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Gurcan Comert, Mizanur Rahman, Member, IEEE, Mhafuzul Islam, and

Mashrur Chowdhury, Senior Member, IEEE

Connected vehicle (CV) systems are cognizant of potential cyber attacks because of increasing connectivity between its different
components such as vehicles, roadside infrastructure, and traffic management centers. However, it is a challenge to detect security
threats in real-time (i.e., less than 0.1 second) and develop appropriate or effective countermeasures for a CV system because of the
dynamic behavior of such attacks, high computational power requirement, and a historical data requirement for training detection
models. To address these challenges, statistical models, especially change point models, have potentials for real-time anomaly detection.
Thus, the objective of this study is to investigate the efficacy of two change point models, Expectation Maximization (EM) and two
forms of Cumulative Summation (CUSUM) algorithms (i.e., typical and adaptive), for real-time vehicle-to-infrastructure (V2I) cyber
attack detection in a CV Environment. To prove the efficacy of these models, we evaluated these two models for three different
type of cyber attack, denial of service (DOS), impersonation, and false information, using basic safety messages (BSMs) generated
from CVs through simulation. Results from numerical analysis revealed that EM, CUSUM, and adaptive CUSUM (aCUSUM) could
detect these cyberattacks, such as DOS, impersonation, and false information with low false positives.

Index Terms—Cyber Attack Detection, Connected Vehicles, Expectation Maximization, CUSUM, Roadside Equipment.

I. INTRODUCTION

THe driving force behind the US economic engine is the

surface transportation system, which enables reliable and

efficient transportation of passengers and goods [1]. However,

human errors (e.g., poor judgment, fatigue) are the leading

causes of more than 94% of US highway fatalities [2]. To

reduce these fatalities and associated societal costs by reducing

or eliminating the influence of the human errors, the US

Department of Transportation (USDOT) has been promoting

connected and automated vehicles (CAV) [3], [4]. From recent

reports of National Highway Traffic Safety Administration

[5], [6], several benefits are foreseen with this CAV technolo-

gies, such as up to 80% reduction in fatalities from multi-

vehicle crashes and preventing the majority of human error

related incidents. In such CAV systems, massive amounts

of data will be produced and exchanged between different

components through different data communication medium,

such Dedicated Short Range Communication (DSRC), WiFi,

5G and Long Term Evolution (LTE) [7], [8]. These data can

be processed in a cloud, or in an edge computing device at

the roadside (i.e., roadside transportation infrastructure) based

on different CAV application requirements [8], [9]. Commu-

nication technologies supporting data exchange must also be

secured to support CAV operations with specific requirements

(e.g., delay, bandwidth and communication range). With the

increase of connectivity in transportation networks, this CAV

systems is cognizant of potential cyber attacks [10], [11]. In

one of the recent review papers, Hahn et al. discussed current

challenges as scalability when large data is available and delay
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sensitivity [12]. In addition, privacy preserved framework was

introduced by perturbation and compression in [13].

As cybersecurity attacks are dynamic, it is a challenge to

detect security threats in real-time and develop appropriate or

effective countermeasures for connected transportation system

[14]. To increase security and resiliency due to possible

attacks or benign system errors by different events, research is

needed to investigate detection techniques for different attack

types, such as denial of service (DOS), impersonation, false

information [15], [16]. Anomaly detection techniques are well-

studied in different areas. Specifically, the cybersecurity of

firmware updates, cybersecurity on heavy vehicles, vehicle-to-

vehicle (V2V) communication interfaces, and trusted vehicle-

to-everything (V2X) communications [17].

Different type of anomaly detection models exist in liter-

ature, such as rule-based, machine learning (ML) and data

mining (DM) (including expert systems)-based, and statistical

inference-based models. These can be listed as K-means,

random forest, Bayesian networks, Gaussian processes, de-

cision trees, neural networks, support vector machines, and

hypothesis testing and point estimation based process con-

trol models respectively. Recent survey studies related to

anomaly detection are summarized a comprehensive review

of machine learning and rule (signature)-based methods, and

their applications to intrusion detection systems (IDS) [18],

[19]. Rule-based attack detection models, originated from

cryptography, are abundant especially for their efficiency

and computationally light-weight [20]. However, rule-based

models require a detailed understanding of the data genera-

tion process and adaptivity or customization based on their

respective environment to develop the model. On the other

hand, both ML and DM-based attack detection models are

adaptable to different attack types both known and unknown

patterns [21]. However, major concerns are computational

complexity for real-time application, training the model with

different cyber attack scenarios, unavailability of cyberattack

data in the transportation domain, and determination of update
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or retraining window. To address these problems, statistical

models, specially the change point models, are applicable

because of the following advantages: (1) do not require fitting

or training; (2) adaptive to different attack data (do not

use rules); (3) perform with low data sample sizes; and (4)

computationally efficient for real-time applications. Thus, the

objective of this study is to investigate the efficacy of two

change point models, Expectation Maximization (EM) and

Cumulative Sum (CUSUM), for real-time V2I cyberattack de-

tection in a connected vehicle (CV) Environment. To prove the

efficacy of these models, we implemented three different type

of cyber attacks (i.e., denial of service (DOS), impersonation,

and false information) [22], using BSMs generated from CVs

through simulation. Expectation Maximization’s (EM) utiliza-

tion for anomaly detection and adaptive CUSUM (aCUSUM)

approach, algorithms’ computational capability for under 0.1
second (s) intervals, and their comparison under connected

vehicle framework are unique to this study. Connected and

autonomous vehicles present different challenges, as datasets

are not available, the attacks on calibrated microsimulation

networks are utilized in our study.

A connected vehicle broadcasts basic safety messages

(BSMs) at a frequency of 10 hertz (Hz) to its nearby vehicles.

A BSM contains several message elements, such as loca-

tion, speed, heading direction, and vehicle unique identifier.

Among these elements, most important message elements are

location, speed, and vehicle identifier, as these elements are

related to the safety critical operation of a connected vehicle

application. Based on the message elements or feature set

we have chosen three types of attacks: (i) denial of service

(flooding the network with unnecessary messages) (ii) im-

personation (impersonating the vehicle unique identifier), and

(iii) false information (broadcasting false speed and location

information). Furthermore, getting a BSM within the required

maximum allowable latency (0.1 s or 100 milliseconds ms)

is also critical for the timely safety operation of the connected

vehicles. Each vehicle on the roadway considered in this study

was assumed to have a DSRC technology-enabled wireless

communication radio. It was also assumed that a DSRC-

enabled radio in a connected vehicle has the capability to

broadcast BSMs, which can be received by roadside equipment

(RSE) if a vehicle is within the DSRC coverage area of an

RSE. Due to the limitation of Simulation of Urban Mobility

(SUMO) traffic simulator, it is not possible to model RSE in

SUMO. Therefore, we assumed that the data generated from

each connected vehicle (i.e., BSMs) were received by the RSE

within a vehicle’s DSRC communication range. Note that we

also assumed no communication latency and assumed perfect

communication (i.e., no data loss and communication delay)

among connected vehicles and the associated RSE.

The paper is organized as follows. Section II presents the

previous research and the literature on the anomaly detection

models. Section III describes EM and CUSUM algorithms

for V2I cyber-attack detection. Section IV presents the data

generation process and evaluation of EM and CUSUM models

through numerical analysis and results. Finally, section V

summarizes findings and possible future research directions.

