Attack-resilient Blockchain-based Decentralized
Timed Data Release

Jingzhe Wang and Balaji Palanisamy

University of Pittsburgh, Pittsburgh, PA, USA
{jiw148,bpalan}@pitt.edu

Abstract. Timed data release refers to protecting sensitive data that
can be accessed only after a pre-determined amount of time has passed.
While blockchain-based solutions for timed data release provide a promis-
ing approach for decentralizing the process, designing a reliable and
attack-resilient timed-release service that is resilient to malicious adver-
saries in a blockchain network is inherently challenging. A timed-release
service on a blockchain network is inevitably exposed to the risk of post-
facto attacks where adversaries may launch attacks after the data is re-
leased in the blockchain network. Existing incentive-based solutions for
timed data release in Ethereum blockchains guarantee protection under
the assumption of a fully rational adversarial environment in which every
peer acts rationally. However, these schemes fail invariably when even a
single participating peer node in the protocol starts acting maliciously
and deviates from the rational behavior.

In this paper, we propose an attack-resilient and practical blockchain-
based solution for timed data release in a mixed adversarial environ-
ment, where both malicious adversaries and rational adversaries exist.
The proposed mechanism incorporates an effective decentralized reputa-
tion model to evaluate the behaviors of the peer in the network. Based on
the reputation model, we design a suite of novel reputation-aware timed-
release protocols that effectively handles the mixed adversarial environ-
ment consisting of both malicious adversaries and rational adversaries.
We implement a prototype of the proposed approach using Smart Con-
tracts and deploy it on the Ethereum official test network, Rinkeby. For
extensively evaluating the proposed techniques at scale, we perform sim-
ulation experiments to validate the effectiveness of the reputation-aware
timed data release protocols. The results demonstrate the effectiveness
and strong attack resilience of the proposed mechanisms and incurs only
a modest gas cost.

Keywords: Timed Release, Blockchain, Smart Contract

1 Introduction

Timed data release refers to protecting sensitive data that can be accessed only
after a pre-determined amount of time has passed. Examples of application us-
ing timed data release include secure auction systems where important bidding

2 Jingzhe Wang and Balaji Palanisamy

information needs protection until arrivals of all bids and secure voting mecha-
nisms where votes are not permitted to be accessed until the close of the polling
process. Since the early research effort on timed information release [16], there
has been several efforts focusing on providing effective protection of timed release
of data. In the past few decades, a number of rigorous cryptographic construc-
tions [5,6,8,9,21] have enriched the theoretic foundation of the timed-release
paradigm to provide provable security guarantees. Even though the theoretic
constructions in cryptography provide strong foundations for the development
of the timed data release, designing a scalable and attack resilient infrastructure
support for timed release of data is a practical necessity to support emerging
real-world applications, especially decentralized applications that require timed
data release. Recently, a category of network structures, namely self-emerging
data infrastructures [19], have been proposed to provide a practical infrastructure
support for supporting the timed data release paradigm. Such a self-emerging
data infrastructure aims at protecting the data until a prescribed release time
and automatically releasing it to the recipient. In such data infrastructures, par-
ticipating entities of a decentralized peer-to-peer network (e.g., an Ethereum
Blockchain network) take charge of protecting and transferring the data. This
approach provides an alternate decentralized management of the timed release
in contrast to traditional solutions (e.g., cloud storage platforms) that may pro-
vide a centralized view to support timed data release. A centralized construction
completely relies on a single point of trust that becomes a key barrier to security
and privacy, especially in emerging decentralized applications.

Decentralized design of self-emerging data infrastructures [13] has been gain-
ing attention recently with the proliferation of blockchains and blockchain-based
decentralized applications. A blockchain provides a public decentralized ledger
system operated by global volunteers connected through a peer-to-peer network.
Powerful consensus protocols such as Proof-of-Work guarantee the correctness
of operations in a blockchain. Such attractive features of blockchains provide a
flexible and reliable design platform for developing decentralized self-emerging
infrastructures. While blockchains enable a promising platform for building de-
centralized infrastructures, several inherent risks have been exposed. In this pa-
per, we particularly focus on two major risks of blockchain-based infrastructures:
First, the open and public environment in blockchains, where a large number
of mutually distrusted participants jointly engage in some services, is full of
uncertainty. Such an environment may consist of peers with heterogeneous un-
predictable behaviors. One can imagine a scenario where some participants with
misbehavior always seek opportunities to sabotage a decentralized service while
some other peers may perform actions for seeking maximum profit. Second, the
blockchain-based infrastructure is inevitably under the threats of post-facto at-
tacks, where adversaries may launch potential attacks after the data is released in
the blockchain network and control some of the participating peer nodes. In this
paper, we materialize such a type of attack with two representative examples,
namely drop attack and release-ahead attack. In a drop attack, an adversary may
successfully launch such an attack by destroying the data at any time before the

Attack-resilient Blockchain-based Decentralized Timed Data Release 3

prescribed release time, which results in the failure of the release of the data.
For instance, in a secure biding system, such an attack may destruct the pro-
tected biding information before the arrival of all bids. A release-ahead attack
may be launched by an adversary who covertly interacts with some participating
nodes to intercept the data and perform premature release of such data before
the prescribed release time. For example, adversaries may maliciously disclose
the protected biding information before the prescribed release time. With such
concerns in mind, designing a reliable and attack-resilient timed release service
is significantly challenging. Existing blockchain-based protection for timed data
release focus on two aspects. First, grounded on the game theory, incentive-based
solutions [12-14] protect the timed data release from peers with a fully rational
context in the Ethereum network. Second, a cryptography-based solution [18]
is proposed to handle the malicious adversaries who launch incentive-based at-
tacks. However, existing solutions either disregard the heterogeneous market-
place in blockchains or ignore the damage of post-facto attacks, which makes
blockchain-based timed-release service less practical and secure.

