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Abstract

This paper investigates whether associations between birth weight and prenatal ambient
environmental conditions—pollution and extreme temperatures—differ by 1) maternal
education; 2) children’s innate health; and 3) interactions between these two. We link
birth records from Guangzhou, China, during a period of high pollution, to ambient air
pollution (PM10 and a composite measure) and extreme temperature data. We first use
mean regressions to test whether, overall, maternal education is an “effect modifier” in
the relationships between ambient air pollution, extreme temperature, and birth weight.
We then use conditional quantile regressions to test for effect heterogeneity according
to the unobserved innate vulnerability of babies after conditioning on other confounders.
Results show that 1) the negative association between ambient exposures and birth weight
is twice as large at lower conditional quantiles of birth weights as at the median; 2) the
protection associated with college-educated mothers with respect to pollution and extreme
heat is heterogeneous and potentially substantial: between 0.02 and 0.34 standard deviations
of birth weights, depending on the conditional quantiles; 3) this protection is amplified
under more extreme ambient conditions and for infants with greater unobserved innate
vulnerabilities.
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Highlights

1. We test maternal education as an effect modifier in associations between air pollu-

tion/extreme temperature and birth weight.

2. We link birth records to environmental data from Guangzhou, China during a period of

high and variable air pollution.

3. Infants with unobserved vulnerabilities—at lower conditional quantiles of birth weight—

face more risk from ambient exposures.

4. The protection associated with college-educated mothers with respect to pollution and

extreme heat is substantial.

5. Protection is amplified under more extreme ambient conditions and for infants with greater

unobserved innate vulnerability.



1 Introduction

Ambient environmental conditions, including both air pollution and temperature, have been

associated with adverse birth outcomes in a number of settings, though findings for temperature

remain limited (Cho 2020; Currie 2013; DeCicca and Malak 2020; Klepac et al. 2018; Kloog

et al. 2015; Melody et al. 2019; Shah and Balkhair 2011; Stieb et al. 2012; Zhang, Yu, and

Wang 2017). However, some newborns may be more vulnerable than others to the same ambient

environmental conditions, due to inequalities in at least two dimensions. First, the pathway from

ambient conditions to adverse birth outcomes may vary with maternal education. For example,

children in utero with less-educated mothers may be more vulnerable than those of more-

educated mothers if their mothers have poorer access to living, work, transportation, and leisure

spaces with indoor air filtration and temperature regulation, or if they have limited knowledge of

or resources for mitigation strategies.1 Second, babies’ different innate health vulnerabilities

may relate to unequal outcomes in the same environmental context. The relevance of these

two dimensions may be particularly great in more extreme environments, and the protective

effects of maternal education may be more pronounced for infants with greater unobserved

innate vulnerabilities.

This paper investigates two key questions. First, do children of expectant mothers in common

ambient pollution and temperature environments experience different birth outcomes, according

to their mothers’ education? In other words, are there protective effects of maternal education?

Second, are protective effects of maternal education more pronounced among infants with greater

unobserved vulnerabilities—those poorer innate health? We employ mean and conditional

quantile regressions to study these questions jointly, with data from a fairly high-pollution

environment, for three key dimensions of ambient environmental exposures: air pollution,

1 Behavioral strategies that respond to extreme pollution and temperature, undertaken by those who can afford
them, have been documented in China. For example, Zhang and Mu (2018, 518) estimated that a 100-point
increase in the Air Quality Index in China was associated with a 70.6% increase in expenditures on anti-PM2.5

masks and a 54.4% increase for all types of masks. Using evidence from air-purifier sales linked to city data and
household-income data, Ito and Zhang (2020) show that higher-income households in China have significantly
higher marginal willingness to pay for clean air compared with lower-income households. With regard to
temperature, Yu, Lei, and Wang (2019) find that while urban households respond to extreme temperatures via
increased energy consumption or air conditioner purchases, rural households are unresponsive to temperature
fluctuations. The authors attribute this difference in mitigation practices to a lack of resources in rural households.
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extreme heat, and extreme cold.

We focus on birth weight as the outcome of interest. Birth weight is a consistent correlate of

health and other socio-economic outcomes across the life course (Behrman and Rosenzweig

2004; Behrman, Xiong, and Zhang 2015; Black, Devereux, and Salvanes 2007; Torche and

Conley 2016). We utilize a database of every singleton live birth recorded every day between

2009 and 2011 in one city district with more than one million residents and fairly high air

pollution in south China, for a total of 53,879 birth records. We link the births data to daily

air pollution and meteorological data spanning the entire prenatal periods for these births. We

exploit daily variations in air pollution levels that are caused mainly by random changes in

atmospheric conditions and pollutant emissions (He, Liu, and Salvo 2019; Janke 2014). The

high frequency of measurement of air pollution allows us to control for year-by-month fixed

effects, which capture time patterns that might reflect seasonal effects and changes in economic

conditions over time that are shared commonly across the city. We calculate daily mean exposure

estimates for three monitored air pollutants, namely particulate matter (PM10), sulfur dioxide

(SO2), and nitrogen dioxide (NO2), and also generate a composite index of potential exposure

to all three air pollutants during pregnancy. We also calculate the percentages of days during

pregnancy that were extremely hot or cold, to control for deviations in weather from a common

seasonal trend that can also have impacts on birth outcomes.

To address our main research questions, we interact a binary variable indicating whether

mothers have university education with measures of pollution and extreme temperature exposure

to estimate effect modifications—protective effects—associated with maternal education, after

adjusting for infant sex, a quadratic function of maternal age, parity, rainfall, and time trends. To

our knowledge, this is the first paper to study protective effects jointly in the context of pollution

and extreme temperature. Prior research has shown that pollution and extreme temperature

might be independently important factors. However, given the potential correlation between

them, it is important to analyze protective effects in a joint framework.

Further, we allow for the protective effects of maternal education to be heterogeneous

across conditional quantiles of birth weight, which map to infants’ unobserved innate health

vulnerabilities. While the literature on quantile regressions has suggested that birth weight is
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an ideal variable on which to apply conditional quantile methods (Koenker and Hallock 2001),

this analysis is one of the first to adopt conditional quantile methods to analyze the protective

effects of maternal education on birth weight.2 Following the literature on conditional quantile

estimation (Abrevaya 2001; Abrevaya and Dahl 2008; Arias, Hallock, and Sosa-Escudero 2001),

conditional on observed maternal characteristics, time trends, and environmental exposures, we

interpret newborns to the left of the conditional distribution of birth weight as having higher

levels of unobserved innate health vulnerabilities.3 We organize this paper as follows. Section 2

gives the background and research questions, Section 3 discusses data and methods, Section 4

gives and discusses the results, and Section 5 is a discussion and conclusion.

