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ABSTRACT
Contrastive learning learns visual representations by enforcing fea-
ture consistency under different augmented views. In this work, we
explore contrastive learning from a new perspective. Interestingly,
we find that quantization, when properly engineered, can enhance
the effectiveness of contrastive learning. To this end, we propose a
novel contrastive learning framework, dubbed Contrastive Quant,
to encourage feature consistency under both differently augmented
inputs via various data transformations and differently augmented
weights/activations via various quantization levels. Extensive ex-
periments, built on top of two state-of-the-art contrastive learning
methods SimCLR and BYOL, show that Contrastive Quant consis-
tently improves the learned visual representation.
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1 INTRODUCTION
Contrastive learning has emerged as the state-of-the-art (SOTA) un-
supervised representation learning from images. For example, Mo-
mentum Contrast (MoCo) [1] shows that unsupervised pre-training
can surpass its ImageNet-supervised counterpart in multiple detec-
tion and segmentation tasks, while SimCLR further reduces the gap
in linear classifier accuracy between unsupervised and supervised
pre-training representations. As such, there has been a growing
interest in further boosting its achievable performance and devel-
oping improved contrastive learning pipelines.

In this work, we explore contrastive learning from a new per-
spective, inspired by recent works showing that properly designed
weight perturbations or quantization help themodels learn a smoother
loss landscape [2, 3]. For example, [2] adversarial perturbations on
both inputs and weights help smooth the loss landscape of model
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weights and thus narrow the robust generalization gap and [3]
shows that a properly designed precision schedule helps DNN con-
verge to a better local optima, as a low precision helps the optimiza-
tion space exploration in a similar way a high learning rate does. We
are thus motivated to ask an intriguing question: “Can quantization,
which itself can boost the model efficiency, be leveraged to develop
improved contrastive learning pipelines"? If the answer is positive, it
can not only lead to more accurate contrastive learning techniques
on top of existing methods, but also open up a new understand-
ing in the role of quantization on contrastive learning, potentially
inspiring and motivating more contrastive learning innovations.

Interestingly, we find that quantization, when properly engi-
neered, can enhance the effectiveness of contrastive learning. Specif-
ically, we make the following contributions:

• We are the first to study the role of quantization in the con-
text of contrastive learning pipelines, and show that quan-
tization can be leveraged to enhance the performance of
contrastive learning. We believe that this view can open up a
new perspective for future contrastive learning innovations.

• We propose a novel contrastive learning framework, dubbed
Contrastive Quant, to encourage the feature consistency
under both (1) different augmented inputs via various data
transformations and (2) different augmented weights and
activations via various quantization levels. In particular, the
feature consistency under injected noises via quantization
in Contrastive Quant can be viewed as augmentations on
both model weights and intermediate activations, serving as
a complement to the input augmentations.

• Extensive experiments, built on top of two SOTA contrastive
learning methods SimCLR and BYOL, show that our Con-
trastive Quant consistently improves the learned visual rep-
resentation, especially with limited labeled data under semi-
supervised scenarios. For example, our Contrastive Quant
achieves a 8.69% and 10.27% higher accuracy on ResNet-18
and ResNet-34, respectively, on ImageNet when fine-tuning
with 10% labeled data.

2 RELATEDWORK
DNN quantization. Quantization is one of the most promising

DNN compression techniques which trims down the model com-
plexity from the most fine-grained bit level. In particular, existing
quantization methods represent model weights, activations, and
gradients using lower floating-point precision [4] or fixed-point
precision [5]. The accuracy degradation after quantization can be
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minimized through quantization-aware training [5] which explic-
itly considers quantization noise in the training process.

Contrastive learning. Self-supervised learning, which lever-
ages the input data themselves for supervision to benefit the down-
stream tasks, has achieved great progress. Early works [6] adopt
generative models to recover the original data distributions without
making any assumptions for the downstream tasks to learn good
representations. Later works shed light on the potential of discrim-
inative models for representation learning. Recently, contrastive
learning has gained increased popularity thanks to its excellent
performance. The kernel spirit behind contrastive learning is to
learn invariant features by maximizing the mutual information of
the latent representations of differently augmented views of the
images. In particular, instance discrimination [7] makes the first
attempt to discriminate between different instances via a Noise-
Contrastive Estimation (NCE) loss and following works consider
different strategies to construct the different views. For example,
CMC [8] converts RGB images to the Lab color space andmaximizes
the mutual information between different color channel views, and
SimCLR [9] adopts different augmentations as different views and
maximizes the consistency between different views. Readers are
referred to [10] for more details about unsupervised learning and
contrastive learning. In this work, we explore contrastive learning
from a new perspective, i.e., the potential positive role of quanti-
zation in contrastive learning, and find that quantization, when
properly engineered, can enhance the effectiveness of contrastive
learning, potentially inspiring and motivating more contrastive
learning innovations.

