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Change Point Models for Real-time Cyber Attack Detection in
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Connected vehicle (CV) systems are cognizant of potential cyber attacks because of increasing connectivity between its different
components such as vehicles, roadside infrastructure, and traffic management centers. However, it is a challenge to detect security
threats in real-time (i.e., less than 0.1 second) and develop appropriate or effective countermeasures for a CV system because of the
dynamic behavior of such attacks, high computational power requirement, and a historical data requirement for training detection
models. To address these challenges, statistical models, especially change point models, have potentials for real-time anomaly detection.
Thus, the objective of this study is to investigate the efficacy of two change point models, Expectation Maximization (EM) and two
forms of Cumulative Summation (CUSUM) algorithms (i.e., typical and adaptive), for real-time vehicle-to-infrastructure (V2I) cyber
attack detection in a CV Environment. To prove the efficacy of these models, we evaluated these two models for three different
type of cyber attack, denial of service (DOS), impersonation, and false information, using basic safety messages (BSMs) generated
from CVs through simulation. Results from numerical analysis revealed that EM, CUSUM, and adaptive CUSUM (aCUSUM) could

detect these cyberattacks, such as DOS, impersonation, and false information with low false positives.

Index Terms—Cyber Attack Detection, Connected Vehicles, Expectation Maximization, CUSUM, Roadside Equipment.

I. INTRODUCTION

He driving force behind the US economic engine is the

surface transportation system, which enables reliable and
efficient transportation of passengers and goods [1]. However,
human errors (e.g., poor judgment, fatigue) are the leading
causes of more than 94% of US highway fatalities [2]. To
reduce these fatalities and associated societal costs by reducing
or eliminating the influence of the human errors, the US
Department of Transportation (USDOT) has been promoting
connected and automated vehicles (CAV) [3], [4]. From recent
reports of National Highway Traffic Safety Administration
[5], [6], several benefits are foreseen with this CAV technolo-
gies, such as up to 80% reduction in fatalities from multi-
vehicle crashes and preventing the majority of human error
related incidents. In such CAV systems, massive amounts
of data will be produced and exchanged between different
components through different data communication medium,
such Dedicated Short Range Communication (DSRC), WiFi,
5G and Long Term Evolution (LTE) [7], [8]. These data can
be processed in a cloud, or in an edge computing device at
the roadside (i.e., roadside transportation infrastructure) based
on different CAV application requirements [8], [9]. Commu-
nication technologies supporting data exchange must also be
secured to support CAV operations with specific requirements
(e.g., delay, bandwidth and communication range). With the
increase of connectivity in transportation networks, this CAV
systems is cognizant of potential cyber attacks [10], [11]. In
one of the recent review papers, Hahn et al. discussed current
challenges as scalability when large data is available and delay
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sensitivity [12]. In addition, privacy preserved framework was
introduced by perturbation and compression in [13].

As cybersecurity attacks are dynamic, it is a challenge to
detect security threats in real-time and develop appropriate or
effective countermeasures for connected transportation system
[14]. To increase security and resiliency due to possible
attacks or benign system errors by different events, research is
needed to investigate detection techniques for different attack
types, such as denial of service (DOS), impersonation, false
information [15], [16]. Anomaly detection techniques are well-
studied in different areas. Specifically, the cybersecurity of
firmware updates, cybersecurity on heavy vehicles, vehicle-to-
vehicle (V2V) communication interfaces, and trusted vehicle-
to-everything (V2X) communications [17].

Different type of anomaly detection models exist in liter-
ature, such as rule-based, machine learning (ML) and data
mining (DM) (including expert systems)-based, and statistical
inference-based models. These can be listed as K-means,
random forest, Bayesian networks, Gaussian processes, de-
cision trees, neural networks, support vector machines, and
hypothesis testing and point estimation based process con-
trol models respectively. Recent survey studies related to
anomaly detection are summarized a comprehensive review
of machine learning and rule (signature)-based methods, and
their applications to intrusion detection systems (IDS) [18],
[19]. Rule-based attack detection models, originated from
cryptography, are abundant especially for their efficiency
and computationally light-weight [20]. However, rule-based
models require a detailed understanding of the data genera-
tion process and adaptivity or customization based on their
respective environment to develop the model. On the other
hand, both ML and DM-based attack detection models are
adaptable to different attack types both known and unknown
patterns [21]. However, major concerns are computational
complexity for real-time application, training the model with
different cyber attack scenarios, unavailability of cyberattack
data in the transportation domain, and determination of update
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or retraining window. To address these problems, statistical
models, specially the change point models, are applicable
because of the following advantages: (1) do not require fitting
or training; (2) adaptive to different attack data (do not
use rules); (3) perform with low data sample sizes; and (4)
computationally efficient for real-time applications. Thus, the
objective of this study is to investigate the efficacy of two
change point models, Expectation Maximization (EM) and
Cumulative Sum (CUSUM), for real-time V2I cyberattack de-
tection in a connected vehicle (CV) Environment. To prove the
efficacy of these models, we implemented three different type
of cyber attacks (i.e., denial of service (DOS), impersonation,
and false information) [22], using BSMs generated from CVs
through simulation. Expectation Maximization’s (EM) utiliza-
tion for anomaly detection and adaptive CUSUM (aCUSUM)
approach, algorithms’ computational capability for under 0.1
second (s) intervals, and their comparison under connected
vehicle framework are unique to this study. Connected and
autonomous vehicles present different challenges, as datasets
are not available, the attacks on calibrated microsimulation
networks are utilized in our study.

A connected vehicle broadcasts basic safety messages
(BSMs) at a frequency of 10 hertz (H 2) to its nearby vehicles.
A BSM contains several message elements, such as loca-
tion, speed, heading direction, and vehicle unique identifier.
Among these elements, most important message elements are
location, speed, and vehicle identifier, as these elements are
related to the safety critical operation of a connected vehicle
application. Based on the message elements or feature set
we have chosen three types of attacks: (i) denial of service
(flooding the network with unnecessary messages) (ii) im-
personation (impersonating the vehicle unique identifier), and
(iii) false information (broadcasting false speed and location
information). Furthermore, getting a BSM within the required
maximum allowable latency (0.1 s or 100 milliseconds ms)
is also critical for the timely safety operation of the connected
vehicles. Each vehicle on the roadway considered in this study
was assumed to have a DSRC technology-enabled wireless
communication radio. It was also assumed that a DSRC-
enabled radio in a connected vehicle has the capability to
broadcast BSMs, which can be received by roadside equipment
(RSE) if a vehicle is within the DSRC coverage area of an
RSE. Due to the limitation of Simulation of Urban Mobility
(SUMO) traffic simulator, it is not possible to model RSE in
SUMO. Therefore, we assumed that the data generated from
each connected vehicle (i.e., BSMs) were received by the RSE
within a vehicle’s DSRC communication range. Note that we
also assumed no communication latency and assumed perfect
communication (i.e., no data loss and communication delay)
among connected vehicles and the associated RSE.