II. RELATED WORK

In this section, we describe past research on statistical

models for anomaly detection and cyber attacks in a vehicle-

to-infrastructure (V2I) environment.

A. Statistical Models for Cyber Attack Detection

Statistical and inference based models in cyber attack or in

general detection problem provide adaptability and transfer-

ability to different settings and attack types with low compu-

tational costs [18], [23]. In a very basic approach, detection on

process controls using quality control models based on change

point algorithms such as CUSUM, and exponentially weighted

moving average are utilized [24] intrusion monitoring. For

detail characteristics of attack models using honeypot-captured

cyber attacks are modeled with several time series models [25].

Reliability models are also studied for vulnerabilities based on

good and bad states simply via nodes’ deviations [26]. They

consider persistent, random, and insidious attacks of sensor-

actuator nodes with simple sensing, actuating, and networking

models. Moreover, model-based attacks usually for power

grids are investigated by researchers [27]. Attack (intrusion)

models for different control systems and proper modeling for

moving systems as in vehicular or mobile ad hoc network

(VANET/MANET) cases are well reviewed in [28]–[31] where

reputation management in vehicular networks are suggested.

Possible revoking or blacklisting the information contributors

are also recognized in similar survey study specifically on

cooperative intelligent transportation systems [22]. Privacy of

the drivers and safety critical applications are also started to

be investigated by the researchers ([32]).

First proposed by Page [33], CUSUM is a classical statisti-

cal quality and process control method for industrial applica-

tions, which is then utilized by many fields such as computer

network security particularly for DOS or flooding attacks [34],

sensor networks, signals and control systems, pipeline break

detection to neuronal spike detection [35], [36]. However, it

is also heavily employed in intrusion or anomaly detection

for cyber attacks [23] for its high true positive rate and low

computational cost. In connected vehicles, a recent patented

implementation utilizes CUSUM on for vehicle intrusion

detection on electronic control units [37]. Without accuracy

reporting, CUSUM was used for DOS attack detection in

[38]. On the other hand, EM is used for anomaly detection as

its classical meaning of parameter estimation in an analytical

attack modeling on power systems [39]. In this study, both

EM and CUSUM are selected as detection algorithms for their

online applicability (linear in computational complexity) also

observed in [18]. Both algorithms are adopted to the anomaly

detection problem as sequential implementation, compared,

and detailed attack data are simulated which are novel in the

intrusion detection literature. Both methods contain only low

level parameters such as initial underlying distributions param-

eters (e.g., Normal in this paper) as well as design parameters

for CUSUM. Detailed recalibration or update intervals for such

parameters are not investigated in this study.

In the literature, there are extensive applications of deep

learning (DL) and versions of decision tree (DT) algorithms.

In one of the recent studies [40], an intrusion detection system
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(IDS) was introduced using deep belief networks along with

other classification and clustering algorithms reporting more

than 99% detection rate with about 1% false positives and

1.5% false negatives. However, using simulated data, after

40 nodes, the proposed algorithms are causing an average

delay of more than 0.1 s [40]. In [41], tree-based machine

learning methods were used for IDS for detecting various

attacks. Versions of decision tree algorithms were found to

be more accurate providing more than 99% accuracy where

ensemble methods showed 100% accuracy. Although the study

showed low computational costs, it is hard to judge if real time

implementation would be possible from cumulative run times

of some reaching to an hour [41]. Moreover, machine learning

algorithms were implemented for malware detection. Authors

in [42] developed an improved feature selection algorithm

resulting in 93% detection accuracy with less than 0.1 s
execution time [42]. IDS on vehicle platoons was used for

detecting spoofing and jamming attacks with random forests

and k-nearest neighbors (KNN), in which authors reported

about 90% detection accuracy [43]. In a real vehicle controller,

Tariq et al. [44] modeled IDS for detecting DOS, replay,

and other types of attacks through long-short term memory,

and they reported 100% accuracy and less than 0.1 s time

delay running onboard units of a vehicle. In the physics-based

model, Wang et al. used a version of Kalman filtering and

DTs to detect anomalies with over 90% accuracy [45]. False

location information was aimed to be detected using deep

learning. Although accurately detected with deep learning,

false positives were also reported [46]. Anomaly detection

using machine learning was also used in [47], where versions

of random forest and support vector machines (SVM) reported

providing over 90% accuracy with up to 4% false negatives

[47]. Versions of DTs for stealthy attack detection on smart

grids. Authors report over 97% detection accuracy with 1
minute model training time [48]. A good comparison of

machine learning methods for attack detection on mobile

networks. Authors reported at least 91% detection accuracy

with DL where they were able to achieve similar values

with logistic regression as well as SVM and decision trees

[49]. Using a restricted Boltzmann machine, the study in [50]

presented an anomaly detection algorithm with 99% accuracy

alone with false negatives from their algorithm. Although clear

accuracy metrics were not provided, a reinforcement learning

exploration-exploitation algorithm of multi-armed bandit was

used to detect an injection attack [51]. In another study,

authors utilized KNN and SVM for intrusion detection for

vehicle systems where the reported accuracy is above 96%
accuracy [52]. The study in [53] listed one of the gaps of

recent taxonomy of connected vehicle security as considering

both in-vehicle and vehicular network security together. In our

study, detection algorithms can be applied from both angles.

Vehicles’ false information, impersonation, and DOS attack to

or from a vehicle can be detected.

In sum, researchers mainly explored logically evolving DL

and versions of DTs as detection methods. These methods are

able to include features and have more rule-based (rather flex-

ible thresholds) detection for different attack types. However,

as machine learning methods, all of these methods require

training. In this paper, we used both approaches and used EM

online with a low number of iterations (e.g., 10) and samples

(e.g., 10) in order to detect abnormal and normal behaviors.

B. V2I Cyber-attacks in a CV Environment

In the cyber-physical systems (CPS) security literature,

recent studies [17], [28], [54]–[57], list possible cyber-attacks

and discuss their detection and mitigation techniques. In these

studies, abstract cyber-physical models for smart cars are

also presented. Possible attacks are criminal, privacy, tracking,

profiling, political threats with different structures replay, com-

mand (message) injection, false information, impersonation,

eavesdropping, and denial of service [56]. For this study, we

consider denial of service (DOS), impersonation, and false

information attack to evaluate efficacy for EM and CUSUM

models. DOS attack in the literature defined as disordering,

delaying, or periodically dropping packets to decrease network

performance. It consists of flooding (similar to jamming-

occupying channel by outsiders) and exhausting the network

resources such as bandwidth and computational power. In this

study, it is dramatically increasing number of messages so

that the roadside equipment (RSE or roadside unit (RSU))

or onboard equipment (OBE or onboard unit (OBU)) are not

able to process and overall communication delays increase or

become not available. Impersonation (node impersonation or

identity theft) attack can be defined as a vehicle can pretend

as if it has more than one identity unable to distinguish one or

more vehicles by aiming to shape the network, manipulating

other vehicle behaviors, incorrect position information etc.,

hard to detect-network/vehicle ID credentials management.

False information attack: aims to manipulate other vehicles

with selfish/malicious intent can highly impact and high de-

tection likelihood [58]. Previous research on the vehicular

communications discuss possible attacks and their mitigation

methods [17], [22]. ITS applications require protocols that

conflicts with anonymity and privacy requirements and report

on quantifying such risks and traffic control under either lost

communications based on correct or faulty communication

errors. In sum, studies on quick detection of such cases and

possible redundant data resources for cost effective control are

needed for resiliency on transportation networks.