In this paper, we carefully consider a mixed adversarial environment in
blockchains where both rational peers and malicious peers exist. Specifically, a
rational peer only performs attacks when s/he receives higher profit. A malicious
peer always deviates from the timed-release protocol without being concerned
of any monetary loss. Designing a strong timed-release protocol that survives in
such contexts consisting of heterogeneous unpredictable behaviors incurs mul-
tiple challenges. First, the incentive-only mechanism in blockchain-based timed
release is not sufficient for evaluating peers with malicious behaviors and it is
important to design a metric that is able to effectively capture the behaviors of
each peer. Second, it is crucial to measure and quantify attack resilience and de-
signing an attack-resilient timed-release scheme to mitigate the impact of mixed
adversarial environment is inherently challenging. Finally, evaluating peers’ dy-
namic behaviors in a decentralized environment is essential to identifying and
rewarding honest peer behavior in the system. For addressing these challenges,
we first propose an uncertainty-aware reputation measure to evaluate the behav-
ior of each peer. Such a measure captures how likely a peer may perform honest
actions or malicious actions in an incoming timed-release request. Based on
the uncertainty-based reputation model, we propose a suite of reputation-aware
timed-release protocol consisting of two key ingredients: First, a reputation-time-
aware peer recruitment policy is designed to achieve better drop attack resilience
and release-ahead attack resilience while the selected peers’ working time win-
dows cover the entire lifecycle of the timed-release service. Second, a suite of de-
centralized on-chain protocols are proposed to guarantee the normal operations
of the timed-release protocol. For extensively evaluating our proposed timed-
release protocol, we first perform simulation studies using a synthetic dataset to
evaluate the techniques at scale. We then implement a proof-of-concept proto-
type through real-world smart contracts using Solidity programming language,
and deploy the smart contracts on the Fthereum official test net, Rinkeby. The
results demonstrate that, compared with the existing solutions, the proposed

4 Jingzhe Wang and Balaji Palanisamy

techniques achieve significantly higher attack resilience while incurring only a
modest on-chain gas cost.

In summary, our key contributions of this paper are as follows:

(1) We carefully design an effective uncertainty-based reputation mechanism
for blockchain-based timed-release services.

(2) We propose a suite of novel reputation-aware timed-release protocol to
construct the expected timed-release scheme that achieves better attack re-
silience.

(3) We perform extensive evaluations for our proposed protocol in terms of

scalable simulations as well as proof-of-concept prototype implementation on of-
ficial Ethereum test network Rinkeby.
The rest of this paper is organized as follows. In Section 2, we provide an overview
of the framework as well as the adversary model. Then, we highlight the limita-
tions in the existing works with motivating examples. In Section 3, we first build
our reputation model with formal descriptions. Then, using the proposed repu-
tation model, the full view of the construction of our reputation-aware timed-
release protocol is unfolded. In Section 4, we perform our simulation studies and
show the numerical results, and we implement our proposed techniques through
real-world smart contracts in Solidity, and we deploy them on the Ethereum
official testnet Rinkeby. The detailed on-chain gas evaluations are also shown
in this section. In Section 5, we show the current positions of the timed-release
research as well as the related work. In Section 6, we conclude the paper.

2 Background & Motivation

In this section, we first introduce blockchain-based self-emerging data infras-
tructures. Then, the adversary models, analysis of the limitations as well as
motivations are demonstrated with examples.

2.1 Decentralized Timed-release of Self-Emerging Data using
Ethereum Blockchain

There are four key components for supporting a timed-release service, namely
Data Sender, Data Recipient, Cloud, and Blockchain Infrastructure respectively.
Without loss of generality, we denote multiple timed-release service requests as
Req = {reqq, ...,reqm }, where m € ZT. A pair of data sender and data recipient
as well as a group of peers over the Ethereum network are responsible for each
request. We formally describe the four key components below.

Data Sender: A new timed-release service is initialized by a data sender
S;, S; encrypts the private data that needs to be transferred with a secret key,
and sends the encrypted private data to a trusted cloud storage platform. Then,
at the start time T of the service reg;, S; sends the encrypted secret key to
the blockchain network and such a key will be released at a prescribed release
time 7. By taking into consideration multiple service requests, we denote S =
{S1, ..., Sm} as the data sender set for different timed-release service requests.

Attack-resilient Blockchain-based Decentralized Timed Data Release 5

Data Recipient: For each timed-release service reg;, the corresponding data
recipient R; is responsible for receiving and decrypting the encrypted secret key
sent by the data sender S; at the prescribed release time T}, and decrypting the
encrypted private data from the cloud storage to obtain the original private data.
We assume that S; and R; can perform negotiation before a new regq; in terms
of off-chain interactions. We denote R = {Ry,..., R;,} as the data recipient set
for different timed-release service requests.

Cloud: A cloud storage infrastructure acts as a trusted third-party storage
platform between a pair of data sender and data recipient to store the encrypted
private data.

Blockchain Infrastructure: In our framework, we use the Ethereum net-
work as the core infrastructure for supporting a decentralized service. Specifi-
cally, the smart contract is owned by a Contract Account (CA), and each regis-
tered peer as well as data senders and data recipients are represented by multiple
Externally Owned Accounts(EOAs) in the Ethereum account network. Without
loss of generality, we denote SC as the smart contract and P = {P,..., P;} as
the registered peers in SC for participating the timed-release service.

2.2 Adversary Model

2.2.1 Mixed Adversarial Environment

We consider three different types of peer accounts !, namely honest peer, rational
peer, and malicious peer, existing in the Ethereum account network. Specifically,
every honest peer always participates in timed-release service protocols with ab-
solutely honest actions. This type of peer never performs any malicious actions.

Every rational peer acts with economic rationality. Such a type of peer is
driven by self-interest and only chooses to violate timed-release service proto-
col when doing so let him earn a higher profit. Every malicious peer always
maliciously launches attacks and deviates arbitrarily from the prescribed timed-
release service in an attempt to violate security.

