IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

Side-Channel Security Analysis of Connected Vehicle
Communications Using Hidden Markov Models

Fei Sun, Richard R Brooks, Senior Member, IEEE, Gurcan Comert, and Nathan Tusing

In intelligent transportation systems (ITS) applications, dedicated short-range communication (DSRC) applications and network
stacks are not yet mature. They have not been adequately tested and verified. This paper investigates side-channel vulnerabilities
of a wireless communication application in vehicular environments (DSRC/WAVE) protocol implementation of a traffic intersection
application. A prototype roadside unit (RSU) was implemented using real DSRC devices. The functionality of the WAVE short
message (Wsm)-channel is extended to include an implementation of WAVE short message protocol (WSMP) for broadcasting GPS
data and RSU instructions in vehicular communications. In the example used, DSRC is used to replace an intersection stoplight.
Denial of service attacks are executed that leverage DSRC RSU timing and packet size side-channels to selectively disable the
stoplight. Simulations are implemented to determine our ability to stealthily drop packets so as to force two vehicles to collide.
Hidden Markov models (HMM) and Support Vector Machines (SVM) are constructed from sniffed side-channel information. We use
inter-packet delay time and packet size side-channel information to design our attackes. In operational networks, packets should be
encrypted in order to hide the contents of the packet payloads, but packet sizes and timing are not affected by encryption. HMMs
were inferred using only side-channel information. The inferred HMMs track the protocol status over time. The SVM classifier
was inferred using both side-channel data and packet payloads. At run-time, though, the SVM only had access to side-channel
information. Simulation experiments were implemented to test HMM and SVM ability to identify packets used to signal automobiles
to stop and yield right-of-way. The simulations showed that for HMMs the timing side-channel attack was most effective, dropping
the packets needed to cause a collision with only a 2.5% false positive rate (FPR), while the packet size side-channel attack works
with 9.5% FPR. The SVM classifier using both side-channels had a higher true positive rate (TPR) of 72.5%, but also had a higher
FPR 20%. In contrast, dropping packets at random had both high FPR and TPR.

Index Terms—Dedicated short range communications, hidden Markov models, side-channel analysis, cyber security, connected
and autonomous vehicles, traffic intersection.

I. INTRODUCTION

EDICATED Short Range Communication (DSRC) is
802.11p based wireless communication technology
widely used for communication between vehicles and the
surrounding infrastructure. Wireless access in vehicular en-
vironments (WAVE) is one of the communication protocols of
DSRC. It provides stable, high-speed communication between
connected vehicles. Many applications based on DSRC/WAVE
are being developed to improve traffic efficiency and assist
driving and vehicle-to-vehicle (V2V) technology. Vehicles use
V2V and a global positioning system (GPS) to share and detect
information within range, e.g., to alert and warn drivers for
conflicts that may not be easy to see or perceive in time. In
left turn assist (LTA), the system help avoid blind spots when
drivers turn left, and it warns drivers if they are driving in
front of another vehicle traveling in the opposite direction [1],
[2].
With DSRC becoming the vehicle-to-everything (V2X)
wireless mobility standard, DSRC protocols, applications, and

stacks need to mature. Likewise, an immense number of
potential applications using the DSRC protocol have not been
adequately tested and verified [3]-[6]. In this study, a side-
channel (black box) analysis of WAVE short message protocol
(WSMP), the messaging protocol used by DSRC/WAVE, is
carried out using Hidden Markov models. It is assumed that
the WSMP packets are encrypted in the side-channel analysis.
Thus, the methodology does not depend on the shared contents
(e.g., basic safety messages (BSMs)).

The experiments are conducted on Cohda fifth-generation
On-Board Unit (OBU) equipment. A simplified connected
traffic control system is simulated under the connected and
autonomous vehicles framework to implement the security
analysis. The infrastructure system runs on a roadside unit
denoted as RSU, a smart roadside DSRC unit with computa-
tional capabilities for traffic control. The application works to
avoid crashes for connected and autonomous traffic.

The side-channel analysis is conducted by the sniffed
WSMP traffic. Hidden Markov Models (HMMs) are built
using sniffed packet traces, a Support Vector Machine clas-

This study was based upon a project funded by the US Department of
Transportation (USDOT) Center for Connected Multimodal Mobility (C2M2)
(Tier 1 University Transportation Center) headquartered at Clemson Univer-
sity, Clemson, South Carolina, USA.

Manuscript received December, 2020; Corresponding author: G. Comert
(email: gurcan.comert@benedict.edu). R. R. Brooks is with the Holcombe
Department of Electrical and Computer Engineering, Clemson, SC 29634,
USA. F. Sun received her M.S. degree from the Holcombe Department of
Electrical and Computer Engineering, Clemson, SC 29634, USA. She is now
with Sichuan Suitang Tech. Co. Ltd., Chengdu, Sichuan, China. G. Comert is
with the Department of Computer Science, Physics, and Engineering, Benedict
College, Columbia, SC 29204, USA. Nathan Tusing is with the Holcombe
Department of Electrical and Computer Engineering, Clemson, SC 29634,
USA.

sifier is built to classify critical packets based on the HMM
outputs. Then critical packets in the system are identified and
predicted using the HMMs. A critical packet refers to the stop
instruction packet sent from a roadside unit (RSU) to tell a
vehicle to stop to avoid a collision. Targeted attacks exploit
this known weak point. To test our approach, we created traffic
simulations that triggered the DSRC application. HMMs were
used to analyze the DSRC data and detect when the next
packet to be sent would be the one that told a vehicle to stop.
We refer to these packets as critical packets, since these are
the packets that are used to protect vehicles and passengers.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

The denial of service (DoS) attack simulation uses HMM and
SVM predictions in simulation experiments where packets
are dropped to provoke vehicle crashes in the simulations.
Packet flooding attacks were performed instead of wireless
jamming because (1) Federal Communications Commission
(FCC) regulations make research use of wireless frequencies
for jamming problematic, (2) packet flooding tools are widely
available, well understood, and easy to use [7], and (3) where
wireless jamming requires physical proximity, packet flooding
attacks can be launched from anywhere on Earth. Packet
flooding attacks on DSRC applications are therefore simpler
and potentially more problematic attacks. That said, our side-
channel inferences would be equally useful for triggering
wireless signal jamming.

A. Background

In this subsection, relevant background information is pro-
vided on DSRC security and the methods used to build
HMMs and SVMs. This reviews the methods used for protocol
analysis, side-channel analysis of the traffic control system,
building, and testing of HMMs/SVMs.

1) DSRC

DSRC communications technology was developed for con-
nected vehicle applications [8] in order to meet safety-critical
application requirements (e.g., latency and packet drop rates).
DSRC provides reliable and real-time communication between
DSRC-equipped vehicles. It has started to be widely used for
daily traffic operations to move people and goods from emer-
gency vehicle preemption to pedestrian crossings. In twenty
years, the U.S. Department of Transportation (USDOT) report
[9] predicted that most lights and traffic signals would enable
DSRC. It is expected to have DSRC or similar connectivity
as a majority of the crashes would be avoided by some
way of alerts. Connected vehicles (CVs) can share critical
information, so it provides the possibility of unobstructed
awareness.

In this study, we use the architecture of the DSRC standard
from [10]. The physical (PHY) protocol, including PHY
layer and medium access control (MAC) sublayer, is defined
in IEEE 802.11p wireless access in vehicular environments
(WAVE), which enhances the IEEE 802.11 (WIFI standard)
to support Intelligent Transportation System (ITS). It provides
real-time data exchange by removing the need to establish
channels. WAVE defines the DSRC channels in the U.S. The
authentication and data confidentiality mechanisms provided
by the IEEE 802.11 standard cannot be used. DSRC equipped
vehicles within line-of-sight can receive data frames as soon
as they arrive.

