fit for purpose for the marine environment, including key challenges, whether alternative approaches are possible and suggestions for future steps forward.

197

198

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

AN ECOSYSTEM-BASED NATURAL CAPITAL EVALUATION FRAMEWORK

Case study: fisheries displacement

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

The introduction of ORE developments will bring environmental and socio-economic benefits, but it may bring potential negative impacts to coastal communities, which have the greatest dependence on traditional marine uses, such as recreational and commercial fishing (Hooper et al., 2017; Twigg et al., 2020). It is suggested that ORE developments might cause disturbance or loss of traditional fishing grounds and "industrialization" of marine open space (Haggett et al., 2020; Stelzenmüller et al., 2020). The spatial redistribution of fishing effort (fisheries displacement effect) to areas outside of the ORE development can potentially lead to increased competition among fishermen and to adverse effects on other less impacted habitats (De Backer et al., 2019; Murawski et al., 2005), which is also an argument made against the 30 by 30 ocean campaign goals of marine protection (Hilborn and Sinclair, 2021; Kubiak, 2020). Understanding the availability and ecology of alternative fishing grounds is important to determine whether displacement will have environmental and socioeconomic impacts, or not (Gill et al., 2020). Currently, in the UK, fishing in the confines of static (non-floating) offshore wind farms is only prohibited during construction or maintenance phases, however trawling is not generally resumed during the operational phase, due to liability and safety issues as a lack of cooperation and knowledge exchange between the two industries prevents fishermen from entering the wind farm array (Gusatu et al., 2020; Hooper et al., 2015). However, two of the currently operational windfarms in the north-east coast of Scotland (Beatrice and Moray East) are conducting over-trawl ability trials where they are testing trawling over cables. Such trials are to ensure the comprehensive utilization of sea space and continuous safe operation of fishing activities. There are ongoing efforts to set up commercial fisheries monitoring by Scottish government (Marine Scotland) to look into any signs of displacement and changes to fishing patterns, concurrent with efforts performed by the EIA processes (Stelzenmüller et al., 2020). Floating windfarms will not permit any mobile fishing practises within wind farm arrays, due to the safety concerns of mobile cables and infrastructure throughout the water column. This is a concern,

as for example, the UK fishing fleet (4,491 active fishing vessels) landed 620,000 tonnes of fish and shellfish in 2019 with a total revenue of £1 billion and a profit of £240 million (Seafish, 2019). Economic performance of the UK fishing fleet is measured in terms of GVA, calculated as the sum of operating profit and crew share. Total fishing income of the fleet was £980 million in 2019, with a GVA of £498 million (Seafish, 2019). In 2019, Scotland-registered vessels landed the largest weight (384,000 tonnes landed) and value (£570 million) of fish and shellfish (Seafish, 2019) by registered home nation. Scottish-registered vessels also created the highest GVA in 2019 at £302 million (Seafish, 2019). Currently, there are no UK policies or procedures in place that address the interactions between ORE developments and existing fisheries activities (Schupp et al., 2021). Conflicts between the fishing industry and ORE (wind in particular) industry have risen across Europe and the U.S., with some approaches being introduced to resolve such conflicts, e.g., compensation funds, cooperative research strategies, lease stipulations, and participatory decision-making (Dupont et al., 2020). Therefore, there is a need for an integrated framework that would enable a holistic assessment of trade-offs between different uses of natural resources to support the communication with multiple sectors and guide policy decisions and planning.

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

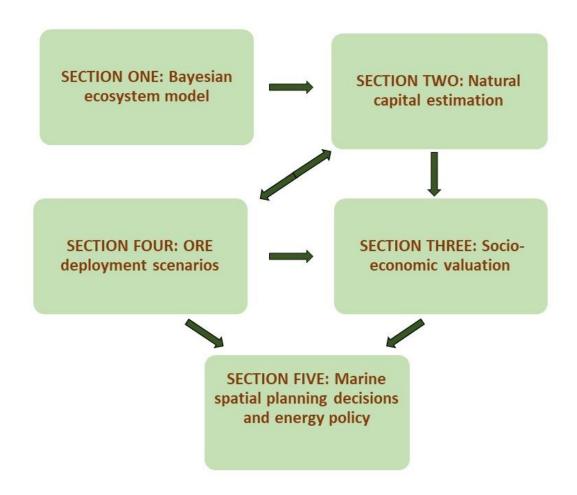


Fig.1 Graphical representation of the sequence of sections that form the ecosystem-based natural capital evaluation framework. The arrows represent flow of information within the sections of the framework necessary for incorporating ecosystem-level knowledge and natural capital into marine spatial planning decisions and energy policy.

Table 1. Sections of the ecosystem-based natural capital evaluation framework and their methods and potential examples of ecological and socio-economic outcomes and their metrics in response to alternative natural (e.g., climate change) and anthropogenic (e.g., increase or decrease in fishing catch) scenarios.

SECTIONS	METHODS	OUTCOMES
Bayesian ecosystem model	Natural (e.g., climate change) or anthropogenic (e.g., increase or decrease in fishing catch) Bayesian modelling scenarios	e.g., increase or decrease in fish stock biomass (in kilograms)
Natural capital estimation	Natural (e.g., climate change) or anthropogenic (e.g., increase or decrease in fishing catch) Bayesian modelling scenarios	e.g., increase or decrease in fish landings (in kilograms)
Socio-economic valuation	IO analytical model, MCA, CBA	e.g., increase or decrease in economic activity (e.g., ORE deployment costs) and social welfare, both in monetary (GVA change) and nonmonetary terms
ORE deployment scenarios	ESME tool, supply chain scenarios	Amount of energy (GW)
Marine spatial planning and energy policy	Communicate findings of the framework through publications, policy briefs. Dissemination and discussion of findings through engagement with science, industry, and policymakers	Ecosystem (e.g., species and locations within the marine environment); economic activity (e.g., job creation); social welfare (e.g., consumer and producer surplus from fishing)

Section one: Bayesian ecosystem model

The ecosystem-based natural capital evaluation framework (figure 1) builds on a Bayesian modelling approach, that uses long-term historical data on physical (e.g., temperature), biological (e.g., fish stock biomass) and anthropogenic marine use (e.g., fisheries catch) components to model ecosystem status (Trifonova et al., 2021). These components will change with climate change and the very large extraction of energy (100s of GW) from ORE developments (Boon et al., 2018; De Dominicis et al., 2018; Holt et al., 2016; Sadykova et al., 2020; van der Molen et al., 2014; Wakelin et al., 2015). The

model is a spatio-temporal ecosystem approach that provided further insights into the best physical and biological indicators within four different habitat types that will contain different types of ORE extraction: shallow (< 50 m; static wind), deep (> 50 m; floating wind), or oceanic influenced (with either high tidal or wave energy resources) of shallow seas and their associated ecosystems. This unique approach works across a range of spatial and temporal scales and allows for interactions amongst different ecosystem components to be incorporated. At the same time, the approach can accommodate expert elicitation, alongside observed data (Uusitalo, 2007). The approach holds the ability of investigating scenarios to investigate the effect of ORE developments to explore the likely outcomes of alternative management and climate scenarios (such as the business-as-usual climate scenario), and for evaluating trade-offs among sectors and services (Trifonova et al., 2017; table 1). As applied in ecology, Bayesian networks represent probabilistic dependencies among species and their surrounding environment in an intuitive, graphic form (Jensen and Nielsen, 2007), therefore different experts can have a quantitative indication of the range of possible scenarios consistent with the data to give strategic advice on potential ecosystem response. The visual nature of Bayesian networks can help communicate modelling results and they allow a variety of perspectives of natural and anthropogenic effects to be represented (Levontin et al., 2011). The usefulness of scenarios in supporting environmental resource management is becoming increasingly recognised internationally (e.g., Marine Ecosystem Assessment, Scenarios Assessment⁹) and in the UK (Fernandes et al., 2017; Pinnegar et al., 2006). For example, one could ask, what is the probability of seeing a change in the stock biomass of herring, given that we have observed a change in the probability distribution of fisheries catch, due to changes caused by displacement from wind farms, sea temperatures and the prey of herring? Through the developed scenarios, we can explore the specific trends (increase vs decrease) of multiple species and functional groups of lower trophic groups (such as zooplankton) throughout the ecosystem in response to change in drivers and examine potential trade-offs

-

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

⁹ https://www.millenniumassessment.org/en/Scenarios.html

between herring as well as other important (highly protected) species, such as seabirds and marine mammals, which are the common predators of herring.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

293

294

Section two: natural capital estimation

Next, the Bayesian modelling outcomes, i.e., species trends of increase or decrease via a particular fish species (e.g., herring) and the changes in stock biomass (in kilograms), will be used in a scenario analysis to estimate the change (increase vs decrease) in natural capital value of the fish population in terms of the service it provides (e.g., food provision for human consumption) (figure 1; table 1). Using the Bayesian modelling approach, we can estimate how the herring landings can change in section two, by examining changes in the physical (e.g., temperature), biological (e.g., zooplankton abundance, i.e., prey for herring) and/or anthropogenic (fisheries catch) components and their effects on herring stock biomass from section one. For example, what is the probability of seeing a change in the total herring landings, given the change (decrease) in areas of catch from ORE developments, but an increase in bottom temperature, and a decrease in zooplankton prey from climate change? In this way, we can explore the trend (increase vs decrease) of the herring landings, given a change in drivers, that we know are important for herring stock biomass, given the outcomes from previous ecosystem network analysis of the last 30 years (Trifonova et al., 2021). It is important to note that with using such scenarios, we are not attempting to indicate levels of plausibility but rather explore the predictive results of relative differences of species and ecosystem-level responses and the changes associated with well-being that arise from natural and anthropogenic change. Such outcomes would allow the dynamic assessment of choices, which should be able to provide strategic advice on potential system response to different and cumulative levels of drivers .