The paper is organized as follows. Section II presents the
previous research and the literature on the anomaly detection
models. Section III describes EM and CUSUM algorithms
for V2I cyber-attack detection. Section IV presents the data
generation process and evaluation of EM and CUSUM models
through numerical analysis and results. Finally, section V
summarizes findings and possible future research directions.

II. RELATED WORK

In this section, we describe past research on statistical
models for anomaly detection and cyber attacks in a vehicle-
to-infrastructure (V2I) environment.

A. Statistical Models for Cyber Attack Detection

Statistical and inference based models in cyber attack or in
general detection problem provide adaptability and transfer-
ability to different settings and attack types with low compu-
tational costs [18], [23]. In a very basic approach, detection on
process controls using quality control models based on change
point algorithms such as CUSUM, and exponentially weighted
moving average are utilized [24] intrusion monitoring. For
detail characteristics of attack models using honeypot-captured
cyber attacks are modeled with several time series models [25].
Reliability models are also studied for vulnerabilities based on
good and bad states simply via nodes’ deviations [26]. They
consider persistent, random, and insidious attacks of sensor-
actuator nodes with simple sensing, actuating, and networking
models. Moreover, model-based attacks usually for power
grids are investigated by researchers [27]. Attack (intrusion)
models for different control systems and proper modeling for
moving systems as in vehicular or mobile ad hoc network
(VANET/MANET) cases are well reviewed in [28]-[31] where
reputation management in vehicular networks are suggested.
Possible revoking or blacklisting the information contributors
are also recognized in similar survey study specifically on
cooperative intelligent transportation systems [22]. Privacy of
the drivers and safety critical applications are also started to
be investigated by the researchers ([32]).

First proposed by Page [33], CUSUM is a classical statisti-
cal quality and process control method for industrial applica-
tions, which is then utilized by many fields such as computer
network security particularly for DOS or flooding attacks [34],
sensor networks, signals and control systems, pipeline break
detection to neuronal spike detection [35], [36]. However, it
is also heavily employed in intrusion or anomaly detection
for cyber attacks [23] for its high true positive rate and low
computational cost. In connected vehicles, a recent patented
implementation utilizes CUSUM on for vehicle intrusion
detection on electronic control units [37]. Without accuracy
reporting, CUSUM was used for DOS attack detection in
[38]. On the other hand, EM is used for anomaly detection as
its classical meaning of parameter estimation in an analytical
attack modeling on power systems [39]. In this study, both
EM and CUSUM are selected as detection algorithms for their
online applicability (linear in computational complexity) also
observed in [18]. Both algorithms are adopted to the anomaly
detection problem as sequential implementation, compared,
and detailed attack data are simulated which are novel in the
intrusion detection literature. Both methods contain only low
level parameters such as initial underlying distributions param-
eters (e.g., Normal in this paper) as well as design parameters
for CUSUM. Detailed recalibration or update intervals for such
parameters are not investigated in this study.

In the literature, there are extensive applications of deep
learning (DL) and versions of decision tree (DT) algorithms.
In one of the recent studies [40], an intrusion detection system
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(IDS) was introduced using deep belief networks along with
other classification and clustering algorithms reporting more
than 99% detection rate with about 1% false positives and
1.5% false negatives. However, using simulated data, after
40 nodes, the proposed algorithms are causing an average
delay of more than 0.1 s [40]. In [41], tree-based machine
learning methods were used for IDS for detecting various
attacks. Versions of decision tree algorithms were found to
be more accurate providing more than 99% accuracy where
ensemble methods showed 100% accuracy. Although the study
showed low computational costs, it is hard to judge if real time
implementation would be possible from cumulative run times
of some reaching to an hour [41]. Moreover, machine learning
algorithms were implemented for malware detection. Authors
in [42] developed an improved feature selection algorithm
resulting in 93% detection accuracy with less than 0.1 s
execution time [42]. IDS on vehicle platoons was used for
detecting spoofing and jamming attacks with random forests
and k-nearest neighbors (KNN), in which authors reported
about 90% detection accuracy [43]. In a real vehicle controller,
Tariq et al. [44] modeled IDS for detecting DOS, replay,
and other types of attacks through long-short term memory,
and they reported 100% accuracy and less than 0.1 s time
delay running onboard units of a vehicle. In the physics-based
model, Wang et al. used a version of Kalman filtering and
DTs to detect anomalies with over 90% accuracy [45]. False
location information was aimed to be detected using deep
learning. Although accurately detected with deep learning,
false positives were also reported [46]. Anomaly detection
using machine learning was also used in [47], where versions
of random forest and support vector machines (SVM) reported
providing over 90% accuracy with up to 4% false negatives
[47]. Versions of DTs for stealthy attack detection on smart
grids. Authors report over 97% detection accuracy with 1
minute model training time [48]. A good comparison of
machine learning methods for attack detection on mobile
networks. Authors reported at least 91% detection accuracy
with DL where they were able to achieve similar values
with logistic regression as well as SVM and decision trees
[49]. Using a restricted Boltzmann machine, the study in [50]
presented an anomaly detection algorithm with 99% accuracy
alone with false negatives from their algorithm. Although clear
accuracy metrics were not provided, a reinforcement learning
exploration-exploitation algorithm of multi-armed bandit was
used to detect an injection attack [51]. In another study,
authors utilized KNN and SVM for intrusion detection for
vehicle systems where the reported accuracy is above 96%
accuracy [52]. The study in [53] listed one of the gaps of
recent taxonomy of connected vehicle security as considering
both in-vehicle and vehicular network security together. In our
study, detection algorithms can be applied from both angles.
Vehicles’ false information, impersonation, and DOS attack to
or from a vehicle can be detected.

In sum, researchers mainly explored logically evolving DL
and versions of DTs as detection methods. These methods are
able to include features and have more rule-based (rather flex-
ible thresholds) detection for different attack types. However,
as machine learning methods, all of these methods require

training. In this paper, we used both approaches and used EM
online with a low number of iterations (e.g., 10) and samples
(e.g., 10) in order to detect abnormal and normal behaviors.