2) DoS Attack on DSRC

In order to disrupt the latency and increase the packet drop
rates in a safety-critical application (i.e., intersection control),
we perform denial of service (DoS) attacks on DSRC channels.
DoS network attacks hamper access by legitimate users to
a network service by consuming network or CPU resources.
There are several methods for performing DoS attacks. Packet
flooding consumes network bandwidth. Amplification uses
services where response frames are much larger than requests

(e.g., domain name system (DNS) requests). SYN flooding
attacks utilize the time-out mechanism of transmission control
protocol (TCP) sessions [7], [11]-[13].

In this study, since DSRC uses channels without session
set-up, packet flooding is used to occupy DSRC channel
bandwidth, resulting in legitimate packet dropping [5], [6].
Other researchers have investigated DSRC DoS attacks [14]-
[17]. Laurendeau et al. [18] found DoS to be the major
risk in their DSRC threats analysis. The paper also pointed
out that DSRC standards should enhance the security of the
lowest possible layer to prevent DoS, such as providing link
layer authentication. Islam et al. [19] developed an applica-
tion CVGuard for DoS attack detection and prevention. The
application was designed to monitor the context of DSRC
communication and detect the attack based on road policies
and rules. As a side-channel analysis, only the properties of
a higher level of the data exchanged are investigated in this
paper.

3) Models Used

We used three different approaches for driving proof of
concept DSRC DoS attacks:

Random packet dropping is used as a simple approach
for comparison with the other two models. In this approach,
flooding traffic is inserted into the system at random intervals.
The frequency of the attack is changed to vary the percent of
packets that would be dropped by the system. Packet dropping
rate is varied from 10% to 90%. No attempt is made to identify
which packets are most critical to system performance. The
effectiveness of random packet dropping for causing collisions
between vehicles can be found in Table VIII.

Hidden Markov models (HMMs) can be used to model
dynamic systems that include a stochastic component. The
HMM approach used originated with Shalizi et al’s [20]
causal state splitting and reconstruction (CSSR) algorithm.
CSSR generates HMMs directly from discrete data sequences.
It infers the model structure (the number of hidden states
and their transition structure) from the observation sequence
and a parameter (L) that defines how many time steps could
influence state transitions and indirectly the size of the state-
space. HMMs derived using CSSR have predictive best ex-
plain the system’s stochastic components. Schwier et al. [21]
extended CSSR to create zero-knowledge HMM inference for
automatically inferring the state-space of the HMM from the
training data as part of model construction. Typical HMM’s
have two sets of probability density functions (pdf) associated
with the state-space: one pdf for state transitions and another
hidden pdf for observation production. In the CSSR approach,
state transitions generate observations. This simplifies the
underlying model by requiring only one pdf. Without loss of
information, it is possible to generate one pdf HMMs from
HMMs with two pdfs [20]. The zero-knowledge method infers
the HMMs using only observation sequences. The algorithm
assumes only that the system has an underlying state-space
and that probability distributions are stable, i.e., that a Markov
model can express the underlying system. This approach
evaluates the training data used to learn the model to see if it
can provide the model certainty desired [22].

We use HMMs for protocol inference, since we have

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

successfully used them for similar applications in the past.
This includes NATO tracking maritime traffic [21], identifying
languages typed within encrypted streams [23], and denial
of service for power networks [24]. Harakrishnan et al. [23]
proposed timing side-channel analysis for detecting protocol
tunneling. They used the zero-knowledge approach [21] to
extract HMMs for extracted keystroke dynamics of languages.
They then used the HMM for language detection. Zhong
et al. [24] proposed the side-channel analysis of the Phasor
Measurement Unit (PMU) protocol used by the communica-
tions network of the smart grid. They isolated the packets
of the target PMU sent through a VPN channel shared with
other PMUs, followed Denial-of-Service (DoS) attacks that
selectively drop packets from the target PMU. Similarly, the
authors in [25] used HMM to predict user activity to assign
channels for secure data transmission to improve efficiency
and security.

Note that network protocols are typically designed with an
underlying state-space. At each state, the system performs
processing to determine its response. The amount of compu-
tation required within a state would vary little but vary greatly
between states. The packet size of a given response (ex. ACK)
would be relatively constant, but the packet sizes for different
classes of responses would vary greatly. This makes HMM
inference a natural tool for analyzing protocol side channels.

Support Vector Machines (SVM) using a radial basis
function kernel are trained to identify packets that immediately
precede packets containing stop messages. When the next
packet is expected to tell a vehicle to stop, a DDoS action
is unleashed to keep that packet from arriving at its destina-
tion. This frequently results in collisions in the intersection.
Note that HMMs have states that need to be identified, but
SVMs do not. This forces us to identify classes of packets
instead of model states. SVMs separate clusters of data using
hyperplanes. Packets are identified by observing two features:
packet size and inter-packet delay (see Fig. 11). These are the
same features used by the HMMs, and the reason for using
those features is the same reason HMMs use them. These
features are not affected by most current protocol security
approaches. Since the HMM and SVM approaches use the
same data sources and trigger the same attack events, we can
directly compare the true and false positive rates of these two
approaches.

Support Vector Machines were proposed by Cortes and
Vapnik in 1995 [26]. By using labeled data from feature space
R™ (i.e. there are n features), the best possible separating
hyperplane can be found starting with the Eq. (1):

yi(wz; +b) > 1i=1,...,m €))

where y; is the class associated with the features x;, m is the
number of points in the training set, b is a constant, and w
is a vector that scales the x; to fit the constraint. The goal of
this problem is to find wy where

woX + b() =0 (2)

Eq. (2) represents the optimal separating hyperplane with
maximum margins between the two linearly separated classes.

SVMs have been used in multiple areas, including different
traffic analysis type problems. These include traffic prediction
[27][28], flow classification [29], and DDoS detection [30].
Our usage of SVM does not differ from the original formula-
tion of SVM, but it presents the novelty of predicting critical
packets from network side-channel data alone.

4) Vehicle simulation

For numerical evaluation, vehicle movements are simulated
in Python, but their communications are sent through real
DSRC equipment and OBUs. The application Wsm-channel
running on two real OBUs and generating real DSRC commu-
nication traffic is used. Furthermore, the communication traffic
contents between two OBUs are simulated vehicle movements.
After collecting communication traffic on real DSRCs, HMMs
are built. Then, an attack simulation is conducted offline,
which is not on real DSRCs.

The paper is organized as follows. Section II describes the
communication protocol, traffic intersection simulation, side-
channel analysis framework, and HMM learning algorithms.
Section III presents our data generation process, HMM and
SVM models inferred using side-channel analysis and experi-
ment evaluations. Finally, section IV summarizes findings and
possible future research directions.

II. METHODOLOGY
A. Simple Connected Intersection Control Simulation

As for connected and autonomous vehicles, ITS application,
a connected traffic intersection simulation is developed for
experiments. Given in Fig. 1, the traffic intersection control
is designed for two-way 2-lane roadways. Vehicles are gener-
ated from Uniform interarrivals. The designed intersection is
controlled under the following assumptions:

1) Pedestrians are not allowed or considered.

2) Vehicles can come from one of the four directions North
(N), South (S), West (W), or East (E), and go straight,
left, or right. U-turn is not permitted at this crossroad.

3) All vehicles are connected autonomous vehicles (CAVs)
and controlled by onboard unit (OBU) speed control.
There is a central RSU (i.e., roadside unit-a smart
roadside unit with computational capabilities) in the
center of the intersection. They change speeds only
following the instruction from RSU.

4) The center of the intersection is set to (0, 0) as the origin
0.

5) All lanes are 4 meters wide.