315

316

317

318

314

Section three: socio-economic valuation

In section three, given the outcomes of increase or decrease in the amount of fish landed for human consumption from section two, we can estimate its change in value. In the sphere of economic

valuation, there is a distinction between valuing the stock of natural capital or the flow of ecosystem services. In practice, most environmental goods and services are measured in flow terms, estimating the value change for a given (current) period. Measures like GVA, which represents the annual sum of operating profit and labour income, and other components of national accounts, such as GDP, are typically used as a tracking index through time. Other measures like change in net or gross revenue or change in annual household willingness to pay are also measures of the change in ecosystem service flow value. The marginal change in a natural resource can also be measured as the change in dynamic value through time, accounting for rates of time preference and induced long term stock changes that affect future service provision (Fenichel and Abbot, 2014). This allows for resource valuation that more accurately reflects that resource stocks are likely not in equilibrium and assuming a constant stream of ecosystem service flow through time is misleading. Approaches for valuing ecosystem service flows are widely available, even if in practice studies often stop short of measuring values and settle for changes in biophysical terms (Mandle et al., 2021). Natural capital concepts are almost exclusively used for public and private decisions for marketed goods like fish, timber, water, oil, and gas, though there have been some recent advances in applying them to non-marketed goods, like storm protection (Bond, 2017). Given the dynamic nature of the Bayesian model applied in sections one and two, the proposed natural capital evaluation framework is suitable for stock or flow value measurement, depending on decision needs.

338

339

340

341

342

343

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

Section four: ORE deployment scenarios

The framework also holds the potential to link ecosystem-level effects and ecosystem service value changes through the use of ORE deployment scenarios that present the potential economic benefit, for example in GVA terms, of deploying innovative ORE developments in domestic and international waters (Supergen ORE Hub Policy Paper, Policy and Innovation Group, University of Edinburgh,

2021¹⁰; figure 1). Section four is founded on deployment scenarios, where cost, performance and systemic conditions are defined, for example, by the 2030 levelized cost of energy (LCOE) targets in the UK Strategic Energy Technology Plans (SET Plans) for ORE (wave, tidal stream, and floating offshore wind) technologies. Deployment modelling obtained from the Energy Systems Catapult ¹¹(ESC) and the International Energy Agency ¹²(IEA) can be utilized alongside an Input Output analytical model (Leontief, 1986) for valuation (section three). The time series of the installed capacity are coupled with deployment costs, leakage rates, and GVA effects to obtain GVA results associated with the different project phases and components. For example, a Low Ambition scenario vs High Ambition scenario generates £16.4bn in GVA vs £41.4bn in GVA for the UK economy, respectively, both derived from 57 GW (floating offshore wind, wave and tidal) ORE deployment by 2050. The proportion of the total spending associated with the domestic and international deployment retained in the UK is dependent on the relative strength of the UK supply chain. For example, an increase of 151% in GVA from domestic deployments has been modelled due to more ambitious retention assumptions reflecting a stronger supply chain. This highlights the significant potential value to the UK if the UK government invests in developing the local supply chain ahead of these deployments. Such an economic benefit from ORE developments will bring multiple benefits, such as decreased consumption of fossil fuels and job opportunities in various sectors of the economy. Such deployment scenarios can be investigated with Input Output analytical model, as well as how the ORE industries will benefit economically remote coastal communities and assess the value of ORE deployments in the context of reducing climate change. The Input Output analytical model has been successfully applied for the local community in Orkney, Scotland, where a socio-economic impact assessment of a renewable wave device, Aquamarine Power's Oyster project, evaluated the impacts on employment and GVA (Yuille, 2009). Another study

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

_

 $^{^{10}\,\}underline{\text{https://www.supergen-ore.net/uploads/What-is-the-value-of-innovative-ORE-deployment-to-UK-economy.pdf}$

¹¹ https://es.catapult.org.uk/reports/innovating-to-net-zero/

¹² https://www.iea.org/reports/energy-technology-perspectives-2020

outlined the potential economic benefits of developing an ocean energy industry in Ireland, including a roadmap for the development of the sector (Connor, 2010). In the U.S., an impact study using the Input Output method explored the impact on the economy of expenditure on ORE projects out to 2050 (Pollin et al., 2009), whilst a study by Hoagland et al., 2015 evaluated the economic impacts and social welfare changes to both coastal and non-coastal communities from displacement of commercial fishing by offshore wind. By using the knowledge from the deployment scenarios on the amount of GW and GVA benefit, the framework holds the potential of estimating the amount of space and locations within the marine environment needed for such developments and how existing marine uses (e.g., fisheries activities) will interact with the planned ORE developments.

Section five: framework outcomes to support marine spatial planning decisions and energy policy Using knowledge on the amount of GW and GVA benefit, combined with the scenario outcomes on the ecosystem and natural capital changes from sections one and two, the framework will be able to identify ecosystems (i.e., locations) in which ORE developments and other stressors (climate change) and marine uses (e.g., fisheries activities) might have the strongest impacts (increase or decrease) on fish stock biomass, landings, and fisheries production. These outcomes will be used to estimate any socio-economic impacts in both monetary and non-monetary terms, using the valuation techniques and decision frameworks from section three, thus minimizing negative effects and prioritizing locations and management plans accordingly (figure 1; table 1). The framework provides a dynamic assessment of alternative management and climate scenarios across spatial and temporal scales, given the interaction among multiple marine uses in the context of climate change. By identifying highly sensitive vs more robust ecosystems and their locations, and how changing the location and extent of the most impactful uses, the framework can assess changes in flows of ecosystem services and offers changes in stock values of natural capital that will allow us to make judgements and decisions about the environmental, social, and economic benefits and trade-offs within spatial scales, among sectors, and between users. This could also be linked to non-consumptive values from

marine species, such as sightseeing and recreational activities, and non-market values people hold for species' existence. Such information will ideally support the communication with other sectors, in particular the fishing industry, and assist the development of marine spatial planning, marine policy statement, MNG and energy policy. Improved research outcomes on ecosystem-level changes and their well-being outcomes, associated with spatial variation in the design and location of ORE developments, builds on a growing scientific capability to incorporate these into policy (Griffin et al., 2015; Jacobson et al., 2014; Samoteskul et al., 2014). This improved understanding would ideally enable the integration of fisheries activities in order to better assess issues, such as potential fisheries displacement and encourage involvement of the industry at the beginning of the CIA processes. The framework will provide us with better assessment of the changes resulting from climate change, ORE developments, and changes in fishing on the marine system which will inform the optimum development arrangement (i.e., size and array design) and locations within the marine environment to maximise MNG, energy sustainability and support multiple benefits. A core part of achieving the UK Energy Security Strategy will be to consider environmental considerations more strategically and the proposed framework is perfectly aligned to contribute to this aim. Indeed, the framework will provide an approach to measuring the relative value of MNG interventions in terms of wider Natural Capital Accounting, in line with the UK Environmental Accounts such as those produced by the Office of National Statistics (ONS) and could support the basis of any future economic consideration of MNG including market-based approaches. Progressing understanding of ecosystem services and market-based approaches could inform developing a sustainable fisheries policy, including climate change adaptation policies in marine plans, and supporting the development of adaptive capacity of marine sectors. This will in turn support improved integrated marine spatial management in the context of reducing climate change and delivering sustainable use of our seas with socio-economic benefits including interventions, related to indicators/outcomes under the 25 Year Environmental

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

Plan (HM Government, 2018), the UK Marine Strategy¹³, as well as the Sustainable Development Goals¹⁴.

FRAMEWORK POTENTIAL WITH OTHER ECOSYSTEM SERVICE EXAMPLES AND THEIR ISSUES

The proposed framework holds the potential to identify, quantify and map ecosystem-level changes and natural capital in the context of multiple ecosystem services to highlight spatial, temporal, and socio-economic differences, and explore trade-offs. As ORE developments continue to grow, changes in biodiversity could affect the provision of ecosystem services through the associated processes and functions (Gill, 2005).