B. V2I Cyber-attacks in a CV Environment

In the cyber-physical systems (CPS) security literature,
recent studies [17], [28], [54]-[57], list possible cyber-attacks
and discuss their detection and mitigation techniques. In these
studies, abstract cyber-physical models for smart cars are
also presented. Possible attacks are criminal, privacy, tracking,
profiling, political threats with different structures replay, com-
mand (message) injection, false information, impersonation,
eavesdropping, and denial of service [56]. For this study, we
consider denial of service (DOS), impersonation, and false
information attack to evaluate efficacy for EM and CUSUM
models. DOS attack in the literature defined as disordering,
delaying, or periodically dropping packets to decrease network
performance. It consists of flooding (similar to jamming-
occupying channel by outsiders) and exhausting the network
resources such as bandwidth and computational power. In this
study, it is dramatically increasing number of messages so
that the roadside equipment (RSE or roadside unit (RSU))
or onboard equipment (OBE or onboard unit (OBU)) are not
able to process and overall communication delays increase or
become not available. Impersonation (node impersonation or
identity theft) attack can be defined as a vehicle can pretend
as if it has more than one identity unable to distinguish one or
more vehicles by aiming to shape the network, manipulating
other vehicle behaviors, incorrect position information etc.,
hard to detect-network/vehicle ID credentials management.
False information attack: aims to manipulate other vehicles
with selfish/malicious intent can highly impact and high de-
tection likelihood [58]. Previous research on the vehicular
communications discuss possible attacks and their mitigation
methods [17], [22]. ITS applications require protocols that
conflicts with anonymity and privacy requirements and report
on quantifying such risks and traffic control under either lost
communications based on correct or faulty communication
errors. In sum, studies on quick detection of such cases and
possible redundant data resources for cost effective control are
needed for resiliency on transportation networks.

III. CHANGE POINT MODELS

In this study, we investigate statistical change point models,
Expectation Maximization (EM) and Cumulative Summation
(CUSUM), to detect cyber attacks in a V2I environment. We
describe these models in the following sub-sections.

A. Expectation Maximization Algorithm

The Expectation Maximization (EM) algorithm is often used
to estimate the parameters of mixture models or models with
latent variables [59], [60]. In this research, EM algorithm
is utilized for detecting cyber attacks via changes in the
process mean. Given N sample points from a mixture of two
Normal distributions as in Eq. (1), the EM algorithm can be
applied to determine the parameters of these two distributions
0=[0; = (p1,01), 02 = (u2,02), w] of normal and attack
states, respectively. The first step of the EM algorithm specifies
initial values for the parameters. In the expectation step, the
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algorithm computes the responsibilities ; (i.e., the probability
of an observation belonging to Y5, i.e., attack state) for
each data point. Using the calculated responsibilities, it then
computes the five parameters in the maximization step. The
iterations continue until the likelihood function convergences.
The convergence of a basic EM algorithm is slow. Simple
equations pertaining to the EM are given below. First, the
probability density of Y is written as a mixture:

Y =(1-A)Y; +AY, (1)

where Y1 ~ N(u1,0%), Yo ~ N(uz,03), and A € 0,1
with abnormal data proportion of P(A = 1) = 7.

gy (y) = (1 — 7)o, (y) + 7, (v) )

where ¢g(z) denotes normal density. For a data set of N
points the loglikelihood function can be written as follows:

N
10,2) = In[(1 = 7)o, (i) + 7o, ()] 3)
i=1

where = [0; = (u1,01), 2 = (u2,02), and 7] and Z
represent the data points. Analytical maximization of Eq. (3)
is difficult, however, if the observation is known to belong to
Y5 (i.e., with latent variable A; = 1, otherwise A; = 0), the
loglikelihood can be written as in Eq. (5) and A; = 1s can be

estimated by Eq. (5).

N
M&AZ%:Z]@fAmmufwmﬁwﬂ+ 4)
) Addnlréa, (y:)]]
vi(0) = E(A; | 6,2) = P(A; =110, 2) (5)

In sum, given N data points that are assumed to be generated
by mixture of two Normal distributions (i.e., normal and
abnormal messages per vehicle per second (MVS), messages
per vehicle (MVT), and distance), the EM algorithm is applied
to determine the distribution parameters and responsibilities.
Number of mixtures could be varied for various levels of
attacks and impacts. N data points constitute the main input
to the algorithm. To see the impact of sample size, prediction
performances of EM algorithm with various N values can be
checked. The EM algorithm provides the real-time estimation
of the process parameters at each time point as well as
conditional probabilities of a data point comes from a certain
attack or no attack condition which is subsequently used for
detection.

B. CUSUM Algorithm

The CUSUM chart or algorithm is commonly used for
quality control purposes to detect possible shifts in the mean
level of a process. In cyber attack setting, changes within ex-
pected level of deduced measures (MVS, MVT, and distance)
are targeted. This paper uses tabular version or algorithmic
version of the CUSUM rather than control chart. Assume that
X; ~ identical independently distributed (i.i.d) with known
(u1,0?) where a new process mean is observed p after a
possible change. Based on statistical hypothesis testing, the
log-likelihood ratio is written s(¢)=In(p,, (X;)/pu, (X;)) for

Sy = Zle s; for sample size of n, the decision rule d is
given by

de {O , Cy < H; Hy no change ©)

1, Cy > H; H; change

where C; = S; —my and my = [S;];<,, [61], [62].

1) Typical Form o

Basic applications of this algorithm assume that the ob-
servations collected before and after the change in the mean
level are i.i.d. To detect both positive and negative shifts, the
two-sided version of the CUSUM algorithm was used. The
algorithm works by accumulating positive and negative devi-
ations from a certain target mean, which is commonly taken
to be zero. The positive deviations (values above the target)
are indicated with C’;r , and those that are below the target are
indicated with C; . The statistics C;" and C, are referred to
as one-sided upper and lower CUSUMEs, respectively [63]. It
is shown that the use of the two-sided CUSUM algorithm is
equivalent to monitoring the following two sums for a zero-
mean process:

Ci =100,C + Xy — po — K| T (7)
Cy =[0,-Cry — Xy + p2 — K|F

where CO+ = 0, C, = 0, is the residual or deviation
from the mean at time ¢. A shift detection is issued whenever
(C;" v C;) > H. Typical CUSUM is applied for persistent
shifts or attacks. With —C,_; in Eq. (8), the algorithm behaves
like one-sided and reduces false alarm rate almost 100%.
Moreover, in order to employ CUSUM in real-time, once
an alarm is issued by the CUSUM algorithm, the mean or
intercept of the attack time series observations is estimated
and updated with Eq. (8) and C,, C;” values set to zero after
every detection.