To concretely capture such a mixed adversarial environment, we assume that
there always exists a malicious adversary M holding an EOA as well as a global
view of our protocol to aggressively break normal operations of our timed-release
service. Such an adversary may adopt two potential approaches to corrupt het-
erogeneous peers. One is bribery [13], where the rational peers are the chief vic-
tims. The other one is malicious peer injection, where M intentionally creates a
set of peer accounts acting as the malicious peers and controls them to register
themselves with the timed-release smart contract, SC, at any time. Once such
malicious peers are selected as participants for a timed-release service, potential
attacks will occur. We formally define the attacks next.

2.2.2 Post-facto Attacks
We consider two concrete post-facto attacks in our framework. One is drop attack,

! In this paper, we use the terms peer and peer account interchangeably. We also
highlight that a peer may represent an individual holding Ethereum account and
not a miner node.

6 Jingzhe Wang and Balaji Palanisamy

Casel 4 D ‘ D é casel & b

“»

>

(P1 YP4 (P3 73 . reretease” \g'p.
Injected Peer o Injected Peer i
D
Case2 D Case2
& > 4°x & & o 4 ¢
(P1 (Pz 4 P; (pl (Pz refrelease Y P,

@
° &

Case3 D D Case3 D
et ‘m ‘fpz ‘rp\" saiorat Y Ps ‘m $rp\"
T, L T, T, L4 T,
1 1 1 1
(a) Drop Attack (b) Release-ahead Attack

Fig. 1: Post-facto Attack Examples

which aims at destroying the data before the prescribed release time and results
in a failing data release at the prescribed release time. Such an attack may be
launched by M who controls one or more injected malicious peers engaging in
the timed-release service. For example, in Case 1 of Fig. la, M controls the
injected malicious peer P, to drop the data D?, and after T,., D is missing. In
addition, M also can adopt bribery to corrupt rational peers. As an example, in
Case 2, in another service, M could let the rational peer P, drop D by bribing
P; through off-chain interactions to make P, earn more profit. As a consequence,
after T}, nothing will be released.

The other form of attack is the release-ahead attack. A successful release-
ahead attack results in a premature release of the data D. It can be launched
by M by corrupting a fraction of peers engaging in the timed-release service
to get the data before the prescribed release time and disclose it. For example,
in Fig. 1b Case 1, M may control Py and bribe P5 to successfully launch a
release-ahead attack. Specifically, we note that in our protocol, the data D will
be encrypted using the public keys of Py, Py, and Ps. If M wants to pre-release
D, he/she must control P, to acquire the encrypted data and bribe Ps to get
the private key of P3 to decrypt the encrypted data and pre-release at that time
point which is earlier than T;.. Additionally, by adopting bribery, in Case 2, M
must bribe P, and Pj to successfully launch the release-ahead attack.

2.3 Limitations of Existing Solutions

We present an example to illustrate the fully rational environment [13], described
in Case 3 in Fig. la and Fig. 1b, in which the global-view adversary M also
acts rationally. The incentive-only solution [13] can regulate each rational peer’s
behavior based on the existence of Nash Equilibrium [17], and D will be normally
released at T, as expected. However, by comparing Case 3 with Case 2 as well as
Case 1 in Fig. 1a and Fig. 1b, it is easy to find that if we still apply the incentive-
only solution in Case 1 and Case 2, the protection of D will inevitably suffer
from a striking degradation even if there are only a few malicious peers. This

2 We generalize D as any data transmitted over the Ethereum account network. In
this paper, specifically, D refers to the secret key generated by the sender

Attack-resilient Blockchain-based Decentralized Timed Data Release 7

limitation motivates us to design an attack-resilient protocol to protect the data
during a timed-release service in our practical mixed adversarial environment.

3 Reputation-aware Timed-release Protocol

In this section, we demystify the detail of our reputation-aware timed-release
service protocol. We first build an uncertainty-aware reputation mechanism to
evaluate the behavior of each peer. Then, incorporated with such a mechanism,
four tightly coupled components, namely Peer Registration, Service Setup,
Service Enforcement , and Service Summary are elaborately described
with examples.

3.1 Uncertainty-aware Reputation Measure

In our protocol, after each service, SC judges peers’ on-chain behaviors with two
distinct types. One is honestly following the protocol, denoted by F'L, and the
other is dishonestly deviating the protocol, denoted by DV'. Such evaluations of
behaviors are governed by our Service Enforcement and Service Summary pro-
tocols, which we will describe in detail in Section 3.2.3 and Section 3.2.4 respec-
tively. Since there are multiple request demands of timed-release services, each
registered peer may be recruited by different senders to engage in more than one
service. Inspired by the binary assessments of behaviors as well as the engage-
ment within multiple requests, we borrow the ideas from Beta distribution [7] to
measure the reputation of each engaged peer from an uncertainty perspective.
Next, we detail the establishment of our reputation measure. We start with the
sketch of the Beta distribution, which is a two-parameter family of functions
represented by a and 3, defined as f(Pr|a,) = %Pr“‘l(l — Pr)f—1
where 0 < Pr < 1,a > 0,8 > 0 with the constraint that the probability vari-
able Pr #£ 0 if a < 1, and Pr # 1 if § < 1. Given « and S, the expectation
of Pr is described as E[Pr]| =] .Our reputation measure can be expressed
as follows: For each peer P; who participates in a timed-release service, an on-
chain post-service evaluation for P; within the i-th timed-release service e(j, 1)
falls in & = {FL,DV}. If P; honestly follows the i-th timed-release protocol,
e(j,1) = FL, otherwise, e(j,i) = DV. For counting the evaluations and record-
ing in SC, we denote I(j,i, FL) =1 if e(j,i) = F L. Otherwise, I(j,i,DV) = 1,
where I(j,4, FL) + I(j,i,DV) = 1 for each req; € Req. Then for each peer,
we define a(j,1) = I(j,i, FL) + 1, and B(j,i) = I(j,4, DV) + 1. Since P; may
engage in multiple timed-release services, we have a(j) = .-, I(j,4, FL) + 1,
and B(j) = >.i", I(j,4,DV) + 1, where a(j) captures the total observations of
honest evaluations of P; among m requests, and 5(j) captures the total obser-
vations of deviation evaluations for P; among m requests. Then, based on the

above definitions, we have E[Pr(j)] for P;,where E[Pr(j)] = % denotes
the likelihood that P; honestly follows the protocol when participating in the
future service, given the observations of honest evaluations a(j) and the observa-
tions of deviating evaluations 5(j). Based on E[Pr(j)] , we define the reputation
measure of P; as follows:

a(d)