3 THE PROPOSED CONTRASTIVE QUANT
FRAMEWORK

In this section, we introduce our Contrastive Quant framework,
which for the first time explores quantization’s positive effects on
contrastive learning, in addition to merely boosting the model effi-
ciency. We start with the motivation for and inspiration leading to
our framework in Sec. 3.1 and then introduce the key concept in
Sec. 3.2. Next, we discuss potential designs to enhance the positive
effect of quantization on contrastive learning and the implemen-
tation details for applying Contrastive Quant on top of existing
contrastive learning frameworks in Sec. 3.3 and Sec. 3.4.

3.1 Motivation
The spirit of contrastive learning. Self-supervised learning

methods aim at learning representations with semantic priors that
can generally benefit their downstream tasks. The core spirit behind
contrastive learning [1, 7–9, 11, 12], one of the most effective self-
supervised learning methods, is to learn invariant features by max-
imizing the mutual information between the latent representations
of differently augmented image views. Such a feature consistency
is known to be beneficial for both the standard generalization [13]
and robust generalization [14, 15], while new perspectives for en-
forcing such feature consistency in addition to data augmentations
are still under-explored.

Inspiration from recent works. A recent work [2] implies
another view of encouraging feature consistency in the context
of adversarial training. In particular, it shows that training with
properly generated perturbations onto the weights can serve as a

complement to adversarial perturbations onto the inputs, which
helps smooth the loss landscape and narrow the robust generation
gap, i.e., improves the feature consistency under adversarial attacks.
In parallel, [3] shows that a low precision has a similar effect as
a high learning rate, favoring the training space exploration, and
proposes a properly designed precision schedule to help DNN con-
verge to a better local optima with a more smoothed loss landscape.
Considering quantization can naturally serve as perturbations onto
both model weights and intermediate feature maps, these prior
works inspire us to leverage quantization to learn better repre-
sentations by encouraging feature consistency under differently
augmented weights/activations via various quantization levels, as
a complement to enforcing consistency via data augmentations.

3.2 The key concept
Contrastive learning, as a kind of instance discrimination method,
encourages feature consistency via maximizing the mutual infor-
mation, approximated by minimizing an NCE loss [7], between the
extracted features from different perspectives of the same instance
which can be formulated as:

max 𝐼 (𝑓 , 𝑓 +) ≈ min 𝑁𝐶𝐸 (𝑓 , 𝑓 +) (1)

= min E [−𝑙𝑜𝑔 𝑒𝑥𝑝 (𝑓 · 𝑓 +/𝜏)∑𝐾
𝑖=0 𝑒𝑥𝑝 (𝑓 · 𝑓 −/𝜏) + 𝑒𝑥𝑝 (𝑓 · 𝑓 +/𝜏)

] (2)

where 𝑓 and 𝑓 − are the extracted features of the same instance
under different perspectives, named positive pairs, of the encoder
𝐹 , 𝐼 (𝑓 , 𝑓 +) denotes their mutual information, 𝐾 is the number of
negative samples, and 𝜏 is a temperature parameter that controls
the concentration level of the distribution.

In previous data augmentation based contrastive learning meth-
ods, the positive pairs 𝑓 and 𝑓 + are generated by different augmen-
tation combinations:

𝑓 = 𝐹 (𝐴𝑢𝑔1 (𝑥), 𝜃 ) , 𝑓 + = 𝐹 (𝐴𝑢𝑔2 (𝑥), 𝜃 ) (3)

where 𝑥 is the given instance, 𝜃 is the model weight, and 𝐴𝑢𝑔1
and 𝐴𝑢𝑔1 denote two different augmentations. To further enhance
the feature consistency from a new perspective, we propose the
Contrastive Quant framework to augment both the model weights
and intermediate activations in addition to the input augmentations
via injecting quantization noise of different levels into the weights
and activations, as formulated below:

𝑓 = 𝐹𝑞1 (𝑥, 𝜃𝑞1 ) , 𝑓 + = 𝐹𝑞2 (𝑥, 𝜃𝑞2 ) (4)

where 𝑓 and 𝑓 + are generated by the encoder quantized to differ-
ent precisions 𝑞1 and 𝑞2, which can be randomly selected from a
precision set during training. The detailed quantization scheme we
adopt is discussed in Sec. 3.4.