+
+ K+ % 0 >H
,[LQ—{Ml N+ t (8)

m—-K-S$-.Cf >H

The CUSUM algorithm are designed by choosing the values
of K and H. The constant K is called the reference value
and H is the decision interval or the threshold. The parameter
K is a function of the shift in mean level to be detected by
the CUSUM algorithm. The value of H is selected to give the
largest in-control average run length (ARL) consistent with an
adequately small out-of-control ARL. These two parameters
control the ARL, a standard performance measure for online
change-detection algorithms. ARL is the average number of
data points that have been observed before an out-of-control
signal or alarm is generated. There have been many analytical
studies on investigating CUSUM’s ARL performance. For ex-
ample, the conventional CUSUM with K = §o /2 is optimal in
detecting a shift of jo from target mean. Based on past studies,
Montgomery [63] suggests that selecting K = do/2 = /2
for 6 = 1 and H = 50 provides a CUSUM algorithm that
has good ARL properties against small shifts in the process
mean [63].

The CUSUM algorithm described previously is applied to
the change point detection of the time series within basic safety
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messages. The CUSUM parameters were selected as suggested
in the literature: K = 60/2 and H = 50 and § = 1.0 which
represents midpoint between normal and abnormal process
means.

2) Adaptive Form

Adaptive version, denoted as aCUSUM, is actually adopted
from [62] revised to perform for other than zero mean pro-
cesses, lower false positives, and single weight parameter ().
Table III shows only initial mean values are different which
could be used as simple as 1°% value observed in the process.

It is applied to X, =X, - Hi—1.
aD
Cf =[0,C ) + —H Xy — Dy — aD, /2] ©)
D
o =10,0m, -2 t[Xt + Dy +aDy /2"

where Dy = (fiy — ,ul) and fi; = afii—1 + (1 — a)X;. This
adaptive form of CUSUM algorithm is not very sensitive to
K = 60/2 and § = 1.0. As in the typical algorithm, for less
false positive detection H is set to Ho.

IV. NUMERICAL EXPERIMENTS

This section presents the data generation to evaluate the
methods for different vehicle-to-infrastructure (V2I) attacks
and gives numerical results for performance of the proposed
detection models.

A. Attack Model

We have created three attacks: (i) denial of service (DoS)
attack, (ii) false information attack, and (iii) impersonation
attack. We assumed an attack can be carried out in three dif-
ferent ways: (1) an attacker can connect to the OBU through
the Ethernet locally and then alter the code in OBU, and create
and send false messages to generate false location of a vehicle
and/or create false vehicle identity, (2) an attacker can re-
motely compromise an OBU of a CV or an RSE through unau-
thorized access to generate false location information, and/or
false vehicle identity, and/or flood the communication channel
with unnecessary data to cause a CV application to be unavail-
able to other CVs and RSEs, and (3) an attacker can intercept
the data flow in a communication channel and alter the data
packets with false location information of a vehicle, and/or
false vehicle identity through man-in-the-middle (MITM) at-
tacks.

An attacker’s capabilities also depend on the configuration
of communication radios. In this study, we consider DSRC
communication radios. DSRC has seven communication chan-
nels using different frequencies ranging from 5.85 GHz to
5.925 GHz. These seven channels are divided into two cate-
gories: Control Channel (CCH) and Service Channel (SCH).
In this study, we consider Channel number 178 is assigned for
CCH, and the remaining channels from 172 to182 are assigned
as SCH. After the initial authentication and key exchange,
the RSE and vehicle OBE agree to communicate on a single
service channel with a fixed frequency.

An attacker CV can launch the DoS attack by flooding the
communication channel to cause a service to be unavailable
to other CVs. An attacker uses its maximum transmission
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Fig. 1. Route configuration

capacity to flood the network and disrupts the V2I communi-
cation by transmitting more data than the receiver’s (e.g., RSE)
maximum receiving capacity. In the fake (or false) information
attack, false GPS location information (i.e., longitude and
latitude) of a vehicle is generated using a random variable
generation approach. We have crafted the attack to create a
random location within a given geo-fenced region so that it
seems normal geo-location to humans. This false information
is also broadcasted by the attacker vehicle at 10 Hz or 10 BSM
packets/s. A false identification (ID) for a vehicle instead of
its original ID is used for modeling an impersonation attack.
Two different GPS locations and speeds for a vehicle have
been used for this purpose in this study.

B. Data Generation for V2I Cyber-Attacks

In this subsection, data generation process for different type
of V2I cyber-attacks using microscopic traffic simulator is
presented. In order to generate the realistic roadway traffic
behavior, a microscopic simulation software, Simulation of
Urban Mobility (SUMO) is utilized [64]. To mimic real-world
vehicular movement in a connected vehicle environment, a
roadside equipment (RSE) is assumed to be placed at the Jervy
Gym location of Perimeter Road in Clemson, South Carolina
(SC), USA [65]. The length of the roadway network is 2.34
miles; the total number of intersections is five; and we have
considered unidirectional traffic flow. We have used a single
volume input, i.e., 200 vehicles per per hour per lane (see
Fig. 1).

In our study, we have used the Intelligent Driver Model
(IDM) as the car-following model for connected vehicles, such
that all the simulated vehicles mimic the driving behavior
of a human driver. Moreover, we assume that all vehicles
are wirelessly connected, and each vehicle broadcasts basic
safety messages (BSMs), which contain latitude- longitude,
timestamps, and speed [66].

In detail, the simulation network was a calibrated roadway
network used in one of our previous studies [67]. We used
a random number generator (RNG) function in SUMO to
generate different seed numbers and added stochasticity to
our simulation [68], [69]. We also used a speed attribute (i.e.,
speedFactor) in SUMO that allows the specification of the
parameters of a Normal distribution with optional cutoffs.
In this way, a random value was selected from the Normal
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distribution for each vehicle at the time of its generation
and considers heterogeneous mix of vehicle speeds in the
simulation. However, it is necessary to select a performance
metric (e.g., travel time and traffic volume) for calibrating
the simulated network so that it can represent a real-world
scenario. We selected travel time as a performance metric
for calibrating our simulation model in SUMO and used
the following equation to calculate the optimal number of
simulation-runs, Npp, with different seed numbers. It is a
trial-and-error approach. For example, after selecting a certain
number of seeds, we need to run the simulation and collect
average travel time, and it is necessary to calculate different
parameter values of Eq. (10) and determine the number of
simulation-runs. If the calculated number of simulation runs is
higher than the previously selected number of simulation-runs,
it is necessary to run the simulation again for the calculated
number of simulations, Np7, with different seed numbers.
After that, we need to collect the average travel time for each
seed and calculate the number of simulations runs again. One
needs to follow this procedure until the calculated N7 based
on the new simulation run is less than the required number of
simulation runs as estimated in the previous step.

orT
Npr

where, SEpr is allowable error,which is a fraction of the
travel time, Npr is the number of simulation runs for the
travel time performance measure, zg.or.=2 1S statistic value
for a given confidence level of the Normally distributed perfor-
mance measure-i.e.,travel time, and o7 is estimated standard
deviation of the performance measure -i.e.travel time.