III. CHANGE POINT MODELS

In this study, we investigate statistical change point models,

Expectation Maximization (EM) and Cumulative Summation

(CUSUM), to detect cyber attacks in a V2I environment. We

describe these models in the following sub-sections.

A. Expectation Maximization Algorithm

The Expectation Maximization (EM) algorithm is often used

to estimate the parameters of mixture models or models with

latent variables [59], [60]. In this research, EM algorithm

is utilized for detecting cyber attacks via changes in the

process mean. Given N sample points from a mixture of two

Normal distributions as in Eq. (1), the EM algorithm can be

applied to determine the parameters of these two distributions

θ=[θ1 = (µ1, σ1), θ2 = (µ2, σ2), π] of normal and attack

states, respectively. The first step of the EM algorithm specifies

initial values for the parameters. In the expectation step, the
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algorithm computes the responsibilities γi (i.e., the probability

of an observation belonging to Y2, i.e., attack state) for

each data point. Using the calculated responsibilities, it then

computes the five parameters in the maximization step. The

iterations continue until the likelihood function convergences.

The convergence of a basic EM algorithm is slow. Simple

equations pertaining to the EM are given below. First, the

probability density of Y is written as a mixture:

Y = (1−∆)Y1 +∆Y2 (1)

where Y1 ∼ N (µ1, σ
2
1), Y2 ∼ N (µ2, σ

2
2), and ∆ ∈ 0, 1

with abnormal data proportion of P(∆ = 1) = π.

gY (y) = (1− π)φθ1(y) + πφθ2(y) (2)

where φθ(x) denotes normal density. For a data set of N
points the loglikelihood function can be written as follows:

l(θ, Z) =

N
∑

i=1

ln[(1− π)φθ1(yi) + πφθ2(yi)] (3)

where θ= [θ1 = (µ1, σ1), θ2 = (µ2, σ2), and π] and Z
represent the data points. Analytical maximization of Eq. (3)

is difficult, however, if the observation is known to belong to

Y2 (i.e., with latent variable ∆i = 1, otherwise ∆i = 0), the

loglikelihood can be written as in Eq. (5) and ∆i = 1s can be

estimated by Eq. (5).

l(θ; ∆, Z) =
N
∑

i=1

[(1−∆i)ln[(1− π)φθ1(yi)] + (4)

∆iln[πφθ2(yi)]]

γi(θ) = E(∆i | θ, Z) = P (∆i = 1 | θ, Z) (5)

In sum, given N data points that are assumed to be generated

by mixture of two Normal distributions (i.e., normal and

abnormal messages per vehicle per second (MVS), messages

per vehicle (MVT), and distance), the EM algorithm is applied

to determine the distribution parameters and responsibilities.

Number of mixtures could be varied for various levels of

attacks and impacts. N data points constitute the main input

to the algorithm. To see the impact of sample size, prediction

performances of EM algorithm with various N values can be

checked. The EM algorithm provides the real-time estimation

of the process parameters at each time point as well as

conditional probabilities of a data point comes from a certain

attack or no attack condition which is subsequently used for

detection.

B. CUSUM Algorithm

The CUSUM chart or algorithm is commonly used for

quality control purposes to detect possible shifts in the mean

level of a process. In cyber attack setting, changes within ex-

pected level of deduced measures (MVS, MVT, and distance)

are targeted. This paper uses tabular version or algorithmic

version of the CUSUM rather than control chart. Assume that

Xi ∼ identical independently distributed (i.i.d) with known

(µ1, σ
2) where a new process mean is observed µ2 after a

possible change. Based on statistical hypothesis testing, the

log-likelihood ratio is written s(i)=ln(pµ2
(Xi)/pµ1

(Xi)) for

St =
∑t

i=1
si for sample size of n, the decision rule d is

given by

d =

{

0 , Ct < H ; H0 no change

1, Ct ≥ H; H1 change
(6)

where Ct = St −mt and mt = [Si]
−
1≤i≤t [61], [62].

1) Typical Form

Basic applications of this algorithm assume that the ob-

servations collected before and after the change in the mean

level are i.i.d. To detect both positive and negative shifts, the

two-sided version of the CUSUM algorithm was used. The

algorithm works by accumulating positive and negative devi-

ations from a certain target mean, which is commonly taken

to be zero. The positive deviations (values above the target)

are indicated with C+
t , and those that are below the target are

indicated with C−
t . The statistics C+

t and C−
t are referred to

as one-sided upper and lower CUSUMs, respectively [63]. It

is shown that the use of the two-sided CUSUM algorithm is

equivalent to monitoring the following two sums for a zero-

mean process:

C+
t = [0, C+

t−1 +Xt − µ2 −K]+ (7)

C−
t = [0,−C−

t−1 −Xt + µ2 −K]+

where C+

0 = 0, C−
0 = 0, is the residual or deviation

from the mean at time t. A shift detection is issued whenever

(C+
t ∨ C−

t ) > H . Typical CUSUM is applied for persistent

shifts or attacks. With −C−
t−1 in Eq. (8), the algorithm behaves

like one-sided and reduces false alarm rate almost 100%.

Moreover, in order to employ CUSUM in real-time, once

an alarm is issued by the CUSUM algorithm, the mean or

intercept of the attack time series observations is estimated

and updated with Eq. (8) and C+
t , C−

t values set to zero after

every detection.

µ2 =

{

µ1 +K +
C

+

t

N+ , C
+
t > H

µ1 −K − C
−

t

N−
, C−

t > H
(8)

The CUSUM algorithm are designed by choosing the values

of K and H . The constant K is called the reference value

and H is the decision interval or the threshold. The parameter

K is a function of the shift in mean level to be detected by

the CUSUM algorithm. The value of H is selected to give the

largest in-control average run length (ARL) consistent with an

adequately small out-of-control ARL. These two parameters

control the ARL, a standard performance measure for online

change-detection algorithms. ARL is the average number of

data points that have been observed before an out-of-control

signal or alarm is generated. There have been many analytical

studies on investigating CUSUM’s ARL performance. For ex-

ample, the conventional CUSUM with K = δσ/2 is optimal in

detecting a shift of δσ from target mean. Based on past studies,

Montgomery [63] suggests that selecting K = δσ/2 = σ/2
for δ = 1 and H = 5σ provides a CUSUM algorithm that

has good ARL properties against small shifts in the process

mean [63].

The CUSUM algorithm described previously is applied to

the change point detection of the time series within basic safety
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messages. The CUSUM parameters were selected as suggested

in the literature: K = δσ/2 and H = 5σ and δ = 1.0 which

represents midpoint between normal and abnormal process

means.

2) Adaptive Form

Adaptive version, denoted as aCUSUM, is actually adopted

from [62] revised to perform for other than zero mean pro-

cesses, lower false positives, and single weight parameter (α).

Table III shows only initial mean values are different which

could be used as simple as 1st value observed in the process.

It is applied to X̃t = Xt − µ̄t−1.

C+
t = [0, C+

t−1 +
αDt

σ2
[Xt −Dt − αDt/2]]

+ (9)

C−
t = [0, C−

t−1 −
αDt

σ2
[Xt +Dt + αDt/2]]

+

where Dt = (µ̄t − µ1) and µ̄t = αµ̄t−1 + (1− α)Xt. This

adaptive form of CUSUM algorithm is not very sensitive to

K = δσ/2 and δ = 1.0. As in the typical algorithm, for less

false positive detection H is set to 5σ.