Nevertheless, we empirically find that merely enhancing the fea-
ture consistency via quantization augmented weights/activations
without input augmentations will lead to inferior contrasting learn-
ing, indicating that the structured priors learned from the consis-
tency between different augmented views are essential to the down-
stream tasks and it is necessary to apply our Contrastive Quant
framework on top of existing input augmentation based contrasting
learning methods. A natural question is thus “how to effectively
combine augmented inputs and augmented weights/activations via
quantization to boost the performance of contrastive learning"? To

206



ContrastiveQuant: Quantization Makes
Stronger Contrastive Learning DAC ’22, July 10–14, 2022, San Francisco, CA, USA

Vanilla CQ-A

full
precision

CQ-B

full
precision

NCE NCENCE NCE+ NCE NCE++ +NCE NCE

View 1 View 2

CQ-C
Figure 1: An overview of the proposed Contrastive Quant design pipelines.

answer this question, we explore the potential designs in Sec. 3.3
towards an effective Contrastive Quant framework.

3.3 The design pipeline
As shown in Fig. 1, we propose three candidate designs, denoted
as CQ-A, CQ-B, and CQ-C, respectively, to exploit the potential of
applying augmented weights/activations via quantization towards
on top of the commonly used augmented inputs towards better
contrastive learning pipelines.

Analysis of CQ-A. CQ-A (see the second column of Fig. 1)
is one of the most intuitive designs for applying augmented
weights/activations on top of existing input augmentation based
contrastive learning methods, which can be formulated as:

𝑓 = 𝐹𝑞1 (𝐴𝑢𝑔1 (𝑥), 𝜃𝑞1 ) , 𝑓 + = 𝐹𝑞2 (𝐴𝑢𝑔2 (𝑥), 𝜃𝑞2 ) , 𝐿𝑜𝑠𝑠 = 𝑁𝐶𝐸 (𝑓 , 𝑓 +)
(5)

where 𝐿𝑜𝑠𝑠 is the final objective to be minimized. Eq. 5 shows that
CQ-A views the quantization precision as an additional augmenta-
tion parameter similar to the rotation degree or noise level in data
augmentation operators [9], which are randomly selected during
inference with different views for the same instance. In this way, the
executions of input augmentations and weight/activation augmen-
tation are combined in a sequential manner, which can potentially
strengthen the overall augmentation magnitude. As validated in
Sec. 4, such strengthened augmentations will aggressively benefit
large-scale datasets like ImageNet while may not be very helpful
on small-scale datasets as strong augmentations may distort the im-
ages’ structures [16], which is more likely to happen on small-scale
datasets.

Analysis of CQ-B. CQ-B (see the third column of Fig. 1) is
a variant with more mild augmentations. Instead of explicitly
constraining the feature consistency under differently augmented
weights/activations via various quantization levels, CQ-B only en-
forces the feature consistency under differently augmented inputs
with the same randomly selected precision, which can be formu-
lated as:

𝑓1 = 𝐹𝑞1 (𝐴𝑢𝑔1 (𝑥), 𝜃𝑞1 ) , 𝑓2 = 𝐹𝑞2 (𝐴𝑢𝑔1 (𝑥), 𝜃𝑞2 ) (6)

𝑓 +1 = 𝐹𝑞1 (𝐴𝑢𝑔2 (𝑥), 𝜃𝑞1 ) , 𝑓 +2 = 𝐹𝑞2 (𝐴𝑢𝑔2 (𝑥), 𝜃𝑞2 ) (7)

𝐿𝑜𝑠𝑠 = 𝑁𝐶𝐸 (𝑓1, 𝑓 +1 ) + 𝑁𝐶𝐸 (𝑓2, 𝑓
+
2 ) (8)

The final objective is averaged over two randomly selected pre-
cisions, which implicitly encourages the feature consistency un-
der different quantization levels. As such, this design can poten-
tially mitigate the potential risk of distorting the images’ structures
with augmentations that are too strong, especially on small-scale
datasets, while the newly introduced priors by CQ-B over input aug-
mentation based methods are not rich enough, limiting its achiev-
able performance improvement.