Table I presents the parameters for identifying the required
number of simulation-runs within the 95% confidence interval.
Please note that we do not conduct any other sensitivity test
as the focus of our paper is evaluating the performance of
cyber-attack detection models.

SETT = Zscore X (10)

TABLE I. Parameters for calibrating simulation model

Parameter value

5% of the average travel time
1.96 (for 95% confidence interval)
3.66 (for the given seed numbers)
100, 150, 200, 250, and 300

Name of the Parameters

Allowable error, SET1

Z statistic value, zZscore

Estimated standard deviation, opp
Seed number for the random number
generator (RNG) function in SUMO

Each vehicle on this roadway are DSRC communication-
enabled and can broadcast a part of BSMs (e.g., time stamp,
car ID, latitude, longitude, and speed) every one-tenth of a
second to the RSE. RSE is a static node on the side of a road
with a defined communication range (i.e., 300 m), whereas
vehicles containing the OBE are moving nodes on a roadway
and having a defined communication range (i.e., 300 m). Due
to the limitations of the Simulation of Urban Mobility (SUMO)
traffic simulator, it is not possible to model roadside equipment
(RSE) in the simulator. Thus, we only generate vehicles’
movement using SUMO and collect the mobility information
of the vehicles using a trace file, which contains vehicle’s
location and speed at each timestep in a JSON format. Then,
using a python script, we specify the RSE location, and
filter out the location and speed of the vehicles from the

trace file using the location of each timestamp within the
dedicated short-range communication (DSRC) range ( 300m)
of the RSE. We separated data through this post-processing
step, and it means that we have assumed no communication
latency between connected vehicles and RSE. The simulation
is comprised of 200 vehicles per hour per lane on the Perimeter
Road, a four-lane arterial roadway (two lanes each direction)
with 56 kilometers per hour (kph) (or 35 miles per hour) speed
limit.

Using the generated trace file from the SUMO simula-
tion, three different cyber-attack scenarios are generated (see
Fig. 2a):

(i) After the initial authentication and key exchange, the
RSE and OBE of a vehicle agrees to communicate on
a single service channel or a fixed frequency. Then,
a vehicle can launch the DOS attack by flooding the
communication channel in order to cause the service to
be unavailable to other vehicles. Typically, an attacker
uses its maximum transmission capacity to flood the
network. In order to create a breakdown of V2I commu-
nication, attackers need to transmit more data than the
receiver’s (e.g., RSE) maximum receiving capacity. For
generating DOS attack data in our experiment, vehicle
number 6 (ID6) is flooding at 1000 Hz while other
vehicles are sharing data at 10 Hz in a CV environment
where each CV is broadcasted BSMs every one-tenth of
a second. The total simulation time is 200 seconds (s)
for generating the attack data.
(ii) False information attack: For fake (or false) information
attack, false GPS location information (i.e., longitude and
latitude) of vehicle number 2 (ID2) are generated using
random variable generation library from python. We have
crafted the attack in such a way that it generates random
location within a given geo-fenced region so that it seems
normal geo-location to humans. This false information is
also broadcasted by the attacker vehicle at 10 Hz or 10
packets/s. The total simulation time is 200 s for false
information attack.
Impersonation attack: To emulate the data for imper-
sonation attack, a false identification (/D) for vehicle
number 3 is used as vehicle number 2 (ID2). Two
different GPS location and speed information for the
vehicle ID 2 are simultaneously generated. In the trace
file, the vehicle ID of vehicle 3 was replaced by the
vehicle ID 2 to craft an impersonation attack, where we
assume that both of the vehicle 2 and vehicle 3 are in
the same region. Thus, two different GPS locations and
speeds are being broadcasted containing the same vehicle
ID simultaneously. Both of the vehicles are broadcasting
the data at 10 packets/s, and simulation was run for 200
s.

(iii)

Examples of generated attack data are given in Table II.
Evident from the table, multilevel attack monitoring could be
designed by vehicle ID and timestamps as micro level tracing
(0.1 s) of such values. However, this approach considerably
slows detection capability within time interval of 0.1 s which
is critical for safety applications. Therefore, this study tracks
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Fig. 2. Data generation steps and attack detection approach

aggregate measures such as average message frequency per
vehicle per second (MVS), average message frequency per
vehicle per time interval (MV'T), distances, and/or track
of vehicle speeds within time series framework and detects
changes. Detailed vehicle information are not tagged, however,
signature is present in the historical data can be traced back
for mitigation efforts.

C. Attack Detection Framework

Fig. 2b depicts the approach of attack detection using EM
and CUSUM. In order to implement change point detec-
tion methods, first step is to identify the processing time
window in which information need to track, and how to
convert such information in time series behavior to detect
shifts due to malicious attacks and/or benign system mal-
functions. Such changes result in switching system dynamics
and alter critical communications in ITS applications, such
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TABLE II. Examples of attack data generated on RSE

Type TS(s) ID Lat. Long. Speed(m/s) Pos.(m) MsgRate
DOS 5.10 1 -8285 34.68 9.94 0.08 10.00
5.10 2 -82.85 34.68 8.22 0.52 10.00
5.10 3 -82.85 34.68 6.21 0.74 10.00
5.10 5 -82.84 34.68 2.32 0.14 10.00
5.10 6 -82.84 34.68 0.00 0.00 10.12
5.10 6 -82.84 34.68 0.00 0.00 10.23
5.10 6 -82.84 34.68 0.00 0.00 10.35
IMP 1.30 1 -82.85 34.68 2.65 0.00 1.00
1.30 2 -82.85 34.68 0.51 0.00 1.00
1.40 1 -8285 34.68 2.87 0.00 1.00
1.40 2 -82.85 34.68 0.75 0.00 1.00
1.40 2 -82.85 34.68 1.00 0.00 2.00
1.50 1 -8285 34.68 3.19 0.00 1.00
1.50 2 -82.85 34.68 1.24 0.00 1.00
FAL 2.00 I -8285 34.68 4.15 0.00 1.00
2.00 2 -82.85 34.68 2.26 0.00 1.00
2.00 3 -82.04 3416 0.00 72.32 1.00
2.10 1 -8285 34.68 4.31 0.00 1.00
2.10 2 -82.85 34.68 248 0.00 1.00
2.10 3 -82.81 3430 0.26 71.20 1.00
2.20 1 -8285 34.68 4.57 0.00 1.00
2.20 2 -82.85 34.68 2.62 0.00 1.00

as cooperative adaptive cruise control (CACC) and signal
control algorithms. In DOS or flooding attacks, vehicles are
expected to send more messages than the designed frequency
parameter (MVS). Therefore, tracking messages per vehicle
and estimating MVS can be used as indicator for cyber-attack
detection. For impersonation attack, multiple messages in unit
time interval (0.1 s) are sent and by monitoring MVT, this
type of attack is detected. Lastly, false information attack
can be defined as any type of irregularity in the collected
messages, such as high or low speed compared to rest of the
traffic (inherent) at a roadway segment or an unrealistic gap
between any two adjacent vehicles within a certain time frame.
CUSUM algorithms monitor deviation from process mean and
identify violations. On the other hand, EM calculates condi-
tional probabilities of P(DOSattack|MV S) > 0.001, where
P(impersonation| MVT) and P(attackstate|distance) is
given. If the likelihoods at any time is > 0.001, then an attack
is detected.