2 Background and Research Questions

2.1 Air Pollution and Birth Outcomes

Studies have traced associations between prenatal exposure to various kinds of air pollutants

and adverse birth weight and other birth outcomes (Klepac et al. 2018; Melody et al. 2019; Shah

and Balkhair 2011; Stieb et al. 2012). Currie and Walker (2011) found that the introduction

of electronic toll collection greatly reduced both traffic congestion and vehicle emissions near

highway toll plazas and reduced prematurity and low birth weight among mothers within two

kilometers of toll plazas by 10.8% and 11.8%, respectively, relative to mothers two to ten

kilometers from toll plazas. Hao et al. (2016) analyzed birth records between 2002 and 2006

from the Georgia Department of PUblic Health and found that all traffic-related pollutants,

including NO2 and PM2.5, were associated with preterm birth. DeCicca and Malak (2020)

analyzed the impact of a policy that mandated the reduction of power-plant emissions in the

eastern United States. The policy greatly reduced emissions of SO2 and NOx, which are the

2 Using Chinese data from 16 counties from 2014 to 2018, Wu et al. (2021) study the effects of PM2.5 on birth
weight in a conditional quantile context. They estimate heterogeneous effects by maternal educational status as
well. In contrast to the current paper, their analysis does consider extreme temperature exposures.

3 An alternative to the conditional quantile approach is to use observed variables that measure innate vulnerabilities
of children, which has the benefit of clarifying observed variables that might be useful for targeted policies. The
benefit of the conditional quantile approach is that it is able to capture the full spectrum of potential sources of
vulnerabilities, not just observed characteristics, and does not impose restrictions on the differences in impact
magnitudes between less and more vulnerable individuals.
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major precursors for PM2.5. Their results suggest that the policy reduced the proportion of

newborns downwind born prematurely and experiencing low birth weight, and reduced infant

mortality for “high-risk” pregnancies associated with observed maternal health conditions such

as diabetes, hypertension or eclampsia. Their conceptualization of risk using observed maternal

health conditions is related to but distinct from our focus on unobserved innate vulnerabilities

of babies themselves. Liu et al. (2022) exploited exogenous air quality improvement during

the Guangzhou Asian Games period to estimate the effects of PM10, NO2, and SO2 on birth

outcomes. They find that effects vary by pregnancy trimesters, sex, and maternal age.

A large-scale study in Brisbane, Australia, indicated that pregnancy exposures to PM2.5,

SO2, NO2, and ozone (O3) were associated with increased risks of low birth weight, as well as

pre-term birth (Chen et al. 2018). Chen and Ho (2016) find that incense burning is associated

with lower birth weight in boys, and their quantile regression also suggests that the negative

associations are larger among the lower quantiles of birth outcomes.

Focusing on particulate matter, a recent United States study analyzed birth certificates data

for the period 1999 to 2007 and found significant birth weight effects associated with gestational

exposures to one form of coarse particulate matter (PM10-2.5) (Ebisu, Berman, and Bell 2016).

Similarly, a study of 7,772 mothers in the Netherlands between 2001 and 2005 found that PM10

exposure during pregnancy was inversely associated with birth weight (Hooven et al. 2012).

The World Health Organization (WHO) Global Survey on Maternal and Perinatal Health

study examined whether outdoor PM2.5 was associated with adverse birth outcomes among

22 countries from 2004 through 2008 (Fleischer et al. 2014). Results showed that across all

countries, PM2.5 was not associated with preterm birth, but was associated with low birth weight.

In China, the country with the greatest PM2.5 range among those studied, preterm birth and

low birth weight both were associated with the highest quartile of PM2.5 (Fleischer et al. 2014).

PM10 and PM2.5 concentrations are highly correlated in China—especially in southern China

(Zhou et al. 2016). Studies in Lanzhou, China and Wuxi, China also indicated that prenatal

exposure to PM10 increases the risk of preterm birth (Han et al. 2018; Zhao et al. 2015).

Several recent reviews have synthesized findings. Melody et al. (2019) conducted a systematic

review of acute air quality change studies and found mixed results: there was some evidence that
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maternal exposure to acute changes in air quality of short-to medium-term duration increased the

risk of fetal growth restriction and preterm birth, but the relationship for other adverse obstetric

or neonatal outcomes was less clear. Shah and Balkhair (2011) conducted a broader systematic

review of studies of air pollution exposure and birth outcomes. This review suggested that

maternal exposure to SO2 was associated with preterm birth, exposure to PM2.5 was associated

with low birth weight, preterm birth, and small-for-gestational-age birth, and exposure to

PM10 was associated with small-for-gestational-age birth. Evidence for NO2 was inconclusive.

Another systematic review and meta-analysis of 62 studies indicated that pooled estimates of

effects generally suggested associations between carbon monoxide (CO), NO2, and particulate

matter and pregnancy outcomes, but also that there was a high degree of heterogeneity among

studies (Stieb et al. 2012).4

A recent paper systematically reviewed Chinese and English publications on links between

air pollution exposure and adverse pregnancy outcomes in China (Jacobs et al. 2017). The

authors reported that SO2 was consistently associated with lower birth weight and more preterm

births and PM10 was consistently associated with congenital anomalies. Results for NO2 were

inconsistent, and the authors concluded that further studies were required on the effects of PM2.5,

ozone (O3), and carbon monoxide (CO). While a number of the studies adjusted for education or

other measures of socioeconomic status, the review does not report tests of effect modification

by these stratifiers. A more recent study in Guangdong Province (Liu et al. 2019), which covered

the period of 2014 to 2015, reported, among other significant findings, associations with low

birth weight for PM2.5, PM10, SO2, NO2, and O3 in the first month and with PM2.5, PM10, NO2,

and O3 in the last month of pregnancy.

2.2 Extreme Temperature and Birth Outcomes

Extreme temperature events are increasing in frequency, duration, and magnitude (World Health

Organization 2018b). For example, between 2000 and 2016, the number of people exposed to

4 Early pollution exposures may endure in their impact. Currie et al. (2014) summarized studies from developed
and a few developing countries on the short- and long- term effects of in-utero and early-life exposure to pollution.
The review highlighted evidence that exposure to pollution significantly impacted a variety of birth, childhood,
and later-life outcomes.
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heat waves increased by around 125 million (World Health Organization 2018b). Temperature

extremes have been linked to significant reductions in human health, including height and birth

weight (Deschênes 2014; Deschênes, Greenstone, and Guryan 2009; Ogasawara and Yumitori

2019). However, to date, evidence about extreme temperatures and birth outcomes remains

limited (Basu et al. 2018; Kloog et al. 2015; Zhang, Yu, and Wang 2017), and that which

is available is somewhat mixed. For example, a recent analysis of data from Korea found

no significant temperature effect on birth outcomes (Cho 2020). A 2017 systematic review

concluded that the evidence linking preterm birth and low birth weight to ambient temperature

was still very limited and not conclusive, though there were more examples of adverse estimated

effects for high temperatures than for low temperatures (Zhang, Yu, and Wang 2017). A 2020

systematic review covered papers about the associations of air pollution and heat exposure with

preterm birth, low birth weight, and stillbirth in the United States (Bekkar et al. 2020). Only

three papers were identified that considered heat and birth weight, but all found significant risk.