Analysis of CQ-C. Combining the advantages of both CQ-A
and CQ-B, CQ-C (see the rightmost column of Fig. 1) explicitly
encourages (1) the feature consistency under differently augmented
views with the same quantization level, and (2) the feature consis-
tency under differently augmented weights/activations via various
quantization levels within the same view, which is formulated as:
𝐿𝑜𝑠𝑠 = 𝑁𝐶𝐸 (𝑓1, 𝑓 +1 ) + 𝑁𝐶𝐸 (𝑓2, 𝑓

+
2 ) + 𝑁𝐶𝐸 (𝑓1, 𝑓2) + 𝑁𝐶𝐸 (𝑓

+
1 , 𝑓

+
2 )
(9)

where 𝑓1, 𝑓2, 𝑓 +1 , and 𝑓
+
2 follow the definition in Eq. 6 and 7. Dif-

ferent from CQ-A which sequentially augments the inputs and
weights/activations, CQ-C decouples them and enforces the fea-
ture consistency from the two perspectives separately, which can
potentially mitigate the risk of introducing augmentations that
are too strong while introducing sufficient new priors on top of
existing contrastive learning methods. As validated in Sec. 4, CQ-C
can consistently improve the performance on both small-scale and
large-scale datasets.

3.4 More implementation details
The adopted quantization scheme. We adopt the commonly
adopted linear quantizer [5] to quantize both weights and acti-
vations in our Contrastive Quant, i.e.,

𝐴𝑞 = 𝑆𝑎 ⌊
𝐴

𝑆𝑎
⌋ , 𝑤ℎ𝑒𝑟𝑒 𝑆𝑎 =

𝐴𝑟𝑎𝑛𝑔𝑒

2𝑞 − 1
(10)

where 𝐴 here can denote the model weights or activations, 𝑞 is the
quantization bit-width, and 𝐴𝑟𝑎𝑛𝑔𝑒 is the dynamic range of 𝐴, i.e.,
the difference between the maximum and minimum of 𝐴 values.
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Since the encoder will be quantized to different values during train-
ing, learnable quantizers with trainable quantization parameters are
found to be unstable here, so we directly adopt the linear quantizer.

Applying on top of SimCLR.Adapting our Contrastive Quant
to the SOTA SimCLR framework [9] is simple and direct via (1) mod-
ifying the NCE loss in Eq. 1 to the NT-Xent one [9], and (2) adding
a projection head after the encoder to learn a better representation.

Applying on top of BYOL. BYOL [11] relies on two networks,
i.e., the online and target networks, to learn from each other based
on the feature consistency under different views, where the target
network is updated via the moving average of the online network
instead of the gradients, and this training process does not involve
any negative pair. We adapt our Contrastive Quant in a natural
manner in that (1) we modify the NCE loss in Eq. 1 to the Mean
Square Error (MSE) loss adopted by [11]; (2) we add a projection
head and prediction head after the encoder following [11]; and (3)
we stop the gradient propagation along the target network and ap-
ply both views of the same instance into the online network/target
network alternatively to improve the data reusability following [11].

4 EXPERIMENT RESULTS
In this section, we first introduce our experiment setup, benchmark-
ing experiment results over SOTA contrastive learning methods,
and then ablation studies of Contrastive Quant for better under-
standing its effectiveness and design pipelines.

4.1 Experiment setup
Networks, datasets, and evaluation settings. We
consider six networks on two datasets, i.e., ResNet-
18/34/74/110/156/MobileNetV2 on CIFAR-100 and ResNet-18/34
on ImageNet, featuring diverse DNN models and data statistics
for a solid evaluation. We also transfer the pretrained models on
ImageNet to the downstream detection task Pascal VOC [17]. In
this work, we consider both the fine-tuning, linear evaluation, and
transfer learning settings. As we quantize the model to different
precisions during the contrastive learning processes, we mainly
consider the fine-tuning setting under a fixed precision, i.e., full
precision (denoted as FP) or 4-bit, with a limited amount of labeled
data (10% or 1%) to stabilize the weight/activation distribution
under the precision choice.

Training finetuning settings. For experiments on ImageNet,
we follow all the training and finetuning settings in [9]. For ex-
periments on CIFAR-100, we follow the optimizer settings, aug-
mentation choices, and the projection head design in [9] and train
the models with a batch size of 512 for 1000 epochs. For both fine-
tuning and linear evaluation settings, we adopt an SGD optimizer
with a momentum of 0.9 and a cosine learning rate decay with an
initial learning rate of 0.1 to fine-tune the models for 50 epochs.