IV. NUMERICAL EXPERIMENTS

This section presents the data generation to evaluate the

methods for different vehicle-to-infrastructure (V2I) attacks

and gives numerical results for performance of the proposed

detection models.

A. Attack Model

We have created three attacks: (i) denial of service (DoS)

attack, (ii) false information attack, and (iii) impersonation

attack. We assumed an attack can be carried out in three dif-

ferent ways: (1) an attacker can connect to the OBU through

the Ethernet locally and then alter the code in OBU, and create

and send false messages to generate false location of a vehicle

and/or create false vehicle identity, (2) an attacker can re-

motely compromise an OBU of a CV or an RSE through unau-

thorized access to generate false location information, and/or

false vehicle identity, and/or flood the communication channel

with unnecessary data to cause a CV application to be unavail-

able to other CVs and RSEs, and (3) an attacker can intercept

the data flow in a communication channel and alter the data

packets with false location information of a vehicle, and/or

false vehicle identity through man-in-the-middle (MITM) at-

tacks.

An attacker’s capabilities also depend on the configuration

of communication radios. In this study, we consider DSRC

communication radios. DSRC has seven communication chan-

nels using different frequencies ranging from 5.85 GHz to

5.925 GHz. These seven channels are divided into two cate-

gories: Control Channel (CCH) and Service Channel (SCH).

In this study, we consider Channel number 178 is assigned for

CCH, and the remaining channels from 172 to182 are assigned

as SCH. After the initial authentication and key exchange,

the RSE and vehicle OBE agree to communicate on a single

service channel with a fixed frequency.

An attacker CV can launch the DoS attack by flooding the

communication channel to cause a service to be unavailable

to other CVs. An attacker uses its maximum transmission

Fig. 1. Route configuration

capacity to flood the network and disrupts the V2I communi-

cation by transmitting more data than the receiver’s (e.g., RSE)

maximum receiving capacity. In the fake (or false) information

attack, false GPS location information (i.e., longitude and

latitude) of a vehicle is generated using a random variable

generation approach. We have crafted the attack to create a

random location within a given geo-fenced region so that it

seems normal geo-location to humans. This false information

is also broadcasted by the attacker vehicle at 10 Hz or 10 BSM

packets/s. A false identification (ID) for a vehicle instead of

its original ID is used for modeling an impersonation attack.

Two different GPS locations and speeds for a vehicle have

been used for this purpose in this study.

B. Data Generation for V2I Cyber-Attacks

In this subsection, data generation process for different type

of V2I cyber-attacks using microscopic traffic simulator is

presented. In order to generate the realistic roadway traffic

behavior, a microscopic simulation software, Simulation of

Urban Mobility (SUMO) is utilized [64]. To mimic real-world

vehicular movement in a connected vehicle environment, a

roadside equipment (RSE) is assumed to be placed at the Jervy

Gym location of Perimeter Road in Clemson, South Carolina

(SC), USA [65]. The length of the roadway network is 2.34
miles; the total number of intersections is five; and we have

considered unidirectional traffic flow. We have used a single

volume input, i.e., 200 vehicles per per hour per lane (see

Fig. 1).

In our study, we have used the Intelligent Driver Model

(IDM) as the car-following model for connected vehicles, such

that all the simulated vehicles mimic the driving behavior

of a human driver. Moreover, we assume that all vehicles

are wirelessly connected, and each vehicle broadcasts basic

safety messages (BSMs), which contain latitude- longitude,

timestamps, and speed [66].

In detail, the simulation network was a calibrated roadway

network used in one of our previous studies [67]. We used

a random number generator (RNG) function in SUMO to

generate different seed numbers and added stochasticity to

our simulation [68], [69]. We also used a speed attribute (i.e.,

speedFactor) in SUMO that allows the specification of the

parameters of a Normal distribution with optional cutoffs.

In this way, a random value was selected from the Normal
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distribution for each vehicle at the time of its generation

and considers heterogeneous mix of vehicle speeds in the

simulation. However, it is necessary to select a performance

metric (e.g., travel time and traffic volume) for calibrating

the simulated network so that it can represent a real-world

scenario. We selected travel time as a performance metric

for calibrating our simulation model in SUMO and used

the following equation to calculate the optimal number of

simulation-runs, NTT , with different seed numbers. It is a

trial-and-error approach. For example, after selecting a certain

number of seeds, we need to run the simulation and collect

average travel time, and it is necessary to calculate different

parameter values of Eq. (10) and determine the number of

simulation-runs. If the calculated number of simulation runs is

higher than the previously selected number of simulation-runs,

it is necessary to run the simulation again for the calculated

number of simulations, NTT , with different seed numbers.

After that, we need to collect the average travel time for each

seed and calculate the number of simulations runs again. One

needs to follow this procedure until the calculated NTT based

on the new simulation run is less than the required number of

simulation runs as estimated in the previous step.

SETT = zscore ×
σTT√
NTT

(10)

where, SETT is allowable error,which is a fraction of the

travel time, NTT is the number of simulation runs for the

travel time performance measure, zscore=z is statistic value

for a given confidence level of the Normally distributed perfor-

mance measure-i.e.,travel time, and σTT is estimated standard

deviation of the performance measure -i.e.,travel time.

Table I presents the parameters for identifying the required

number of simulation-runs within the 95% confidence interval.

Please note that we do not conduct any other sensitivity test

as the focus of our paper is evaluating the performance of

cyber-attack detection models.

TABLE I. Parameters for calibrating simulation model

Name of the Parameters Parameter value

Allowable error, SETT 5% of the average travel time
Z statistic value, zscore 1.96 (for 95% confidence interval)
Estimated standard deviation, σTT 3.66 (for the given seed numbers)
Seed number for the random number
generator (RNG) function in SUMO

100, 150, 200, 250, and 300

Each vehicle on this roadway are DSRC communication-

enabled and can broadcast a part of BSMs (e.g., time stamp,

car ID, latitude, longitude, and speed) every one-tenth of a

second to the RSE. RSE is a static node on the side of a road

with a defined communication range (i.e., 300 m), whereas

vehicles containing the OBE are moving nodes on a roadway

and having a defined communication range (i.e., 300 m). Due

to the limitations of the Simulation of Urban Mobility (SUMO)

traffic simulator, it is not possible to model roadside equipment

(RSE) in the simulator. Thus, we only generate vehicles’

movement using SUMO and collect the mobility information

of the vehicles using a trace file, which contains vehicle’s

location and speed at each timestep in a JSON format. Then,

using a python script, we specify the RSE location, and

filter out the location and speed of the vehicles from the

trace file using the location of each timestamp within the

dedicated short-range communication (DSRC) range ( 300m)

of the RSE. We separated data through this post-processing

step, and it means that we have assumed no communication

latency between connected vehicles and RSE. The simulation

is comprised of 200 vehicles per hour per lane on the Perimeter

Road, a four-lane arterial roadway (two lanes each direction)

with 56 kilometers per hour (kph) (or 35 miles per hour) speed

limit.

Using the generated trace file from the SUMO simula-

tion, three different cyber-attack scenarios are generated (see

Fig. 2a):

(i) After the initial authentication and key exchange, the

RSE and OBE of a vehicle agrees to communicate on

a single service channel or a fixed frequency. Then,

a vehicle can launch the DOS attack by flooding the

communication channel in order to cause the service to

be unavailable to other vehicles. Typically, an attacker

uses its maximum transmission capacity to flood the

network. In order to create a breakdown of V2I commu-

nication, attackers need to transmit more data than the

receiver’s (e.g., RSE) maximum receiving capacity. For

generating DOS attack data in our experiment, vehicle

number 6 (ID6) is flooding at 1000 Hz while other

vehicles are sharing data at 10 Hz in a CV environment

where each CV is broadcasted BSMs every one-tenth of

a second. The total simulation time is 200 seconds (s)

for generating the attack data.