Rep(j) = a(j) +1+£€-[8() — 1]

(€]

8 Jingzhe Wang and Balaji Palanisamy

where £ > 1 is a predetermined penalty factor which is designed to penalize
any dishonest behaviors of P;. The design objectives of this measure are two-
fold: first, given that the historical evaluations, Rep(j) reflect the likelihood
that P; honestly follows future engaged services, it measures the reputation
with uncertainty. Second, adjusted by &, for P;, Rep(j) is gradually built up
when P; honestly contributes in the protocol and it is rapidly reduced when
P; dishonestly deviates the protocol. For instance, if P; has been engaged in
12 timed-release services, wherein he/she honestly follows the protocol 8 times
and dishonestly deviates the protocol 4 times, the reputation is measured by
Rep(j) = (84_1()8_‘_% = 0.41, which indicates that for the incoming service
engagement, P; holds 0.41 likelihood to follow such service. In particular, for a
peer who does not hold any past observations, the reputation score is initialized
with %

3.2 Reputation-aware Timed-release Protocol

We now describe the detailed design of our reputation-aware timed-release pro-
tocol.

3.2.1 Peer Registration

At any time, each voluntary peer P; € P can register himself with SC. The
detailed design is described as follows: 1. Each voluntary peer P; € P can sub-
mit his/her personal information I; := {pk;, w;,d;} to the smart contract SC.
2. After receiving the registration request from P;, SC performs the following
operations: SC first updates w; with SC.WITree (an Interval Tree [2] structure
to store working windows). Then, SC initializes an account, namely, Peer(j)
for P; to store the on-chain profile, which consists of the content as follows: the
account balance of P;, the public key pk; of P;, the history of service evaluations
of P;, and the initial reputation score Rep(j) = 0.5. In parallel, SC constructs
IP, a map that indexes Peer(j) with the key w;. After the transactions corre-
sponding to the registration procedure are confirmed, the information regarding
P; is stored on the public on-chain, which can be observed by any peer within
the network.

3.2.2 Service Setup

Before initializing a new timed-release service, the sender S; and recipient R;
first negotiate through off-chain connections to achieve an agreement for a new
timed-release service. Such an agreement consists of the following configurations
of the incoming timed release service: a prescribed release time 77 and minimum
deposit needed. After negotiating, the responsible sender S; makes provision for
the incoming service with SC by means of the Service Setup protocol. The logic
behind the Service Setup in our protocol is similar to one presented in [13]. The
novel feature that differentiate our protocol from the one in [13] is the newly
designed reputation-aware peer recruitment policy which we describe next.
(i)Reputation-aware Peer Recruitment: For a specific timed-release service
request req;, the sender S; first interacts with SC to observe the available peer
windows. Then, S; will make a decision to select a number of peers such that

Attack-resilient Blockchain-based Decentralized Timed Data Release 9

the set union of the working windows of such peers must cover [T ;,Tﬂ The
set of selected peers forms a routing-like path to store the data and perform
the data hand-off between each peer. In parallel, the sender \S; is also concerned
with the performance of data protection provided by such a set of peers. Such
a protection can be specifically represented as follows: given a set of selected
peers, what is the likelihood that the data is prevented from drop attack as well
as release-ahead attack?

We formally quantify such likelihood with two distinct attack resilience met-
rics, namely drop attack resilience and release-ahead attack resilience respec-
tively. With the help of our uncertainty-aware reputation measure Rep(-), given
a peer recruitment scheme FE that consists of [peers, we define such metrics as
follows: The drop attack resilience of E, denoted as F¥’, captures the failure likeli-
hood of the adversary M when he/she intends to launch a drop attack, quantified
as FF = Hi::l [Rep(k)], which reflects that M must control or bribe at least one
peer in E to successfully launch a drop attack. The release-ahead attack resilience
of E, denoted as F/¥, captures the failure likelihood of M when he/she intends
to launch release-ahead attacks. It is quantified as F.¥ = 1 — H2:1 [1 — Rep(k)].
Since the scheme F is protected with the Onion Routing [20] scheme, an adver-
sary must control all peers to prematurely release the data at the start time. We
discuss this later in the Service Enforcement protocol.

Our peer recruitment for the timed-release service consists of multiple rounds.
In each round of selection, the sender will take a time point as the input. By
retrieving all the available registered peers whose working window covers the
input time point in terms of W ITree, the sender will pick the one having the
highest reputation score as the responsible peer for the current round. Then,
the start time of the selected peer and the hand-off time zone will be taken as
the input of the next round selection. In particular, two conditions will end the
recruitment. When the WITree finds that no available peers are in a selection
round or when the start time of the selected peer is earlier than T5.

