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Abstract: It has been shown that interdependency in connected and automated vehicles (CAV)
can be potentially beneficial in several aspects, however, it also poses a set of specific challenges
in concern of safety and reliability due to the possibility of cyber-attacks. In this paper, we
present a data fusion-based methodology to detect the false data injection (FDI) attack on
CAVs, and generate a flow of trustworthy information for every CAV. The effectiveness of
the proposed approach is validated using microscopic traffic simulation, which shows that our
proposed methodology is able to detect and isolate the false data injection attacks on CAVs.
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1. INTRODUCTION

CAVs using technologies of vehicle-to-vehicle (V2V) and
vehicle-to-infrastructure communications (V2I) have been
a great focus. A lot of research for CAVs on platooning,
intersection control, and similar intelligent transportation
applications have been conducted (Wang et al., 2019; Guo
et al., 2019). Although the interdependence in V2X can
be potentially beneficial in several aspects (e.g., traffic
management, reduction of fuel consumption), it also poses
a set of specific challenges in safety and reliability, due
to the possibility of cyber-attacks aimed at influencing
the behavior of vehicles like false data injection, packet
dropping, and forced network congestion (Mo and Sinop-
oli, 2010; Chowdhury et al., 2020; Dash et al., 2021).

Many defenses have been proposed considering different
attacks on multiple CAV applications. As CAV is a typi-
cal application of cyber-physical system (CPS), control-
based solutions have to be addressed to secure CAVs.
Cardenas et al. (2009) showed that several drawbacks are
presented if considering only the cyber side of the CPS,
for example, software patching and frequent updates are
not well suited for control systems. Possible risks related to
different types of cyber-attacks on vehicle platoons via Co-
operative Adaptive Cruise Control (CACC) applications
have been illustrated in (Biron et al., 2018; Rayamajhi
et al., 2018). Petrillo et al. (2020) leveraged an adap-
tive synchronization-based control algorithm to solve the
problem of cyber-secure tracking for a platoon undergoing
different kinds of cyber-threats.

For the other attacking scenarios, Zeng et al. (2017) pro-
posed an attack model in road navigation scenarios, and a
complete framework to analyze and evaluate the spoofing

attacks was developed. Lin et al. (2018) adapted modeling
and analysis of data integrity attacks to investigate secu-
rity issues of route guidance schemes. Several defenses to
secure CAV navigation systems have also been exploited
(Kong and Jun, 2017; Luo et al., 2019).

Although there are a batch of defenses proposed, they are
specifically designed for one CAV scenario and require the
details of the corresponding cooperative controller. The
scope of this paper is then developing a more general
and scalable technique that doesn’t depend on cooperative
controller’s information and can be applied in different
CAV scenarios. In this study, the main goal is to propose a
methodology to assess the trustworthiness of information
exchanged by CAVs, thus, to achieve higher resilience to
false data injection attacks. The main contributions of this
paper are summarized as follows:

(1) We show that particle filter is good for cooperative
localization and can improve the results significantly.

(2) We adopt optimal threshold selection in diagnostics
and design an attack detection algorithm that can
detect and isolate false data injection attacks.

(3) The proposed approach can be scaled to a number of
cooperation-based applications.

The rest of this paper is organized as follows. Section 2 pro-
vides the problem statement and assumptions. Section 3
discusses the proposed attack detection approach. Section
4 presents numerical experiments on microscopic traffic
simulation. Lastly, conclusions are presented in Section 5.

2. PROBLEM STATEMENT

Consider a routing scenario with vehicles traveling on a
three-lane highway with multiple routes and intersections,
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Fig. 1. Architecture of proposed cloud-based method

and the dynamic routing algorithms rely on accurate
information from CAVs. CAVs publish their information
as well as their surrounding information to the Cloud with
a unique vehicle ID as shown in equation (1). It is assumed
that only surrounding vehicles within a radius R from an
ego CAV can be sensed. Thus, each CAV only publishes
the information of itself and its neighboring CAVs.

Define S; as the total information that a CAV ¢ publishes
to the cloud, X, is the information about 4 itself and X;
is the information about 7 and its neighboring vehicle j.
All observation vectors can then be given in equation (1).