(ii) False information attack: For fake (or false) information

attack, false GPS location information (i.e., longitude and

latitude) of vehicle number 2 (ID2) are generated using

random variable generation library from python. We have

crafted the attack in such a way that it generates random

location within a given geo-fenced region so that it seems

normal geo-location to humans. This false information is

also broadcasted by the attacker vehicle at 10 Hz or 10
packets/s. The total simulation time is 200 s for false

information attack.

(iii) Impersonation attack: To emulate the data for imper-

sonation attack, a false identification (ID) for vehicle

number 3 is used as vehicle number 2 (ID2). Two

different GPS location and speed information for the

vehicle ID 2 are simultaneously generated. In the trace

file, the vehicle ID of vehicle 3 was replaced by the

vehicle ID 2 to craft an impersonation attack, where we

assume that both of the vehicle 2 and vehicle 3 are in

the same region. Thus, two different GPS locations and

speeds are being broadcasted containing the same vehicle

ID simultaneously. Both of the vehicles are broadcasting

the data at 10 packets/s, and simulation was run for 200
s.

Examples of generated attack data are given in Table II.

Evident from the table, multilevel attack monitoring could be

designed by vehicle ID and timestamps as micro level tracing

(0.1 s) of such values. However, this approach considerably

slows detection capability within time interval of 0.1 s which

is critical for safety applications. Therefore, this study tracks
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(a) Description of attacks

(b) Attack detection approach in V2I connected vehicle environment

Fig. 2. Data generation steps and attack detection approach

aggregate measures such as average message frequency per

vehicle per second (MV S), average message frequency per

vehicle per time interval (MV T ), distances, and/or track

of vehicle speeds within time series framework and detects

changes. Detailed vehicle information are not tagged, however,

signature is present in the historical data can be traced back

for mitigation efforts.

C. Attack Detection Framework

Fig. 2b depicts the approach of attack detection using EM

and CUSUM. In order to implement change point detec-

tion methods, first step is to identify the processing time

window in which information need to track, and how to

convert such information in time series behavior to detect

shifts due to malicious attacks and/or benign system mal-

functions. Such changes result in switching system dynamics

and alter critical communications in ITS applications, such
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TABLE II. Examples of attack data generated on RSE

Type TS(s) ID Lat. Long. Speed(m/s) Pos.(m) MsgRate

DOS 5.10 1 -82.85 34.68 9.94 0.08 10.00
5.10 2 -82.85 34.68 8.22 0.52 10.00
5.10 3 -82.85 34.68 6.21 0.74 10.00
5.10 5 -82.84 34.68 2.32 0.14 10.00
5.10 6 -82.84 34.68 0.00 0.00 10.12
5.10 6 -82.84 34.68 0.00 0.00 10.23
5.10 6 -82.84 34.68 0.00 0.00 10.35

IMP 1.30 1 -82.85 34.68 2.65 0.00 1.00
1.30 2 -82.85 34.68 0.51 0.00 1.00
1.40 1 -82.85 34.68 2.87 0.00 1.00
1.40 2 -82.85 34.68 0.75 0.00 1.00
1.40 2 -82.85 34.68 1.00 0.00 2.00
1.50 1 -82.85 34.68 3.19 0.00 1.00
1.50 2 -82.85 34.68 1.24 0.00 1.00

FAL 2.00 1 -82.85 34.68 4.15 0.00 1.00
2.00 2 -82.85 34.68 2.26 0.00 1.00
2.00 3 -82.04 34.16 0.00 72.32 1.00
2.10 1 -82.85 34.68 4.31 0.00 1.00
2.10 2 -82.85 34.68 2.48 0.00 1.00
2.10 3 -82.81 34.30 0.26 71.20 1.00
2.20 1 -82.85 34.68 4.57 0.00 1.00
2.20 2 -82.85 34.68 2.62 0.00 1.00

as cooperative adaptive cruise control (CACC) and signal

control algorithms. In DOS or flooding attacks, vehicles are

expected to send more messages than the designed frequency

parameter (MVS). Therefore, tracking messages per vehicle

and estimating MVS can be used as indicator for cyber-attack

detection. For impersonation attack, multiple messages in unit

time interval (0.1 s) are sent and by monitoring MVT, this

type of attack is detected. Lastly, false information attack

can be defined as any type of irregularity in the collected

messages, such as high or low speed compared to rest of the

traffic (inherent) at a roadway segment or an unrealistic gap

between any two adjacent vehicles within a certain time frame.

CUSUM algorithms monitor deviation from process mean and

identify violations. On the other hand, EM calculates condi-

tional probabilities of P (DOSattack|MV S) > 0.001, where

P (impersonation|MV T ) and P (attackstate|distance) is

given. If the likelihoods at any time is > 0.001, then an attack

is detected.

D. Description of EM and CUSUM Parameters

Parameters for EM and CUSUMs are set as provided

in Table III. Initialization parameters of EM algorithm are

θ1, θ2, π, N = 10 random variates 7 normal 3 abnormal, and

10 iterations per time interval or new observation received.

For CUSUMs, design parameters as well as initial mean

and standard deviations are given in the Table III below.

Overall aim here is to give models normal and/or abnormal

observations. For instance, in case of DOS attack, 10 messages

per second per vehicle is expected with low or no variations,

thus, initial parameters are set to N (µ1 = 10, σ2 = 10−6) for

both methods. Moreover, from Table IV, very small normal

distance values are calculated from latitude and longitude val-

ues (i.e., µ1 = 0.05) and false information is calculated to be

considerably high so initialized from N (µ2 = 50, σ2
2 = 25).

E. Analysis and Results

In this section, the effectiveness of attack detection using

EM and CUSUM are discussed. Both methods are evaluated

using datasets as described in ’Data Generation for V2I Cyber-

Attacks’ subsection. Table IV provides an example of the gen-

erated data from the simulation, attack and detection results.

TABLE III. Selected model parameters for numerical experi-

ments

Type EM CUSUM aCUSUM

DOS θ1 = (10, 10−4), θ2 = (15, 5), π = 0.75) µ1 = 10.00 µ1 = 10.00

Y1:7 ∼ N (10, 10−6),Y8:10 ∼ N (15, 102) σ = 0.0001 σ =
√

5.10−3µ1

IMP θ1 = (1, 10−3), θ2 = (2, 0.5), π = 0.99) µ1 = 1.00 µ1 = 1.00

Y1:7 ∼ N (0.05, 10−2),Y8:10 ∼ N (15, 102) σ = 0.01 σ =
√

5.10−3µ1

FAL θ1 = (0.05, 10−2), θ2 = (50, 5), π = 0.99) µ1 = 0.05 µ1 = 1.00

Y1:7 ∼ N (1, 10−6),Y8:10 ∼ N (2, 0.52) σ = 0.1 σ =
√

5.10−3µ1

All N = 10 and iteration = 10 H = 5σ H = 5σ,K = δσ/2
K = δσ/2 δ = 1.00
δ = 1.00 α=0.025

Performances are given as true positive (attack, detected), true

negative (no attack, not detected), false positive (no attack, de-

tected) and false negative (attack, not detected) are denoted by

TP, TN, FP, and FN, respectively. For running the algorithms,

we used a PC with 8GB of memory, Pentium I5 Quad-Core

CPU. We observed from the table that abnormal behavior is

detected accurately by both methods. Since cyber attacks are

persistent and CUSUM is based on cumulative differences,

shifts are reflected after the detection with rest of observations.