Precision sets. As our Contrastive Quant framework randomly
selects two precision 𝑞1 and 𝑞2 from a pre-defined precision set in
each training iteration, the precision set may influence its training
optimality. We adopt 4-16 (every precision between 4-bit and 16-bit),
6-16, and 8-16 as the potential precision sets.

4.2 Benchmark on ImageNet
We first apply our Contrastive Quant framework on top of SimCLR
to train ResNet-18/34 on ImageNet and benchmark with the vanilla

Table 1: Benchmark Constrastive Quant against SimCLR on top of
ResNet-18/34 on ImageNet. Here we adopt the fine-tuning settings
on 10%/1% labeled data with the two precision sets.

Network Method Precision Set Fine-tune Acc. (FP) Fine-tune Acc. (4-bit)
10% labels 1% labels 10% labels 1% labels

ResNet-18

SimCLR - 42.44 19.18 39.12 17.24

CQ-A 6-16 51.39 28.87 48.80 27.13
8-16 51.13 28.97 48.63 26.66

CQ-C 6-16 44.97 20.83 42.01 18.63
8-16 45.10 20.98 41.90 18.72

ResNet-34

SimCLR - 47.53 23.43 44.65 21.69

CQ-A 6-16 55.76 33.37 53.32 31.30
8-16 55.72 33.70 53.33 31.64

CQ-C 6-16 50.45 26.32 47.65 24.53
8-16 50.22 26.21 47.70 24.74

SimCLR in both fine-tuning and linear evaluation settings under
both FP and 4-bit precisions. In particular, we validate the effective-
ness of all the three designs in Fig. 1 and adopt two precision sets
6-16 and 8-16 considering 4-bit may significantly degrade the final
accuracy on large-scale datasets like ImageNet.

Fine-tuning results. As shown in Tab. 1, we can see that (1)
both CQ-A and CQ-C achieve a consistent improvement over the
vanilla SimCLR on both ResNet-18/34 and the two precision sets, in-
dicating enforcing feature consistency under differently augmented
weights/activations via various quantization levels indeed bene-
fits the downstream tasks, which could provide a new prior; (2)
CQ-C achieves a 1.39%∼2.89% and 2.69%∼3.05% higher accuracy
over SimCLR on ResNet-18 and ResNet-34, respectively, while CQ-A
achieves an even surprising at of 8.69%∼9.89% and 8.19%∼10.27% on
ResNet-18 and ResNet-34, respectively, indicating the sequentially
applied augmentations onto the inputs and weights/activations,
which together lead to a stronger augmentation, greatly benefit
the training process on large-scale datasets; and (3) we find that
the training process of CQ-B can easily fail, which suffers from
severe gradient explosion before learning a good representation,
indicating the importance of adopting the feature consistency loss
of differently augmented weights/actions under the same view as
CQ-C, which is the only difference between the two designs.

Table 2: Comparing CQ-A and CQ-C with SimCLR under the linear
evaluation setting on ImageNet.

Network SimCLR CQ-C CQ-A
ResNet-18 29.31 31.90 44.91
ResNet-34 34.96 36.14 47.88

Linear evaluation results. As observed from Tab. 2, we can
see that CQ-C and CQ-A achieve a 2.59%/1.18% and 15.60%/12.92%
higher accuracy on ResNet-18/34, respectively. Furthermore, CQ-
A still achieves the most aggressive improvements over SimCLR,
aligning with our assumption about CQ-A’s stronger augmentation
effects which benefits ImageNet training.

Transfer to downstreamdetection tasks.We further transfer
the pretrained ResNet-18/34 trained with different methods on
ImageNet to a downstream detection task on top of YOLOv4 [18]
following [19]. In particular, we follow [1, 19] to train the models
on the combined training/validation set of Pascal VOC 2007 and
Pascal VOC 2012 [17], and evaluate on the test set of Pascal VOC
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Table 3: Comparing CQ-A and CQ-C with vanilla SimCLR via trans-
ferring the ImageNet pretrained models to the detection task.

Network Method AP AP50 AP75

ResNet-18
Vanilla SimCLR 25.09 49.2 22.74

CQ-C 32.94 63.96 29.28
CQ-A 36.39 69.08 32.64

ResNet-34
Vanilla SimCLR 35.58 67.51 31.88

CQ-C 36.54 68.77 34.17
CQ-A 38.77 72.13 35.85

Table 4: Benchmark against SimCLR on six network with CIFAR-
100 with the fine-tuning setting.