Primary production

As an example of important ecosystem service, changes in primary productivity have been recorded around wind turbines in shallow sea regions (< 50 m), which are likely to have positive effects on the availability of food to higher trophic levels and may well have knock-on effects to food provision and cultural experience of iconic species, such as birds and marine mammals (Causon and Gill, 2018). However, results from the few studies that have included analyses of the wind farm and/or tidal turbine impacts on primary production, differ among regions, due to their unequal topographic and oceanographic conditions and consistent outcomes are lacking to allow informed decision-making. The introduction of devices and their energy extraction will inevitably affect the timing, distribution, and composition of plankton communities, causing food availability displacement (Ludewig, 2015; Schultze et al., 2020; van der Molen et al., 2014, 2016; Wolf et al., 2021). Such changes are likely to be strongly linked with storage of organic carbon and bottom-up effects on climate regulation (Causon and Gill, 2018). Yet, at present, the extent to which regulating ecosystem services (e.g., climate regulation) maybe altered by ORE developments is unknown. There is the need for empirical

¹³ https://www.gov.uk/government/publications/marine-strategy-part-one-uk-updated-assessment-and-good-environmental-status

¹⁴ https://sdgs.un.org/goals

measurements of the vertical distribution of chlorophyll-a (as a measure of primary production) and nutrient concentrations on and around ORE developments. Quantifying the value of climate regulation requires an understanding of carbon sequestration, including the mechanisms for sequestration: e.g., export, burial, and resuspension rates (Busch et al., 2011). Because of a lack of data, values related to carbon sequestration by marine ecosystems are not included in the current estimates. Therefore, data are needed on the amount of standing stock biomass for phytoplankton, zooplankton, and higher trophic levels, as any changes to the benthic ecosystem, due to ORE developments, can have profound implications for the provision of valuable ecosystem services, including those related to sea mammals, birds, and fish (Wilding et al., 2017).

Wildlife tourism: marine mammals

Marine mammals have traditionally been part of Scottish marine heritage and utilised economically (Parsons et al., 2003). Whale-watching has become a fast-expanding tourist attraction and the number of commercial tourism enterprises has grown significantly (Thompson, 1994). The value to the Scottish economy of wildlife tourism is £127 million per year, specifically, dolphin watching, for example, on the east coast of Scotland generates £4 million for the local economy each year (Bryden et al., 2010; NatureScot Heritage¹⁵).

Given top predators' geographic distribution and high mobility, there is a high potential for interactions between seabirds and marine mammals and ORE developments, even including those in development (Skeate et al., 2012). ORE developments are thought to have several effects on marine mobile animal populations, although the extent to which these are biologically significant at the population scale remain uncertain (Dierschke et al., 2016; Gasparatos et al., 2017; Gill et al., 2020; Joy et al., 2018; Skov et al., 2018). The effect of ORE developments on marine animal populations is difficult to establish, also due to the influence from other factors (e.g., climate change), including the

¹⁵ https://www.nature.scot/sites/default/files/2019-07/Valuing%20naure%20based%20tourism%20in%20Scotland.pdf

ambiguity around complex behavioural movement, breeding/haul-out sites, migratory and feeding routes, but also species- and site-specific differences (Lindeboom et al., 2011; Mangi, 2013; Teilmann et al., 2006). Any negative effects on wildlife as a result of ORE developments may also have social and economic implications for nature-based tourism (Maunsell and Metoc, 2007). For example, changing migration patterns and the redistribution of species have the potential to change the length and nature of wildlife-based tourism seasons (Coles, 2020; Lambert et al., 2010). Empirical evidence is needed to estimate the scale of the effects of ORE developments on mobile marine animal populations and consequently on the services they provide. Recognising the relevance of scale in relation to ORE interactions with both lower and higher trophic level species, can aid understanding of population-level changes and inform regulators in applying more species-specific regulations (Wilding et al., 2017).

Climate change: carbon emissions

Moreover, the introduction of ORE developments will have positive effects on other service values, such as the value of avoiding carbon emissions (A Sustainable Ocean Economy for 2050, World Resources Institute¹⁶; Bang et al., 2019; Barthelmie and Pryor, 2021; Ørsted ESG Performance Report 2020¹⁷; Spyroudi et al., 2020). It can also potentially help mitigate hurricane damage by diminishing hurricane wind speeds and storm surge (Jacobson et al., 2014) and can effectively protect the coast from heavy rains during hurricanes (Pan et al., 2018). However, even the wide social acceptance of ORE developments (Haggett, 2008; Hattam et al., 2015; Henderson et al., 2003), there will be some societal challenges. Some of these challenges, due to visual proximity, include the perceptions of coastal communities towards offshore wind farms (Chen et al., 2015; Lacroix and Pioch, 2011; Ladenburg and Möller, 2011), changes in recreation value (Ladenburg and Dubgaard, 2009; Landry et

¹⁶ https://oceanpanel.org/sites/default/files/2020-07/Ocean%20Panel Economic%20Analysis FINAL.pdf

¹⁷ https://orsted.com/esgperformance2020

al., 2012) and house values (Ek and Persson, 2014; Ladenburg and Dubgaard, 2007; Krueger et al., 2011).

Maritime Transport

Another critical interaction is the one between ORE developments and maritime activities, such as shipping and navigation costs (Mehdi et al., 2018; Samoteskul et al., 2014). It has been discussed that offshore wind farms can pose risk to navigational safety, leading to increased traffic density and risk of collision (Mehdi and Schröder-Hinrichs, 2016; Wright et al., 2016). Since more efficient use of offshore space increases social welfare by providing more with less impact, it is a desirable policy goal and should be fostered where possible (Griffin et al., 2015). The co-location of multiple marine uses to examine benefits and trade-offs can potentially increase the production and enjoyment of our seas, while limiting impacts and should play a key role as part of marine spatial planning.

COORDINATION NEEDED TO MOVE TOWARDS AN ECOSYSTEM-BASED NATURAL CAPITAL

EVALUATION FRAMEWORK

Levels of local, regional, and international cooperation

Although, interactions between fisheries and energy industries present challenges, through coordination, cooperative research, and iterative engagements, there is the potential for an inclusive approach to decision-making (Twigg et al., 2020). Successful examples of bringing together fisheries and ORE developments and providing a range of management recommendations to support decision-making, in relation to the multiple marine use in the same area, have been illustrated for Scotland and Germany (Schupp et al., 2021). For example, since 2015, the Forth and Tay regional advisory group (FTRAG Group 2015¹⁸) and the Moray Firth regional advisory group (MFRAG Group 2015¹⁹) in Scotland act as mechanisms for developers in these regions to pool resources, and work

 $^{{\}color{red}^{18}\,\underline{\text{https://marine.gov.scot/ml/forth-tay-regional-advisory-group-ftrag}}}$

¹⁹ http://marine.gov.scot/ml/moray-firth-regional-advisory-group-mfrag

prioritise and progress strategic research areas. Such groups enable monitoring and feedback into impact assessments and can act as a template for undertaking strategic research to inform future developments, but have not, so far, led to research at the ecosystem scale. The International Council on the Exploration of the Sea (ICES) is advancing transboundary, collaborative offshore wind and marine research through working groups that consider ORE, benthic interactions with ORE developments, and, most recently, fisheries and offshore wind (Gill et al., 2020). Improved spatially explicit fisheries data, along with onsite continuous monitoring, will be advantageous, to obtain better understanding of how species and ecosystems would respond to ORE introductions, as well as the socio-economic responses of fishing industry and local communities (Gill et al., 2020; Methratta and Dardick, 2019). In addition, it is important to distinguish effects in the context of existing long-term trends of species dynamics, in relation to fishing and environmental variables, and evaluate resources within and out of managed areas (Addison et al., 2015). Given the uncertainties caused by climate change, the complexities associated with species abundance and distribution, must be considered by ORE impact assessments (Perry and Heyman, 2020). Thus, taking a holistic ecosystem-level and ecosystem service valuation approach to explaining the changes and value of the fisheries and other marine resources to support understanding of the economic and societal impacts of the ORE developments is needed to assist energy policy development, planning, decision-making, and potential mitigation suggestions (Gill et al., 2020; Hooper et al., 2017;). Formalizing natural capital and ecosystem service linkages within energy system models

collaboratively with government, NGOs, and Statutory Nature Conservation Bodies, in order to

535

536

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

By placing a monetary valuation on the environmental impacts, decision makers will be able to examine ecosystem service issues and their impact on economic activity and social welfare. In addition, monetary outcomes can be used in collaboration with energy system models (e.g., UK

TIMES ²⁰ and Scottish TIMES model²¹) that are used for energy technology assessment and aim to minimise total energy system cost. The monetary valuation of environmental impacts can be used to inform the energy system models to investigate the economic, social, and technological trade-offs between long-term divergent energy scenarios, which will lead to a greater ability to launch interdisciplinary studies between ecologists and economists. Specifically, by promoting such collaboration, the energy system models will be able to identify areas where investment may not just enhance human well-being but also nature.