One, a paper that analyzed 220,572 singleton births for the years 2002 to 2008 from 12 United

States sites, found that whole-pregnancy cold or hot temperature increased term low birth weight

risk (Ha et al. 2017). A second paper, conducted among 43,629 full-term but low birth weight

babies and 2,032,601 normal-weight babies in California for the period 1999 to 2013, found

that higher long-term apparent temperature exposure was associated with term low birth weight

(Basu et al. 2018). The third reviewed paper, conducted among births in Massachusetts from

2000 through December 2008 (Kloog et al. 2015), showed decreased birth weight with increased

air temperature.

In China, a study in the city of Guangzhou found that exposure to either low or high

temperatures during pregnancy was associated with an increased risk of preterm birth (He et

al. 2016). A near-national scale study by Hu and Li (2019) linked extreme heat exposure during

pregnancy to significant reductions in multiple dimensions of adult welfare. The authors report

that adults who experienced an additional day of high temperature during their prenatal periods,

on average, attained 0.02 fewer years of schooling, had a higher risk of illiteracy by 0.18%,

showed a 0.48% decrease in standardized word-test scores, and were shorter by 0.02 centimeters.
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2.3 Same Ambient Environment, Different Impacts

There is reason to believe that the effects of ambient air pollution and temperature exposures

might vary by maternal education. First, because more-educated mothers are likely to enjoy

better material resources or better knowledge compared to less-educated mothers, more-educated

mothers may well adopt mitigation strategies and thus experience lower realized exposures in

the same ambient air pollution and extreme temperature environments. Second, because better-

educated mothers, as a group, are likely to have better nutrition and health care access compared

to less-educated mothers, they may have more physical capacity to weather the same realized

exposures to pollution and extreme temperatures.

There is at least suggestive evidence that the same ambient environment might be experienced

differently for more and less economically vulnerable groups, such as groups defined by parental

education.5 In a study in Georgia, Hao et al. (2016) found that associations of traffic-related

pollutants, including NO2 and PM2.5, with preterm birth tended to be stronger for mothers with

low educational attainment. A study in Korea of multiple air pollutants showed mixed results,

but some evidence of socioeconomic disparities in the effects of full-pregnancy exposure at the

lowest conditional quantiles of birth weight (Lamichhane et al. 2020). Heo, Fong, and Bell

(2019) conducted a systematic review of papers assessing the effects of particulate matter on

birth outcomes from 2000 to 2019 and found suggestive evidence that the risk posed was greater

for babies of mothers with lower educational attainment for preterm birth and low birth weight.

However, in a recent review of epidemiological literature about ambient air pollution and

birth weight, Westergaard and her colleagues (2017) identified only a small number of studies

that addressed effect modification by maternal education status. With regard to temperature

effects, Zhang, Yu, and Wang (2017) call for more attention to the possibility of individual effect

modifiers; maternal education is one important potential stratifier (see Basu et al. (2018) and Son

et al. (2019) for inconsistent findings on maternal education as an effect modifier). Generally,

the resources associated with maternal education might be more likely to be brought to bear

5 Positive associations between maternal education and birth outcomes, including birth weight but also preterm
birth and birth length, have been described in a number of studies (Abel, Kruger, and Burd 2002; Ballon et
al. 2019). Studies in the United States have often found significant differences in birth weight for infants borne in
more disadvantaged and segregated socio-economic communities with distressed physical environments (Grady
2006; Kothari et al. 2016).
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under extreme conditions of pollution and temperature, which would exacerbate the maternal

protective effect under these conditions. A similar logic suggests that the protective effects of

maternal education with respect to pollution and extreme temperature might be most pronounced

for infants with greater unobserved innate vulnerabilities.

A recent study from China also examines the heterogeneous association between air pollution

and birth weight—but does not consider extreme temperatures—using quantile regression and

finds that more pronounced effects were observed in lower and intermediate quantiles (Wu et

al. 2021). This paper observed stronger associations among well-educated mothers. Although

the paper uses data from 16 counties across China during the period of 2014 to 2018, it does not

control for county-specific time trends that may capture local policy variations and trends in

the economic environment that can also affect birth outcomes. Additionally, Wu et al. (2021)

consider only full-term births. Except for Wu et al. (2021), we have not found other studies

of pollution and birth weight that investigate variability in the protective effect of maternal

education using a conditional quantile approach.

A handful of studies in the United States have used conditional quantile approaches to

consider heterogeneous vulnerability to ambient pollution exposure. A study of PM2.5 in

California (Schwarz et al. 2019) shows a tendency of somewhat larger negative associations

with outcomes at the lowest conditional quantiles, though primarily among the non-Hispanic

Black population. A study of PM2.5 in Massachusetts (Fong et al. 2019) found that the negative

association between PM2.5 and birth weight was larger in magnitude at the lower conditional

quantiles of birth weight than in the higher quantiles. In contrast, a study in Atlanta (Strickland

et al. 2019) showed larger effects for several pollutants at higher conditional quantiles. While

results are mixed, all of these studies suggest the potential value in testing for heterogeneity in

associations across the distribution of children’s unobserved innate vulnerabilities at birth, along

the conditional distribution of birth weight.

2.4 Research Questions

Using a case study of three years of singleton live births in one district in Guangzhou, China,

we study the protective effect of mothers’ education with respect to pollution and extreme
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temperature exposure. Specifically, we consider the association between expectant mothers’

college educational attainment and their children’s birth weight and allow the college educational

gradient to be heterogeneous at different ambient pollution and extreme temperature levels. By

including pollution and extreme temperature in the same specifications, we are able to isolate

the separate relationships between these correlated but distinct ambient environmental factors

and birth outcomes. Conditional on environmental exposures, we also allow the educational

gradient to be heterogeneous for children with different unobserved innate vulnerabilities.