Network Method Fine-tune Acc. (FP) Fine-tune Acc. (4-bit)
10% labels 1% labels 10% labels 1% labels

ResNet-18 SimCLR 61.51 42.51 59.78 40.73

CQ-C 61.75 43.80 60.12 42.59

ResNet-34 SimCLR 63.05 45.11 61.44 43.63

CQ-C 63.58 48.05 61.47 45.75

ResNet-74 SimCLR 51.93 30.40 50.37 28.56

CQ-C 52.52 31.39 51.12 29.70

ResNet-110 SimCLR 52.78 31.16 51.69 30.11

CQ-C 54.47 33.17 52.28 32.66

ResNet-152 SimCLR 53.57 32.93 52.14 31.06

CQ-C 55.44 34.98 53.04 33.54

MobileNetV2 SimCLR 49.73 24.18 46.47 18.98

CQ-C 51.59 26.12 49.82 20.82

2007. As observed from Tab. 3, we can see that CQ-A and CQ-C
consistently outperform the vanilla SimCLR after being transferred
to the downstream detection task in terms of all the three metrics.
Specifically, CQ-A achieves a 11.30%/3.19% higher AP compared
with the vanilla SimCLR on top of ResNet-18/34, respectively.

Insights. [16] finds that stronger augmentations can distort the
images’ structures [16], thus can be harmful to learn a good repre-
sentation, while they mainly discuss within the domain of input
augmentations. Based on the success of CQ-A in Tab. 1, our Con-
trastive Quant can potentially serve as a new direction to explore
stronger augmentations which consistently benefit the downstream
tasks. A future direction is to explore other kinds of perturbations
on weights/activations in addition to our Contrastive Quant to build
more effective augmentations.

4.3 Benchmark on CIFAR-100
We benchmark Contrastive Quant on top of SimCLR [9]/BYOL [11]
with the vanilla SimCLR/BYOL. As shown in Sec. 4.4, CQ-C out-
performs CQ-A and CQ-B on small-scale datasets like CIFAR-100,
which is consistent with the analysis in Sec. 3.3. Therefore, in this
subsection we adopt CQ-C with a precison set of 6-16.

Benchmark against SimCLR with fine-tuning settings. As
shown in Tab. 4, we can see that (1) our CQ-C consistently outper-
forms the vanilla SimCLR on all the six networks, e.g., an accuracy
improvement of 0.24%∼3.35% and 0.99%∼2.94% when fine-tuning
with 10% and 1% data with FP, respectively; and (2) our CQ-C
achieves more notable improvements over SimCLR on top of larger

Table 5: Benchmark against SimCLR on six DNNs & CIFAR-100 un-
der the linear evaluation setting.

Method ResNet-18 ResNet-34 ResNet-74 ResNet-110 ResNet-152 MobileNetV2

SimCLR 64.91 65.92 52.96 53.53 53.97 52.53

CQ-C 64.78 66.54 54.06 54.76 55.12 53.97

Table 6: Benchmark against BYOL on three network with CIFAR-
100 under the fine-tuning setting.

Network Method Precision Set Fine-tune Acc. (FP) Fine-tune Acc. (4-bit)
10% labels 1% labels 10% labels 1% labels

ResNet-18 BYOL - 55.26 34.22 53.44 32.93

CQ-C 6-16 58.84 39.21 56.74 37.54

ResNet-34 BYOL - 65.83 50.95 64.00 49.37

CQ-C 6-16 66.77 51.91 65.21 50.55

MobileNetV2 BYOL - 49.85 23.32 44.65 19.58

CQ-C 6-16 54.59 31.96 50.97 26.60

models and less labeled data, indicating its scalability and practical-
ity in real-world applications.

Benchmark against SimCLR with linear evaluation set-
tings. Tab. 5 shows that our CQ-C still achieves a better accuracy
(except ResNet-18) than the vanilla SimCLR.

Benchmark against BYOLwith fine-tuning settings.A con-
sistent improvement can be observed when benchmarking against
BYOL in Tab. 6, i.e., CQ-C achieves a 0.94%∼6.32% and 0.96%∼8.64%
higher accuracy when fine-tuning with 10% and 1% data with FP,
respectively.