D. Description of EM and CUSUM Parameters

Parameters for EM and CUSUMs are set as provided
in Table III. Initialization parameters of EM algorithm are
01,05, 7, N = 10 random variates 7 normal 3 abnormal, and
10 iterations per time interval or new observation received.
For CUSUMs, design parameters as well as initial mean
and standard deviations are given in the Table III below.
Overall aim here is to give models normal and/or abnormal
observations. For instance, in case of DOS attack, 10 messages
per second per vehicle is expected with low or no variations,
thus, initial parameters are set to N'(y; = 10,02 = 107%) for
both methods. Moreover, from Table IV, very small normal
distance values are calculated from latitude and longitude val-
ues (i.e., n1 = 0.05) and false information is calculated to be
considerably high so initialized from N (us = 50,03 = 25).

E. Analysis and Results

In this section, the effectiveness of attack detection using
EM and CUSUM are discussed. Both methods are evaluated
using datasets as described in *Data Generation for V2I Cyber-
Attacks’ subsection. Table IV provides an example of the gen-
erated data from the simulation, attack and detection results.

TABLE III. Selected model parameters for numerical experi-
ments

Type | EM CUSUM aCUSUM
DOS | 61 = (10,10 %),02 = (15,5), 7 = 0.75) 41 =10.00 | p1 = 10.00
Yi.7 ~ N(10,1075),Yg:10 ~ N(15,10%) 0 =0.0001 | 0 =+/5.10"3u
IMP | 01 = (1,107 3),02 = (2,0.5), 7 = 0.99) w1 =1.00 | g1 =100
Y1.7 ~ N(0.05,1072),Ys:10 ~ N(15,10%) | o = 0.01 o =+/5.10"3u,
FAL | 01 = (0.05,10 2),02 = (50,5),7 = 0.99) | p1 =0.05 | p1 = 1.00
Y1z ~ N(1,1079),Yg.10 ~ N(2,0.5%) c=0.1 o =+/5.10"3
All | N =10 and iteration = 10 H =50 H =50,K =d0/2
K=260/2 | §=1.00
§ = 1.00 a=0.025

Performances are given as true positive (attack, detected), true
negative (no attack, not detected), false positive (no attack, de-
tected) and false negative (attack, not detected) are denoted by
TP, TN, FP, and FN, respectively. For running the algorithms,
we used a PC with 8GB of memory, Pentium I5 Quad-Core
CPU. We observed from the table that abnormal behavior is
detected accurately by both methods. Since cyber attacks are
persistent and CUSUM is based on cumulative differences,
shifts are reflected after the detection with rest of observations.
Therefore, detection is continuous. This is also evident from
Fig. 4a-4f. For EM, as a classification algorithm, the detection
is based on conditional state probability calculations given the
observation and past updated parameters and EM is able to flag
normal and abnormal observations (also see Figs.3a-3c). De-
tection alarms are set P(attackstate|observation) > 0.001
and H = 50 for EM and CUSUM respectively.

TABLE IV. Examples of attack data on RSE and detection by
EM and CUSUM

Type Freq. TS(s) ID Spd(m/s) Pos.(m) Msgs. P(D|Y;) EM (Ct,C-) CUS
DOS 127 5.00 1 9.73 0.08 10.00 0.00 TN 0,00 TN
128 5.00 2 8.08 0.52 10.00 0.00 TN 0,00 TN
129 5.00 3 597 0.74 10.00 0.00 TN 0,0 TN
130 5.00 5 2.14 0.40 10.00 0.00 TN 0,0 TN
131 5.10 1 9.94 0.08 10.00 0.00 TN 0,00 TN
132 5.10 2 8.22 0.52 10.00 0.00 TN 0,0 TN
133 5.10 3 6.21 0.74  10.00 0.00 TN 0,00 TN
134 5.10 5 232 0.14 10.00 0.00 TN 0,00 TN
135 5.10 6 0.00 0.00  10.12 0.02 TP (0.12,0) TP
136 5.10 6 0.00 0.00 10.23 0.05 TP (0.12,00 TP
137 5.10 6 0.00 0.00 10.35 0.09 TP (0.29.00 TP
IMP 13 1.20 1 2.44 0.00 1.00 0.00 TN 0,00 TN
14 1.20 2 0.26 0.00 1.00 0.00 TN 0,0) TN
15 1.30 1 2.65 0.00 1.00 0.00 TN 0,0 TN
16 1.30 2 0.51 0.00 1.00 0.00 TN 0,0 TN
17 1.40 1 2.87 0.00 1.00 0.00 TN 0,0) TN
18 1.40 2 0.75 0.00 1.00 0.00 TN 0,00 TN
19 1.40 2 1.00 0.00 2.00 0.67 TP 0.99.0 TP
20 1.50 1 3.19 0.00 1.00 0.00 TN 0,0.99 FP
21 1.50 2 1.24 0.00 1.00 0.00 TN 0.99.,0 FP
FAL 31 2.00 1 4.15 0.00 1.00 0.00 TN 0,0 TN
32 2.00 2 2.26 0.00 1.00 0.00 TN 0,00 TN
33 2.00 3 0.00 72.32 1.00 1.00 TP (722,00 TP
34 2.10 1 431 0.00 1.00 0.00 TN (0,72.3) FP
35 2.10 2 248 0.00 1.00 0.00 TN (72.2,0) FP
36 2.10 3 0.26 71.20 1.00 1.00 TP (349,00 TP
37 220 1 4.57 0.00 1.00 0.00 TN (0,11.7)  FP
38 220 2 2.62 0.00 1.00 0.00 TN (58,00 FpP
39 220 3 0.52 49.76 1.00 1.00 TP (482,00 TP
40 2.30 1 4.81 0.00 1.00 0.00 TN (09.7) FpP
41 2.30 2 2.83 0.00 1.00 0.00 TN (32,00 FpP
42 2.30 3 0.75 34.29 1.00 1.00 TP (33.6,0) TP
43 2.40 1 4.95 0.00 1.00 0.00 TN (04.9) FpP

true positive (TP), true negative (TN), false positive (FP), false negative (FN)