6) As shown in Fig. 1, the exit points of each lane are A, B,
C, and D. Coordinates are A (—4, —2), B (4, 2), C (—2,
4), D (2, —4). Vehicles would start to report information
50 meters away from the RSU (O in Fig. 1).

7) As shown in Fig. 1, the entry points are A’, B’, C’, and
D’. Coordinates are A’ (-4, 2), B (4, -2), C (2, 4), D (-2,
-4).

8) The path of the vehicle in the intersection is calculated
by linear distance from exit points to entry points. The
distance a vehicle should drive in the intersection is
calculated by the sum of path distance and vehicle
length. For example, if a vehicle is driving from East

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

to North, the path in the intersection should be line BC’
(Fig. 1).

Fig. 1. Simulated simple intersection control

Each vehicle sends its information to RSU when it is 50
meters away from the intersection. The RSU estimates vehi-
cles’ arrival time at the intersection and sends stop instructions
if the intersection is busy at the estimated arrival time. A stop
instruction includes the vehicle’s information and its timing to
drive into the intersection.

B. Communication Protocol Implementation

This study tests a reliable WAVE short message protocol
(WSMP) communication application Wsm-channel. WSMP,
IEEE 1609.3, is a DSRC based communication protocol
that allows data rates parameters [10]. Wsm-channel could
broadcast GSP information of host OBU on a Wsm-channel.
In this study, the forward transmit (FWDTX) and forward
receive (FWDRX) on Wsm-channel modes are implemented
to forward packets through different protocols. FWDTX is
forwarding received UDP packets to the WAVE protocol.
FWDRX is forwarding received WAVE packets to the UDP
protocol. Thus, using this extended application, processes on
different OBUs can exchange data.

The flowchart of communication is given in Fig. 2. For
example, if Process A on DSRCI1 needs to send packet A
to Process I on DSRC2; Process II receives packet A and
sends packet B back to Process I. Wsm-channel FWDTX and
FWDRX modes are running on DSRC1 and DSRC2. Process
I and Process II are listening to UDP for receiving packets.
The communication steps are as follows:

la. DSRCI: Process I sends packet A to UDP.

1b. DSRCI1: Wsm-Channel FWDTX thread receives packet
A and sends it to WSMP at interface wave-raw. Packet
A is broadcasting at wave-raw.

2a. DSRC2: Wsm-channel FWDRX thread receives packet
A at wave-raw and sends it to UDP.

2b. DSRC2: Process II receives packet A.

3a. DSRC2: Process II generates packet B and sends it to
UDP.

3b. DSRC2: Wsm-channel FWDTX thread receives packet
B and sends it to WSMP at interface wave-raw. Packet
B is broadcasting at wave-raw.

4a. DSRCI: Wsm-channel FWDRX thread receives packet
B at wave-raw and sends it to UDP.

4b. OBU1: Process I receives packet B.

/

2b. UDP
packet A

Process ||

DSRC2

2a. WSMP (FWDRX)

Packet A
_—

3a. UDP

Radio Interface Packet B

“wave-raw”

Wsm- W
channel

~WSMP (FWRTX)
Packet B

4a, WSMP (FWDRX)

1b. WSMP (FWDTX)
Packet A

4b. UDP
Packet B

Fig. 2. Flowchart of a packet within DSRC communication

In the simulation, communications between an onboard unit
(OBU) and a roadside unit (RSU) are focused. The OBU stores
the information of all the cars approaching the intersection,
and the RSU serves as the roadside or control unit for the
intersection. Thus, communications between cars and RSU
over the DSRC channel, wave-raw, are observed as illustrated
in Fig. 3.

In this study, the two DSRCs (OBU and RSU) are real
equipment. The radio interface is the communication channel,
Wsm-channel is the application used for communication be-
tween two real DSRC equipment. A Python script of simulated
vehicle movements is Process I in DSRCI1, and the controller
script in Python is Process II in DSRC2.

*» Car information

» Stop information

Fig. 3. Communication between OBU and RSU

C. Side-Channel Analysis

As the IEEE1609.2 standard of the DSRC/WAVE stack
defines the standard mechanisms for authenticating and en-
crypting messages, the *black box’ analysis is considered. The

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

side-channel characteristics (packet size (in Bytes (B)), packet
inter-delay in seconds (s)) of WAVE short message protocol
(WSMP) are looked at. Even if encryption and authentication
are implemented as specified in the IEEE 1609.2 standard,
DSRC/WAVE may still be susceptible to such black box
analysis that does not depend on the contents.

According to the sniffed traffic (Table I), where the time
refers to the inter-packet time (s), the packets are not arriving
at the same rate all the time, which means the protocol is not
active all the time. Packet sizes are shown in Bytes (B). If the
attack is performed at an inactive time, one cannot cause any
trouble. Moreover, since flooding traffic is easy to recognize,
the devices may lose access to the channel.

TABLE 1. Sniffed DSRC traffic example

Algorithm 1 Inferring HMM [31]
1: Observe data
2: Symbolize
3: for ¢ in 2: N do
4: Infer transition matrix L =1

5: if Enough data then Construct states

6: if Any identical states then Merge states
7: else Construct HMM

8: if States converged then Model built
9: else 1= 4+ 1

10: end if

11: end if

12: else Observe more data

13: end if

14: end for

No Time (s) Source Protocol Size (B) Info.

1 0.000000 b8:ff:36:ff:36... ~ WSMP 176 WAVE S. Mes. Pro. IEEE P1609.3
2 0.004006 b8:ff:36:ff:36... WSMP 178 WAVE S. Mes. Pro. IEEE P1609.3
3 0270763 b8:Af:36:ff:36... WSMP 177 WAVE S. Mes. Pro. IEEE P1609.3
4 0.025839 a8:ff:36:ff:36... WSMP 234 WAVE S. Mes. Pro. IEEE P1609.3
S 6.853376 b8:ff:36:f:36... WSMP 177 WAVE S. Mes. Pro. IEEE P1609.3
6 0.027991 a6:ff:36:1f:36... ‘WSMP 233 ‘WAVE S. Mes. Pro. IEEE P1609.3
7 0.212516 b8:ff:36:1t:36... WSMP 177 ‘WAVE S. Mes. Pro. IEEE P1609.3
8 0.230590 ba:ff:36: WSMP 177 ‘WAVE S. Mes. Pro. IEEE P1609.3
9 0.030930 a8:ff:30:ff:36... WSMP 234 ‘WAVE S. Mes. Pro. IEEE P1609.3
10 6.368706 b8:ff:36:ff:36... WSMP 193 WAVE S. Mes. Pro. IEEE P1609.3

Two network protocol analysis methods based on side-
channels: Hidden Markov model (HMM) and support vector
machine (SVM) are developed. The process flow for HMM
inference is in Algorithm 1. Protocol analysis HMMs help
reverse engineer the protocol. The SVM is a common machine
learning problem that is used for data classification. HMMs
provide a model of the observable network process. SVMs
provide a tool for separating the network protocol packets into
classes. In this work, both are used to identify packets that
should be dropped in order to cause the DSRC traffic control
algorithm to fail and trigger crashes. Once HMM is used to
discover the structure of the protocol and which packets to
remove from the system, it is discovered that SVM can better
identify those packets and more effectively disrupt the system.
The HMM inference is explained in more detail here since
SVM learning is already well established.

As WAVE packets are assumed to be encrypted, size and
timing side-channels are applied. Traces of DSRC network
protocols are sniffed. Identify network protocol states that
can be identified by using observed packet characteristics to
associate each sniffed packet with a class. Protocol participants
are known. Their positions in the sequence give transitions
between protocol states. With the HMM, target packets of stop
information sent by RSU are successfully isolated, following
DoS attacks that selectively drop packets from RSU. The goal
is to side-channel vulnerabilities of WAVE protocol assuming
all the security services are implemented.