Si = [XiaXila ...... ,Xi_]:]T
Xi = [z, v, Vi, viy a4, 0] T (1)
Xij = [dij, vi]"

where,

1 € Ny, set of ego CAVs

j € M,, set of neighboring vehicles

x;, global longitudinal coordinate of vehicle 4

y;, global lateral coordinate of vehicle i

1;, yaw angle of vehicle ¢

v;, velocity of vehicle 4

a;, acceleration of vehicle i

1, yaw rate of vehicle 4

d;j, relative distance between vehicle ¢ and vehicle j
vy, relative velocity between vehicle ¢ and vehicle j

The false data injection attack is assumed to be on the
CAVs in the procedure of publishing information with
Cloud as shown in Fig. 1. The published information can
be injected with malicious data after the communication
channels on the vehicles are compromised. Among all the
published information, we consider position and velocity
attack x;, y;, and v;. Let I} denote the original data at
time k and I € {x;,y;,v;}. The equation of the sensor
data I under FDI attack at time k can be described as

Ip = I+ Al (2)
where Al is the malicious data injected by the attacker
and I} is the final attacked data.

3. METHODOLOGY
3.1 Cloud-based Solution

In the proposed method, Cloud will be responsible for
gathering information from all the CAVs and generating

a flow of trustworthy information for every CAV. The
proposed structure requires the definition of a Cooperative
Controller (CC) and an Attack Detection Unit (ADU) as
shown in Fig. 1. The CC is a supervisory controller with
enhanced performance relying on shared CAVs informa-
tion to make decisions. In a navigation scenario, CC is
a dynamic routing algorithm which uses real-time traffic
data collected by CAVs for routes selection to reduce travel
cost. However, when the shared information is malicious
(i.e. false data injected), the ADU should detect it and
prevent such data from being used by the Cooperative
Controller. ADU should allow the shared information to
be utilized again once the attack detection alert is cleared.

ADU will compare the published data of a single-vehicle
with the estimated data from a cloud-based data collection
and fusion system. Once a mismatch is identified, that
vehicle should be elected as under attacks. ADU should be
able to handle the task in real-time leveraging the powerful
computational capability of cloud computing.

3.2 System Model

A simple steering and driving model that uses gyroscopes
and accelerometers to find the vehicles’ yaw rate and
acceleration is considered to be the vehicle motion model.
The current input of the system can be defined by a
pose vector uy = [¢p a], where ¢ and a are current yaw
rate and acceleration respectively. The discrete-time state
transition equation of the vehicle is shown in equation (3).

X = flug, Xp-1)
Ty = x4_1 + v - cos - At + €4
Yt = Y1 + v - siny - At + €42 (3)
vy =v—1 +a - At + €3
Y =1 + Py Al + €

where, X; = [z; y: v )7 is the state of the vehicle
at time ¢, At is time step, and ¢; (i = 1 ,... 4) is a
set of random samples drawn from Gaussian distribution
N(0,02) representing system noise. Here, the standard
deviations are 0,1 = 0.4, 049 = 0.4, 04,3 = 0.01, 044 =
0.25. These values are determined based on trial and error
to make the model closer to reality.

For the CAV application, the localization information of
ego vehicle can not only be directly obtained from on-
board GPS, but also from neighbors’ GPS data, the rela-
tive distance, and speed between ego vehicle and its neigh-
bors. Lidar and radar can provide measurements about
relative distance and speed. A vehicle and its neighbors

at time t are represented by i; and Nt(i), respectively.
Assuming that j € Nt(i), its estimation about the location
and velocity of 7 is expressed by

mgji) _ $£j) + dgji)cos(’yt(ji))

y) =y + di?sin(y") (4)

,Uiji) _ ’U,gj) + Sl(tji)é‘in(’yt(ji))
where, J:,Ej i), yij g
location and velocity in the coordinate frame of j. dﬁj i),
sgj i)7 and 'yt(j ) are relative distance, relative velocity, and
angle between two vehicles at time ¢ using lidar and radar,
respectively. xgj ), ygj), and vgj )

t(ji) are the estimation of #’s

, and v

are the estimation of 7’s
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neighbor j’s location and velocity. False yaw angle attack
is not considered as it is difficult to infer ego vehicle’s yaw
angle from neighboring vehicle’s on-board sensors.