Therefore, detection is continuous. This is also evident from

Fig. 4a-4f. For EM, as a classification algorithm, the detection

is based on conditional state probability calculations given the

observation and past updated parameters and EM is able to flag

normal and abnormal observations (also see Figs.3a-3c). De-

tection alarms are set P (attackstate|observation) > 0.001
and H = 5σ for EM and CUSUM respectively.

TABLE IV. Examples of attack data on RSE and detection by

EM and CUSUM

Type Freq. TS(s) ID Spd(m/s) Pos.(m) Msgs. P (D|Yt) EM (C+, C−) CUS

DOS 127 5.00 1 9.73 0.08 10.00 0.00 TN (0,0) TN
128 5.00 2 8.08 0.52 10.00 0.00 TN (0,0) TN
129 5.00 3 5.97 0.74 10.00 0.00 TN (0,0) TN
130 5.00 5 2.14 0.40 10.00 0.00 TN (0,0) TN
131 5.10 1 9.94 0.08 10.00 0.00 TN (0,0) TN
132 5.10 2 8.22 0.52 10.00 0.00 TN (0,0) TN
133 5.10 3 6.21 0.74 10.00 0.00 TN (0,0) TN
134 5.10 5 2.32 0.14 10.00 0.00 TN (0,0) TN
135 5.10 6 0.00 0.00 10.12 0.02 TP (0.12,0) TP
136 5.10 6 0.00 0.00 10.23 0.05 TP (0.12,0) TP
137 5.10 6 0.00 0.00 10.35 0.09 TP (0.29,0) TP

IMP 13 1.20 1 2.44 0.00 1.00 0.00 TN (0,0) TN
14 1.20 2 0.26 0.00 1.00 0.00 TN (0,0) TN
15 1.30 1 2.65 0.00 1.00 0.00 TN (0,0) TN
16 1.30 2 0.51 0.00 1.00 0.00 TN (0,0) TN
17 1.40 1 2.87 0.00 1.00 0.00 TN (0,0) TN
18 1.40 2 0.75 0.00 1.00 0.00 TN (0,0) TN
19 1.40 2 1.00 0.00 2.00 0.67 TP 0.99,0 TP
20 1.50 1 3.19 0.00 1.00 0.00 TN 0,0.99 FP
21 1.50 2 1.24 0.00 1.00 0.00 TN 0.99,0 FP

FAL 31 2.00 1 4.15 0.00 1.00 0.00 TN (0,0) TN
32 2.00 2 2.26 0.00 1.00 0.00 TN (0,0) TN
33 2.00 3 0.00 72.32 1.00 1.00 TP (72.2,0) TP
34 2.10 1 4.31 0.00 1.00 0.00 TN (0,72.3) FP
35 2.10 2 2.48 0.00 1.00 0.00 TN (72.2,0) FP
36 2.10 3 0.26 71.20 1.00 1.00 TP (34.9,0) TP
37 2.20 1 4.57 0.00 1.00 0.00 TN (0,11.7) FP
38 2.20 2 2.62 0.00 1.00 0.00 TN (5.8,0) FP
39 2.20 3 0.52 49.76 1.00 1.00 TP (48.2,0) TP
40 2.30 1 4.81 0.00 1.00 0.00 TN (0,9.7) FP
41 2.30 2 2.83 0.00 1.00 0.00 TN (3.2,0) FP
42 2.30 3 0.75 34.29 1.00 1.00 TP (33.6,0) TP
43 2.40 1 4.95 0.00 1.00 0.00 TN (0,4.9) FP

true positive (TP), true negative (TN), false positive (FP), false negative (FN)

In Table IV, position column is calculated in meters (m)

from two consecutive latitude and longitude values by using

the generic formula: Pos = 1242sin−1(
√
a) where a = 0.5−

cos((x2−x1)p)/2+cos(px1)cos(px2)(1−cos((y2−y1)p))/2
and p = π/180. As discussed above, MST and MSV measures

are deduced from time and ID columns for every time interval

of 0.1 s and time series are generated for statistical detection.

It should also be noted that for the DOS attack vehicle number

6 is not sending speed and location correctly. Attack detection

using the change of speed and distance would be trivial. At-
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(c) False information attack

Fig. 3. Attack detection by EM algorithm

tacker would also replicate reasonable values. So, detection is

carried out using message frequency in MSV. From the table,

EM’s P (attack|observation) is denoted as P (D|Yt) > 0.001
resulting as detection, otherwise no detection. Similarly, for

CUSUM (C+, C−) values are given. Based on these values,

when (C+∨C−) > 5σ a detection is observed, otherwise ND

is issued. Persistent attacks are easily detected by CUSUM

and EM. CUSUM continues to detect normal observations

as attacks as an out-of-control process and generates false

positive errors. This can be fixed in CUSUM with a slight

revision in C− values mimicking one-sided control. However,

in this study, the performance of a typical CUSUM has been

investigated without any modifications. EM’s performance on

false positive errors is promising. Detailed detection perfor-

mance metrics are presented in Fig. 5.

Figs. 3a-3c depict performance of EM algorithm for de-

tecting different attacks. From the figures, we observe that in

DOS attacks we are monitoring the average message received

frequency per vehicle. As soon as we see an increase in

the average message frequency EM is able to detect via an

increase in the likelihood of this observation coming from

the abnormal distribution. A threshold of 0.001 is enough to

monitor DOS attack with EM. For impersonation and false

information attacks, we are monitoring vehicles’ information.

In impersonation attack detection, we are looking at the vehicle

ID per message, we can see that as soon as we see 2 vehicle

ID from impersonating vehicle, EM likelihood completely

switches as the difference between 1 and 2 is very different

considering the long series of observations. Similarly, false

location information sent is different resulting 0-1 switches as

soon as we see an attacker vehicle’s location information.

Technically, Fig. 3a shows the likelihood of an attack given

135th observation that is also given in msg column in Table IV

as 10.12 > 10.00, i.e., P (attack|Y135 = 10.12) = 0.02 >
0.0001 (see EM column) a very low practical threshold.

P (attack|Yt) increases as frequency values gets larger. For

other type of attacks, the changes in observations are not grad-

ual rather sudden which leads to P (attack|Y19 = 2) = 0.67
and P (attack|Y33 = 72.32) = 1.00 in impersonation and

false information attacks, respectively. However, this statistical

inference via EM comes with a computational cost. Especially

for DOS attack where change is gradual and more messages
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(c) Impersonation CUSUM
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(e) False Information CUSUM
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(f) False Information aCUSUM

Fig. 4. Attack detection by CUSUM algorithms

sent per vehicle, therefore, more data points to be processed

per time step ends up with higher computational time. In

Table V, Attack column for EM and CUSUM shows computa-

tional times of 50, 200, and 4761 to process all the data points.
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Thus, the feasibility of using EM for DOS attack detection

using messages per vehicle per time 1 s would be second-by-

second monitoring. Similarly, false information attack would

also require about a second (0.53 s). Only, impersonation

attack seems feasible to detect within 0.1 s. These results are

consistent with the approximate computational complexity of

EM being O(nkj) where n is sample size or time step and

k = 2 is the number of mixtures, and j=10 denotes the number

of iterations. Similarly, it is linear for CUSUM O(nm) with

m being number of elementary operations within each n time

interval.