1) Side Channel Symbolization

This Section explains how to infer sets of observa-
tions/events to use for HMM and/or SVM analysis. Inter-
packet timing and packet size are two commonly used features
for network protocol side-channel analysis [24]. For both fea-
tures, histograms are plotted of observation value frequencies.
Distinct peaks in the histograms can be differentiated, and
each peak becomes a distinct observation symbol. In practice,

this approach has been generalized for an arbitrary number
of dimensions, see [32]. In this work for simplicity, these
two sets of features are treated independently, but a two
dimensional vector of features would also be possible. The two
sets of features are used together in the SVM. Raw inter-packet
timings and packet sizes are fed directly into the classifier.

From the sniffed traffic (see Table I), the side-channels:
timing and size are analyzed. Inter-packet delay is used instead
of latency for analysis. Inter-packet delay, also known as delta
time, is calculated by subtracting the previous packet’s receive
time from the current packet’s time. One can start with ¢ = 2
(e.g. and inter-packet delay At;—o = (t2 —t1) seconds). Inter-
packet delay is a more robust side-channel feature since it
depends mainly on the network protocol and not the network
topology.

First, a histogram of inter-packet delays is plotted, shown
in Fig. 4. Note that there are two distinct peaks. Any packet
whose delta-time is within a given peak is assigned the same
symbolic value, shown in Table II. This translates the data
time series into a long string of symbols. The same process is
followed with packet size pattern values (see Table III). These
strings are used to infer HMM.

TABLE II. Timing observation ranges

Observation type Timing range (s)

A At < 0.06
B 0.06 < At < 1.00
C At > 1.00

TABLE III. Size observation ranges

Observation type Size range (B)

X s <210
y s > 210

D. Hidden Markov Model Inference

The HMM is used to analyze side-channel information.
In this process, there are no a priori states. With state-

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

o
o
> &
c
g
g &
r -
o
I T T T T]
0 2 4 6 8 10
Interpacket times [s]
(a) Timing in (0,10) [s]
o
3 3
c
[}
>
g 8
[<
o
I T T T T]
0.0 0.2 0.4 0.6 0.8 1.0
Interpacket times [s]
(b) Timing in (0,1.0) [s]
o
z 3
j =
[}
>
g 8
C <

. A

[T T T 1
180 200 220 240 260

Packet Size [B]
(c) Packet size [B]

Fig. 4. Timing and packet size histograms

space parameter [, = 1 states are associated with obser-
vations. When a transition occurs using output symbol a;,
the system moves to state a;. For state-space parameter
L = n, when a transition occurs using output symbol a;(,41),
the system moves from current state a;1a;o, ..., @, to state
32043, -+, QinQi(ns1)- Algorithm 2 shows how state transition
probabilities are inferred by considering the set of observations
as a time series generated by the process to be modeled.
The conditional probability of symbol a; following symbol a;
(transition probability from state 7 to state j) is determined by
frequency counting. The state merging algorithm (Algorithm
3) finds equivalent states and merges them into a single state.
This extends the approach in [33] by applying the z-test in
Algorithm 4 to the HMM and rigorously determining the
statistical significance of the inferred model. Unlike traditional
HMM approaches, the approach in this study can establish
that the training data sample is adequate for providing the
data certainty needed [31]. Pearson chi-square test proves the
significance of evidence to merge two similar states [34]. The
confidence interval approach provides the level of acceptance
for putting a string into an HMM [35].

A standard HMM has two sets of random processes, one
governing state transition and the other governing symbol
outputs. In this paper, the representation of an HMM in [31]
is used, where output symbols are associated with transitions
(see Algorithm 2). The two approaches are equivalent [21].
This representation uses a tuple G=(A,V, E, P), where A
is a finite alphabet of observations, V is a finite set of
nodes or states, £ C V x A x V is a transition relation,
and P : E — [0,1] is a probability function such that
ZaeAwﬂW p(vs, a,v;) = 1. Each element p; ; € P expresses
the probability the process transitions to state v; once it is
in state v;. For each pair of (v;,v;), E(vi,v;) = a;. It
should also meet the requirement that if E(v;,v;) = a;, then
E(v;,vj) # a, where v;,v;, v, € V.

Both state transition probability matrix P and state output
probability matrix O can be constructed from G. The state
output probability matrix refers to the matrix that describes the
probability distribution of the next observation for each state.
The state transition probability matrix is used for steady-state
probability calculation and plotting figures. The state output
probability matrix is used for generating a string from the
HMM and HMM acceptance checking. Following are some
important variable calculations in an HMM.

i. Conditional probabilities which are denoted as p; ; =
p(v;]v7).
ii. Transition count c; ; is the number of transitions from ¢
to j happened.
iii. Count ¢; =3 ¢; j=number of state i is entered.

iv. Asymptotic probability (steady-state proba-
bility) matrix (%) can be calculated from
. r |TP=7
T=(T1, T2,y ey) ' =

(mma)= & T

v. Confidence interval (CI) for each transition
CI=Zg o/ P2 iPii) [35] where p;; is the
conditional probability of the transition, Z,/ is

from either the Normal or t-distribution, « is the
significance level, and n; is the times of state v;.

1) State Merging Algorithm

In Algorithm 3, the pairwise Pearson y? test is used for
state merging. The test result shows whether two states are
coming from the same state. The pair of most likelihood at
one time is merged, and the merging is updated in the output
count matrix. Then, the pairwise test is applied until all pairs
reject the null hypothesis of two states from the same state.
With the input of state transition count matrix M, state output
matrix O, and significant confidence level «, the state merging
is done as in Algorithm 3.

2) Model confidence test

After deriving a model from the data, it is needed to whether
the data is enough to derive this model. If not enough, how
much more data is needed? Thus, the model confidence test
is applied (Algorithm 4 from [36]) to check the model.

With the input of transition probability matrix P, transition
count matrix C, and asymptotic probability matrix 7, the test
can be conducted as following Algorithm 4.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Algorithm 2 Inferring an HMM from sequence A with
significance level

1: fornin2: N do

2: Infer Gn=<A, V, E, P> from the sequence A with
state-space parameter L=n.

3: Merge states in V using Algorithm 3 Pearson x? test.

Do model confidence test for G,,. If does not enough,

get more data and start over. Details of Model confidence
test are described in Algorithm 4.

5 Infer Gp,41=(A, V', E’, P') from the sequence A with
state-space parameter L=n + 1.

6: Merge states in V' using Pearson y? test in Algorithm
3.

7: Do model confidence test for G,,1: If the training
data is not enough, get more data and start over.

8: Generate a long sequence B from G, 1 whose length

longer than the result from model confidence test and from
the generation method in Algorithm 5.

9: Put the sequence B into G,. Get match probability
matrix F'.

10: Get the Confidence Interval matrix C'I of P. Calculate
|P — F| — CI, the elements less than zero in the result
denotes the rejection proportion. Determine the rejection
proportion by p;; = Zi di jpi, where d; j = D; ; — C1,
D ={D € (P—F)|D > 0}, p; is the probability of state
1 is entered.

11: if p;; > o then n = n + 1 and go back to step 2

12: else Set GG,, as the correct HMM for sequence A
13: end if
14: end for

3) Generate a sequence of length | from an HUM G

In this section, the criteria for determining the proper value
of L is explained, which terminates our inference process
with the state-space that adequately models the underlying
process. See [21] for a detailed description of the approach
and associated proofs. The discussion is restricted to ergodic
Markov processes, where all states are in a single strongly
connected component. In Algorithm 5, a sequence of length [
is generated from an HMM G for later convergence test.