Our analysis relaxes the restrictions imposed by common regression frameworks on how so-

cioeconomic factors might impact child-birth outcomes in a setting where mothers are exposed

to high levels of negative environmental factors. A common regression framework includes

educational status as an additive variable (for example, see Koenker and Hallock (2001) (birth

weight) and Hanandita and Tampubolon (2015) (BMI) in the context of quantile regressions; see

Bharadwaj and Eberhard (2008) in the context of mean regressions). In the context of (condi-

tional) mean regressions, this framework means that the educational gradient in birth weight

is constant across levels of environmental exposure levels. By interacting mothers’ education

with multiple potential negative environmental factors, we allow for the educational gradient

in child birth outcomes to be magnified at different rates depending on how negative environ-

mental factors jointly worsen. Furthermore, by estimating education-environment interactions

separately at different conditional quantiles of birth weight, we allow the educational gradient to

have different slopes by quantiles of unobserved innate vulnerabilities of babies. The rich het-

erogeneous relationships allow for a nuanced look at the potential protective effects of maternal

college education in ameliorating negative environmental effects.

3 Data and Methods

3.1 Study Site

The study site for this project is Guangzhou, which is the capital city of Guangdong Province in

south China, in the Pearl River Delta. Guangzhou, along with several other cities in Guangdong

as well as Hong Kong and Macau, is part of the rapidly-developing “Greater Bay Area” mega-
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lopolis. The region is wealthy, with Shenzhen and Guangzhou, respectively, ranked third and

fourth highest in city GDP in China, after Beijing and Shanghai (Buchholz 2019). Guangzhou

has a typical subtropical climate, with very mild winters and hot, humid summers. The annual

mean temperature in Guangzhou is around 22 degrees Celsius (Climate-Data.org 2020). In re-

cent decades, Guangzhou has experienced increases in mean annual temperatures and in the

frequency, duration, and intensity of heat waves (Zhang et al. 2017). Extreme heat events are a

particularly significant threat to human health due to a combination of the subtropical climate

and urban heat-island effects exacerbated by rapid population growth in recent years (Zhang

et al. 2017). Recent studies in Guangzhou have linked maternal heat exposures to preterm births

(He et al. 2016; Wang et al. 2020). At the same time, and perhaps somewhat counter-intuitively

in a subtropical climate, cold spells in Guangzhou carry health risks. For example, cold spells

have been linked to increased mortality risk for most categories of deaths and to heightened

risk of preterm birth (Chen et al. 2021; He et al. 2016), possibly due to the lack of widespread

access to central heating. As a major city in south China, Guangzhou is a data point that is po-

tentially relevant to other urban settings in south China, and possibly parts of Southeast Asia,

characterized by broadly similar climates, high levels of pollution, and economic conditions.

South China has had less air pollution than north China, but as an economic development

center, Guangzhou has been one of the most polluted cities in the region. Recent studies in

Guangzhou have linked air pollution to respiratory distress syndrome and to student respiratory

illness and absenteeism, especially for younger students (Chen, Guo, and Huang 2018; Lin et

al. 2018). Importantly, Guangzhou has a well-established and extensive air-quality monitoring

system with both air pollution indices and individual pollutant concentrations available at the

city level.

Figure 1 shows levels of air pollution in Guangzhou from 2008 to 2011 for three monitored

pollutants: PM10, SO2, and NO2. The levels of pollution depicted in Figure 1 reflect substantial

improvements in Guangzhou’s air quality compared to prior years. In the early 2000s, the local

government implemented progressive air-quality control efforts that included closing down

low-efficiency coal-power plants and enforced installation of desulfurization facilities (Zhong

et al. 2013). Even with improvements, annual mean air pollution in Guangzhou during this
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period exceeded the WHO standard for PM10: a 20 µg/m3 annual mean. Further, 66.4% of days

surpassed the 24-hour mean standard for PM10 of 50 µg/m3 and 76% of days surpassed the

SO2 standard of 20 µg/m3 (World Health Organization 2018a). There is strong seasonality in

all three types of air pollution, with more severe air pollution in the winter than in the summer.

3.2 Data

We link three forms of data for this analysis: birth certificate data, air pollution data, and

meteorological data.

3.2.1 Birth Certificate Data

We have access to birth certificate data representing all births that took place in one district in the

center city of Guangzhou on every day in the years 2009 to 2011. It is the responsibility of the

parents or the family concerned to register all births within 15 days after birth (Lin et al. 2015).

We elected to use birth certificate data from one particular district in the city because of the

availability only for that district of information on maternal education. In addition to maternal

education, the birth certificate data include information about gestational age based on reported

last menstrual period and confirmed by ultrasound scanning, stillbirth, birth weight, birth length,

sex, parity, Apgar scores, and mother’s age, occupation, rural/urban residence status, and number

of pregnancies.6

3.2.2 Air Pollution Data

Our interest lies in tracing different experiences in a common ambient environment, and we

operationalize this idea with a city average pollution measure. Our data source for air pollution is

the Guangzhou Environmental Bureau, which reports the daily average levels of three monitored

“criteria” air pollutants, PM10, NO2, and SO2, at the city level during the period 2005 to 2011.

These pollutants are measured according to the National Standard (Guo Biao) GB3095—1996.

These are the only three pollutants for which data were collected until 2014. These are measures

6 Birth certificates also contain information on infant health and neonatal mortality.
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of ambient conditions, rather than individual pollution exposure measures.7 For our research

question, we want ambient measures because women with different levels of education may be

able to alter their individual exposure so that individual exposure data might miss some of the

impacts of maternal education.

3.2.3 Meteorological Data

We used the universal thermal climate indices (UTCI) from Copernicus and the European Centre

for Medium-Range Weather Forecasts (ECMWF) to measure extreme temperatures (Copernicus

and European Centre for Medium-Range Weather Forecasts 2020). The UTCI, a thermal comfort

indicator based on human heat-balance models, is designed to be applicable in all seasons and

climates and for all spatial and temporal scales (Copernicus and European Centre for Medium-

Range Weather Forecasts 2020). The UTCI is a one-dimensional index that reflects "the human

physiological reaction to the multidimensionally defined actual outdoor thermal environment"

(Bröde et al. 2012, 481). Scores can be classified into ten thermal stress categories, ranging from

extreme cold stress to extreme heat stress (Copernicus and European Centre for Medium-Range

Weather Forecasts 2020). In a subtropical, humid environment such as Guangzhou, this index

provides a wider range of variation than ambient temperature. These data have high spatial and

temporal resolution, with measurement gridded at 0.25° x 0.25° and at hourly frequency. We

obtain the measurement at the grid closest to the center city of Guangzhou and calculate the

daily average from 2008 to 2011.

Finally, we use 24-hour accumulated rainfall from the same grid for the same period. We

control for rainfall because it may be correlated with pollution and temperature and may have

effects on birth outcomes.8 Accumulated rainfall is calculated from observed rainfall data, and

comes from the National Oceanic and Atmospheric Administration (2020), as distributed by

Raspisaniye Pogodi Ltd. (2020).

7 Pregnant women may come from any district in the city. There is precedent for using city-average measures
of pollution. Zhao et al. (2015) report seven studies that used city-level averages of PM10 (Darrow et al. 2009;
Hansen et al. 2006; Jiang et al. 2007; Sagiv et al. 2005; Schifano et al. 2013; Suh et al. 2009; Zhao et al. 2011).