Full state observation is assumed which contains the

measurement of the current position, speed, and yaw

angle. Therefore, the onboard sensor readings are:

Zy=1[% G O )" (5)

The observation equations for this model are:

- 1

Ty =T+ n,(S )
(2)

=,
Zy=g(Xy,my) = %t . 23) (6)
Uy = U+ Ny
D =Py + n(4)

where, n, is a set of random samples drawn from A(0,02)
representing measurement noise. Note that for different
states, measurement noises vary.

The routing algorithm for CAVs is adapted and simplified
from the work by Tian et al. (2015). The criterion for the
best route is the general travel cost. A route is a sequence
of edges that describes a path through the network. For
each of the edges in the network, the general cost of that
edge i for period k is computed as a weighted sum of travel
time T and travel distance d¥.

Cr=a-TF+p-df (7)
where travel distance is determined by the geometry of the
edges and travel time is computed depending on the traffic
situation. The coefficients a and S can be defined by the
user. During a simulation, travel times are measured for
each edge in the network. All vehicles that leave the edge
report the time they have spent on the edge. All travel
times during one evaluation interval k are averaged and
thus form the measured travel time for that edge. The
general cost C’f for a route j is simply defined as the sum

of the general costs C’i’c of all its edges i:

-yt ®
i€j
Then the route with minimum cost will be selected.

3.8 Particle Filter-based Data Fusion

Cooperative localization is introduced here in order to fuse
information from multiple sources (i.e., neighboring CAVs)
and obtain accurate localization information for an ego
CAV, which will be utilized in the routing algorithm. The
proposed data fusion scheme incorporates a particle filter
with cloud communication. Compared with the Kalman
filter, the particle filter is able to deal with non-Gaussian
noises, which provides the scalability and flexibility to be
applied to different scenarios. In this proposed method,
the core idea is to use neighboring vehicles as additional
measurements in the observation equation, which could be
regarded as a multi-sensor architecture as shown in Fig. 2.

More specifically, each neighboring vehicle is able to pro-
vide an estimate of the ego vehicle’s states using equa-
tion (9) which is based on equation (4).
) xftji) (J) —|—d(ﬂ)cos(’yt(ji)) +an
27 = { g = t@ +dsin(y")) +a (9
vgﬂ) _ Ut(]) + Sgﬂ)sm(%ﬂ)) T ags
where a;(i = 1,...,3) is a set of random samples drawn
from N (0, 0}) representing measurement noise. Therefore,
each neighboring vehicle could be regarded as an addi-
tional “sensor” besides the ego vehicle’s own onboard GPS.
And the observation model is not based on measurement

from one sensor but from multiple sensors. For time ¢, a
set of measurements Z; is provided by j + 1 sensors:

Zi={z}u{", ) (10)
where z{ represents the measurement from ego vehicle’s
sensor which is computed based on equation (6), z,gﬂ)
represents the measurements from neighboring vehicles’
sensor which is based on equation (9) and j denotes the
number of neighboring vehicles. Therefore, in total, there
are j + 1 sets of measurements. As the measurement sets
of different sensors are independent, then the observation
likelihood p(Z;|X;) is computed as

p(Zi|X0) = p({z} U {1,

N
= p(=i1X0) [T e 1x0)
j=1
As we can see from equation (11), there are two parts
in the total observation likelihood: p(zf|X;) denotes the
observation likelihood based on the vehicle’s onboard sen-
sor measurements and p(z,”"’|X;) denotes the observation
likelihood based on neighboring vehicles’ measurements.
The likelihoods can be computed using

1 ( (i,ji))g)
27r NHn L On (n)
2
2099 (n)— x,<n>>

271X,)
(11)

() = 2L

JZ) \/Z 1

where p(ZISZ’]Z |X;) denotes either p(z{|X;) or p(zt(]Z)|Xt);
e(t79) denotes either e’ or el9") which is the corresponding
normalized error between actual measurement (i.e., 2} or
z,gm) and estimation X;; N represents the number of
states in observation equation or state transition equation.
For X; and Z;, N is 4 as shown in equation (3) and

equation (6); for Zgi, N is 3 as shown in equation (9).

(12)

On (n)

Then the weights for each particle m can be updated
using equation (13) and the final output can be computed
using equation (14). Note that in the routing scenario,
every vehicle can be the ego vehicle. Thus, there is one
particle filter running for each vehicle that aims to fuse its
onboard sensor information with its neighboring vehicle
information in the radius R.