Furthermore, we observe from the Table V that EM is

impacted more in terms of computation time to process

increased observations 4761 instead of 50. For CUSUM,

the computational time reaches near 1 second for denial of

service (DOS) and about 0.1 second for false information

attack (FAL). So, we conclude that we may not be able to

process data from approximately 4000 vehicles within 0.1
second. Note that the computations were run on a computer

having Intel i5 processor with 8GB memory. Certainly, higher

computational power can easily facilitate the use of CUSUMs

in real-time for the three attack types considered in this study.

Regardless, further study is necessary to investigate how the

change point models will capture those effects and how it will

satisfy the requirements of real-time CV applications.

TABLE V. Computational times in seconds experienced for

EM and CUSUMs

Attack Type EM CUSUM aCUSUM

\n 50 200 4761 50 200 4761 50 200 4761

DOS 2.19 2.24 44.58 0.43 0.46 0.65 0.77 0.77 1.02
IMP 0.02 0.02 0.02 0.01 0.01 0.02 0.01 0 0.01
FAL 0.53 6.15 44.91 0.03 0.06 0.19 0.14 0.14 0.28

Fig. 4 presents detection results of the CUSUM and

aCUSUM algorithms for first 200 data points with 0.1 s

intervals. Shorter intervals are shown in order to provide

legibility. In Figs. 4a-4b, a shift occurs at 135th observation

for DOS attack. CUSUMs advantage over EM is that it can be

implemented for short time intervals due to less computational

times. The duration for detecting DOS attack using EM is

higher than 0.1 s interval. However, impersonation and false

information attacks can be detected within 0.1 s (see Figs. 4c-

4f). Given sufficient time window, EM algorithm would be

able to adapt to detect different attack types with new set

of normal data set is fed. It has less parameters to be tuned

compared to CUSUMs and prone less to false positive alarms.

In their simple forms, they are vulnerable to high false positive

when adaptive thresholds are used. CUSUMs are very sensitive

to real-time estimation or update of µ1, µ2, σ values. In another

appropriate midterm application, an hybrid method can be

developed to estimate these parameters with EM and input

to CUSUMs. Because of space limitations, these experiments

are left for another study.

In Fig. 5, we compared detection performances of the

models. Metrics adopted from [18] are given as true positive

(TP), true negative (TN), false positive (FP) and false negative

(FN) are inserted in accuracy=(TP + TN)/(TP + TN +
FP + FN), precision=TP/(TP + FP ), sensitivity or

detection=TP/(TP+FN) [18]. EM only contains about 2%

FN for false information and 1% FN for DOS attacks where

CUSUM gives 11.8% FP for false information and 2.2% for

impersonation attack. For false information attack, EM gives

only 83% sensitivity measure and CUSUM is low 87% in

precision. After carefully tuning, aCUSUM outperforms both

EM and typical CUSUM with no FP and FN for all attack

types.

In sum, the initialization of algorithms was done after

detailed experimentation and the three most common attack

types were selected for demonstrating the capability of the

EM and CUSUM models. DOS attack and impersonation

cases are relatively easier as frequency levels are known. But,

for a false information attack, it is needed to identify the

normal behavior. For basic CUSUM, high FPs are observed

and adaptive algorithm showed improved results. For EM,

performance is highly correlated to the definition of normal

distribution or behavior. Note that, critical point in both of the

algorithms is the mean level of normal behavior. For any attack

type after identifying what measure to monitor and include the

normal mean level, algorithms can handle additional attack

types. CUSUMs were not trained actually; however, we have

estimated CUSUM parameters using the given dataset. EM

was also run online with a given normal distribution. If these

are carefully input, both algorithms are adaptive and can be

used to monitor continuously.

F. Impact of Noise in the Data

In order to evaluate the efficacy of the detection models on

attack data with noise, we considered the false information

attack. According to the white paper on dedicated short range

communication [70], the GPS error with 95% confidence is

0.90731 m in an open sky environment. We generated a noisy

false attack data transforming values Yt assuming 0.0 m mean

normal errors ǫt with a standard deviation of 0.463 m (ob-

tained from 95% confidence interval since 1σ=0.9073/1.959)

as |Yt + ǫt|. Specifically, we introduced this error or noise

(N (0.0, 0.4632)) to the gap (distance) between each subject

vehicle and its immediate front vehicle.

Initial parameters of the detection models are used identical

as before (shown in Table III). Table VI is given to demonstrate

the impact on detection performances. EM algorithm estimates

the mean and variance level of the underlying process real-

time, thus, expectedly it is not impacted by noise added in dis-

tance (gap) values. For CUSUMs, false positives increase with

the noise in observations. Adaptive CUSUM’s false positives

only slightly increase (54) with noise. Note that, we introduce

a significant level of noise in the data, which are approximately

half of the initial mean for CUSUMs (i.e., 0.463/1.00 ≈ 50%
coefficient of variation (CoV)). If the noises in the data are

low, CUSUMs also would not be impacted. As an example,

if we introduce σ=0.0463 (5% CoV), detection of aCUSUM

does not produce any false positives and CUSUM produces 49
false positives, which is the same without the noisy dataset.

V. CONCLUSIONS

In this study, we investigated the efficacy of two main

statistical change point models, EM and CUSUM, for real-

time V2I cyber attack detection in a CV Environment. To
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could increase computational power and running algorithms

in parallel, which is beyond the scope of this paper. However,

CUSUM is a sequential testing algorithm, which would be

much faster, and it is not required iterations for convergence.

One of the limitations of this study is that the model

parameters are limited to only three types of cyberattacks

presented in this paper (i.e., denial of service, false information

and impersonation attacks). To scale our models for detecting

other attacks, it is necessary to determine appropriate sets of

model parameters in future studies. Moreover, the effectiveness

of the models on the adversarial attacks was also not evaluated.

Each vehicle on this roadway was assumed to be DSRC

communication enabled and assumed to broadcast basic safety

messages. Due to limitation of Simulation of Urban Mobility

(SUMO) traffic simulator, it is not possible to model roadside

equipment (RSE) or communication in the simulator. Thus,

these were only assumed. We also assumed no communication

latency and assumed perfect communication (i.e., no data

loss and communication delay) among connected vehicles and

RSE. Furthermore, we considered a road network with low

traffic volume in our experiments. Thus, for a higher volume

road network, further study is needed to evaluate whether

the change-point models could handle BSMs from a much

higher number of CVs in a congested road network. In sum,

possible improvements to this research and future directions

can be followings: (1) further research is needed to investigate

factors affecting the optimal selection of such parameters with

multiple data sets; (2) hybrid methods can be formulated

for detection both fast and less sensitive to initialization,

(3) Detecting benign abnormalities and sensor failure with

additional filters, and (4) as data generation processes expected

to be correlated, algorithms within state-space time series

models can be utilized, and the effectiveness of the proposed

methods against the adversarial attack can be evaluated.

ACKNOWLEDGMENTS

Authors would like to thank the Editors and Reviewers

for their insightful comments which significantly improved

the manuscript. This study is supported by the Center for

Connected Multimodal Mobility (C2M2) (USDOT Tier 1

University Transportation Center) headquartered at Clemson

University, Clemson, SC. Any opinions, findings, and con-

clusions or recommendations expressed in this material are

those of the authors and do not necessarily reflect the views of

C2M2 and the official policy or position of the USDOT/OST-

R, or any State or other entity, and the U.S. Government

assumes no liability for the contents or use thereof. It is

also partially supported by U.S. Department of Homeland

Security SRT Follow-On grant and NSF Grant Nos. 1719501

and 1954532.