In Table IV, position column is calculated in meters (m)
from two consecutive latitude and longitude values by using
the generic formula: Pos = 1242sin~!(y/a) where a = 0.5 —
cos((x2 —x1)p)/2+ cos(pr1)cos(pr2)(1—cos((y2—y1)p))/2
and p = w/180. As discussed above, MST and MSV measures
are deduced from time and ID columns for every time interval
of 0.1 s and time series are generated for statistical detection.
It should also be noted that for the DOS attack vehicle number
6 is not sending speed and location correctly. Attack detection
using the change of speed and distance would be trivial. At-
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Fig. 3. Attack detection by EM algorithm

tacker would also replicate reasonable values. So, detection is
carried out using message frequency in MSV. From the table,
EM’s P(attack|observation) is denoted as P(D|Y;) > 0.001
resulting as detection, otherwise no detection. Similarly, for
CUSUM (C™*,C™) values are given. Based on these values,
when (CTVC™) > 50 a detection is observed, otherwise ND
is issued. Persistent attacks are easily detected by CUSUM
and EM. CUSUM continues to detect normal observations
as attacks as an out-of-control process and generates false
positive errors. This can be fixed in CUSUM with a slight
revision in C'~ values mimicking one-sided control. However,
in this study, the performance of a typical CUSUM has been
investigated without any modifications. EM’s performance on
false positive errors is promising. Detailed detection perfor-
mance metrics are presented in Fig. 5.

Figs. 3a-3c depict performance of EM algorithm for de-
tecting different attacks. From the figures, we observe that in
DOS attacks we are monitoring the average message received
frequency per vehicle. As soon as we see an increase in
the average message frequency EM is able to detect via an
increase in the likelihood of this observation coming from

the abnormal distribution. A threshold of 0.001 is enough to
monitor DOS attack with EM. For impersonation and false
information attacks, we are monitoring vehicles’ information.
In impersonation attack detection, we are looking at the vehicle
ID per message, we can see that as soon as we see 2 vehicle
ID from impersonating vehicle, EM likelihood completely
switches as the difference between 1 and 2 is very different
considering the long series of observations. Similarly, false
location information sent is different resulting 0-1 switches as
soon as we see an attacker vehicle’s location information.

Technically, Fig. 3a shows the likelihood of an attack given
135" observation that is also given in msg column in Table IV
as 10.12 > 10.00, i.e., P(attack|Y135 = 10.12) = 0.02 >
0.0001 (see EM column) a very low practical threshold.
P(attack|Y;) increases as frequency values gets larger. For
other type of attacks, the changes in observations are not grad-
ual rather sudden which leads to P(attack|Y19 = 2) = 0.67
and P(attack|Yss = 72.32) = 1.00 in impersonation and
false information attacks, respectively. However, this statistical
inference via EM comes with a computational cost. Especially
for DOS attack where change is gradual and more messages
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Fig. 4. Attack detection by CUSUM algorithms

sent per vehicle, therefore, more data points to be processed Table V, Attack column for EM and CUSUM shows computa-
tional times of 50, 200, and 4761 to process all the data points.

per time step ends up with higher computational time. In
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Thus, the feasibility of using EM for DOS attack detection
using messages per vehicle per time 1 s would be second-by-
second monitoring. Similarly, false information attack would
also require about a second (0.53 s). Only, impersonation
attack seems feasible to detect within 0.1 s. These results are
consistent with the approximate computational complexity of
EM being O(nkj) where n is sample size or time step and
k = 2 is the number of mixtures, and j=10 denotes the number
of iterations. Similarly, it is linear for CUSUM O(nm) with
m being number of elementary operations within each n time
interval.

Furthermore, we observe from the Table V that EM is
impacted more in terms of computation time to process
increased observations 4761 instead of 50. For CUSUM,
the computational time reaches near 1 second for denial of
service (DOS) and about 0.1 second for false information
attack (FAL). So, we conclude that we may not be able to
process data from approximately 4000 vehicles within 0.1
second. Note that the computations were run on a computer
having Intel i5 processor with 8 GB memory. Certainly, higher
computational power can easily facilitate the use of CUSUMs
in real-time for the three attack types considered in this study.
Regardless, further study is necessary to investigate how the
change point models will capture those effects and how it will
satisfy the requirements of real-time CV applications.

TABLE V. Computational times in seconds experienced for
EM and CUSUMs

Attack Type EM CUSUM aCUSUM

\n 50 200 4761 50 200 4761 | 50 200 4761
DOS 2.19 224 4458 | 043 046 065 | 077 077 1.02
IMP 0.02 0.02 0.02 0.01 001 002 | 001 O 0.01
FAL 053 6.15 4491 | 003 006 0.19 | 0.14 0.14 0.28

Fig. 4 presents detection results of the CUSUM and
aCUSUM algorithms for first 200 data points with 0.1 s
intervals. Shorter intervals are shown in order to provide
legibility. In Figs. 4a-4b, a shift occurs at 135" observation
for DOS attack. CUSUMSs advantage over EM is that it can be
implemented for short time intervals due to less computational
times. The duration for detecting DOS attack using EM is
higher than 0.1 s interval. However, impersonation and false
information attacks can be detected within 0.1 s (see Figs. 4c-
4f). Given sufficient time window, EM algorithm would be
able to adapt to detect different attack types with new set
of normal data set is fed. It has less parameters to be tuned
compared to CUSUMs and prone less to false positive alarms.
In their simple forms, they are vulnerable to high false positive
when adaptive thresholds are used. CUSUMs are very sensitive
to real-time estimation or update of y1, u2, o values. In another
appropriate midterm application, an hybrid method can be
developed to estimate these parameters with EM and input
to CUSUMs. Because of space limitations, these experiments
are left for another study.

In Fig. 5, we compared detection performances of the
models. Metrics adopted from [18] are given as true positive
(TP), true negative (TN), false positive (FP) and false negative
(FN) are inserted in accuracy=(TP + TN)/(TP + TN +
FP + FN), precision=TP/(TP + FP), sensitivity or
detection=TP/(T P+ FN) [18]. EM only contains about 2%

FN for false information and 1% FN for DOS attacks where
CUSUM gives 11.8% FP for false information and 2.2% for
impersonation attack. For false information attack, EM gives
only 83% sensitivity measure and CUSUM is low 87% in
precision. After carefully tuning, aCUSUM outperforms both
EM and typical CUSUM with no FP and FN for all attack
types.