We illustrate our design approach using an example in Fig.2a. In the exam-
ple, there are totally 7 peers Pi-P; who have already registered with SC as well
as available within [T}, T;.]. The numerical value associated with each peer rep-
resents the current reputation measure, which is publicly known. The different
numerical measures associated with the peers indicate their historical behaviors
when they engaged in timed-release requests in the past. The blue color repre-
sents rational peers, the red color represents the malicious peers, and the green
color represents the honest peers. T}, denotes a predefined hand-off timezone.
The sender S first takes T.+T}, as the input of the first-round selection. There
are totally 3 peers, Ps, Pr, and Pg, who are available at this time point. Then,
S picks the highest reputation one, Py, whose reputation is Rep(P7)=0.98, as
one of the peer candidates. Then, S performs the second-round selection, which
takes T (P7)+T}, where T, (P7) represents the start time of the working window
of P7, as the input time point. The working windows of two peers, Ps and P,
cover such a time point. The one holding a higher reputation Ps, Rep(Ps)=0.94,
is selected. Followed by the third-round selection, P is selected. Finally, the last-

10 Jingzhe Wang and Balaji Palanisamy

round selection picks P; as well as checks that the start time of P; is prior to
the start time of the timed-release service, T, which ends the reputation-aware
recruitment procedure. The order of peers, P, — P3;— Ps— P>, jointly take charge
of the incoming timed-release service. We denote this scheme as E!.

(ii) Resilience Analysis: We provide a concrete example to show the re-
silience analysis of our proposed reputation-aware peer recruitment policy as
well as the time-aware recruitment proposed in [13] as the baseline for com-
parison. To analyze its resilience, we independently consider the drop attack
and the release-ahead attack. The release-ahead attack resilience of E' from
our proposed reputation-aware peer recruitment is derived from FTE1 =1-
(1-0.98)-(1—-0.94)-(1-0.97) (1 —-0.95) = 0.999, and the drop attack re-
silience is calculated as Ffl =0.98-0.94-0.97-0.95 = 0.85. For the reputation-

Selection Selection
P,=0.3 P,=0.3
P,=0.2 P,=0.2
P=095 | P,=0.95
P;=0.94 s P.=0.94
T.| Store T,

T, Store T, P;=0.97 T Storepfo.” Store T,

T,| Store 1,| P,=0.98 P,=0.98

Store
Store T,

— ' ' '

T, T, T, T
S——(P1 P3 —————> p5 ——> P7 ——> R S P2 P4 P6 R

(a) Reputation-aware Recruitment (b) Time-aware Recruitment

Fig. 2: Peer Recruitment Example

unaware recruitment in Fig. 2b, in each round of selection, only the peer who
has the longest working time is selected. The peers P,— Py;— Py take charge of
the service. We denote this scheme as E2. The release-ahead attack resilience is
FTEZ =1-(1-0.2)-(1-0.3)- (1 —0.6) = 0.77, and the drop attack resilience is
FfQ =0.2:0.3-0.6 = 0.036. Compared with our reputation-aware recruitment,
both F,,E2 and F dE2 show significant degradation. After providing all information
mentioned above, S; and R; deposit d and register the information with SC.

3.2.3 Service Enforcement

After completing Service Setup, a timed-release service moves into execution.
Service Enforcement takes charge of monitoring the correctness and timeliness
of the executions after the data is released into the blockchain network. Moreover,
with the help of the Service Enforcement protocol, SC can abort the service in
time if any misbehavior is detected. We adopt the basic procedures of the Service
Enforcement protocol described in [13]. We describe it next.

We denote E* = {Px}rep,y as the selected peers from the reputation-aware
recruitment policy from S;, and S; generates an onion by encrypting the orig-
inal data with the public keys of the peers in E? and transfer it to P; to ini-
tialize the Service Enforcement protocol.Without loss of generality, under the

Attack-resilient Blockchain-based Decentralized Timed Data Release 11

scope of the timed-release service, we capture the action space of each peer with
A = {cs,ws, tr,vr,rp}, where cs represents that Py verifies the received certifica-
tion from the Pj_1. The certification is used to detect drop attacks. ws indicates
that Py builds private channel using the Whisper Key protocol [13] with the
subsequent peer Pj41 to transfer the onion, and tr represents that Pj transfers
the onion to Py41, vr aims at verifying the on-time results of c¢s and ws, and
rp captures the possible misbehavior actions. In order to detect misbehavior in
time, we bound the major actions within 4 with corresponding deadlines, which
enables our protocol to be aborted timely if any misbehavior is detected. Con-
cretely, we associate each peer with a series of pre-determined hard deadlines.
For example, for the peer P, € E*, before T, P, must perform cs. Then, P
must perform vr for the verification of cs, and perform ws before T;. The veri-
fication of ws, and the delivery of the onion to the subsequent peer Py must
be executed before T5. Such deadlines follow the ordering: 77 < Ts < T3. In par-
ticular, if Pyy; does not receive the corresponding onion from P, he/she must
report the issue (rp) before performing cs, otherwise, if a failed submission of the
certification is detected from Pj41, P41 will be judged as launching the drop at-
tack. Our Misbehavior Detection protocol is similar to the one described in [13].
Corresponding to the results from the verification mentioned above, we denote
the finite state space of each P, € E' as By = {INIT,VF,WS,TR,FAIL}.
It is described as follows: all peers within E* start with the INIT state when
engaged in reg;. For Py, if he/she passes the verification for cs, then the state
of P, will be updated to VF from INIT. Then, if P, passes the verification
for ws, the state will be updated to WS from V F. If Py, does not report any
misbehavior of Py, the state of P will be updated to TR from V F. If any pre-
vious verification fails or a drop report is emitted, the state of Py will be moved
to FAIL and the current service will be aborted. If all peers in E? honestly
follow the protocol, R; will get the original data and close the current service by
following Service Summary which is described next.

3.2.4 Service Summary

There are two scenarios that trigger Service Summary:(1) A timed-release ser-
vice is successfully finished. Under this scenario, R; is responsible for the final
evaluations of each peer as well as updating the on-chain reputation. (2) A timed-
release service is aborted at a time point before the prescribed release time 77.
We adopt a remuneration policy similar to one described in [13] for the incentive
refund. For the behavior evaluation as well as for updating the reputation, SC
follows the rules to perform evaluations: SC checks the state of each peer within
E’. If the final state of a peer is TR, the binary assessment for the peer is FL,
and if the final state of a peer is FAIL, the assessment is DV. Otherwise, if a
peer has INIT state, SC does not perform any evaluations. Finally, the reputa-
tion measure of each peer in E* will be updated using by following equation 1.

