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ABSTRACT. An epidemic disease caused by coronavirus has spread all over the world with a strong

contagion rate. We implement an SIR model to study the evolution of the infected population and the

number of infected recovered and dead because of this epidemic in South Carolina consistent with available

data. We perform an analysis of the results of the model by varying the parameters and initial conditions, in

particular transmission and recovery rates.

We use data covering the period December 1, 2020, to June 1, 2021. The models and results are consistent

with the observations. The models developed using data help us understand the recovery rates. The infection

and recovery increasing in South Carolina do not show improvement. The number of dead people tends to

increase although by small amount.

Models were developed based on the available data. Initially neural networks and machine learning

methodology were used to come up with transmission rates. Later, direct calculation and optimal control

methodology were used to deduce transmission parameters. For the period December to June there were

no available data on recovered populations and we have to determine them as well as transmission and

recovery rates based on data of infected populations and dead population using neural networks and optimal

control methodologies where transmission, recovery, relapsation immunity and death rates from infection are

considered as decision variables.
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1. INTRODUCTION

The rapid spread of a disease in regions (epidemic) or the global outbreak of a disease
(pandemic), can have a detrimental effect on health systems and economical activities locally
and globally. Measures to reduce the pandemic spread include curtailing close interactions
between using social distancing and face masks and vaccinations. Social distancing has
negative economic effects. It is useful to understand the significance of these interventions,
([2], [16], [11],[18]).

Mathematical models have been used in epidemiology for many years, going back to the
eighteenth century. Most of the models are compartmental models, with the population
divided into classes and with assumptions being made about the rate of transfer from one
class to another. Here we consider a Susceptible-Infectious-Recovered (SIR) model to describe
the spread of the virus and compute the number of infected and dead individuals. There are
models that include exposed and migration. The goal is to compute the number of infected,
recovered, and dead individuals on the basis of the number of contacts, probability of disease
transmission, incubation period, recovery rate, and fatality rate. The epidemic disease model
predicts a peak of infected and dead individuals as a function of time and assumes that births
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and natural deaths are balanced, since we are dealing with a very short period of time. The
population members solely decrease due to the disease as dictated by the fatality rate of the
disease. The differential equations are solved with a forward Euler scheme, ([8]).

2. MATHEMATICAL MODELS

Mathematical and statistical methods provide essential input for governmental decision
making that aims at controlling the outbreak. Statistical methods frequently aim at early
detection of disease outbreaks ([16]). Another approach is to develop models that indicate
the outbreak dynamics using compartmental models ([16]). In compartmental models we
consider a fraction of the population to be susceptible, a fraction to be infected, a fraction
that has recovered. In some models exposed group is part of the model. Compartmental
models have been used to model HIV epidemic, malaria, and corona virus outbreak,([7],[12],[9]
,[16],[18]). In this paper we consider SIR model. SIR model can be modified in several
ways, for example, by including demographics, deceased populations, hidden population,
i.e., exposed populations (SEIR). In an accelerating epidemic outbreak contact tracing, the
SEIR model needs to be modified to account for it. In the current paper we have two
main objectives: (i) to report some new analytical results about SIR model and (ii) to
introduce an optimization/neural network approach for the estimation of the parameters
of the SIR model from real time series data. The SIR model is formulated in terms of
three populations of individuals. The susceptible population, z1, consists of all individuals
susceptible to the infection of concern. The infected population population, z2, comprises the
infected individuals. These persons have the disease and can transmit it to the susceptible
individuals. The recovered population, z3, represents the immune individuals, who cannot
become infected and cannot transmit the disease to others.

Another approach we use is neural network approach ([4], [17]).

In this paper we consider an SIR epidemic disease model. The total (initial) population,
N , is categorized into three classes, namely, susceptible, S(t), infected-infectious, I(t), and
recovered, R(t), where t is the time variable. We consider discrete and continuous models.
The initial value problem we consider is

dz1
dt

= λSC · z1 − (µSC)z1 − u · z1z2(1/N),

dz2
dt

= u · z1z2(1/N)− (v + w)z2 − (µSC)z2 + u · z2z3(1/N),

dz3
dt

= v · z2 − (µSC)z3 − u · z2z3(1/N),

where λSC = birthrate, µSC = natural death rate, u=transmission rate, v=recovery rate,
w= death rate of infected, N=5149000, susceptible population in SC.

We solve the above system of differential Equations by using MATLAB Euler-scheme. The
results are shown below. To determine the necessary parameters, we used data obtained from
CDC and optimal control methodology as well as neural network and machine learning tools.
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3. DISCRETE MODEL

We use data covering the period December 1, 2020, to June 1, 2021. In this period
vaccination has been available although not taken advantage of by a lot of people. In addition,
social distancing and face making have been less and less adhered to.

