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3.4 Attack Detection Scheme

The core idea of attack detection is the discrimination be-
tween normal data and attacked data, and we discriminate
them by comparing the data content in this case. Normal
data is modeled using the proposed data fusion method in
Section 3.3. In order to identify if false data injected or
not, the results of the data fusion algorithm for one ego
vehicle are going to be compared with the information sent
from neighboring vehicles as shown in Algorithm 1.

Algorithm 1 Decision Logic

for each j ∈ Mv(Number of neighboring vehicles) do

if E
j
t ≥ Ethreshold then

j is publishing false information;
end if

end for

In this logic, E
j
t shows the residue between estimated

results after data fusion and information sent from neigh-
boring vehicle j at time t. Ej

t is a vector which is defined in
equation (15). As false yaw angle attack is not considered,

there are only three states for E
j
t and Ethreshold. E

j
t

exceeds Ethreshold if at least one element in the vector
E

j
t exceeds the corresponding value in matrix Ethreshold.

E
j
t =

[

ex
ey
ev

]

(15)

where, ex, ey, and ev are the errors for x position, y
position, and velocity, respectively.

False data is identified to be published from that vehicle
to the cloud when the residue of that vehicle is larger than
a threshold (Ethreshold). However, due to the existence
of Gaussian noises in the measurement data as shown in
equation (6), we need to carefully determine the threshold
so that we know to what extent the biased data can
be regarded as under attack, and to what extent the
biased data can be regarded as normal data with noises.
Therefore, the optimal threshold selection method is used
to determine the threshold by minimizing false alarms PF

and misdetection PM as shown in equation (16).

Min
h

(PF + PM ) (16)

where PF and PM are defined in equation (17), and h is
the threshold.

PF =

∫ +∞

h

p0(x)dx PM =

∫ h

−∞

p1(x)dx (17)

Here, binary hypothesis testing is the basics of this optimal
threshold selection. Probability density function (pdf) p0
represents the residuals distribution at a normal condition
H0 (i.e., no attacks) while p1 represents the residuals
distribution when the system is under attack H1. Then
PF refers to the probability that hypothesis H1 is chosen
when H0 is true (i.e., probability of a false alarm), and
PM refers to the probability that hypothesis H0 is chosen
when H1 is true (i.e., probability of a misdetection).

As one neighboring vehicle j could also be the neighbors of
other ego vehicles, which means there are multiple fusion
systems using information from vehicle j, the majority
rule is used here for consensus decision making as shown
in Algorithm 2. If one neighboring vehicle j is identified

Algorithm 2 Detection Scheme

f = 0;
for each i ∈ I (Number of vehicles can sense j) do

if E
j
t (i) ≥ Ethreshold then

j is publishing false information according to i;
f = f + 1;

end if
end for
if f ≥

1

2
I then

j is under false data injection attack;
end if

as publishing false information by a data fusion system,
then all the fusion systems using information from j will
report the detection result of j. If more than half of the
ego vehicles in the circle of interest report j is publishing
false information, then j is considered as under attack.

If the vehicle j is considered as under attack for more than
T seconds, the vehicle j is removed from the fusion system
and stopped from being used in the CC. At this stage,
the Cloud is still receiving information from vehicle j and
evaluating its trustworthiness. If more than half of the
fusion systems report j is not publishing false information
for T seconds, j will be put back in the data fusion systems.

Both the proposed data fusion algorithm and attack detec-
tion scheme are independent of the implementation details
of routing algorithms, which gives the possibility of adopt-
ing the proposed approach to other CAV applications.

The number of CAVs required to implement the proposed
algorithm depends on the radius of the circle of interest,
the CAV penetration rate, and the number of attackers
(i.e., we assume multiple attackers in this case). We assume
there is a dynamic relationship between them instead of
a simple static minimal value. This problem is not in the
scope of this paper and left for the future work.

4. SIMULATION AND RESULTS

4.1 Simulation Setup

The Cloud setup is based on Microsoft Azure and MAT-
LAB. A Linux virtual machine (VM) is created in Mi-
crosoft Azure with MATLAB installed. On the local ma-
chine, VISSIM is used to simulate the routing traffic
scenario and VISSIM-MATLAB co-simulation is used to
stream real-time traffic and vehicle data. To upload data
to VM, a UDP communication between two MATLAB
sessions is established. In this scenario, the local machine
acts as an onboard embedded computer on vehicles, and
the VM acts as a kind of traffic management center.