8 We provide details on how we acquire and process ECMWF data in Appendix B.
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3.3 Analytic Sample

We begin with birth-certificate data for all live births (67,108 or 99.1% of all births) in the

district for the period 01 January 2009 to 31 December 2011. To avoid fixed-cohort bias,9 we

delete births within this period with conception dates earlier than 14 July 2008 and those with

conception dates later than 15 February 2011, as gestational age varies between 171 and 319

days, which leaves 58,827 observations. We exclude observations with birth weight less than

500 grams (17 observations dropped), or birth length less than 28 centimeters or longer than

60 centimeters (51 observations dropped). We further restrict our sample to include only those

with observed gestational age (855 observations without gestational age dropped) and only live

singleton births.10 We further removed those registered with rural residence (949 observations,

or 1.73% of the sample). In the end, our analytic sample consists of 53,879 live singleton births

(15,068 born in 2009, 20,368 born in 2010, and 18,443 born in 2011).11

3.4 Measurement

Table 1 contains summary statistics for all variables employed in the analysis. Below, we

describe our variables.

9 Fixed-cohort bias emerges when a sample consists of births during a fixed period—this approach will include
only the longer pregnancies at the start of the study and only the shorter pregnancies at the end of the study. This
has the potential to bias studies of environmental exposures (Strand, Barnett, and Tong 2011).

10 Because there is no information on the number of multiple births, we count duplicate observations in terms
of all observed maternal and paternal characteristics (including mother’s birthdate, parity, number of previous
pregnancies, maternal occupation, maternal education, paternal education, gestational age, and an indicator of
high risk levels) as well as birthdate of the baby, and treat the observations with one duplicated case as twins
(3.90% of 57,108 observations) and those with two duplicated cases as triplets (0.08% of 57,108 observations)
and those with three duplicated cases as quadruplets (0.01% of 57,108 observations).

11 In Appendix Section A.3, we estimate the model after restricting the analytic sample to only those with more
than 36 weeks of gestational age.
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3.4.1 Birth Weight and Other Birth Outcomes

Our study focuses on birth weight.12 Birth weight is reported in grams. The mean birth weight

is 3,182 grams and the standard deviation is 473 grams. Babies of mothers with a college degree

have, on average, a 46 gram greater birth weight than babies of mothers with at most a high

school degree (p=0.00).

3.4.2 Air Pollution

We obtained data on three criteria pollutants, PM10, NO2, and SO2, observed at all monitoring sta-

tions in Guangzhou from the Guangzhou Environmental Bureau. A small number of observations

with missing data are replaced with moving averages for the four preceding and four following

days. We calculate the average level of all monitoring stations from the four contiguous districts

located in the center of the city, one of which is where our birth data is sourced.13 Between the

years 2009 and 2011, by our estimates, central Guangzhou’s air pollution far exceeded the safety

standards set by the WHO, with annual mean concentrations of PM10 of 75.9 µg/m3 in 2008,

74.4 µg/m3 in 2009, 71.2 µg/m3 in 2010 and 69.6 µg/m3 in 2011. The WHO safety standard for

PM10 is that the annual mean should not exceed 20 µg/m3 (World Health Organization 2018a).

Seasonal variation is especially significant. For example, the daily mean for PM10 is 49.2 µg/m3

in July, on average, but 103.3 µg/m3 in December, during the period covered by this study.

We exploit the temporal variation in daily air pollution and the variation in pregnancy timing

for identification. We summarize over the duration of pregnancy the daily average level of

each pollutant to calculate the accumulated total potential exposure during pregnancy for each

individual. However, this approach suffers from a potential problem—it generates a spurious

inverse correlation between adverse birth outcomes and accumulated air pollution levels because

a shorter gestational age implies a shorter pregnancy and therefore smaller accumulated air

12 Our analysis in the main text of the paper focuses on conditional mean and conditional quantile regressions for
birth weight. In Appendix Section A.4, we present results based on the binary outcome variables. For the binary
outcomes, low birth weight is 1 if birth weight is under 2500 grams, preterm equals to 1 if gestational age is
smaller than 37 weeks, and small-for-gestational-age is defined as 1 for those with birth weight under 10% in
sex- and gestational-age- specific distribution. We use the cutoffs listed in Zhu et al. (2015) as references.

13 Table 1 provides PM10 summary statistics from all city districts as well as from the four center-city districts. We
use the center-city districts data for estimation. In Appendix Section A.2, we present robustness checks where
we use all city districts pollution data.
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pollution exposure. We avoid this spurious relationship by dividing the accumulated levels of

each pollutant during pregnancy by each woman’s pregnancy duration to get a daily mean level

of exposure during pregnancy.

Because pollutants tend to co-vary, we conduct principal component analysis of the three

pollutants’ daily mean potential exposures during pregnancy and adopt the first principal compo-

nent, which accounts for 86% of the total variance, as a composite index of pollution.14 We fo-

cus on results for our particulate matter measure—PM10—in the main text, and comment briefly

on similar findings using the composite pollution index. Detailed results using the composite

measure are included in an appendix.

Substantial individual variation in potential pollution exposure comes from variation in

pregnancy timing. As pollution is usually higher in winter than in summer, those whose

pregnancies occur mainly in the winter have higher ambient pollution exposure than those

whose pregnancies occur mainly in the summer. Moreover, pregnancies in earlier years on

average have higher ambient pollution exposure than those in later years, as a result of air-quality

improvement over time. In the Guangzhou data, there is a possibly counterintuitive pattern in

which mothers with at least a college degree have higher potential air pollution exposure during

their pregnancies than mothers with at most a high school degree (as shown in Table 1). This

pattern emerges because mothers with at most a high school degree, a category that includes

many migrant workers from rural areas, are more likely to marry and conceive in January and

February, around Chinese New Year. Figure 3 shows that, after controlling for conception year-

by-month fixed effects, the distributions of ambient air pollution exposure are not significantly

different between the two maternal-education groups.15

14 We adopt principal component analysis as a robustness check to investigate whether a more comprehensive air
pollution index shows a consistent pattern of contribution to adverse birth outcomes. However, we are also aware
that results from the principal component analysis may not be extrapolated to other places as different cities may
have different compositions and interactions of air pollutants.