We consider the following discrete model covering the period December 1, 2020, to June
1, 2021. We have data for infected population and dead population for this model. We are
going to rely on our model to estimate the recovered populations day by day covering this
period. The recovered population for Dec. 1, 2020, is known to be 115152.

z1(i+ 1) = (1− vc) · λSC ·N + z1(i)− µSC · z1(i)

−(1/(1 + exp(−u(i))))z1(i)z2(i)(1/N) + (1/(1 + exp(−s(i))))z3(i),

z2(i+ 1) = z2(i) + u(i)z1(i)z2(i)/N − (v(i) + 1/(1 + exp(−w(i))) + µSC)z2(i)

+(1/(1 + exp(−r(i)))) · z3(i),

z3(i+ 1) = vc · λSC ·N + z3(i) + (1/(1 + exp(−v(i)))) · z2(i)− (µSC

+1/(1 + exp(−r(i))) + 1/(1 + exp(−s(i)))) · z3(i),

In this model,
λSC = .058 birth rate;µSC = .0095, natural death rate,
vc =.40, vc ·N represents proportion of vaccinated people,
N=the susceptible population, 5149000,
transmission rate=1/(1+exp(-u(i))),
recovery rate=1/(1+exp(-v(i))),
relapsation rate= 1/(1+exp(-r(i))),
immunity rate=1/(1+exp(-s(i))),
death rate from infection=1/(1+exp(-w(i))).

Thus, the number of recovered compartment, z3, increases by vc·N , whereas the susceptible
compartment z1 increases by (1 − vc) · λSC ·N . We see the recovery, relapsation, and death
rates are numbers between zero and 1. They are known. The optimization model determines
what are appropriate. The number of infections arising from an infected individual is then
modelled by the number R0(i) given below. The average basic reproduction number is 1.6133.
A sketch of the reproduction number is shown below. We note it is slightly bigger than 1
consistent with the infected-recovered graph shown below.

A(i) = (u(i) · z(i, 1)/N)/(v(i) + w(i) + µSC)

R0(i) = (A(i) + 1/2
√

A(i)2 + 4 · v(i) · r(i)/((v(i) + w(i) + µSC) · (µSC + r(i) + s(i)))

We would like to minimize the cost

C(i)2 +D(i)2 + E(i)2
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where

C(i) = (z2(i)− Inf(i)),

D(i) = ((1/(1 + exp(−w(i)))) · z2(i)−Dead(i)),

E(i) = (z2(i)− z3(i)).

∂z2/∂u(i) = (z1(i)z2(i)/N)(−1)exp(−u(i))/(1 + exp(−u(i)))2,

∂z2/∂v(i) = −z2(i)(−1)exp(−v(i))/(1 + exp(−v(i)))2,

∂z2/∂w(i) = −z2(i)(−1)exp(−w(i))/(1 + exp(−w(i)))2,

∂z2/∂r(i) = z3(i)(−1)exp(−r(i))/(1 + exp(−r(i)))2,

∂z3/∂r(i) = −z3(i)(−1)exp(−r(i))/(1 + exp(−r(i)))2,

∂z3/∂s(i) = −z3(i)(−1)exp(−s(i))/(1 + exp(−s(i)))2.

To update decision variables set

au(i) = 2C(i)∂z2/∂u(i) + 2D(i)(1/(1 + exp(−w(i))))∂z2/∂u(i) + 2D(i)∂z2/∂u(i),

+2E(i)∂z2/∂u(i)− 2E(i)∂z3/∂u(i),

av(i) = 2C(i)∂z2/∂v(i) + 2D(i)(1/(1 + exp(−w(i))))∂z2/∂v(i) + 2D(i)∂z2/∂v(i),

+2E(i)∂z2/∂v(i)− 2E(i)∂z3/∂v(i),

aw(i) = 2C(i)∂z2/∂w(i) + 2D(i)(1/(1 + exp(−w(i))))∂z2/∂w(i) + 2D(i)∂z2/∂w(i),

+2E(i)∂z2/∂w(i)− 2E(i)∂z3/∂w(i)

ar(i) = 2C(i)∂z2/∂r(i) + 2D(i)(1/(1 + exp(−w(i))))∂z2/∂r(i) + 2D(i)∂z2/∂r(i)

+2E(i)∂z2/∂r(i)− 2E(i)∂z3/∂r(i),

as(i) = −2E(i)∂z3/∂s(i).

u(i) = u(i)− del · au(i),

v(i) = v(i)− del · av(i),

w(i) = w(i)− del · aw(i),

r(i) = r(i)− del · ar(i),

s(i) = s(i)− del · as(i).

Inf(i) is the number of infected people at or on the i − th date after December 1, 2020.
The numbers are gotten from CDC. Likewise Dead(i) represents the number of dead people.
The quantity E(i) represents the difference between the number of infected people according
to our model z2(i), and infected people, Inf(i), gotten from CDC data. We represent the
recovered people by z3(i).

The following 3 figures represents the number of infected and recovered populations, recovery
and contact figures, and reproduction rates that were obtained using the discrete model
approach (figure 1).
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Figure 1. Infected and Recovered, Death rate.