12 Jingzhe Wang and Balaji Palanisamy
4 Evaluations

4.1 Simulation Evaluations

We first perform extensive simulation experiments to show the benefits and
effectiveness of our reputation measure as well as the reputation-aware peer re-
cruitment policy. We evaluate our protocol, namely RS, on two metrics, F, and
Fy. Specifically, we expect the protocol to demonstrate high F,. as well as Fy.
For comparisons, we also implement the timed-aware peer recruitment proposed
in [13], namely NRS, as a baseline, which does not consider peer reputation when
performing peer recruitment. We implement a simulator in JAVA, and the gen-
erated synthetic data as well as default experimental settings in our evaluations
are described below:

Synthetic Peer Profile: The default number of registered peers in the simu-
lation is set to 1000. In the simulator, we first randomly select 5 registered peers
as the honest peers. Then, given a malicious peer percentage, we randomly select
malicious peers based on that percentage. The remaining peers are all rational
peers. For each peer, the duration of his/her working window is drawn from a
normal distribution with the mean of 50 hours and 5-hour standard deviation.

Protocol Configurations: Following the assumptions in Section 2.2, in our
simulated protocol, the malicious peers in the registered pool 100% deviate from
the protocol, and the honest peers 100% follow the protocol. The rational peers
only launch attack with respective of the bribery value from the malicious ad-
versaries. The penalty factor £ = 10.

Ezxperimental Evaluation Settings: We evaluate the resilience by varying
the percentage of malicious peers from 15% to 95%. In each percentage set-
ting, the simulator first generates a new peer account network (registered peers)
based on the descriptions mentioned above. Then 500 requests are executed for
the evaluation, where 70% of them are training requests, and 30% of them are
validation requests. We calculate the average resilience as the result of each peer
malicious percentage setting. Each experiment is executed 10 times and the av-
erage resilience is obtained.

Effectiveness under Different Scales of Registered Peer: The first set of
experiments demonstrates effectiveness of our proposed reputation-aware peer
selection protocol under three different scales of peer accounts network, namely
100 peers, 1000 peers and 10000 peers. We set the number of honest peers as 5 in
each setting. The time duration of each service is set to 300 hours, and the hand-
off time zone is set to 4 hours. When there are 100 peers, compared with NRS,
under each setting of malicious peer percentage, RS shows significantly higher
release-ahead attack resilience (Fig. 3a) and drop attack resilience (Fig. 3d). We
increase the size of the registered list towards 1000 peers in Fig. 3b. Under each
setting of malicious peer percentage, our proposed RS achieves a higher release-
ahead attack resilience than NRS. Also in Fig. 3e, compared with NRS, our
proposed RS achieves a significantly higher drop attack resilience. Finally, under
a relatively large scale peer network with 10000 peers in Fig. 3c and Fig. 3f, our
proposed RS scheme achieves a higher release-ahead attack resilience and drop

Attack-resilient Blockchain-based Decentralized Timed Data Release 13

mm RS | = RS
m== NRs | 210 = NRS
Sos
°
506
s
g 0.4
802
v
o«
15 35 55 75 95 . 15 35 55 75 95 0.0 15 35 55 75 95
Malicious Peer Percentage Malicious Peer Percentage Malicious Peer Percentage
(a) F 100 Peers (b) F» 1000 Peers (c) F- 10000 Peers
1.2 1.2 12
o RS o RS o RS
£1.0 == nRs | £10 == nRs | £10 == NRS
708 708 708
-4 -4
%06 %06 %06
jo] £ £
204 204 204
Q Q Q
go2 go2 go2
0.0 15 35 55 75 95 0.0 15 35 55 75 95 0.0 15 35 55 75 95
Malicious Peer Percentage Malicious Peer Percentage Malicious Peer Percentage
(d) F4 100 Peers (e) F4 1000 Peers (f) Fgq 10000 Peers

Fig. 3: Different Scales of Registered Peers

attack resilience. In summary,under different scale of peer network, the proposed
approach RS can effectively protect the data with higher attack resilience.
Effectiveness under Different Duration of Service: In this set of experi-
ments, we learn the effectiveness of our proposed protocol under different dura-
tion of service time. Apart from the default 300 hours service time, in this set
of experiments, we set a short duration, 100 hours, a moderate length duration
600 hours, and a longer duration 1200 hours. We fix the number of registered
peers as 1000, and the hand-off time zone is set to 4 hours. In Fig. 4a and Fig.
4d, we observe that compared with NRS, RS significantly improves the release-
ahead attack resilience and drop attack resilience under different percentage of
malicious peers. Then, from the results of 600-hour service time, compared with
NRS, RS achieves a significantly higher release-ahead attack resilience and drop
attack resilience under different malicious peer percentage. Finally, the results
corresponding to the 1200-hour setting also shows similar benefits for RS. In
summary, RS can achieve significantly better resistance for both the release-
ahead attacks as well as the drop attacks under different duration of service.

4.2 Prototype Implementation

4.2.1 Implementation Description

In this section, we present our prototype implementation. We implement our
smart contract in the official programming language Solidity [4]. We deploy our
smart contract on Ethereum official test network Rinkeby [3] through the inter-
face, Infura [1]. We use the data from our simulation studies as the input for
on-chain validations. We have 7 selected peers in total taking charge of 1200
hour-service. The results from Table I show the detailed information of our im-