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

537

538

539

540

541

542

543

Incorporating ecosystem modelling linked to habitat risk in an ecosystem-based framework An ecosystem-based approach using a habitat risk assessment dynamic Bayesian network (HRA-DBN) is another alternative (Declerck et al., 2021). The approach brings together the dynamic data-driven Bayesian spatio-temporal ecosystem approach (Trifonova et al., 2021) and a Habitat Risk Assessment (HRA) model, which is one of the InVEST ²²(Integrated Valuation of Ecosystem Services and Tradeoffs) models, created by Stanford University (Natural Capital Project²³). Thus, the model will calculate the cumulative vulnerability, generated by several stressors for each habitat or trophic key ecosystem component and facilitate the identification, as well as the testing of innovative compensatory measures. This will help identify potential mitigation and compensatory measures at correct spatio-temporal scales to maximise future ecosystem value and functioning to enhance marine spatial planning processes. The notion of ecosystem services and the value they bring to human well-being has been recognised

in other existing frameworks, such as the one from Olander et al., 2017, who reported on best

practice for integrating ecosystem services into federal decision making in the U.S. and has been

²⁰ https://www.ucl.ac.uk/energy-models/models/uk-times

https://archive2021.parliament.scot/S5 Environment/General%20Documents/20160922 Scottish TIMES mo del - an overview.pdf

²² https://naturalcapitalproject.stanford.edu/software/invest

²³ https://invest-userguide.readthedocs.io/ /downloads/en/3.8.5/pdf/

successfully applied to advance natural and nature-based solutions to coastal protection (Arkema et al., 2017). It is an assessment framework build on causal chains that link change in ecosystem structure and function to the ecosystem services that benefit people. For example, a decision to invest in habitat restoration can lead to change in habitat structure (e.g., presence of oyster reef and/or width of saltmarsh buffer), which in turn can lead to a change in biophysical conditions (e.g., wave attenuation) and changes in the services provided to people (e.g., reduction in erosion or flooding of coastal property). There are a few recent examples attempting to develop coupled environmental and socio-economic approaches, such as a Bayesian belief network approach that was developed for the Basque coast to identify trends in the strength and spatial distribution between natural capital dependencies and maritime activities to identify the potential socio-economic impacts of management decisions and contribute towards ecosystem-based spatial planning (Gacutan et al., 2019). Another example of movements in this direction are an analytical tool to help understand the positive connection between the environment and human well-being which has been developed by the Joint Nature Conservation Committee (JNCC) for terrestrial environments (Howard et al., 2016) and two separate frameworks that are currently being developed for the marine environment by JNCC and the Centre for the Environment, Fisheries, Aquaculture Science (CEFAS). The purpose of such tools is to ensure that planning and management of the environment considers the diverse ways in which it supports human well-being. However, both tools assume that the connections between ecosystems and human well-being are "static". This assumption might not be true, as ecosystems are known to sometimes undergo relatively fast structural changes that have a major effect on the ecosystem dynamics (Möllmann et al., 2008), which threatens the provision of ecosystem services and can impact human well-being in a negative way (Campagne et al., 2021). On the contrary, our proposed framework provides a dynamic assessment of the ecosystem components (e.g., physical environment through to seabirds and marine mammals) and the multiplicity of their interactions across spatial and temporal scales to

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

be able to assess changes in flows of ecosystem services and in stock values of natural capital. An added value of the proposed approach is that the outcomes can also be used as inputs to the current "static" framework approaches of JNCC and CEFAS.

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

585

586

587

CONCLUSION

A step-change is occurring in the use of coastal seas globally, specifically by the addition of largescale ORE developments, to combat climate change and achieve sustainable affordable green energy. Considering the relationship between species distribution, population dynamics and physical habitats, and to ensure the compatibility of ORE developments with other marine management sectors, it is evident that a holistic approach, to account for cumulative impacts of ORE at an ecosystem scale, is an essential goal to address baselines for consenting and decision processes (Wolf et al., 2021). Using ecosystem models at ecologically meaningful scales to understand how ecosystems respond to multiple stressors will support the cumulative assessment process and the inherent multi-objective decision process of integrating ORE into the marine environment (Piroddi et al., 2015). To address that and to incorporate both direct and indirect effects on the ecosystem, ecosystem models need to be linked with a hydrodynamic-biogeochemical-sediments modelling system (Schuchert et al., 2018; Wolf et al., 2021). Under business-as-usual scenarios, climate conditions in 2050 are predicted to have even 10 times more of an effect on marine habitats than very large-scale energy extraction (De Dominicis et al., 2018; Sadykova et al., 2020). These modelling results highlight the need to make a policy including climate change effects as a part of the consenting process. By placing both monetary and non-monetary values on ecosystem goods and services, natural and anthropogenic impacts can be measured using similar metrics. This approach would make the connection between marine ecosystems and human well-being more explicit and make benefits and trade-offs easier to compare. The potential use for ORE developers and marine planning policy makers is obvious, as it allows the examination and comparison of all uses of marine space and any

consequent environmental and/or socio-economic impacts. Currently, ecosystem service values are underrepresented in UK and U.S. national policy level assessments (Atkinson et al., 2018), so this proposed framework can help bridge that gap and bring ecosystem-level changes into the socio-economic analysis of ORE developments. Communicating results of the environmental, social, and economic impact of marine renewable developments together, in the context of climate change, and other marine activities, such as, fisheries, will inform practitioners about the location and design of ORE developments when making decisions to balance environmental sustainability, economic activity, and social welfare.

REFERENCES

- Addison, P.F., Flander, L.B. and Cook, C.N., 2015. Are we missing the boat? Current uses of long-term biological monitoring data in the evaluation and management of marine protected areas. *Journal of Environmental Management*, 149, pp.148-156.
- Arkema, K.K., Verutes, G., Bernhardt, J.R., Clarke, C., Rosado, S., Canto, M., Wood, S.A., Ruckelshaus,
 M., Rosenthal, A., McField, M. and De Zegher, J., 2014. Assessing habitat risk from human activities
 to inform coastal and marine spatial planning: a demonstration in Belize. *Environmental Research Letters*, 9(11), p.114016.
 - Arkema, K.K., Verutes, G.M., Wood, S.A., Clarke-Samuels, C., Rosado, S., Canto, M., Rosenthal, A., Ruckelshaus, M., Guannel, G., Toft, J. and Faries, J., 2015. Embedding ecosystem services in coastal planning leads to better outcomes for people and nature. *Proceedings of the National Academy of Sciences*, 112(24), pp.7390-7395.
 - Arkema, K.K., Griffin, R., Maldonado, S., Silver, J., Suckale, J. and Guerry, A.D., 2017. Linking social, ecological, and physical science to advance natural and nature-based protection for coastal communities. *Annals of the New York Academy of Sciences*, *1399*(1), pp.5-26.

- Atkinson, G., Groom, B., Hanley, N. and Mourato, S., 2018. Environmental valuation and benefit-cost
- analysis in UK policy. *Journal of Benefit-Cost Analysis*, *9*(1), pp.97-119.
- Bang, J., Ma, C., Tarantino, E., Vela, A. and Yamane, D., 2019. Life Cycle Assessment of Greenhouse
- 638 Gas Emissions for Floating Offshore Wind Energy in California. University of California Santa Barbara,
- 639 p.68.
- Barange, M., Merino, G., Blanchard, J.L., Scholtens, J., Harle, J., Allison, E.H., Allen, J.I., Holt, J. and
- Jennings, S., 2014. Impacts of climate change on marine ecosystem production in societies
- dependent on fisheries. *Nature Climate Change*, 4(3), pp.211-216.
- 643 Barthelmie, R.J. and Pryor, S.C., 2021. Climate change mitigation potential of wind
- 644 energy. *Climate*, *9*(9), p.136.
- Battisti, D.S. and Naylor, R.L., 2009. Historical warnings of future food insecurity with unprecedented
- 646 seasonal heat. *Science*, *323*(5911), pp.240-244.
- Beaumont, N.J., Austen, M.C., Atkins, J.P., Burdon, D., Degraer, S., Dentinho, T.P., Derous, S., Holm,
- P., Horton, T., Van Ierland, E. and Marboe, A.H., 2007. Identification, definition and quantification of
- 649 goods and services provided by marine biodiversity: implications for the ecosystem
- approach. *Marine pollution bulletin, 54*(3), pp.253-265.
- Blanchard, J.L., Jennings, S., Holmes, R., Harle, J., Merino, G., Allen, J.I., Holt, J., Dulvy, N.K. and
- Barange, M., 2012. Potential consequences of climate change for primary production and fish
- 653 production in large marine ecosystems. *Philosophical Transactions of the Royal Society B: Biological*
- 654 *Sciences*, *367*(1605), pp.2979-2989.
- Bond, C.A., 2017. Valuing coastal natural capital in a bioeconomic framework. Water Economics and
- 656 Policy, 3(02), p.1650008.