~(m)
(m) @,

w1 :W (13)
me=1“t
o™ = e - p(Zi]X{™)
o~ (m) X"
X~ Y w™ (14)

m=1
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3.4 Attack Detection Scheme

The core idea of attack detection is the discrimination be-
tween normal data and attacked data, and we discriminate
them by comparing the data content in this case. Normal
data is modeled using the proposed data fusion method in
Section 3.3. In order to identify if false data injected or
not, the results of the data fusion algorithm for one ego
vehicle are going to be compared with the information sent
from neighboring vehicles as shown in Algorithm 1.

Algorithm 1 Decision Logic

for each j € M,(Number of neighboring vehicles) do

if Ei 2 Ethreshold then
j is publishing false information;
end if
end for

In this logic, E{ shows the residue between estimated
results after data fusion and information sent from neigh-
boring vehicle j at time ¢. E} is a vector which is defined in
equation (15). As false yaw angle attack is not considered,
there are only three states for E! and FEipresnoia- Fji
exceeds FEypresholg if at least one element in the vector
EJ exceeds the corresponding value in matrix Eypreshold-

Zi] (15)

where, e;,e,, and e, are the errors for z position, y
position, and velocity, respectively.

False data is identified to be published from that vehicle
to the cloud when the residue of that vehicle is larger than
a threshold (Fipreshoid). However, due to the existence
of Gaussian noises in the measurement data as shown in
equation (6), we need to carefully determine the threshold
so that we know to what extent the biased data can
be regarded as under attack, and to what extent the
biased data can be regarded as normal data with noises.
Therefore, the optimal threshold selection method is used
to determine the threshold by minimizing false alarms P
and misdetection Py, as shown in equation (16).
where Pp and Py are defined in equation (17), and h is
the threshold.

“+o00 h
Pr :/ po(z)dx Py :/ p1(x)dx
h e’}

(17)

Here, binary hypothesis testing is the basics of this optimal
threshold selection. Probability density function (pdf) po
represents the residuals distribution at a normal condition
Hy (i.e., no attacks) while p; represents the residuals
distribution when the system is under attack H;. Then
Py refers to the probability that hypothesis H; is chosen
when Hj is true (i.e., probability of a false alarm), and
Py refers to the probability that hypothesis Hy is chosen
when H; is true (i.e., probability of a misdetection).

As one neighboring vehicle j could also be the neighbors of
other ego vehicles, which means there are multiple fusion
systems using information from vehicle j, the majority
rule is used here for consensus decision making as shown
in Algorithm 2. If one neighboring vehicle j is identified

Algorithm 2 Detection Scheme
=0
for each i € I (Number of vehicles can sense j) do
if Eg (Z) > Ethreshold then
4 is publishing false information according to ;
f=r+1
end if
end for
if f> %I then
j is under false data injection attack;
end if

as publishing false information by a data fusion system,
then all the fusion systems using information from j will
report the detection result of j. If more than half of the
ego vehicles in the circle of interest report j is publishing
false information, then j is considered as under attack.

If the vehicle j is considered as under attack for more than
T seconds, the vehicle j is removed from the fusion system
and stopped from being used in the CC. At this stage,
the Cloud is still receiving information from vehicle j and
evaluating its trustworthiness. If more than half of the
fusion systems report j is not publishing false information
for T seconds, 7 will be put back in the data fusion systems.

Both the proposed data fusion algorithm and attack detec-
tion scheme are independent of the implementation details
of routing algorithms, which gives the possibility of adopt-
ing the proposed approach to other CAV applications.

The number of CAVs required to implement the proposed
algorithm depends on the radius of the circle of interest,
the CAV penetration rate, and the number of attackers
(i.e., we assume multiple attackers in this case). We assume
there is a dynamic relationship between them instead of
a simple static minimal value. This problem is not in the
scope of this paper and left for the future work.

4. SIMULATION AND RESULTS
4.1 Simulation Setup

The Cloud setup is based on Microsoft Azure and MAT-
LAB. A Linux virtual machine (VM) is created in Mi-
crosoft Azure with MATLAB installed. On the local ma-
chine, VISSIM is used to simulate the routing traffic
scenario and VISSIM-MATLAB co-simulation is used to
stream real-time traffic and vehicle data. To upload data
to VM, a UDP communication between two MATLAB
sessions is established. In this scenario, the local machine
acts as an onboard embedded computer on vehicles, and
the VM acts as a kind of traffic management center.