Three links are created with the same origin and destina-
tion. The links are single direction and single lane. Lane
changing behaviors are not considered in this paper. The
simulation step is 0.2 second (s) and the routing algorithm
is based on the one illustrated in section 3.2. Without
attack, vehicles are able to select a suitable route with
minimum travel cost. Route selection changes as vehicles
move along the network based on travel distance and travel
time. Travel time is related to traffic volume density and
velocity, which is based on the position and speed of a
group of vehicles. As the velocity of CAVs on road will
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Fig. 3. Data fusion results for an ego vehicle with ID 17

Fig. 4. Threshold selection for velocity attacks

affect the travel cost, false velocity attacks are performed
in this scenario. Also, attacks on multiple vehicles are
conducted as single malicious velocity data on the road
is not able to affect the total travel time and travel cost a
lot. More specifically, false velocity attacks are applied on
4 vehicles on the road where there are around 8 vehicles
in total. The attacks are injected from 4 s to 8 s in the
simulation and all the attacked vehicles have a malicious
velocity which is 6 m/s lower than the original normal
velocity. Therefore, fake congestion is created for that
route. The CAV penetration rate is 90% for all runs.

4.2 Simulation Results

The estimated velocity for one ego vehicle are shown in
Fig. 3. Each data point indicates the velocity at a single
time step (with an interval of 0.2 s). As shown in Fig. 3,
a good estimation of vehicle states can be obtained by the
particle filter-based data fusion algorithm using the noisy
sensor data and the speed error is reduced. The optimal
threshold selection result is shown in Fig. 4. We ran the
simulation multiple times with different thresholds for

Fig. 5. Attackers isolation results

ADU, and the relationship between the total probability
of error PE and threshold h is shown in Fig. 4. PE first
decreases with the increase of h, and then PE begins to
increase after h reaches 4 m/s. Therefore, the threshold
can be set to 2 m/s for false velocity attacks. Then the
decision-making scheme using the selected h is shown to
be able to identify the attackers which are vehicle identity
(ID) 13, 14, 15, and 16 as shown in Fig. 5. False velocity
attacks are injected from time step 20 to 40.

Fig. 6(a) shows the change of the fused speed for one ego
vehicle due to the false data received from its neighbors.
After adding the ADU using h = 2 selected from Fig. 4,
the attack can be mitigated as shown in Fig. 6(b). The at-
tacked vehicles will be removed from the fusion algorithm
once they are detected, thus they won’t affect the fusion
results anymore. It is shown that those false data can affect
the performance of the particle filter but the effect can be
reduced with the proposed simple mitigation. We could
see that this mitigation approach can generate a flow of
trustworthy information for CAVs, which can ensure the
safety and correct behavior of CAVs. A preliminary com-
parison is also conducted between our proposed algorithm
and works in the literature as shown in Table 1. As shown
in the table, our proposed method can achieve state-of-
the-art performance with respect to the existing methods.

Table 1. Comparison with respect to the
RMSE (Root Mean Squared Error)

Proposed Approach
Kong and Jun

(2017)

Methods Particle Filter Kalman Filter

RMSE 0.315 ≈ 0.5

5. CONCLUSION

In this paper, a data fusion-based attack detection method
is proposed to mitigate false data injection attacks in
CAV scenarios. Particle filters and cloud communication
are integrated in order to fuse the location and speed
information published from multiple vehicles, then the
results of data fusion are evaluated by the ADU to detect
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(a) Without attack mitigation

(b) With attack mitigation

Fig. 6. Comparison of using attack mitigation and no
attack mitigation

attackers. The decision scheme leverages the knowledge of
diagnostics and consensus decision-making. The detection
capability of the proposed approaches on CAVs has been
verified in the simulation. The results show that the pro-
posed data fusion algorithm can improve the localization
and speed estimation of vehicles, and the ADU is able to
detect the vehicles sending false information. Modeling the
communication channel delay in the CAV network and the
behavior prediction of unconnected vehicles could be the
future work. The investigation of other types of attacks
(i.e., false acceleration, false yaw angle) using the data
fusion method could also be a future research direction.
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