- Boon, A., Caires, S., Wijnant, I.L., Verzijlbergh, R., Zijl, F., Schouten, J.J. and Kooten, T., 2018. The
- 658 assessment of system effects of large-scale implementation of offshore wind in the southern North
- 659 Sea. Delft: Deltares.
- Broderick, M., Hull, S., Therivel, R., Piper, J., Masden, E. and Denwood, M., 2013. Cumulative Impact
- 661 Assessment Guidelines: Guiding Principles for Cumulative Impacts Assessment in Offshore Wind
- 662 Farms. RenewableUK. Available at:
- 663 https://nerc.ukri.org/innovation/activities/energy/offshore/cumulative-impact-assessment-
- 664 guidelines/
- Britain, G., 2009. Department for Communities and Local Government. Multicriteria analysis: a
- 666 manual. Communities and Local Government, Wetherby.
- Bryden, D. M., Westbrook, S. R., Burns, B., Taylor, W. A. and Anderson, S. 2010. Assessing the
- 668 economic impacts of nature-based tourism in Scotland. Scottish Natural Heritage Commissioned
- Report No. 398, Inverness: Scottish Natural Heritage.
- 670 Burdon, D., Boyes, S.J., Elliott, M., Smyth, K., Atkins, J.P., Barnes, R.A. and Wurzel, R.K., 2018.
- 671 Integrating natural and social sciences to manage sustainably vectors of change in the marine
- 672 environment: Dogger Bank transnational case study. Estuarine, Coastal and Shelf Science, 201,
- 673 pp.234-247.
- 674 Busch, M., La Notte, A., Laporte, V. and Erhard, M., 2012. Potentials of quantitative and qualitative
- approaches to assessing ecosystem services. *Ecological Indicators*, *21*, pp.89-103.
- 676 Campagne, C.S., Langridge, J., Claudet, J., Mongruel, R. and Thiébaut, E., 2021. What evidence exists
- on how changes in marine ecosystem structure and functioning affect ecosystem services delivery?
- A systematic map protocol. *Environmental Evidence*, *10*(1), pp.1-11.
- 679 Causon, P.D. and Gill, A.B., 2018. Linking ecosystem services with epibenthic biodiversity change
- 680 following installation of offshore wind farms. *Environmental Science & Policy, 89*, pp.340-347.

- 681 Chen, J.L., Liu, H.H. and Chuang, C.T., 2015. Strategic planning to reduce conflicts for offshore wind
- development in Taiwan: A social marketing perspective. Marine Pollution Bulletin, 99(1-2), pp.195-
- 683 206.
- 684 Cheung, W.W., Bruggeman, J. and Butenschön, M., 2019. Projected changes in global and national
- 685 potential marine fisheries catch under climate change scenarios in the twenty-first century. *Impacts*
- of Climate Change on Fisheries and Aquaculture, p.63.
- 687 Coglan, L., Pascoe, S., Scheufele, G., Paredes, S. and Pickens, A., 2020. Non-market values to inform
- decision-making and reporting in fisheries and aquaculture: an audit and gap analysis. Vol. FRDC
- 689 Project 2018-068.
- 690 Coles, T., 2020. Impacts of climate change on tourism and marine recreation. MCCIP Science Review
- 691 *2020*, 593-615.
- 692 Connor, G., 2010. Economic study for ocean energy development in Ireland. SQW and SEAI and
- 693 OEDU.
- Daily, G.C., Söderqvist, T., Aniyar, S., Arrow, K., Dasgupta, P., Ehrlich, P.R., Folke, C., Jansson, A.,
- Jansson, B.O., Kautsky, N. and Levin, S., 2000. The value of nature and the nature of
- 696 value. *Science*, 289(5478), pp.395-396.
- Dalton, G., Allan, G., Beaumont, N., Georgakaki, A., Hacking, N., Hooper, T., Kerr, S., O'Hagan, A.M.,
- Reilly, K., Ricci, P. and Sheng, W., 2015. Economic and socio-economic assessment methods for
- ocean renewable energy: Public and private perspectives. *Renewable and Sustainable Energy*
- 700 *Reviews*, *45*, pp.850-878.
- De Backer, A., Polet, H., Sys, K., Vanelslander, B. and Hostens, K., 2019. Fishing activities in and
- around Belgian offshore wind farms: trends in effort and landings over the period 2006-2017.
- 703 In Environmental impacts of offshore wind farms in the Belgian part of the North Sea: making a
- decade of monitoring, research and innovation. Memoirs on the Marine Environment (pp. 31-46).

- Declerck, M., Trifonova, N., Black, J., Hartley, J. and Scott, B.E., 2021, September. A new strategic
- framework to structure cumulative impact assessment (Cia). In *Proceedings of the European Wave*
- 707 and Tidal Energy Conference (pp. 2232-1).
- 708 De Dominicis, M., Wolf, J. and O'Hara Murray, R., 2018. Comparative effects of climate change and
- 709 tidal stream energy extraction in a shelf sea. Journal of Geophysical Research: Oceans, 123(7),
- 710 pp.5041-5067.
- 711 Díaz, H. and Soares, C.G., 2020. Review of the current status, technology and future trends of
- offshore wind farms. *Ocean Engineering*, 209, p.107381.
- 713 Dierschke, V., Furness, R.W. and Garthe, S., 2016. Seabirds and offshore wind farms in European
- waters: Avoidance and attraction. *Biological Conservation*, 202, pp.59-68.
- Doney, S.C., Ruckelshaus, M., Emmett Duffy, J., Barry, J.P., Chan, F., English, C.A., Galindo, H.M.,
- 716 Grebmeier, J.M., Hollowed, A.B., Knowlton, N. and Polovina, J., 2012. Climate change impacts on
- 717 marine ecosystems. *Annual Review of Marine Science*, 4, pp.11-37.
- 718 Dupont, C., Herpers, F. and Le Visage, C., 2020. Recommendations for positive interactions between
- offshore wind farms and fisheries. Short Background Study. Executive Agency for Small and Medium-
- 720 sized Enterprises. European Commission, 2020. Available at: https://maritime-spatial-
- 721 planning.ec.europa.eu/sites/default/files/recommendations for positive interactions between off
- 722 shore wind farms and fisheries.pdf.pdf
- 723 Ek, K. and Persson, L., 2014. Wind farms—Where and how to place them? A choice experiment
- 724 approach to measure consumer preferences for characteristics of wind farm establishments in
- 725 Sweden. *Ecological Economics*, *105*, pp.193-203.
- 726 Faijer, M. J., and Meissl, L., 2018. Comparison of North Sea SEA's and EIA's of maritime spatial plans
- and wind energy development, 31.

- 728 Fenichel, E.P. and Abbott, J.K., 2014. Natural capital: from metaphor to measurement. Journal of the
- Association of Environmental and Resource Economists, 1(1/2), pp.1-27.
- 730 Fernandes, J.A., Papathanasopoulou, E., Hattam, C., Queirós, A.M., Cheung, W.W., Yool, A., Artioli,
- 731 Y., Pope, E.C., Flynn, K.J., Merino, G. and Calosi, P., 2017. Estimating the ecological, economic and
- 732 social impacts of ocean acidification and warming on UK fisheries. Fish and Fisheries, 18(3), pp.389-
- 733 411.
- Fletcher, W.J., Shaw, J., Metcalf, S.J. and Gaughan, D.J., 2010. An ecosystem-based fisheries
- 735 management framework: the efficient, regional-level planning tool for management
- 736 agencies. *Marine Policy*, *34*(6), pp.1226-1238.
- Gacutan, J., Galparsoro, I. and Murillas-Maza, A., 2019. Towards an understanding of the spatial
- 738 relationships between natural capital and maritime activities: A Bayesian belief network
- 739 approach. Ecosystem Services, 40, p.101034.
- García Molinos, J., Halpern, B.S., Schoeman, D.S., Brown, C.J., Kiessling, W., Moore, P.J., Pandolfi,
- 741 J.M., Poloczanska, E.S., Richardson, A.J. and Burrows, M.T., 2016. Climate velocity and the future
- 742 global redistribution of marine biodiversity. *Nature Climate Change*, 6(1), pp.83-88.
- Gasparatos, A., Doll, C.N., Esteban, M., Ahmed, A. and Olang, T.A., 2017. Renewable energy and
- 744 biodiversity: Implications for transitioning to a Green Economy. Renewable and Sustainable Energy
- 745 Reviews, 70, pp.161-184.
- Gill, A.B., 2005. Offshore renewable energy: ecological implications of generating electricity in the
- 747 coastal zone. *Journal of Applied Ecology*, pp.605-615.
- Gill, A.B., Degraer, S., Lipsky, A., Mavraki, N., Methratta, E. and Brabant, R., 2020. Setting the context
- for offshore wind development effects on fish and fisheries. *Oceanography*, 33(4), pp.118-127.