4) Put sequence B into an HMM G

To test the convergence of G,,, the sequence B generated
from the HMM G,, 1 is put into the HMM G. For every state
v; € V of G, the state transition probability F' is calculated
in sequence B. If there is no transition in G for a window in
sequence B to the next window, then record it as a rejection
and go to the next window [21]. When sequences generated
from a model created with state-space parameter L=n + 1 are
accepted by models generated from models generated using
L=n, it is established that no extra information is extracted
from the system. The state-space captured using state-space
parameter value L=n adequately expresses the underlying
process. Note that traditional HMM approaches start with an
a priori known state-space and tune transition probabilities to
make the data match the model. The approach described in this
study learns the state-space and probabilities directly from the
observed data. Algorithms 3 and 5 do not have an equivalence

Algorithm 3 State Merging

1: for eachi e N do

2: Test Pearson pairwise y? of independence [34] of rows
in transition count matrix M.

3: Denote the population proportion (or probability)
falling in row %, column j as m;;. The total proportion
for row ¢ is ;. The total proportion for column j is ;.
If the row and column proportions are independent, then
Tij = T43.70.5.

4: The estimated expected value in row ¢, column j is
E;j = nmjj=nte2d =0

n n n
s: Test statistic is calculated as x> =), ; (n’EiE’)
; i
6: Determine the Xi 4 Statistic for the X2 test with

significant level « and df=(r — 1)(c— 1) where r=number
of rows, c=number of columns.

7 If x2 < X(Qx, qp for any pairwise tests, the test accepts
with significant level o the hypothesis that the two rows
are from same state. Find the minimum value x? as x?2,,,,
and index 4, j (i < j) of the pair of states it comes from.
In the state transition count matrix M, add column j to
column ¢, add row j to row 7. Set zero of column j and
row j. In the state output count matrix O, add row j to
row 7. Set zero of column j.

Repeat steps 1-7 until X2>X<21, q¢ for all pairwise tests.

Remove zero columns and zero rows in M and O.
Then quit with merged states transition count matrix and
output count matrix.

10: end for

Algorithm 4 Confidence Test

1: H,: data is not enough for any transitions, H,: data is
enough for any transitions.
2: Test statistic Z=argmin,, (

—) where 0<p; ;<1

is the conditional probability of the transition, n;=) ;Cij
is the total count of state 7, c;; is the element from
transition count matrix C.

3: Rejection region: Reject H, if z > z, that there is no
need to collect more data. Otherwise, there is a need to
collect more data. Enough data decision is calculated from

M) , where O<p; ;<1.

sample size D=argmax,, (i

Algorithm 5 Generate a sequence of length [from an HMM
G
1: Choose an initial state v, = v; from state set V' where
v; € V and for Yv;,v; € V,p(vo = v;) = p(v, = vj).
2: Using the probabilities of the outgoing transitions, select
a transition p; ; to move to state v; from state v;.
3: Record the label a; = E(v;,v;), where a; is associated
with the chosen transition p; ;.
4: Repeat steps 2 and 3 until [labels have been recorded.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

in the traditional approach. It is needed that these algorithms
to determine when the state-space adequately expresses the
underlying data.

III. NUMERICAL EXPERIMENTS
A. Roadside Unit Simulation

The simulations are run on DSRC devices as Fig. 3. On
the first DSRC device, OBU processes are run. On the second
DSRC device, the RSU process is run.

First, the simulation function is tested. In continuous four
hours simulation, the RSU works well to avoid crashes. The
traffic using fcpdump is captured. According to Fig. 5 of
WSMP packet detail, the time shift for this packet approx-
imately equals O s, which shows the real-time data exchange.

Frame 3224: 253 bytes on wire (2024 bits), 253 bytes captured (2024 bits)
Encapsulation type: Linux cooked-mode capture (25)
Arrival Time: Jun 24, 2020 13:12:19.361308000 Eastern Daylight Time
[Time shift for this packet: ©.000000000 seconds]
Epoch Time: 1593018739.361308000 seconds
[Time delta from previous captured frame: ©.030123000 seconds]
[Time delta from previous displayed frame: ©.030123000 seconds]
[Time since reference or first frame: 7182.082375000 seconds]
Frame Number: 3224
Frame Length: 253 bytes (2024 bits)
Capture Length: 253 bytes (2024 bits)
[Frame is marked: False]
[Frame is ignored: False]
[Protocols in frame: sll:ethertype:wsmp]

Fig. 5. Example WSMP packet

In order to test the denial of service flaw of the DSRC, a
flooding attack is performed at the DSRC channel wave-raw.
The simulation is kept running with unexpected GPS infor-
mation broadcasting on OBU at a very high-speed rate. Thus,
RSU drops legitimate packets since the listening bandwidth
is full with our flooding packets (Fig. 6). While the flooding
attack is ongoing, several crashes are immediately detected
(Fig. 7).

":33065, "time":"

1593385130.522917"," .676507","

,"time":
543000"}
3067, "time":"

"1593385130.524975"," 4.676507","

1593385130.529082", " .676507","

,"time":"1593385130.531138"," .676507","

543000"}
3069, "time":"

15933851360.531695", " .676507","

":"1593385130.532396", " .676507","

":"1593385130.533010"," .676507","

Fig. 6. Example of flooding GPS information

B. Hidden Markov Models

A data set of 6433 packets is collected to build HMM. With
the method described in Algorithms, the Timing HMM and
Size HMM are obtained. From the HMM, the arrival of critical
packets is aimed to be predicted, which are the instruction
packets sent from RSU so that the attack can be conducted
aiming at critical packets.

car 157: [-3.7426634048801803, 1.328825413569938] and car 158: [-4.2897770656397|
, 2.1429391307153245] collide
the intersection:
the intersection:

the intersection:

the intersection:

, 10]
[-2, -1.1956599257265604] and car 162: [-0.046381051108392524, -2.545652
860547864] collide

car 160: [-2, -2.3095950390469664] and car 162: [-0.9415184979110202, -3.4467903
073504915] collide

car 160: [-2, -3.4238959844857515] and car 162: [-1.837013376196504, -4.33628518,
5635975] collide

cars in the intersection:

[3]

Fig. 7. Collision detected while doing flooding GPS informa-
tion

1) Timing HMM

Timing symbolization is described in Table II, which shows
that there we can distinguish between three timing ranges.
This gives us a set of three symbols {a,b,c} to represent
the interpacket delays we observe. Initially, each symbol is
an HMM state. By applying Algorithms 2, 3, and 4 we
discover that the timing state-space converges when state-
space parameter L = 2, as shown in Fig. 8. Parameter L = 2
means that the packet timing data depends on the last two
packet types. This gives our HMM 9 states, |{a, b, c}|*. Note
that since Algorithm 3 can merge states, |{symbols}|* is the
maximum size of the HMM state space.

Table IV includes state transition matrix. From the clear-text
detail of the instruction packet (Fig. 8), it is recognized as a
type a packet. So the prediction of a packet is considered in
Timing HMM. According to Table IV, the packet leaving state
S1 has the highest likelihood (0.8800) to be an a packet. And,
the packet leaving state S5 has the second-highest likelihood
(0.7300) to be an a packet.