Three links are created with the same origin and destina-
tion. The links are single direction and single lane. Lane
changing behaviors are not considered in this paper. The
simulation step is 0.2 second (s) and the routing algorithm
is based on the one illustrated in section 3.2. Without
attack, vehicles are able to select a suitable route with
minimum travel cost. Route selection changes as vehicles
move along the network based on travel distance and travel
time. Travel time is related to traffic volume density and
velocity, which is based on the position and speed of a
group of vehicles. As the velocity of CAVs on road will
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affect the travel cost, false velocity attacks are performed
in this scenario. Also, attacks on multiple vehicles are
conducted as single malicious velocity data on the road
is not able to affect the total travel time and travel cost a
lot. More specifically, false velocity attacks are applied on
4 vehicles on the road where there are around 8 vehicles
in total. The attacks are injected from 4 s to 8 s in the
simulation and all the attacked vehicles have a malicious
velocity which is 6 m/s lower than the original normal
velocity. Therefore, fake congestion is created for that
route. The CAV penetration rate is 90% for all runs.

4.2 Simulation Results

The estimated velocity for one ego vehicle are shown in
Fig. 3. Each data point indicates the velocity at a single
time step (with an interval of 0.2 s). As shown in Fig. 3,
a good estimation of vehicle states can be obtained by the
particle filter-based data fusion algorithm using the noisy
sensor data and the speed error is reduced. The optimal
threshold selection result is shown in Fig. 4. We ran the
simulation multiple times with different thresholds for

Attacker Isolation

O Actual Attacks
18 r # Detected Attacks | |

Attacker ID

0 10 20 30 40 50 60
Time Step (0.2s)

Fig. 5. Attackers isolation results

ADU, and the relationship between the total probability
of error Pg and threshold h is shown in Fig. 4. Pg first
decreases with the increase of h, and then Pg begins to
increase after h reaches 4 m/s. Therefore, the threshold
can be set to 2 m/s for false velocity attacks. Then the
decision-making scheme using the selected h is shown to
be able to identify the attackers which are vehicle identity
(ID) 13, 14, 15, and 16 as shown in Fig. 5. False velocity
attacks are injected from time step 20 to 40.

Fig. 6(a) shows the change of the fused speed for one ego
vehicle due to the false data received from its neighbors.
After adding the ADU using h = 2 selected from Fig. 4,
the attack can be mitigated as shown in Fig. 6(b). The at-
tacked vehicles will be removed from the fusion algorithm
once they are detected, thus they won’t affect the fusion
results anymore. It is shown that those false data can affect
the performance of the particle filter but the effect can be
reduced with the proposed simple mitigation. We could
see that this mitigation approach can generate a flow of
trustworthy information for CAVs, which can ensure the
safety and correct behavior of CAVs. A preliminary com-
parison is also conducted between our proposed algorithm
and works in the literature as shown in Table 1. As shown
in the table, our proposed method can achieve state-of-
the-art performance with respect to the existing methods.

Table 1. Comparison with respect to the
RMSE (Root Mean Squared Error)

Proposed Approach Kong and Jun

(2017)
Methods Particle Filter Kalman Filter
RMSE 0.315 ~ 0.5

5. CONCLUSION

In this paper, a data fusion-based attack detection method
is proposed to mitigate false data injection attacks in
CAV scenarios. Particle filters and cloud communication
are integrated in order to fuse the location and speed
information published from multiple vehicles, then the
results of data fusion are evaluated by the ADU to detect
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attackers. The decision scheme leverages the knowledge of
diagnostics and consensus decision-making. The detection
capability of the proposed approaches on CAVs has been
verified in the simulation. The results show that the pro-
posed data fusion algorithm can improve the localization
and speed estimation of vehicles, and the ADU is able to
detect the vehicles sending false information. Modeling the
communication channel delay in the CAV network and the
behavior prediction of unconnected vehicles could be the
future work. The investigation of other types of attacks
(i.e., false acceleration, false yaw angle) using the data
fusion method could also be a future research direction.
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