- 750 Gissi, E., McGowan, J., Venier, C., Carlo, D.D., Musco, F., Menegon, S., Mackelworth, P., Agardy, T.
- 751 and Possingham, H., 2018. Addressing transboundary conservation challenges through marine
- 752 spatial prioritization. *Conservation Biology*, *32*(5), pp.1107-1117.
- 753 Griffin, R., Chaumont, N., Denu, D., Guerry, A., Kim, C.K. and Ruckelshaus, M., 2015. Incorporating
- 754 the visibility of coastal energy infrastructure into multi-criteria siting decisions. *Marine policy*, 62,
- 755 pp.218-223.
- Guerry, A.D., Polasky, S., Lubchenco, J., Chaplin-Kramer, R., Daily, G.C., Griffin, R., Ruckelshaus, M.,
- 757 Bateman, I.J., Duraiappah, A., Elmqvist, T. and Feldman, M.W., 2015. Natural capital and ecosystem
- 758 services informing decisions: From promise to practice. *Proceedings of the National academy of*
- 759 Sciences, 112(24), pp.7348-7355.
- Gusatu, L.F., Yamu, C., Zuidema, C. and Faaij, A., 2020. A spatial analysis of the potentials for
- offshore wind farm locations in the North Sea region: Challenges and opportunities. ISPRS
- 762 International Journal of Geo-Information, 9(2), p.96.
- 763 Guşatu, L.F., Menegon, S., Depellegrin, D., Zuidema, C., Faaij, A. and Yamu, C., 2021. Spatial and
- 764 temporal analysis of cumulative environmental effects of offshore wind farms in the North Sea
- basin. Scientific Reports, 11(1), pp.1-18.
- 766 Haggett, C., Brink, T.T., Russell, A., Roach, M., Firestone, J., Dalton, T. and McCay, B.J., 2020. Offshore
- wind projects and fisheries. *Oceanography*, 33(4), pp.38-47.
- Harrison, P.A., Dunford, R., Barton, D.N., Kelemen, E., Martín-López, B., Norton, L., Termansen, M.,
- 769 Saarikoski, H., Hendriks, K., Gómez-Baggethun, E. and Czúcz, B., 2018. Selecting methods for
- ecosystem service assessment: A decision tree approach. *Ecosystem Services*, 29, pp.481-498.
- Hilborn, R. and Sinclair, A.R., 2021. Biodiversity protection in the 21st century needs intact habitat
- and protection from overexploitation whether inside or outside parks. *Conservation Letters, 14*(4).

- 773 HM Government, 2011. The UK Marine Policy Statement. *The Stationery Office*, 1–51. Available at:
- 774 https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment data/file
- 775 <u>/69322/pb3654-marine-policy-statement-110316.pdf</u>
- 776 HM Government, 2018. Enabling a Natural Capital Approach: Guidance. Available at:
- 777 https://www.gov.uk/government/publications/enabling-a-natural-capital-approach-enca-
- 778 <u>guidance/enabling-a-natural-capital-approach-guidance#introduction-to-natural-capital</u>
- Haggett, C., 2011. Understanding public responses to offshore wind power. *Energy Policy*, 39(2),
- 780 pp.503-510.
- Hattam, C., Hooper, T. and Beaumont, N., 2015. Public perceptions of offshore wind farms. The
- 782 Crown Estate.
- Henderson, A.R., Morgan, C., Smith, B., Sørensen, H.C., Barthelmie, R.J. and Boesmans, B., 2003.
- 784 Offshore wind energy in Europe—a review of the state-of-the-art. Wind Energy: An International
- Journal for Progress and Applications in Wind Power Conversion Technology, 6(1), pp.35-52.
- Hoagland, P., Dalton, T.M., Jin, D. and Dwyer, J.B., 2015. An approach for analyzing the spatial
- 787 welfare and distributional effects of ocean wind power siting: the Rhode Island/Massachusetts area
- 788 of mutual interest. *Marine Policy*, *58*, pp.51-59.
- Holt, J., Schrum, C., Cannaby, H., Daewel, U., Allen, I., Artioli, Y., Bopp, L., Butenschon, M., Fach, B.A.,
- Harle, J. and Pushpadas, D., 2016. Potential impacts of climate change on the primary production of
- regional seas: a comparative analysis of five European seas. Progress in Oceanography, 140, pp.91-
- 792 115.
- Hooper, T. and Austen, M., 2013. Tidal barrages in the UK: Ecological and social impacts, potential
- mitigation, and tools to support barrage planning. Renewable and Sustainable Energy Reviews, 23,
- 795 pp.289-298.

- 796 Hooper, T., Ashley, M. and Austen, M., 2015. Perceptions of fishers and developers on the co-
- 797 location of offshore wind farms and decapod fisheries in the UK. *Marine Policy*, 61, pp.16-22.
- Hooper, T., Beaumont, N. and Hattam, C., 2017. The implications of energy systems for ecosystem
- services: a detailed case study of offshore wind. Renewable and Sustainable Energy Reviews, 70,
- 800 pp.230-241.
- Hooper, T., Austen, M.C., Beaumont, N., Heptonstall, P., Holland, R.A., Ketsopoulou, I., Taylor, G.,
- Watson, J. and Winskel, M., 2018. Do energy scenarios pay sufficient attention to the environment?
- Lessons from the UK to support improved policy outcomes. *Energy Policy*, 115, pp.397-408.
- Hooper, T., Börger, T., Langmead, O., Marcone, O., Rees, S.E., Rendon, O., Beaumont, N., Attrill, M.J.
- and Austen, M., 2019. Applying the natural capital approach to decision making for the marine
- environment. Ecosystem Services, 38, p.100947.
- Howard, B., Neumann, J. and O'Riodan, R., 2016. Tool Assessor- Supporting practical assessment of
- natural capital in land-use decision making. JNCC Report No.584, JNCC, Peterborough, ISSN 0963-
- 809 8091.
- Hunsicker, M.E., Ciannelli, L., Bailey, K.M., Buckel, J.A., Wilson White, J., Link, J.S., Essington, T.E.,
- Gaichas, S., Anderson, T.W., Brodeur, R.D. and Chan, K.S., 2011. Functional responses and scaling in
- 812 predator—prey interactions of marine fishes: contemporary issues and emerging concepts. *Ecology*
- 813 *Letters*, 14(12), pp.1288-1299.
- 814 IRENA 2019. Global energy transformation: A roadmap to 2050 (2019 edition), International
- 815 Renewable Energy Agency, Abu Dhabi. Available at:
- 816 https://www.irena.org//media/Files/IRENA/Agency/Publication/2019/Apr/IRENA Global Energy Tr
- 817 <u>ansformation 2019.pdf</u>
- 818 Jacobson, M.Z., Archer, C.L. and Kempton, W., 2014. Taming hurricanes with arrays of offshore wind
- turbines. *Nature Climate Change*, 4(3), pp.195-200.

- 320 Jensen, F.V. and Nielsen, T.D., 2007. Bayesian networks and decision graphs (Vol. 2). New York:
- 821 Springer.
- Joy, R., Wood, J.D., Sparling, C.E., Tollit, D.J., Copping, A.E. and McConnell, B.J., 2018. Empirical
- 823 measures of harbor seal behavior and avoidance of an operational tidal turbine. Marine Pollution
- 824 Bulletin, 136, pp.92-106.
- 825 Krueger, A.D., Parsons, G.R. and Firestone, J., 2011. Valuing the visual disamenity of offshore wind
- power projects at varying distances from the shore: an application on the Delaware shoreline. *Land*
- 827 *Economics*, 87(2), pp.268-283.
- Kubiak, L., 2020. Why the world must commit to protecting 30 percent of the planet by 2030
- 829 (30X30). National Resource Defence Council. Available at:
- 830 https://www.nrdc.org/sites/default/files/30x30-why-commit-fs.pdf
- Lacroix, D. and Pioch, S., 2011. The multi-use in wind farm projects: more conflicts or a win-win
- opportunity? *Aquatic Living Resources*, 24(2), pp.129-135.
- Ladenburg, J. and Dubgaard, A., 2007. Willingness to pay for reduced visual disamenities from
- offshore wind farms in Denmark. *Energy Policy*, *35*(8), pp.4059-4071.
- Ladenburg, J. and Dubgaard, A., 2009. Preferences of coastal zone user groups regarding the siting of
- offshore wind farms. *Ocean & Coastal Management*, *52*(5), pp.233-242.
- 837 Ladenburg, J. and Möller, B., 2011. Attitude and acceptance of offshore wind farms—The influence
- 838 of travel time and wind farm attributes. Renewable and Sustainable Energy Reviews, 15(9), pp.4223-
- 839 4235.
- Lambert, E., Hunter, C., Pierce, G.J. and MacLeod, C.D., 2010. Sustainable whale-watching tourism
- and climate change: towards a framework of resilience. Journal of Sustainable Tourism, 18(3),
- 842 pp.409-427.