14 Jingzhe Wang and Balaji Palanisamy

g mm RS | mm RS | = RS
g1.0 mm NRs | 910 mm NRs | 810 I NRS
7 @ T
2 0.8 & 0.8 2 0.8
o o °
gos gos 506
[
c04 S04 504
@ 8
20.2 % 0.2 20.2
o« 4 o«
0.0 15 35 55 75 95 0.0 15 35 55 75 95 0.0 15 35 55 75 95
Malicious Peer Percentage Malicious Peer Percentage Malicious Peer Percentage
(a) F 100 Hours (b) F» 600 Hours (c) F- 1200 Hours
1.2 1.2 1.2
o Bl RS o RS) B RS
210 == NRs | £ L0 == NRs | £ 10 == NRS
o o o
70.8 708 708
-4 o
%06 %06 %0.6
8 £ £
Zo4 Zo4 Zo4
Q a
So2 go2 go2
0.0 15 35 55 75 95 0.0 15 35 55 75 95 0.0 15 35 55 75 95
Malicious Peer Percentage Malicious Peer Percentage Malicious Peer Percentage
(d) F4 100 Hours (e) Fq 600 Hours (f) Fq 1200 Hours

Fig. 4: Different Duration of Timed-release Service

plementations. The implementation of our reputation-aware timed-release pro-
tocol consist of five different modules. (DRegistration: this module provides
interfaces for every peer to register with SC as well as to manage their own in-
formation. peerRegister is invoked by any peers to register with SC. deposit and
withdraw, are invoked by the registered peers to manage the account balance.
updatePubKey and update Window are invoked by the registered peers to man-
age the information regarding the timed-release service. (2)Setup: this module
provides interfaces for senders and recipients to perform service provisioning for
timed-release requests. senderSign is invoked by senders to register with SC.
The second function recipientSign is invoked by the corresponding recipients.
The third function setup is invoked by senders to finish the provisioning of a
service. (3)Enforce: this module guarantees the normal executions of a timed-
release service. setCertificate is invoked by senders to submit the certification.
submitCertificate is invoked by any engaged peers or the recipients to verify the
correctness of the certification. set WhisperKey is invoked by the engaged peers
or the senders to build private channels. The fourth function wverification is in-
voked by any peers to actively verify the behaviors of each peer. @Detection
This module consists of four functions to detect and reward the reporting of
behaviors. releaseReport is invoked by any peer to report the evidence of the
release-ahead attack, and after verification by SC, releaseReward is invoked by
the reporter to receive rewards. dropReport is invoked by any peer to report the
drop attack evidences. After the verification, the reporter invokes the function
dropReward to get rewards. (B)Summary The last module consists of two func-
tions. The first one, peerEvaluation, is invoked by the last responsible peer of
each service to assess peers’ behaviors, and the second function reputationUp-

Attack-resilient Blockchain-based Decentralized Timed Data Release 15

date is invoked by the same peer to finally update the peers’ reputation measure,
which is publicly recorded on-chain.

4.2.2 Cost Analysis

From Table I, we have two significant observations regarding the cost: first, there
are four functions incurring relatively higher cost namely peerRegister(229669),
senderSign(355534), setup(122682), and peerFEvaluation(139363). Specifically,
peerRegister is invoked by any peers, senderSign and setup are both invoked
by a sender. peerRegister is invoked by the last peer in the routing scheme. We
note that those four functions are only invoked once per request and therefore it
is an one-time cost. Second, our proposed on-chain reputation mechanisms only
incurs a modest gas cost from the summary module where peerFEvaluation incurs
139363 and reputationUpdate incurs 48620.

Module Function Gas Cost
peerRegister 229669
deposit 42349
Registration withdraw 29283

updatePubKey 43556
update Window 83884
senderSign 355534
Setup recipientSign 62292
setup 122682
setCertificate 70539
submitCertificate| 44460

Enforce setWhisperKey 64585
verification 26036
releaseReport 69541
Detection release Reward 29596
dropReport 65362
dropReward 29662
peerEvaluation | 139363
Summary

reputationUpdate| 48620

Table 1: Gas Cost

5 Related Work

Practically constructing decentralized timed-release services has gained atten-
tion recently. Self-emerging infrastructure [19] provides a promising solution.
Two representative constructions were developed using this design philosophy.
Based on Distributed Hash Table (DHT), the first set of solutions, [10,11], de-
sign a set of mechanisms within DHT to statistically resist potential attacks
launched by adversaries. The second type of solution [13,14] suggests the use of
blockchain technologies to support timed release of data by using the Ethereum
network. Besides timed release of data, there are several other practical contribu-
tions. The decentralized protocol presented in [12] schedules a transaction that is

16 Jingzhe Wang and Balaji Palanisamy

executed at a future point of time while protecting the information regarding the
transaction before the release time. Ning et.al [18] proposed a carrot-and-stick
mechanism using smart contracts to tackle premature release issues when devel-
oping timed-release applications. While such practical constructions advance the
development of timed-release applications in real world, aggressive adversarial
impacts on such paradigm inevitably exist and raise major concerns.

A preliminary discussion about the importance of protecting timed-release
services in mixed adversarial environments is recently introduced by the authors
in [23]. In this research paper, we focus on developing a comprehensive solution
to the problem by designing a reputation-aware scheme for protecting against
attackers in mixed adversarial settings consisting of both malicious and rational
peers. The reputation-based scheme is designed to detect dishonest behaviors and
reward and incentivize honest behavior in the context of supporting timed release
of data. The transparent nature of blockchains provides a convenient context to
build reputation measure. There are several representative blockchain-based rep-
utation mechanism in the literature. Based on social norm, Li,et.al [15] builds
a reputation model on Ethereum-based crowdsourcing framework to regulate
the worker’s behaviors. Zhou, et al [25] leverages a simple reputation measure
to block the witnesses with misbehaviors in a blockchain-based witness model.
RTChain [22] integrates a reputation system into the blockchains that focus on
e-commerce to achieve a transaction incentives and distributed consensus. Repu-
Coin [24] designs proof-of-reputation in a permissionless blockchain to achieve a
strong deterministic consensus, which is robust to attacks. Unlike the reputation
scheme developed in this work, these existing schemes primarily focus on block-
ing the participants with misbehaviors and are not designed to directly provide
quantitative analysis to aid peer selection in mixed adversarial settings.