TABLE IV. Timing HMM

Transition Matrix

State a b c
S1 0.8708 0.0387 0.0905
S2 0.0204 0.2937 0.6859
S3 0.5774 0.2838 0.1389
S4 0.0383 0.6304 0.3313
S5 0.7318 0.0136 0.2545
S6 0.5723 0.2252 0.2025
S7 0.3922 0.2255 0.3824
S8 0.0460 0.6419 0.3120
S9 0.1732 0.5490 0.2778

2) Size HMM

Packet size symbolization is described in Table III. Packet
size analysis resulted in only two symbols {a,b} and as with
the timing HMM resulted in L = 2. Since |{a,b}|L, we get
a state space of 4 as shown in Fig. 9. Table V includes state
transition matrix. From the clear-text detail of the instruction
packet (Fig. 9), it is recognized as a type y packet. So
the prediction of y packet is considered in Timing HMM.
According to Table V, the packet leaving state S3 has the
highest likelihood (0.7101) to be a y packet.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

0.6304

0.0308

£ 0.2899

v 0.7101

Fig. 9. HMM on packet-size

TABLE V. Packet-size HMM

Transition Matrix

State T Y
S1 0.6069 0.3931
S2 0.9936 0.0064
S3 0.2899 0.7101
S4 1.0000 0.0000

C. Attack Simulation with HMM predictions

As shown in Table VI, there are three target states: timing
state S1, timing state S5, and size state S3. An attack simu-
lation is set up to test the HMMs prediction by dropping the
packets leaving the target states.

The wave-raw process is used to simulate the DSRC/WAVE

TABLE VI. Target states

Target state ~ Category States
1 Timing S1
2 Timing S5
3 Size S3

communication channel. The wave-raw process sends packets
from the speed adjustment module and RSU to each other.
For each received packet, the wave-raw process marks it with
symbols as described in Table II and Table III. Since the
HMMs obtained are both with space-state parameter L=2, a
state could be identified after two received packets marked
with symbols. With the identified state, the probability of the
next packet type according to the HMMSs can be predicted, and
one can decide whether to drop the next packet. Six scenarios
of experiments are set up. In each scenario, the wave-raw
process would drop packets after different states.

The attacks are simulated under six different scenarios. The
first scenario is a control group to see the crash rate if all
packets from RSU dropped. In this scenario, the wave-raw
process does not forward any packets from RSU to OBU.
In the second scenario, the packet is dropped after the first
timing state S1 is observed. In the third scenario, the packet is
dropped after either timing state S1 or S5 is seen. In the fourth
scenario, the packet is dropped after the size state S3 occurs.
In the fifth scenario, the packet is dropped after any defined
target states in Table VI. In the sixth scenario, the packet is
dropped after the state is recognized as a combination of a
target timing state and a size state. In these scenarios, a crash
may occur when a car drives into the intersection while it
should stop according to the information from RSU, but the
information is dropped by an attack.

D. Datasets Obtained

After six scenarios (SCN) attack simulation experiments,
the data is obtained as shown in Table VII. For each scenario,
a total of 2000 cars approach the intersection. The crash is
considered in an intersection with normal traffic flow and
only between vehicles from different directions. Thus, vehicles
are set that they come from four directions with Uniform
interarrival times from /(2.1,4.0) in seconds. The second
column is the description of each scenario. The third column
is the total packet number sent through DSRC/WAVE. The
fourth column is the number of dropped packets. The fifth
column shows the number of instructions in dropped packets.
The sixth column is the number of crashes caused during each
scenario.

E. Analysis of Results

Packets from RSU are marked as positive packets, packets
from OBU as negative packets. The true positive (TP), true
negative (TN), false positive (FP), and false negative (FN) of
our attack as defined as:

o TP is the attack that drops a packet sent from RSU.

o TN is the attack does not drop a packet sent from OBU.

o FP is the attack that drops a packet sent from OBU.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

o FN is the attack does not drop a packet sent from RSU.

False positive rate (FPR) is used to evaluate the reli-
ability of the attack, where FPR:%; True positive
rate (TPR) is used to evaluate the sensitivity of the attack,

where TPR:TJ_F%; The effect of the attack is presented

by the crash proportion p;%. The rates are shown in
Table VIII.

TABLE VII. Attack simulation

SCN Attack target total packets drop# stop packet# drop instruction# crash#

state

1 Control group 3130 1130 1130 1130 257

2 most likely 3051 349 1050 299 40
state

3 any target tim- 3147 471 1145 410 76
ing state

4 target size state 2904 546 903 357 75

5 any defined tar- 2918 599 916 413 100
get state

6 combination of 3032 330 1032 292 32

target timing
and size state

TABLE VIII. Analysis and comparison

SCN Attack target state Real CR% Est. CR % FPR% TPR% TPNCR%
1 Control group 22.74 0 100
2 Max. likelihood 11.46 19.48 2.50 28.48 6
timing state
3 Any target timing 16.14 19.79 3.05 35.81 8
state
= 4 Target size state 13.74 14.87 9.45 39.53 9
E 5 Any defined target 16.69 15.68 9.29 45.09 10
state
6 Combination of a 9.70 20.12 1.9 28.29 6
target timing state
and a size state
Rate
0.1 7.96 10.38 9.67 2
0.2 8.33 19.56 19.55 4
£ 03 8.67 29.28 31.17 7
e 04 8.40 39.73 40.25 9
g 05 831 4994 4975 11
0.6 8.11 59.95 57.46 13
0.7 8.24 70.48 69.17 16
0.8 8.40 79.51 80.49 18
0.9 8.30 90.43 89.86 20
=
2 16.49 2027 72.50 16

To evaluate different attack scenarios, a column chart of
true positive rate (TPR), false positive rate (FPR), and crash
rate (CR) with the confidence interval (CI) for each sce-
nario is plotted. The confidence intervals are calculated by

piZl_a: / w, where Zj 95 = 1.96. The results are shown
in Fig. 10a. Relative packet drop rates with respect to the

total number of packages and stop packages are also shown
in Fig. 10b for all scenarios. Approximately, stop package
ratios sent by RSU are 40%. Crash rates with respect to stop
packages are minimum at 10% in scenario 6 but reach up to
25% in scenario 5.

As shown in Fig. 10a, the control group is the first group of
bars where the TPR is 100%, FPR is 0%, and crash proportion
is 22.74%. This means that if one dropped only RSU packets
and no other packets, this would cause vehicles to crash
about 22.74% of the time. The goal of side-channel analysis
is to cause vehicle crashes with fewer unnecessary packets
dropping. Each scenario causes crashes and does a targeting
attack. The FPRs are less than 10% for all scenarios. The

B Crash Proportion
© B FPR
O TPR
N
[} <
il E i
IS
c
O
O
[72 B !
° %
l |
I T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0
Proportion
(a) Scenario evaluation
! B Crashes/Stop Drops
© B Stop Drops/Total Packages
L I| @ Drops/Total Packages
E O StopbyRSU/Total packages
[te]
[]
A —
Re]
5 [
C
[0
O
g . [
[
. -
[

|

T T 1
40 60 80

o
n
o

Percent

(b) Packet Drop rates and crashes

Fig. 10. Analysis of results

effectiveness of side-channel analysis is proved. The attack
scenarios are evaluated based on crash proportion and FPR.

First, the attacks based on one type of side-channel infor-
mation are compared: timing side-channel attack for the most
likely state, timing side-channel attack for two most likely
states, and size side-channel attack. As shown in Fig. 10a, the
2"? and 374 scenarios have the lowest FPR in 279, 37¢ and 4"
scenarios. With the windows of the confidence interval, there
is no significant difference of FPR between the 2"¢ scenario

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

and the 3" scenario. Moreover, the 3"¢ scenario also has the
highest crash proportion. So one can conclude the 3" scenario
of timing side-channel attack for two most likely states is best
in side-channel analysis based on one type of information.

Then, all attack scenarios are compared to find the best
attack method for this application. As shown in Fig. 10a,
the 3¢ and 5" scenarios have the highest crash proportion
value, while the third scenario has a much lower FPR than
the fifth scenario. So the 3"¢ scenario is the best in five
attack scenarios. In conclusion, timing side-channel analysis
has better performance on predicted states. The attack targeting
the packet leaving two most likely timing states worked best to
cause crashes while avoiding the drop of unnecessary packets.

Note that random packet drops at different rates are also
added. In Table VIII, crash percentages are presented. With
random drops, it can be seen that only half of the crash
percentages that of HMM can be achieved.