REFERENCES

[1] U. DOT, “Beyond traffic 2045: Trends and choices,” US: DOT, 2015.
[2] N. H. T. S. Administration et al., “National motor vehicle crash

causation survey: Report to congress,” National Highway Traffic Safety

Administration Technical Report DOT HS, vol. 811, p. 059, 2008.
[3] U. I. J. Office, “What are connected vehicles and why do we need them,”

http : //www.its.dot.gov/cvbasics/cvbasicswhat, 2016, accessed:
2016-11-16.

[4] F. A. V. Policy, “Accelerating the next revolution in roadway safety,
nhtsa, us dept,” Transportation, 2016.

[5] L. Kaiser, “Transportation Industrial Control System (ICS) Cybersecu-
rity Standards Strategy 2013-2023,” National Highway Traffic Safety
Administration, Technical Report, 2013.

[6] NHTSA, “ Cybersecurity best practices for modern vehicles,” National
Highway Traffic Safety Administration, USDOT, Technical Report Re-
port No. DOT HS 812 333, 2016.

[7] M. Burt, M. Cuddy, M. Razo et al., “Big data’s implications for trans-
portation operations: an exploration.” U.S. Department of Transportation,
Tech. Rep., 2014.

[8] CVRIA, “Connected vehicle reference implementation architecture,”
http : //local.iteris.com/cvria, 2015, accessed: 2017-06-26.

[9] M. Whaiduzzaman, M. Sookhak, A. Gani, and R. Buyya, “A survey
on vehicular cloud computing,” Journal of Network and Computer

Applications, vol. 40, pp. 325–344, 2014.
[10] M. Raya and J.-P. Hubaux, “Securing vehicular ad hoc networks,”

Journal of computer security, vol. 15, no. 1, pp. 39–68, 2007.
[11] U. S. G. A. Office, “Vehicle cyber security: Dot and industry have

efforts under way, but dot needs to define its role in responding to a
real-world attack,” http : //www.gao.gov/assets/680/676064.pdf ,
2018, accessed: 2018-07-31.

[12] D. A. Hahn, A. Munir, and V. Behzadan, “Security and privacy issues in
intelligent transportation systems: Classification and challenges,” IEEE

Intell. Transp. Syst, 2019.
[13] S. Ghane, A. Jolfaei, L. Kulik, K. Ramamohanarao, and D. Puthal, “Pre-

serving privacy in the internet of connected vehicles,” IEEE Transactions

on Intelligent Transportation Systems, 2020.
[14] D. M. Nicol, “Modeling and simulation in security evaluation,” IEEE

security & privacy, vol. 3, no. 5, pp. 71–74, 2005.
[15] A. Pathre, C. Agrawal, and A. Jain, “A novel defense scheme against

ddos attack in vanet,” in Wireless and Optical Communications Networks

(WOCN), 2013 Tenth International Conference on. IEEE, 2013, pp.
1–5.

[16] M. N. Mejri, J. Ben-Othman, and M. Hamdi, “Survey on vanet security
challenges and possible cryptographic solutions,” Vehicular Communi-

cations, vol. 1, no. 2, pp. 53–66, 2014.
[17] J. Petit and S. E. Shladover, “Potential cyberattacks on automated

vehicles,” IEEE Transactions on Intelligent Transportation Systems,
vol. 16, no. 2, pp. 546–556, 2015.

[18] A. L. Buczak and E. Guven, “A survey of data mining and machine
learning methods for cyber security intrusion detection,” IEEE Commu-

nications Surveys & Tutorials, vol. 18, no. 2, pp. 1153–1176, 2016.
[19] A. Patcha and J.-M. Park, “An overview of anomaly detection tech-

niques: Existing solutions and latest technological trends,” Computer

networks, vol. 51, no. 12, pp. 3448–3470, 2007.
[20] H. Sedjelmaci, S. M. Senouci, and M. A. Abu-Rgheff, “An efficient and

lightweight intrusion detection mechanism for service-oriented vehicular
networks,” IEEE Internet of things journal, vol. 1, no. 6, pp. 570–577,
2014.

[21] F. van Wyk, Y. Wang, A. Khojandi, and N. Masoud, “Real-time sensor
anomaly detection and identification in automated vehicles,” IEEE

Transactions on Intelligent Transportation Systems, 2019.
[22] R. W. van der Heijden, S. Dietzel, T. Leinmüller, and F. Kargl, “Sur-

vey on misbehavior detection in cooperative intelligent transportation
systems,” arXiv preprint arXiv:1610.06810, 2016.

[23] G. Carl, G. Kesidis, R. R. Brooks, and S. Rai, “Denial-of-service attack-
detection techniques,” IEEE Internet computing, vol. 10, no. 1, pp. 82–
89, 2006.

[24] A. A. Cárdenas, S. Amin, Z.-S. Lin, Y.-L. Huang, C.-Y. Huang, and
S. Sastry, “Attacks against process control systems: risk assessment,
detection, and response,” in Proceedings of the 6th ACM symposium

on information, computer and communications security. ACM, 2011,
pp. 355–366.

[25] Z. Zhan, M. Xu, and S. Xu, “Characterizing honeypot-captured cyber
attacks: Statistical framework and case study,” IEEE Transactions on

Information Forensics and Security, vol. 8, no. 11, pp. 1775–1789, 2013.
[26] R. Mitchell and R. Chen, “Effect of intrusion detection and response on

reliability of cyber physical systems,” IEEE Transactions on Reliability,
vol. 62, no. 1, pp. 199–210, 2013.

[27] S. Sridhar and M. Govindarasu, “Model-based attack detection and
mitigation for automatic generation control,” IEEE Transactions on

Smart Grid, vol. 5, no. 2, pp. 580–591, 2014.
[28] R. Mitchell and I.-R. Chen, “A survey of intrusion detection techniques

for cyber-physical systems,” ACM Computing Surveys (CSUR), vol. 46,
no. 4, p. 55, 2014.

[29] W. Li and H. Song, “Art: An attack-resistant trust management scheme
for securing vehicular ad hoc networks,” IEEE Transactions on Intelli-

gent Transportation Systems, vol. 17, no. 4, pp. 960–969, 2015.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 14

[30] W. Min, M. Fan, X. Guo, and Q. Han, “A new approach to track multiple
vehicles with the combination of robust detection and two classifiers,”
IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 1,
pp. 174–186, 2017.

[31] J. Liang, Q. Lin, J. Chen, and Y. Zhu, “A filter model based on hidden
generalized mixture transition distribution model for intrusion detection
system in vehicle ad hoc networks,” IEEE Transactions on Intelligent

Transportation Systems, 2019.

[32] V. Sucasas, G. Mantas, F. B. Saghezchi, A. Radwan, and J. Rodriguez,
“An autonomous privacy-preserving authentication scheme for intelli-
gent transportation systems,” Computers & Security, vol. 60, pp. 193–
205, 2016.

[33] E. S. Page, “Continuous inspection schemes,” Biometrika, vol. 41, pp.
100–115, 1954.

[34] A. G. Tartakovsky, B. L. Rozovskii, R. B. Blažek, and H. Kim,
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