6 Conclusion

In this paper, we develop techniques to protect blockchain-based timed data re-
lease in mixed adversarial environments where both malicious adversaries and
rational adversaries exist. An uncertainty-aware reputation measure is developed
to quantitatively capture the behavior of peers engaging in timed release ser-
vice. Based on the reputation measure, a novel reputation-aware timed-release
protocol is designed to handle such mixed adversarial settings. First, an off-
chain reputation-aware peer recruitment is performed by carefully considering
the impact on attack resilience. Then, a suite of on-chain mechanisms jointly
take charge of monitoring the states of the proposed protocol and evaluate the
behavior of each engaged peer. Our extensive simulations demonstrate the ef-
fectiveness of our proposed protocol. Compared with the existing solutions, the
approach achieves significantly higher attack resilience. We develop a prototype
of the proposed protocol using smart contracts and we deploy it on the Ethereum
official test net, Rinkeby. The on-chain evaluations show that our protocol incurs
only a moderate amount of gas cost and demonstrates its cost-effectiveness.

Attack-resilient Blockchain-based Decentralized Timed Data Release 17

Acknowledgement

This material is based upon work supported by the National Science Foundation
under Grant #2020071. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

References

1. Infura. https://infura.io/, [Online].

2. Interval tree. https://github.com/gnidan/interval-trees-solidity, [Online].

3. Rinkeby. https://www.rinkeby.io/stats, [Online].

4. Solidity. https://docs.soliditylang.org/en/v0.8.10/, [Online].

5. Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, Vinod Vaikun-

10.

11.

12.

13.

14.

15.

16.

tanathan, and Brent Waters. Time-lock puzzles from randomized encodings. In
Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer
Science, pages 345-356, 2016.

Dan Boneh and Moni Naor. Timed commitments. In Annual international cryp-
tology conference, pages 236-254. Springer, 2000.

Audun Josang and Roslan Ismail. The beta reputation system. In Proceedings of
the 15th bled electronic commerce conference, volume 5, pages 2502—2511, 2002.
Kohei Kasamatsu, Takahiro Matsuda, Keita Emura, Nuttapong Attrapadung,
Goichiro Hanaoka, and Hideki Imai. Time-specific encryption from forward-secure
encryption. In International Conference on Security and Cryptography for Net-
works, pages 184-204. Springer, 2012.

Ryo Kikuchi, Atsushi Fujioka, Yoshiaki Okamoto, and Taiichi Saito. Strong se-
curity notions for timed-release public-key encryption revisited. In International
Conference on Information Security and Cryptology, pages 88—108. Springer, 2011.
Chao Li and Balaji Palanisamy. Emerge: Self-emerging data release using cloud
data storage. In 2017 IEEFE 10th International Conference on Cloud Computing
(CLOUD), pages 26-33. IEEE, 2017.

Chao Li and Balaji Palanisamy. Timed-release of self-emerging data using dis-
tributed hash tables. In 2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS), pages 2344-2351. IEEE, 2017.

Chao Li and Balaji Palanisamy. Decentralized privacy-preserving timed execution
in blockchain-based smart contract platforms. In 2018 IEEE 25th International
Conference on High Performance Computing (HiPC), pages 265-274. IEEE, 2018.
Chao Li and Balaji Palanisamy. Decentralized release of self-emerging data using
smart contracts. In 2018 IEEE 37th Symposium on Reliable Distributed Systems
(SRDS), pages 213-220. IEEE, 2018.

Chao Li and Balaji Palanisamy. Silentdelivery: Practical timed-delivery of private
information using smart contracts. IEEE Transactions on Services Computing, (to
appear).

Ming Li, Jian Weng, Anjia Yang, Wei Lu, Yue Zhang, Lin Hou, Jia-Nan Liu, Yang
Xiang, and Robert H Deng. Crowdbc: A blockchain-based decentralized frame-
work for crowdsourcing. IEEE Transactions on Parallel and Distributed Systems,
30(6):1251-1266, 2018.

Timothy C. May. Timed-release crypto. http://www.hks.net/cpunks/cpunks-
0/1460.html, 1993.

18

17.

18.

19.

20.

21.

22.

23.

24.

253.

Jingzhe Wang and Balaji Palanisamy

John F Nash Jr. Equilibrium points in n-person games. Proceedings of the national
academy of sciences, 36(1):48-49, 1950.

Jianting Ning, Hung Dang, Ruomu Hou, and Ee-Chien Chang. Keeping time-
release secrets through smart contracts. TACR Cryptol. ePrint Arch., page 1166,
2018.

Balaji Palanisamy and Chao Li. Self-emerging data infrastructures. In 2019 IEEE
5th International Conference on Collaboration and Internet Computing (CIC),
pages 256-265, 2019.

M.G. Reed, P.F. Syverson, and D.M. Goldschlag. Anonymous connections and
onion routing. IEEE Journal on Selected Areas in Communications, 16(4):482—
494, 1998.

Ronald L Rivest, Adi Shamir, and David A Wagner. Time-lock puzzles and timed-
release crypto.

You Sun, Rui Xue, Rui Zhang, Qiangian Su, and Sheng Gao. Rtchain: A reputation
system with transaction and consensus incentives for e-commerce blockchain. ACM
Transactions on Internet Technology (TOIT), 21(1):1-24, 2020.

Jingzhe Wang and Balaji Palanisamy. Protecting blockchain-based decentralized
timed release of data from malicious adversaries. In 2022 IEEE International
Conference on Blockchain and Cryptocurrency, 2022.

Jiangshan Yu, David Kozhaya, Jeremie Decouchant, and Paulo Esteves-Verissimo.
Repucoin: Your reputation is your power. I[EEE Transactions on Computers,
68(8):1225-1237, 2019.

Huan Zhou, Xue Ouyang, Zhijie Ren, Jinshu Su, Cees de Laat, and Zhiming Zhao.
A blockchain based witness model for trustworthy cloud service level agreement
enforcement. In IEEE INFOCOM 2019-IEEE Conference on Computer Commu-
nications, pages 1567-1575. IEEE, 2019.