4. Continuous Model-Optimal Control Approach

Mathematical models are important in analyzing the spread and control of infectious
diseases. The model formulation requires carefully designed models with appropriate assumptions,
and variables parameters. Mathematical models have been critical in the study of infectious
diseases ([8] , [16], [17]). They have been used in studying tuberculosis([15], HIV ([9]), and
dengue fever ([1]) models, etc. The aim here is to start with appropriate model and relevant



40 N. BEGASHAW*, G. COMERT*, N. G. MEDHIN**, AND M. ZRIDA**

0 20 40 60 80 100 120 140 160 180
4

4.5

5

5.5

6

6.5

7

7.5

8
10

-3

Recovery rate

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.0103026

0.0103028

0.010303

0.0103032

0.0103034

0.0103036

0.0103038

Contact rate

Figure 2. Recovery Rates and Contact Rates

parameters to be determined. Among the parameters of importance to be determined are
contact rates u, recovery rates v, relapse rates r, infection reproduction rates R0, death rates
w, immunity rates s. We also include the role of vaccination. Although vaccinated people are
unlikely to be infected contributing to immunity, there is still a possibility of relapse.

We would like to minimize the cost function



MODELING COVID-19 EPIDEMIC AND ANALYSIS 41

0 20 40 60 80 100 120 140 160 180
1.57063

1.57064

1.57065

1.57066

1.57067

1.57068

1.57069

1.5707

1.57071

1.57072
Reproduction Rate

Reproduction Rate

Figure 3. Reproduction Number.

∫

T

0

{(w(t)z1(t)−Dead(t))2 + (v(t)z2(t)− z3(t))
2 + (u(t)z1(t)− z2(t)

2}dt

Subject to the constraint

dz1
dt

= λSC ·N − (µSC)z1 − uz1z2(1/N) + s · z3,

dz2
dt

= uz1z2(1/N)− (v + w)z2 − µSCz2 + rz3,

dz3
dt

= vz2 − (µSC)z3 − rz2 − sz3.

The adjoint equation is

dP1/dt = 2(uz1 − z2)u+ (µSC + uz2/N)P1 − (uz2/N)P2,

dP2/dt = 2(wz2 −Dead(t))w + 2(vz2 − z3)v − 2(uz1 − z2) + (uz1/N)P1

−(uz1/N − v − w − µSC)P2 − vP3,

dP3/dt = −2(vz2 − z3)− sP1 − rP2 + (µSC + r + s)P3.

Next we construct the Hamiltonian.
Set

f0(t) = (w(t)z1 −Dead(t))2 + (v(t)z2 − z3)
2 + (u(t)z1 − z2)

2,
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Next,

∂f0/∂u = 2(uz1 − z2)z1,

∂f0/∂v = 2(v)z2 − z3)z2,

∂f0/∂w = 2(wz2 −Dead(t))z2.

∂f1/∂u = −z1z2/N,

∂f1/∂v = 0,

∂f1/∂w = 0.

∂f2/∂u = z1z2/N,

∂f2/∂v = −z2,

∂f2/∂w = −z2.

∂f3/∂u = 0,

∂f3/∂v = z2,

∂f3/∂w = 0.

∂H/∂u(t) = f0(t)u(t)− P1∂f1/∂u− P2∂f2/∂u− P3∂f3/∂u,

∂H/∂v(t) = f0(t)v(t)− P1∂f1/∂v − P2∂f2/∂v − P3∂f3/∂v,

∂H/∂w(t) = f0(t)w(t)− P1)∂f1/∂w − P2∂f2/∂w − P3∂f3/∂w.

Finally we update our control variables.

u(t) = u(t)− randn · del · ∂H/∂u(t),

w(t) = w(t)− randn · del · ∂H/∂w(t),

v(t) = v(t)− randn · del · ∂H/∂v(t).

Again, we use the CDC data of infected population and dead people day by day from
December 1, 2020, to June 1, 2021. We use our model to estimate the number of recovered
people. The following figure represents the recovered (green) and infected (blue) populations.

We see from both discrete and continuous models is that the number of infected populations
increases until mid-April and begins to decrease. The number of recovered populations follows
the pattern of recovered populations. The number of recovered people becomes closer to the
number of infected populations.
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compartmental description under the assumption of homogeneous mixing of individuals.

More realistic modeling approaches must account for spatial heterogeneity due to time
varying disease onset times, regionally different contact rates, and the time dependence of
the contact rates due to the implementation of containment strategies. However, extensive
data are not currently available. Thus, we must construct models where control theory,
optimization, and neural network methodologies to approximate missing and necessary data.
In the work we did relating to data from December 1, 2020, to June 1, 2021, we rely only
on available data of infected and dead populations to have some ideas on the transmission,
recovery, and relapse rates.

What we see in the last three pictures from the discrete model are a decrease in death rate,
high recovery rate, and decreasing infection transmission rate. The basic reproduction rate is
consistent with this observation although it trending upward, but less than 1. What we see
in the very last picture is like the first picture of the recovered and infected populations. We
notice they are similar.
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