- 843 Landry, C.E., Allen, T., Cherry, T. and Whitehead, J.C., 2012. Wind turbines and coastal recreation
- demand. *Resource and Energy Economics*, 34(1), pp.93-111.
- Leontief, W. ed., 1986. Input-output economics. 2nd Edition, New York: Oxford University Press.
- Levontin, P., Kulmala, S., Haapasaari, P. and Kuikka, S., 2011. Integration of biological, economic, and
- 847 sociological knowledge by Bayesian belief networks: the interdisciplinary evaluation of potential
- management plans for Baltic salmon. ICES Journal of Marine Science, 68(3), pp.632-638.
- Lindeboom, H.J., Kouwenhoven, H.J., Bergman, M.J.N., Bouma, S., Brasseur, S.M.J.M., Daan, R., Fijn,
- 850 R.C., De Haan, D., Dirksen, S., Van Hal, R. and Lambers, R.H.R., 2011. Short-term ecological effects of
- an offshore wind farm in the Dutch coastal zone; a compilation. *Environmental Research*
- 852 *Letters*, *6*(3), p.035101.
- Lynam, C.P., Llope, M., Möllmann, C., Helaouët, P., Bayliss-Brown, G.A. and Stenseth, N.C., 2017.
- 854 Interaction between top-down and bottom-up control in marine food webs. *Proceedings of the*
- 855 *National Academy of Sciences, 114*(8), pp.1952-1957.
- Lotze, H.K., Tittensor, D.P., Bryndum-Buchholz, A., Eddy, T.D., Cheung, W.W., Galbraith, E.D.,
- Barange, M., Barrier, N., Bianchi, D., Blanchard, J.L. and Bopp, L., 2019. Global ensemble projections
- reveal trophic amplification of ocean biomass declines with climate change. *Proceedings of the*
- 859 *National Academy of Sciences, 116*(26), pp.12907-12912.
- Ludewig, E., 2015. On the effect of offshore wind farms on the atmosphere and ocean dynamics.
- 861 Switzerland: Springer.
- Mandle, L., Shields-Estrada, A., Chaplin-Kramer, R., Mitchell, M.G., Bremer, L.L., Gourevitch, J.D.,
- Hawthorne, P., Johnson, J.A., Robinson, B.E., Smith, J.R. and Sonter, L.J., 2021. Increasing decision
- relevance of ecosystem service science. *Nature Sustainability*, *4*(2), pp.161-169.
- 865 Mangi, S.C., 2013. The impact of offshore wind farms on marine ecosystems: a review taking an
- ecosystem services perspective. *Proceedings of the IEEE*, 101(4), pp.999-1009.

867 Marine Management Organisation (MMO), 2014. A strategic framework for scoping cumulative 868 effects December 2014. MMO Project number: 1055. 869 Maunsell, F. and Metoc, P., 2007. Scottish Marine Renewables SEA Environmental Report. Scottish 870 Executive, Strategic Environmental Assessment. 871 Mehdi, R.A. and Schröder-Hinrichs, J.U., 2016. A theoretical risk management framework for vessels 872 operating near offshore wind farms. In MARE-WINT (pp. 359-400). Springer, Cham. 873 Mehdi, R.A., Schröder-Hinrichs, J.U., van Overloop, J., Nilsson, H. and Pålsson, J., 2018. Improving the 874 coexistence of offshore wind farms and shipping: an international comparison of navigational risk 875 assessment processes. WMU Journal of Maritime Affairs, 17(3), pp.397-434. 876 Methratta, E.T. and Dardick, W.R., 2019. Meta-analysis of finfish abundance at offshore wind 877 farms. Reviews in Fisheries Science & Aquaculture, 27(2), pp.242-260. 878 Milon, J.W. and Alvarez, S., 2019. The elusive quest for valuation of coastal and marine ecosystem 879 services. Water, 11(7), p.1518. 880 Möllmann, C., Müller-Karulis, B., Kornilovs, G. and St John, M.A., 2008. Effects of climate and 881 overfishing on zooplankton dynamics and ecosystem structure: regime shifts, trophic cascade, and 882 feedback loops in a simple ecosystem. ICES Journal of Marine Science, 65(3), pp.302-310. 883 Mooney, H., Larigauderie, A., Cesario, M., Elmquist, T., Hoegh-Guldberg, O., Lavorel, S., Mace, G.M., 884 Palmer, M., Scholes, R. and Yahara, T., 2009. Biodiversity, climate change, and ecosystem 885 services. Current Opinion in Environmental Sustainability, 1(1), pp.46-54.

Murawski, S.A., Wigley, S.E., Fogarty, M.J., Rago, P.J. and Mountain, D.G., 2005. Effort distribution

and catch patterns adjacent to temperate MPAs. ICES Journal of Marine Science, 62(6), pp.1150-

886

887

888

1167.

889 Nobre, A., Pacheco, M., Jorge, R., Lopes, M.F.P. and Gato, L.M.C., 2009. Geo-spatial multi-criteria 890 analysis for wave energy conversion system deployment. Renewable Energy, 34(1), pp.97-111. 891 Olander, L., Polasky, S., Kagan, J.S., Johnston, R.J., Wainger, L., Saah, D., Maguire, L., Boyd, J. and 892 Yoskowitz, D., 2017. So you want your research to be relevant? Building the bridge between 893 ecosystem services research and practice. Ecosystem Services, 26, pp.170-182. 894 Olander, L.P., Johnston, R.J., Tallis, H., Kagan, J., Maguire, L.A., Polasky, S., Urban, D., Boyd, J., 895 Wainger, L. and Palmer, M., 2018. Benefit relevant indicators: Ecosystem services measures that link 896 ecological and social outcomes. *Ecological Indicators*, 85, pp.1262-1272. 897 Oleson, K., Ostergaard-Klem, R., Kamakani Lynch, M., Bremmer, L., 2020. Transforming The Economy 898 Through Ocean, Ohia, and Ohana. Honolulu Civil Beat, 2020. Available at: 899 https://www.civilbeat.org/2020/06/transforming-the-economy-through-ocean-ohia-and-ohana/ 900 Organisation for Economic Co-operation and Development, 2018. Cost-Benefit Analysis and the 901 Environment: Further Developments and Policy Use. OECD Publishing. 902 Pan, Y., Yan, C. and Archer, C.L., 2018. Precipitation reduction during Hurricane Harvey with 903 simulated offshore wind farms. Environmental Research Letters, 13(8), p.084007. 904 Parsons, E.C.M., Warburton, C.A., Woods-Ballard, A., Hughes, A. and Johnston, P., 2003. The value of 905 conserving whales: the impacts of cetacean-related tourism on the economy of rural West 906 Scotland. Aquatic Conservation: Marine and Freshwater Ecosystems, 13(5), pp.397-415. 907 Perry, R.L. and Heyman, W.D., 2020. Considerations for offshore wind energy development effects 908 on fish and fisheries in the United States. *Oceanography*, 33(4), pp.28-37. Pinnegar, J.K., Viner, D., Hadley, D., Dye, S., Harris, M., Berkout, F. and Simpson, M., 2006. 909

Alternative future scenarios for marine ecosystems: technical report. Cefas Lowestoft, 109pp.

- 911 Piroddi, C., Teixeira, H., Lynam, C.P., Smith, C., Alvarez, M.C., Mazik, K., Andonegi, E., Churilova, T.,
- 912 Tedesco, L., Chifflet, M. and Chust, G., 2015. Using ecological models to assess ecosystem status in
- 913 support of the European Marine Strategy Framework Directive. Ecological Indicators, 58, pp.175-
- 914 191.
- Polasky, S., Carpenter, S.R., Folke, C. and Keeler, B., 2011. Decision-making under great uncertainty:
- environmental management in an era of global change. Trends in Ecology & Evolution, 26(8), pp.398-
- 917 404.
- 918 Polis, G.A., Holt, R.D., Menge, B.A. and Winemiller, K.O., 1996. Time, space, and life history:
- 919 influences on food webs. In *Food webs* (pp. 435-460). Springer, Boston, MA.
- 920 Pollin, R., Heintz, J. and Garrett-Peltier, H., 2009. The Economic benefits of investing in clean energy:
- 921 how the economic stimulus program and new legislation can boost US economic growth and
- 922 employment. Political Economy Research Institute, University of Massachusetts at Amherst.
- 923 Posner, S.M., McKenzie, E. and Ricketts, T.H., 2016. Policy impacts of ecosystem services
- 924 knowledge. *Proceedings of the National Academy of Sciences*, 113(7), pp.1760-1765.
- 925 Reyers, B., Nel, J.L., O'Farrell, P.J., Sitas, N. and Nel, D.C., 2015. Navigating complexity through
- 926 knowledge coproduction: Mainstreaming ecosystem services into disaster risk
- 927 reduction. *Proceedings of the National Academy of Sciences*, 112(24), pp.7362-7368.
- 928 Sadykova, D., Scott, B.E., De Dominicis, M., Wakelin, S.L., Wolf, J. and Sadykov, A., 2020. Ecological
- 929 costs of climate change on marine predator–prey population distributions by 2050. Ecology and
- 930 *Evolution, 10*(2), pp.1069-1086.
- 931 Samoteskul, K., Firestone, J., Corbett, J. and Callahan, J., 2014. Changing vessel routes could
- 932 significantly reduce the cost of future offshore wind projects. *Journal of Environmental*
- 933 *Management, 141,* pp.146-154.