15 Individuals of different socioeconomic backgrounds may differ in their capacities to choose where to live and
work based on air quality and to adopt mitigation strategies such as wearing masks or installing air filters. These
are possible pathways connecting a common ambient environment to different impacts. Available data do not
permit measurement of realized individual-level air pollution exposures.
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3.4.3 Extreme Temperature

We set a cutoff for defining extreme temperatures by creating a local reference dataset comprised

of the nine years of records of daily mean UTCI that immediately preceded the dates of our

study. We define extreme low and high temperatures, respectively, by generating cut-points

marking the bottom 1% of the distribution of the reference dataset, at -0.87 degrees Celsius,

and the top 1% of the reference dataset, at 34.23 degrees Celsius. Each woman’s exposure to

extreme temperatures is defined by the proportion of days during pregnancy with daily mean

UTCI under or above the cut-off temperatures. Extreme cold and hot temperatures defined in

this way correspond to ECMWF categories of moderate cold stress (defined as -13 to 0 degrees

Celsius) and strong heat stress (defined as 32 to 38 degrees Celsius). Although air conditioning

had become widespread in Guangzhou by the time of the study period, heating in winter was

not widely available, which is important for understanding any observed effects of cold stress in

this region. Using our definitions, pregnant women in the sample, on average, spent 1.70% of

their pregnancy duration (4.6 days) exposed to extreme cold and 1.73% of the duration of their

pregnancy (4.7 days) exposed to extreme heat.

We perform sensitivity analyses with a less stringent definition of extreme temperatures,

using a 2.5% cutoff to define extreme cold and extreme heat (at 2.52 degrees Celsius and 33.56

degrees Celsius, respectively). Using this alternative definition, on average, pregnant women in

the sample spent 4.40% (11.9 days) of their pregnancy duration in extreme cold and 3.73% of

their pregnancy duration (10.2 days) in extreme heat. Table 2 presents additional distributional

details of the extreme heat and cold measures. Figure 2 presents the time-series of daily mean

UTCI between the years 2008 and 2011.

3.4.4 Maternal Education

We code mothers’ education in two categories: high school and below (0) and college and above

(1). In our analytic sample, 17,967 (33%) report college attainment. This sample of mothers

from the center of the most developed metropolitan city in south China is highly educated.

Recent census figures for the population ages six and above in Guangdong Province indicate

a 16% rate of tertiary attainment; rates are higher for China’s wealthiest province-level cities
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(Beijing, 42%, and Shanghai, 34%).16

3.4.5 Control Variables

Pregnancy risks associated with advanced maternal age are well established for mothers and

their children, and include heightened risk of pre-term labor, fetal growth restriction, and fetal

demise among those over 35, in comparison to younger mothers (Sauer 2015).17 Pregnancy

when young also tends to be associated with risk, but often for social as well as biological

reasons. To capture non-linear age effects, we include continuous controls for maternal age and

the square of maternal age. We adjust for sex of the child (0 if male, 1 if female) and parity (with

a set of binary dummy variables). We also include controls for conception year by month fixed

effects to control for seasonal effects and any time trend18, as well as day of the week at birth

fixed effects (He et al. 2016). Finally, we adjust for daily mean rainfall during the duration of

pregnancy using a cubic function of daily mean rainfall in all regressions to model the nonlinear

relationship between rainfall and birth weight.19

3.5 Analytic Approach

We model birth weight as related to maternal education, air pollution and extreme temperature

exposure in both mean and quantile regression frameworks. We first estimate a baseline main

16 Calculated from National Bureau of Statistics of China (2021).
17 We have found few studies that identify whether advanced maternal age places mothers at particular risk to

conditions of air pollution exposure. However, one cohort study in Wuxi, China showed an effect modification
with maternal age: preterm birth risk associated with exposure to high levels of PM10 occurred primarily among
women over age 35 (Han et al. 2018).

18 Controlling for seasonal trends is a common specification in studying the health impacts of ambient environment.
Depending on the structure of the data, the literature uses different ways of controlling, varying from calendar
day in a year trends (Chen et al. 2020), to year-by-month fixed effects to exploit within-calendar month variation
in the ambient environment (Janke 2014), to year and month fixed effects to exploit cross-year variation in
ambient environment in the same month (Currie and Rossin-Slater 2013). To exploit the daily variation in air
pollution level, we choose to include year-by-month fixed effects to control for seasonal effects and changes in
economic conditions over time that are shared commonly across the city that may also confound the results.

19 Rainfall has been related to birth outcomes in a number of studies (Currie and Rossin-Slater 2013; Rocha and
Soares 2015). Given this precedent and the monsoon climate in Guangzhou, which is often exposed to typhoons,
we control for rainfall in our study. Relative humidity is also a common confounder for birth outcomes (He
et al. 2016; Rich et al. 2015). However, since our temperature variable, UTCI, by construction, has already
incorporated both dry bulb temperature and relative humidity, we do not include relative humidity as a separate
control in our analysis. Nevertheless, our results are robust if we drop rainfall and include relative humidity in
regressions.
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effects (conditional) mean regression model:

BirthWeightymi = α +ζym +σ0Edui

+ γ1Pi + γ2Coldi + γ3Heati

+g(Rainfalli)+Xiθ
′
+ εi ,

(1)

where BirthWeightymi is birth weight of individual i who is conceived in year y and month m.

Edui is a binary variable indicating if a mother has at least a college degree. Pi is a continuous

variable measuring each mother’s prenatal ambient exposure to PM10, or the composite index of

PM10, NO2 and SO2. Coldi, and Heati are continuous variables measuring the percentages of

prenatal days exposed to extreme cold or heat. g(Rainfalli) is a cubic function of daily mean

precipitation that a mother is exposed to during her pregnancy. We control for an individual-

specific vector of attributes X i, which includes linear and quadratic terms for maternal age,

child’s sex, parity, number of multiple births, and birth day of the week. To control for shifts

in seasonal patterns of birth as well as possible changes in economic conditions over time, we

include conception year and month interaction fixed effects ζym.20 Given these, Equation (1)

compares the birth weights of infants conceived in the same calendar month and examines the

associations of cumulative within-month variation in air pollution and temperature with variation

of birth weights.

Equation (1) restricts the birth weight gradient with college education to be constant, which

is captured by σ0 and is invariant of ambient environmental exposures. Equation (2) relaxes

this restriction, and allows the birth-weight gradient with college education to potentially vary

20 Due to significant day-to-day variations in pollution exposures as shown in Figure 1 and Figure 3, despite the
inclusion of year and month interaction fixed effects, there remains sufficient variations in pollution exposures
that allow for identification. These variations, in effect, arise due to day-by-day differences in exposures in the
first and last months of pregnancy. In our regression framework, we assume homogeneous effects of pollution
exposures during the course of pregnancy.
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depending on Pi, Coldi, and Heati:

birth weightymi = α +ζym +σ0Edui

+ γ1Pi + γ2Coldi + γ3Heati

+σ1Edui×Pi +σ2Edui×Coldi +σ3Edui×Heati

+g(Rainfalli)+Xiθ
′
+ εi ,

(2)

where positive values for σ1, σ2 and σ3 combined with negative values for γ1, γ2 and γ3 would

imply protective effects of maternal college education that ameliorate the negative impacts of

ambient air pollution, extreme cold, and extreme heat on birth weight.