FE. Comparison

With the SVM, from the 6433 collected packets, which is
also the data to build HMM, two-thirds of them were used for
training the classifier (4310 packets), and the remaining one-
third was used as a test set. To validate the accuracy of the
training set, k-fold cross-validation was used and showed that
the base classification accuracy was 76.24% with a standard
deviation of £2.12%. The classifier was then used on the
remaining test data and resulted in an overall classification
accuracy of 77.10%, a TPR of 72.50% for correctly identifying
critical packets, and an FPR of 20.26%. This resulting test
gives a much higher TPR rate for dropping packets from the
RSU as opposed to the maximum TPR rate from scenario 5
in Table VIII (72.50% versus 45.09%). However, it also has a
higher FPR rate (20.26% versus 9.29%)

For the three different predictor approaches: HMM, random,
and SVM, a packet capture trace (pcap) of DSRC communica-
tions is utilized for training. As a consequence, both the TPR
and FPR rates are directly related to empirical observations.
For the crash rates, the HMM rates were empirically observed,
but the random and SVM approaches relied on the assumption
that the TPR probability is independent of the crash classifi-
cation rate. That is P(T'P N crash) = P(TP)P(crash) =
TPR x CR where CR is the control’s real crash rate from
Table VIII. This assumption was used due to the loss of
access to the DSRC testbed. Using this assumption allows
us to estimate a baseline crash rate, but future work would
need to validate this approach empirically. Note that randomly
dropping 90% of all packets resulted in the highest TPR.
However, the random predictor with high drop rates is much
more trivial to detect, as it disrupts the majority of the packets
sent. The SVM classifier results in a high TPR but still also
has an FPR of 20%. It performs better in terms of FPR than the
random drop (for large drop rates) but still results in dropping
additional unnecessary packets. The HMM approach has a
lower FPR rate and TPR, making it more stealthy and less
sensitive than the SVM approach.

Note that the HMM approach reverse engineers the system
that can observe given the fact that the packets are encrypted.

It allows one to find the critical packets. SVM assumes that
clear-text data is available for training. After training, the SVM
classifies based solely on side-channels. Side-channel levels
or features are used for monitoring the running system and
making decisions at runtime which are used together with the
clear-text packet captures to train SVM. At runtime, SVM uses
only the side-channels. HMM uses only the side-channels for
training. After training the states, one wants attacks to be found
via clear-text or simply observing one instance of the process.
At runtime, HMM uses only the side-channels. Thus, having
access to the packet clear-text may give SVM has its advantage
in getting a better TPR. As expected, random packet dropping
performs the worst.

; x Noncritical
2501 Critical
a0 ;
230 X
E i
& 220
w
o
Q
X 2104
Q
©
o
2001
B it o w
» K+ >
190 x
wl T

0 2 4 6 8
Interpacket Time [s]

Fig. 11. The SVM Boundary classifies critical packets within
the white region as critical (stop messages) and packets within
the gray region non-critical (not containing stop or slow down
messages). The true class of the point is represented by the
point’s color.

IV. CONCLUSIONS

This paper focuses on the evaluation analysis of
DSRC/WAVE applications. To do this, a DSRC stop light
application is set up based on a developed WSMP implementa-
tion. The data is sniffed through WSMP. The sniffed clear-text
WSMP data content shows that the current implementation is
insecure. Lack of security services, such as content encryption,
makes it easy for attackers knowing critical car/road informa-
tion with DSRC equipped devices. Then one can perform a
DoS attack, successfully drop packets at the communication
channel, and cause crashes.

Assuming all the security services would be implemented
in the future, the "black box" attack is completed. Hidden
Markov models (HMM) are constructed using sniffed inter-
packet timing and packet size side channels since operational
packets would be encrypted. An attack simulation is set up
to test the HMM predictions of important packet arrival.
The simulation results show the effect of the side-channel
analysis. Timing side-channel analysis works better in the
attack experiments.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

The DoS result of packet dropping shows neither the ap-
plication nor WSMP has a detection or prevention mechanism
for DoS attacks. In DSRC communication, entropy-based DoS
detection could be a good tool against DoS attacks. In DoS
attack detection, entropy measures the amount of disorder
in the observed data. For example, the roadside unit (RSU)
system could calculate the entropy value of packet rate and
packet size in this application. The RSU can also detect
abnormal network traffic from the vehicle by cooperating with
other RSU nearby. The vehicle volume could be estimated
according to the information from other RSU. To prevent a
DoS attack, DSRC should add the authentication mechanism
to the standard.

To prevent side-channel attacks, the WSMP of DSRC should
improve the packet formatting. For example, it could define
the length of a packet through WSMP to prevent packet size
side-channel attack.

In sum, DSRC is inherently vulnerable to DoS attacks
since the wireless can be jammed or packet dropping attacks
like the ones implemented in this study. SVM and HMM
combination powerful for network protocol analyisis to find
DoS vulnerabilities which can be used for penetration testing
of safety-critical protocols.

For future work, this study can be extended by

1) Validating the estimated crash rates for both the random

and SVM predictors

2) Collecting more data and conduct the joint side channels

analysis;

3) Applying this evaluation approach on more DSRC ap-

plications;

4) Testing other attack methods, e.g., radio signal jamming.

REFERENCES

[1] X. Ma, J. Zhang, X. Yin, and K. S. Trivedi, “Design and analysis
of a robust broadcast scheme for vanet safety-related services,” IEEE
Transactions on Vehicular Technology, vol. 61, no. 1, pp. 46-61, 2011.

[2] R. C. Daniels, E. R. Yeh, and R. W. Heath, “Forward collision vehicular
radar with ieee 802.11: Feasibility demonstration through measure-
ments,” IEEE Transactions on Vehicular Technology, vol. 67, no. 2, pp.
1404-1416, 2017.

[3] ARC-IT, “The national its reference architecture,”
//local.iteris.com/arc — it, 2020, accessed: 2020-11-28.

[4] P. Fazio, F. De Rango, and C. Sottile, “A predictive cross-layered
interference management in a multichannel mac with reactive routing
in vanet,” IEEE Transactions on Mobile Computing, vol. 15, no. 8, pp.
18501862, 2015.

[5] M. Hasan, S. Mohan, T. Shimizu, and H. Lu, “Securing vehicle-
to-everything (v2x) communication platforms,” IEEE Transactions on
Intelligent Vehicles, 2020.

[6] J. Huang, D. Fang, Y. Qian, and R. Q. Hu, “Recent advances and
challenges in security and privacy for v2x communications,” IEEE Open
Journal of Vehicular Technology, vol. 1, pp. 244-266, 2020.

[7] 1. Ozcelik and R. Brooks, Distributed denial of service attacks: Real-
world detection and mitigation. CRC Press, 2020.

[8] D. Yang, K. Jiang, D. Zhao, C. Yu, Z. Cao, S. Xie, Z. Xiao, X. Jiao,
S. Wang, and K. Zhang, “Intelligent and connected vehicles: Current
status and future perspectives,” Science China Technological Sciences,
vol. 61, no. 10, pp. 1446-1471, 2018.

[9] C. Bettisworth, M. Burt, A. Chachich, R. Harrington, J. Hassol, A. Kim,

K. Lamoureux, D. LaFrance-Linden, C. Maloney, D. Perlman et al.,

“Status of the dedicated short-range communications technology and

applications: report to congress,” United States. Department of Trans-

portation. Intelligent Transportation, Tech. Rep., 2015.

J. B. Kenney, “Dedicated short-range communications (dsrc) standards

in the united states,” Proceedings of the IEEE, vol. 99, no. 7, pp. 1162—

1182, 2011.

http

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(271

(28]

[29]

[30]

[31]

[32]

(33]

[34]

G. Carl, G. Kesidis, R. R. Brooks, and S. Rai, “Denial-of-service attack-
detection techniques,” IEEE Internet computing, vol. 10, no. 1, pp. 82—
89, 2006.