934 Schaar, S.I. and Cox, L.J., 2021. The future for Hawai'i's marine aquarium fishery: A cost benefit 935 analysis compared to an environmental impact assessment. Marine Policy, 127, p.104429. 936 Schaefer, M., Goldman, E., Bartuska, A.M., Sutton-Grier, A. and Lubchenco, J., 2015. Nature as 937 capital: Advancing and incorporating ecosystem services in United States federal policies and 938 programs. Proceedings of the National Academy of Sciences, 112(24), pp.7383-7389. 939 Schuchert, P., Kregting, L., Pritchard, D., Savidge, G. and Elsäßer, B., 2018. Using coupled 940 hydrodynamic biogeochemical models to predict the effects of tidal turbine arrays on phytoplankton 941 dynamics. *Journal of Marine Science and Engineering*, *6*(2), p.58. 942 Schultze, L.K.P., Merckelbach, L.M., Horstmann, J., Raasch, S. and Carpenter, J.R., 2020. Increased 943 mixing and turbulence in the wake of offshore wind farm foundations. Journal of Geophysical 944 Research: Oceans, 125(8), p.e2019JC015858. 945 Schupp, M.F., Kafas, A., Buck, B.H., Krause, G., Onyango, V., Stelzenmüller, V., Davies, I. and Scott, 946 B.E., 2021. Fishing within offshore wind farms in the North Sea: Stakeholder perspectives for multi-947 use from Scotland and Germany. Journal of Environmental Management, 279, p.111762. 948 Seppelt, R., Dormann, C.F., Eppink, F.V., Lautenbach, S. and Schmidt, S., 2011. A quantitative review 949 of ecosystem service studies: approaches, shortcomings and the road ahead. Journal of Applied 950 *Ecology, 48*(3), pp.630-636. 951 Seafish, 2019. Economics of the UK fishing fleet 2019. Seafish Report No. SR749. Available at: https://www.seafish.org/document/?id=c0640cf9-a9c8-4d03-8c35-6f7a966ad056 952 953 Skeate, E.R., Perrow, M.R. and Gilroy, J.J., 2012. Likely effects of construction of Scroby Sands 954 offshore wind farm on a mixed population of harbour Phoca vitulina and grey Halichoerus grypus

seals. Marine Pollution Bulletin, 64(4), pp.872-881.

956 Skov, H., Heinänen, S., Norman, T., Ward, R. and MÉNDEZ, S., 2018. ORJIP Bird collision and 957 avoidance study. Report by Offshore Renewables Joint Industry Programme (ORJIP). Report for 958 Carbon Trust. 959 Spyroudi, A., Wallace, D., Smart, G., Stefaniak, K., Mann, S. and Kurban, Z., 2020. Offshore wind and 960 hydrogen: solving the integration challenge. Report by Offshore Wind Industry Council and Catapult, 961 Offshore Renewable Energy. Available at: https://ore.catapult.org.uk/wp- 962 content/uploads/2020/09/Solving-the-Integration-Challenge-ORE-Catapultr.pdf 963 Stelzenmüller, V. et al., 2020, Research for PECH Committee – Impact of the use of offshore wind 964 and other marine renewables on European fisheries. European Parliament, Policy Department for 965 Structural and Cohesion Policies, Brussels. 966 Teilmann, J., Tougaard, J., Carstensen, J., Dietz, R. and Tougaard, S., 2006. Summary on seal 967 monitoring 1999-2005 around Nysted and Horns Rev offshore wind farms. Report by ENERGI E, 2, 968 p.22. 969 Therivel, R. and González, A., 2019. Introducing SEA effectiveness. Impact Assessment and Project 970 *Appraisal*, *37*(3-4), pp.181-187. 971 Thompson, P.M., 1994. Marine mammals in Scottish waters: research requirements for their 972 effective conservation and management (pp. 179-194). Her Majesty's Stationery Office: Edinburgh. 973 Trifonova, N., Maxwell, D., Pinnegar, J., Kenny, A. and Tucker, A., 2017. Predicting ecosystem 974 responses to changes in fisheries catch, temperature, and primary productivity with a dynamic 975 Bayesian network model. ICES Journal of Marine Science, 74(5), pp.1334-1343. 976 Trifonova, N.I., Scott, B.E., De Dominicis, M., Waggitt, J.J. and Wolf, J., 2021. Bayesian network 977 modelling provides spatial and temporal understanding of ecosystem dynamics within shallow shelf 978 seas. Ecological Indicators, 129, p.107997.

979 Twigg, E., Roberts, S. and Hofmann, E., 2020. Introduction to the special issue on understanding the 980 effects of offshore wind development on fisheries. *Oceanography*, 33(4), pp.13-15. 981 Uusitalo, L., 2007. Advantages and challenges of Bayesian networks in environmental 982 modelling. *Ecological Modelling*, 203(3-4), pp.312-318. van der Molen, J., Smith, H.C., Lepper, P., Limpenny, S. and Rees, J., 2014. Predicting the large-scale 983 984 consequences of offshore wind turbine array development on a North Sea ecosystem. Continental 985 Shelf Research, 85, pp.60-72. 986 van der Molen, J., Ruardij, P. and Greenwood, N., 2016. Potential environmental impact of tidal 987 energy extraction in the Pentland Firth at large spatial scales: results of a biogeochemical 988 model. *Biogeosciences*, 13(8), pp.2593-2609. 989 Wakelin, S.L., Artioli, Y., Butenschön, M., Allen, J.I. and Holt, J.T., 2015. Modelling the combined impacts of climate change and direct anthropogenic drivers on the ecosystem of the northwest 990 991 European continental shelf. Journal of Marine Systems, 152, pp.51-63. 992 White, C., Halpern, B.S. and Kappel, C.V., 2012. Ecosystem service trade-off analysis reveals the value 993 of marine spatial planning for multiple ocean uses. Proceedings of the National Academy of 994 *Sciences*, *109*(12), pp.4696-4701. 995 Wilding, T.A., Gill, A.B., Boon, A., Sheehan, E., Dauvin, J.C., Pezy, J.P., O'beirn, F., Janas, U., Rostin, L. 996 and De Mesel, I., 2017. Turning off the DRIP ('Data-rich, information-poor')—rationalising monitoring 997 with a focus on marine renewable energy developments and the benthos. Renewable and 998 Sustainable Energy Reviews, 74, pp.848-859. 999 Willsteed, E., Gill, A.B., Birchenough, S.N. and Jude, S., 2017. Assessing the cumulative 1000 environmental effects of marine renewable energy developments: Establishing common

ground. Science of the Total Environment, 577, pp.19-32.

1002	Willsteed, E.A., Jude, S., Gill, A.B. and Birchenough, S.N., 2018. Obligations and aspirations: a critical
1003	evaluation of offshore wind farm cumulative impact assessments. Renewable and Sustainable
1004	Energy Reviews, 82, pp.2332-2345.
1005	Wright, G., O'Hagan, A.M., de Groot, J., Leroy, Y., Soininen, N., Salcido, R., Castelos, M.A., Jude, S.,
1006	Rochette, J. and Kerr, S., 2016. Establishing a legal research agenda for ocean energy. <i>Marine</i>
1007	Policy, 63, pp.126-134.
1008	Wolf, J., De Dominicis, M., Lewis, M., Neill, S., Murray, R.O.H., Scott, B., Zampollo, A., Chapman, J.
1009	and Declerck, M., 2021. Environmental issues for offshore renewable energy. In Reference Module in
1010	Earth Systems and Environmental Sciences. Elsevier.
1011	Woolley, O., 2015. Ecological governance for offshore wind energy in United Kingdom waters: has an
1012	effective legal framework been established for preventing ecologically harmful development? The
1013	International Journal of Marine and Coastal Law, 30(4), pp.765-793.
1014	Yuille, A., Socio-economic impact assessment of Aquamarine Power's Oyster Projects. Aquamarine
1015	Power & SQW Consulting; 2009.