We estimate Equations (1) and (2) both via conditional mean (OLS) and conditional quantile

estimation.21 Under OLS, Equation (2) imposes the restriction that the birth weight-college

education gradient—conditional on observed variables including the vector of environmental

exposure measures Pi, Coldi, and Heati—is constant across individuals. The implicit assumption

is that the birth weight-college education gradient is invariant across the conditional distribution

of birth weight, where the conditional distribution captures unobserved factors—including

nutrition, avoidance behavior, genetic factors, or other risk factors—that can also impact birth

weight. However, given the same ambient environment, the tendency for college-educated

mothers to have babies with higher birth weight compared to non-college-educated mothers

may be most pronounced at the lower conditional quantiles of unobserved innate vulnerabilities.

Additionally, babies with greater unobserved innate vulnerabilities might be more likely to suffer

from air pollution and extreme temperatures.

Our conditional quantile analysis allows birth weight-college education gradients to vary both

along observed dimensions of sources of vulnerabilities, i.e., potential negative environmental

factors (as seen in the interaction effects in Equation (2)), and along unobserved dimensions

21 Under OLS, the same estimated coefficients provide both conditional and unconditional mean predictions; under
quantile estimations, conditional quantile estimates in general can differ from unconditional quantile results
(Firpo, Fortin, and Lemieux 2009). In this paper, we use conditional quantile estimates to study heterogeneous
maternal education and birth weight gradients on levels (grams) of birth weight. While Firpo, Fortin, and
Lemieux (2009) show that in the context of birth weight, conditional and unconditional quantile estimates can be
similar, we do not consider the implications of our estimates for the unconditional (marginal) distribution of birth
weight. We estimate quantile regressions with the quantreg package (Koenker 2020).
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of sources of baby vulnerabilities, as captured by different conditional quantiles. The results

provide a finer disentangling of heterogeneities of the birth weight-maternal education gradients.

For example, the conditional mean estimates could understate the importance of PM10 if the

negative relationship between PM10 and birth weight is magnified at lower conditional quantiles

where mothers/children have greater unobserved innate vulnerabilities.

4 Results

4.1 Mean Regression Results

Results from mean regressions with PM10 as the only air pollutant are presented in Table

3. Columns 1 and 3 show the Equation (1) estimates. Columns 2 and 4 show the Equation

(2) estimates, which include interaction terms between maternal education and environmental

exposure variables. In columns 1 and 2, extreme temperature is defined by 1% extreme tails of

past temperatures, while columns 3 and 4 use 2.5% as the tail cutoffs.

After controlling for conception year-by-month fixed effects, PM10, extreme cold, and

extreme heat are all negatively and substantially associated with birth weight. Column 1 in Table

3 shows that a 1 µg/m3 increase in average daily PM10 potential exposure during pregnancy is

associated with an 17.8 gram reduction of birth weight (s.e. 2.3). An additional percentage point

increase in potential exposure to extreme heat or cold is associated with a 22.4 gram (s.e. 9.4)

or 30.8 gram (s.e. 9.8) birth weight reduction, respectively. Stated differently, a one standard

deviation change in potential exposure to PM10 (i.e., 6.6 µg/m3), extreme heat (i.e., 1.61% of

pregnant days), or extreme cold (i.e., 1.00% of pregnant days) corresponds to 0.25, 0.08, and

0.07 standard deviation changes in birth weights, respectively.22 The results from Columns 1 and

3 are similar. The exception is that in Column 3, with the less-extreme temperature thresholds,

heat exposure is no longer significantly negatively associated with birth weight.

22 While the magnitudes of the associations between PM10 or other pollutants and birth weights in relatively low
pollution settings are generally smaller than what we find, our results are similar to the findings obtained by
Bharadwaj and Eberhard (2008) from Chile—a setting with similar mean PM10 exposures as our setting here—
where results show that a one standard deviation (17 µg/m3) increase in PM10 exposures is associated with 0.23
standard deviations (125 grams) of birth-weight reduction.
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Columns 2 and 4 show the maternal college education interaction coefficient estimates.23

In both columns, mothers’ college education status is associated with reduced vulnerability to

ambient air pollution and extreme heat exposures. However, this protective effect of mothers’

college is not significant for extreme cold. Focusing on Column 2, there is a positive college-

education interaction coefficient of 2.0 (s.e. 0.7) for PM10 and 11.8 (s.e. 2.9) for extreme heat.

Comparing college-educated to non-college-educated mothers, the interactions correspond to a

10% dampening of the negative association of PM10 with birth weight and a 44% dampening of

the negative association of extreme heat with birth weight.

We evaluate the college premium in birth weight, which we define to be the predicted gap in

birth weight between college-educated and non-college-educated mothers, by considering the

negative intercept for college education, -115.7 (s.e. 53.2), and the positive education slopes

jointly. Holding extreme heat and cold exposures at their respective means, the college premium

amounts to 0.05, 0.08, and 0.16 standard deviations of birth weight at the 1st (63 µg/m3), 50th

(70 µg/m3), and 99th (89 µg/m3) percentiles of the marginal distribution of PM10. Similarly,

holding PM10 and extreme cold at their respective means, the college premium amounts to 0.05,

0.07 and 0.17 standard deviations of birth weight at the 1st (0%), 50th (0.76%) and 99th (4.71%)

percentiles of the marginal distribution of the percentage of pregnancy days exposed to extreme

heat.

4.2 Quantile Regression Results

Conditional quantile results, without and with maternal education interactions with the three

environmental measures, are shown in Tables 4 and 5, respectively. These estimates use the

more stringent cold and heat exposure measures defined by the 1% cutoffs. Because these

are conditional quantile estimates, the quantiles are defined with respect to what we call the

children’s unobserved innate vulnerabilities (i.e., the residuals in the birth weight regressions,

not the birth weights themselves).

23 The coefficient estimates for college education appear negative in the interaction specifications (columns 2 and
4). In these specifications, college education coefficients represent intercepts (adjusting for other variables in
the model) for the hypothetical situation of no PM10, cold, or heat exposure. The predicted protective effects of
maternal education given the observed range of ambient environmental measures are presented in our discussion
of college premiums for birth weights.

21



4.2.1 Baseline Quantile Regression Results

Table 4 shows a negative gradient for college education over ascending conditional quantile

estimates, indicating that the protective effects of college education on birth weight decrease as

we move from the left to the right tail of the conditional distribution of birth weight. Specifically,

the coefficient estimates on mothers’ college completion status are 64.6 (s.e. 8.1), 21.8 (s.e. 4.8),

and 11.2 (s.e. 7.4) at the 10th, 50th, and 90th conditional quantiles. These amount to 0.14, 0.05,

and 0.02 standard deviations of birth weight.