Contrastive QuantSimCLR

(c) ResNet-110 @ CIFAR-100 (d) MobileNetV2 @ CIFAR-100

(b) ResNet-74 @ CIFAR-100

Contrastive QuantSimCLR

Contrastive QuantSimCLR Contrastive QuantSimCLR

(a) ResNet-34 @ CIFAR-100

Figure 2: Visualizing the learned representations of Contrastive
Quant and SimCLR using t-SNE [20].

Visualizing the learned representations. We adopt t-
SNE [20] to visualize the learned representations of the models
trained by Contrastive Quant and SimCLR in Fig. 2. We can see that
the representations learned by Contrastive Quant show a better
linear separability, especially under larger models.

4.4 Ablation studies: Benchmark CQ variants
As shown in Tab. 7, we can observe that (1) CQ-C achieves an
overall better performance than the other two variants, especially
when being fine-tuned with less labeled data, and (2) CQ-A achieves
marginally better or comparable results over the vanilla SimCLR,
different from its superior performance on ImageNet, aligning with
our analysis in Sec. 3.3 showing augmentations that are too strong
may distort the images’ structures [16] on small-scale datasets.

4.5 Ablation studies: Augment with different
quantization levels only

Setup. To justify whether different quantization levels in our Con-
trastive Quant play a similar role as data augmentations, we de-
sign a new variant of Contrastive Quant named CQ-quant, where
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Table 7: Ablation studies ofConstrastiveQuant’s variantswith a pre-
cision set of 6-16 on CIFAR-100.

Network Method Fine-tune Acc. (FP) Fine-tune Acc. (4-bit)
10% labels 1% labels 10% labels 1% labels

ResNet-34

SimCLR 63.05 45.11 61.44 43.63

CQ-A 63.63 45.60 61.77 43.56

CQ-B 63.57 45.26 61.76 43.60

CQ-C 63.58 48.05 61.47 45.75

ResNet-74

SimCLR 51.93 30.40 50.37 28.56

CQ-A 51.89 29.95 51.45 28.99

CQ-B 52.36 30.48 51.20 29.28

CQ-C 52.52 31.39 51.12 29.70

MobileNetV2

SimCLR 49.73 24.18 46.47 18.98

CQ-A 49.93 24.57 46.01 19.38

CQ-B 51.78 25.21 47.81 20.81

CQ-C 51.59 26.12 49.82 20.82

Table 8: Evaluating CQ-Quant augmented by different quantization
levels only on CIFAR-100.

Network Precision Set Fine-tune Acc. (FP) Linear
1% labels 10% labels evaluation

ResNet-74
6-16 7.64 29.14 15.79

8-16 4.64 21.37 10.98

No SSL Training 2.90 20.76 3.69

ResNet-110
6-16 7.43 27.69 14.10

8-16 6.41 21.58 11.83

No SSL Training 2.21 20.56 3.15

each input is only augmented by different quantization levels with-
out being augmented by different data augmentation methods. To
be more specific, the loss function is modified from Eq. 9 to be:
𝐿𝑜𝑠𝑠 = 𝑁𝐶𝐸 (𝑓1, 𝑓2). We benchmark CQ-Quant with the baseline
without SSL training, i.e., training from scratch during evaluation,
on top of ResNet-74 and ResNet-110.

Observations. As shown in Tab. 8, we can observe that (1) CQ-
Quant with different precision sets can consistently outperform
the baseline without SSL training, indicating that the different
quantization levels can indeed create a contrastive task with a
similar effect as different data augmentations on the inputs; (2) CQ-
Quant with more diverse precision settings can achieve a better fine-
tuning/linear-evaluation accuracy, which aligns with our intuition
that the diversity of augmentations contributes to the success of
contrastive learning; and (3) data augmentations are still necessary
towards decent contrastive learning performances.

5 CONCLUSION
In this work, we for the first time explore quantization’s positive
effects on boosting contrastive learning’s accuracy in addition to
merely boosting the model efficiency, and propose a novel con-
trastive learning framework, dubbed Contrastive Quant, to enhance
the feature consistency under both (1) differently augmented in-
puts via various data transformations and (2) differently augmented
weights/activations via various quantization levels. Extensive exper-
iments on top of two state-of-the-art contrastive learning methods,

SimCLR and BYOL, show that Contrastive Quant consistently im-
proves the learned visual representation, especially with limited
labeled data under semi-supervised scenarios.
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