In sum, the initialization of algorithms was done after
detailed experimentation and the three most common attack
types were selected for demonstrating the capability of the
EM and CUSUM models. DOS attack and impersonation
cases are relatively easier as frequency levels are known. But,
for a false information attack, it is needed to identify the
normal behavior. For basic CUSUM, high FPs are observed
and adaptive algorithm showed improved results. For EM,
performance is highly correlated to the definition of normal
distribution or behavior. Note that, critical point in both of the
algorithms is the mean level of normal behavior. For any attack
type after identifying what measure to monitor and include the
normal mean level, algorithms can handle additional attack
types. CUSUMs were not trained actually; however, we have
estimated CUSUM parameters using the given dataset. EM
was also run online with a given normal distribution. If these
are carefully input, both algorithms are adaptive and can be
used to monitor continuously.

FE. Impact of Noise in the Data

In order to evaluate the efficacy of the detection models on
attack data with noise, we considered the false information
attack. According to the white paper on dedicated short range
communication [70], the GPS error with 95% confidence is
0.90731 m in an open sky environment. We generated a noisy
false attack data transforming values Y; assuming 0.0 m mean
normal errors ¢; with a standard deviation of 0.463 m (ob-
tained from 95% confidence interval since 10=0.9073/1.959)
as |Y; + €. Specifically, we introduced this error or noise
(NV(0.0,0.463?)) to the gap (distance) between each subject
vehicle and its immediate front vehicle.

Initial parameters of the detection models are used identical
as before (shown in Table III). Table VI is given to demonstrate
the impact on detection performances. EM algorithm estimates
the mean and variance level of the underlying process real-
time, thus, expectedly it is not impacted by noise added in dis-
tance (gap) values. For CUSUMs, false positives increase with
the noise in observations. Adaptive CUSUM’s false positives
only slightly increase (54) with noise. Note that, we introduce
a significant level of noise in the data, which are approximately
half of the initial mean for CUSUMs (i.e., 0.463/1.00 ~ 50%
coefficient of variation (CoV)). If the noises in the data are
low, CUSUMs also would not be impacted. As an example,
if we introduce 0=0.0463 (5% CoV), detection of aCUSUM
does not produce any false positives and CUSUM produces 49
false positives, which is the same without the noisy dataset.

V. CONCLUSIONS

In this study, we investigated the efficacy of two main
statistical change point models, EM and CUSUM, for real-
time V2I cyber attack detection in a CV Environment. To
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W aCUSUM IMP 12.1% 0.0% 0.0% 87.9% 100% 100% 100%
W aCUSUM FAL 11.9% 0.0% 0.0% 88.1% 100% 100% 100%

Fig. 5. Comparison of detection performances between EM and CUSUM algorithms

TABLE VI. Impact of noise in location data on EM, CUSUM,
and aCUSUM attack detection models

EM CUSUM aCUSUM EM CUSUM  aCUSUM
without noise with noise ~ N(0.0,0.463%)

TP 602 602 603 602 602 603
Fp 1 49 0 1 741 54
FN 0 0 0 0 0 0
TN 6888 6840 6888 6888 6148 6834
Accuracy  100% 99.3% 100% 100% 90.1% 99.3%
Precision  99.8%  92.5% 100% 99.8%  44.8% 91.8%
Detection  100% 100% 100% 100% 100% 100%

prove the efficacy of these models, we evaluated these two
models for three different type of cyber attacks, denial of
service (DOS), impersonation, and false information, using
BSMs generated from CVs. A comprehensive attack modeling
is developed for all type of cyber attacks. To generate the data
for different cyber attacks, a microscopic traffic simulation
software, SUMO, was used for simulating realistic traffic
behavior. Instead of tracking data values such as message
frequency, speed, and distance individually for each time
interval and vehicle ID, aggregate measures are deduced from
BSMs to be used in effective real-time detection. Based on
the numerical analysis, we found that:

1) Given proper initialization, i.e., mean and variance mea-
sures of normal and abnormal behavior, and enough

computational power, both algorithms can detect all three
attack types accurately.

2) When the attack detection time window is critical, such
as safety applications, detection time window for EM is
greater than 0.1 s, whereas the detection time window
for CUSUM is below 0.1 s computational times.

3) When multiple states could be observed for an attack or
to classify different impacts, as well as any changes in the
normal RSU communication frequencies, EM algorithm
would be able to provide conditional probabilities for
multiple states.

Results from numerical analysis also revealed that EM,
CUSUM, and aCUSUM could detect these cyber attacks with
an accuracy of at least 98%, 98%, and 100%, respectively.
Models can be applied for real-time cyber attack detection
with a one-second interval.

When the number of vehicles increases, the computation
time of the Expectation Maximization (EM) based detection
algorithm would be higher like many statistical/machine learn-
ing algorithms because of the increased number of observa-
tions (i.e., data). For example, processing data from 1000
vehicles is much higher than 200 vehicles, and it would be
more than 100 ms, which is the time requirement for CV
safety applications. The processing time could be less if we
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could increase computational power and running algorithms
in parallel, which is beyond the scope of this paper. However,
CUSUM is a sequential testing algorithm, which would be
much faster, and it is not required iterations for convergence.
One of the limitations of this study is that the model
parameters are limited to only three types of cyberattacks
presented in this paper (i.e., denial of service, false information
and impersonation attacks). To scale our models for detecting
other attacks, it is necessary to determine appropriate sets of
model parameters in future studies. Moreover, the effectiveness
of the models on the adversarial attacks was also not evaluated.
Each vehicle on this roadway was assumed to be DSRC
communication enabled and assumed to broadcast basic safety
messages. Due to limitation of Simulation of Urban Mobility
(SUMO) traffic simulator, it is not possible to model roadside
equipment (RSE) or communication in the simulator. Thus,
these were only assumed. We also assumed no communication
latency and assumed perfect communication (i.e., no data
loss and communication delay) among connected vehicles and
RSE. Furthermore, we considered a road network with low
traffic volume in our experiments. Thus, for a higher volume
road network, further study is needed to evaluate whether
the change-point models could handle BSMs from a much
higher number of CVs in a congested road network. In sum,
possible improvements to this research and future directions
can be followings: (1) further research is needed to investigate
factors affecting the optimal selection of such parameters with
multiple data sets; (2) hybrid methods can be formulated
for detection both fast and less sensitive to initialization,
(3) Detecting benign abnormalities and sensor failure with
additional filters, and (4) as data generation processes expected
to be correlated, algorithms within state-space time series
models can be utilized, and the effectiveness of the proposed
methods against the adversarial attack can be evaluated.
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