P. Kalra, K. Pandey, and A. Varshney, “Comparative analysis of syn
flooding attacks on tcp connections,” Int. J. Inf. Comput. Technol, vol. 4,
no. 3, pp. 279-284, 2014.

X. Zhong, 1. Jayawardene, G. K. Venayagamoorthy, and R. Brooks,
“Denial of service attack on tie-line bias control in a power system
with pv plant,” IEEE Transactions on Emerging Topics in Computational
Intelligence, vol. 1, no. 5, pp. 375-390, 2017.

J. J. Blum and A. Eskandarian, “A reliable link-layer protocol for
robust and scalable intervehicle communications,” IEEE Transactions
on Intelligent Transportation Systems, vol. 8, no. 1, pp. 4-13, 2007.

J. Thai, C. Yuan, and A. M. Bayen, “Resiliency of mobility-as-a-service
systems to denial-of-service attacks,” IEEE Transactions on Control of
Network Systems, vol. 5, no. 1, pp. 370-382, 2016.

R. Merco, F. Ferrante, and P. Pisu, “A hybrid controller for dos-
resilient string-stable vehicle platoons,” IEEE Transactions on Intelligent
Transportation Systems, 2020.

Y. Ma, Z. Nie, S. Hu, Z. Li, R. Malekian, and M. Sotelo, “Fault detection
filter and controller co-design for unmanned surface vehicles under dos
attacks,” IEEE Transactions on Intelligent Transportation Systems, 2020.
C. Laurendeau and M. Barbeau, “Threats to security in dsrc/wave,” in
International Conference on Ad-Hoc Networks and Wireless. Springer,
2006, pp. 266-279.

M. Islam, M. Chowdhury, H. Li, and H. Hu, “Cybersecurity attacks in
vehicle-to-infrastructure applications and their prevention,” Transporta-
tion research record, vol. 2672, no. 19, pp. 66-78, 2018.

C. R. Shalizi, K. L. Shalizi, and J. P. Crutchfield, “An algorithm for
pattern discovery in time series,” arXiv preprint cs/0210025, 2002.

J. M. Schwier, R. R. Brooks, C. Griffin, and S. Bukkapatnam, “Zero
knowledge hidden markov model inference,” Pattern Recognition Let-
ters, vol. 30, no. 14, pp. 1273-1280, 2009.

H. Bhanu, J. Schwier, R. Craven, I. Ozcelik, C. Griffin, and R. R.
Brooks, “Noise tolerant symbolic learning of markov models of tunneled
protocols,” in 2011 7th International Wireless Communications and
Mobile Computing Conference. 1EEE, 2011, pp. 1310-1314.

B. Harakrishnan, S. Jason, C. Ryan, B. Richard R, H. Kathryn,
G. Daniele, and G. Christopher, “Side-channel analysis for detecting
protocol tunneling,” Advances in Internet of Things, vol. 2011, 2011.
X. Zhong, P. Arunagirinathan, A. Ahmadi, R. Brooks, and G. K. Ve-
nayagamoorthy, “Side-channels in electric power synchrophasor network
data traffic,” in Proceedings of the 10th Annual Cyber and Information
Security Research Conference, 2015, pp. 1-8.

W. Yao, A. Yahya, F. Khan, Z. Tan, A. U. Rehman, J. M. Chuma, M. A.
Jan, and M. Babar, “A secured and efficient communication scheme for
decentralized cognitive radio-based internet of vehicles,” IEEE Access,
vol. 7, pp. 160 889-160900, 2019.

C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273-297, 1995.

X. Liu, X. Fang, Z. Qin, C. Ye, and M. Xie, “A short-term forecasting
algorithm for network traffic based on chaos theory and svm,” Journal
of network and systems management, vol. 19, no. 4, pp. 427-447, 2011.
A. Y. Nikravesh, S. A. Ajila, C.-H. Lung, and W. Ding, “Mobile
network traffic prediction using mlp, mlpwd, and svm,” in 2016 IEEE
International Congress on Big Data (BigData Congress). 1EEE, 2016,
pp. 402-409.

S. Dong, “Multi class svm algorithm with active learning for network
traffic classification,” Expert Systems with Applications, vol. 176, p.
114885, 2021.

K. Kato and V. Klyuev, “An intelligent ddos attack detection system
using packet analysis and support vector machine,” IJICR, vol. 14, no. 5,
p. 3, 2014.

L. Yu, J. M. Schwier, R. M. Craven, R. R. Brooks, and C. Griffin, “Infer-
ring statistically significant hidden markov models,” IEEE Transactions
on Knowledge and Data Engineering, vol. 25, no. 7, pp. 1548-1558,
2012.

C. Griffin, R. R. Brooks, and J. Schwier, “A hybrid statistical technique
for modeling recurrent tracks in a compact set,” IEEE transactions on
automatic control, vol. 56, no. 8, pp. 1926-1931, 2011.

P. Ryan, S. A. Schneider, M. Goldsmith, G. Lowe, and B. Roscoe,
The modelling and analysis of security protocols: the csp approach.
Addison-Wesley Professional, 2001.

R. Ott and M. Longnecker, “Multiple comparisons, an introduction to
statistical methods and data analysis (pp. 438—440),” Australia: Duxbury
Thomson Learning, 2001.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

[35] J. M. Schwier, R. R. Brooks, and C. Griffin, “Methods to window data to
differentiate between markov models,” IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), vol. 41, no. 3, pp. 650-663,
2010.

[36] C.Lu,J. M. Schwier, R. M. Craven, L. Yu, R. R. Brooks, and C. Griffin,
“A normalized statistical metric space for hidden markov models,” IEEE
transactions on cybernetics, vol. 43, no. 3, pp. 806-819, 2013.

Fei Sun Fei Sun received a B.S. degree in Electronic
Information Science and Technology from Xiamen
University, Fujian, China and a M.S. degree in
Department of Electrical and Computer Engineering,
Clemson University, Clemson, South Carolina. Her
research interests include queuing theory, cyber-
security, connected vehicle communication. She is
currently with NSFOCUS Technologies Group Co.,
Ltd, working on network security services.

Richard R. Brooks is Professor of Electrical and
Computer Engineering at Clemson University in
Clemson, South Carolina, He received a PhD in
Computer Science from Louisiana State University
and a B.A. in Mathematical Sciences from The Johns
Hopkins University. Dr. Brooks also studied Opera-
tions Research at the Conservatoire National des arts
et Metiers in Paris, France. He is a senior member
of the IEEE. He is fluent in German and French. Dr.
Brooks’ research on computer and network security
has been sponsored by US DoD, NIST, Dept. of
State, NSF, and BMW. His security research works to advance freedom of
expression and protect vulnerable civilian populations.

Gurcan Comert received the B.Sc. and M.Sc. de-
gree in Industrial Engineering from Fatih Univer-
sity, Istanbul, Turkey and the Ph.D. degree in Civil
Engineering from University of South Carolina,
Columbia, SC, in 2003, 2005, and 2008 respec-
tively. He is currently with Physics and Engineering
Department, Benedict College, Columbia, SC. His
research interests include applications of statistical
models to transportation problems, traffic parameter
prediction, and stochastic models.

Nathan Tusing received the B.S. degree in engineer-
ing from Bob Jones University, Greenville, South
Carolina in 2018. He is currently pursuing the Ph.D.
Degree in computer engineering from Clemson Uni-
versity, Clemson, South Carolina with the Holcombe
Department of Electrical and Computer Engineering.
His research interests include network side channel
analysis, statistical learning, and combinatorial game
theory.