Additionally, the negative associations between the three environmental measures and birth

weight are all stronger at lower conditional quantiles. The PM10 coefficients at the 10th, 50th,

and 90th conditional quantiles are -38.9 (s.e. 3.5), -22.2 (s.e. 2.1), and -17.5 (s.e. 2.8). A

one standard deviation increase in potential PM10 exposures is associated with 0.55, 0.31, and

0.25 standard deviation reductions of birth weight, respectively. For extreme heat and cold,

respectively, the magnitudes of the negative associations are 2.4 and 3.7 times larger at the 10th

conditional quantile versus the 90.th At the 10th conditional quantiles, a one standard deviation

increase in extreme heat or cold is associated with a 0.06 or 0.13 standard deviation reduction of

birth weights, respectively.

Table 4 also indicates increasing estimates for males, decreasing estimates for mother’s age,

as well as increasing estimates for mother’s age squared along ascending conditional quantiles

estimates. The directions and magnitudes of these coefficient estimates are similar to those

reported in the existing research on conditional and unconditional quantile estimates for birth

weights (Abrevaya 2001; Firpo, Fortin, and Lemieux 2009; Koenker and Hallock 2001).

4.2.2 Quantile Regression Results with Interactions

At lower conditional quantiles, maternal college education ameliorates the negative associations

between birth weight and pollution and extreme heat, but not extreme cold. As shown in Table

5 and Figure 4, the college-education interaction coefficient estimates for PM10 are 5.7 (s.e.

1.3), 1.3 (s.e. 0.7), and 0.0 (s.e. 1.1) at the 10th, 50th, and 90th conditional quantiles. These

respectively correspond to 14, 6, and 0% reductions in the substantial negative associations

between PM10 and birth weight compared to non-college-educated mothers. Additionally, the
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college-education interaction coefficient estimates for extreme heat are 26.4 (s.e. 5.4), 7.3

(s.e. 3.3), and 6.2 (s.e. 4.8) at the 10th, 50th, and 90th conditional quantiles. While the overall

associations of extreme heat with birth weights are less substantial than the associations of PM10

with birth weights, these coefficients, respectively, correspond to 71, 31, and 47% reductions in

the associations between extreme heat and birth weight.

Considering jointly the positive slopes and negative intercepts from Table 5, the college

premium in birth weight is magnified at lower conditional quantiles. Holding heat and cold

exposure variables at their means, the college premiums at the 1st, 50th and 99th percentiles of

the marginal distribution of PM10 amount to 0.02, 0.02, and 0.02 standard deviations of birth

weight with 90th conditional quantile estimates, and are magnified substantially to 0.03, 0.11,

and 0.34 standard deviations of birth weight with 10th conditional quantile estimates. These

results are visualized in Figure 5. Additionally, holding PM10 and cold exposures at their means,

the college premiums at the 1st, 50th and 99th percentiles of the marginal distribution of extreme

heat amount to 0.00, 0.01, and 0.06 standard deviations of birth weight with the 90th conditional

quantile estimates, and are magnified to 0.06, 0.10, and 0.32 standard deviations with the 10th

conditional quantile estimates. In contrast, the associations between extreme cold exposures and

birth weights do not vary across maternal education groups, so there are no significant variations

in the college premium in birth weight as extreme cold exposures increase.

4.3 Composite Index Analysis

We repeat the analyses parallel to that for PM10 but with the composite index pollution measure.

Detailed results are presented in Appendix Tables A.1, A.2, and A.3. Patterns in the temperature

results are robust to the choice of pollution measure, and are not discussed here. The results from

the composite index analysis closely mirror the patterns revealed in the PM10 analysis. There

is a protective effect of maternal education with regard to pollution, and the finding persists

across conditional quantiles of birth weight. Further, quantile regressions show that the negative

associations between pollution and birth weight, and the protective effects of maternal education

with respect to pollution, are magnified at lower conditional quantiles.

A key difference in the composite index analysis results is that for estimates based on
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Equation (1) without maternal education interactions, the birth weight change associated with

one standard deviation change in the composite index is 1.8 times of the corresponding change in

the PM10 analysis. In the regressions with interactions, the protective effect of college education

is weaker in the composite index analysis than in the PM10 analysis. Together, these factors

lead to a pattern in which the college premium in grams of birth weight along the marginal

distribution of the composite index is approximately the same as the college premium in birth

weight along the marginal distribution of PM10.

4.4 Summary

Conditional on ambient temperature exposures, we find that one standard deviation increase in

ambient PM10 is associated with a 0.25 standard deviation reduction in birth weight. At average

ambient PM10 and extreme temperature exposure levels, the protective effect of maternal college

education is up to 0.07 standard deviations of birth weight. We also find that the negative

association between ambient exposures and birth weight is two times as large at lower conditional

quantiles of birth weight than at the median. At lower conditional quantiles of birth weight, a

one standard deviation increase in ambient PM10 exposure is associated with a reduction in birth

weight of up to 0.48 standard deviations.

Additionally, the protection associated with university-educated mothers with respect to

pollution and extreme heat is five times as large at the lowest decile of conditional quantiles of

birth weight than at the highest decile. In particular, the protective effect of college education

can be up to 0.34 standard deviations of birth weight when children with higher unobserved

innate vulnerabilities—those at lower conditional quantiles—face high levels of ambient PM10

and extreme temperature exposures. Though we focus on a continuous measure of birth weight

for all terms in the text, we find similar results with binary measures used in some other studies

for low birth weight, preterm births, and small for gestational age (Appendix Section A.4).

Our results show that there are substantively significant heterogeneous moderating effects of

maternal education on the negative associations between ambient environmental exposures

and birth weight. We are the first to document these relationships using mean and conditional

quantile regressions with an approach in which we consider three key ambient environmental
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exposures jointly.

5 Discussion and Conclusion

In this paper, we link a database of all births recorded for three years born in hospitals in a district

in Guangzhou, China, to daily measures of particulate matter (PM10), nitrogen dioxide, and

sulfur dioxide and to daily meteorological measurements during pregnancies. Using conditional

mean and quantile regressions, we estimate the associations of birth weight with air pollution,

measured by ambient PM10 and a composite pollution measure, and with extreme cold and

hot temperatures. To our knowledge, this paper is the first study of birth outcomes in a fairly

high-pollution context to consider effect modifications of both pollution and extreme weather

by maternal education. It is also novel in addressing whether the protective effects of maternal

education are heterogeneous with respect to babies’ unobserved innate vulnerabilities.

Our approach has certain limitations. First, we cannot observe mothers’ addresses, which

would have enabled us to match to the air pollution level from the closest monitoring station.

On the other hand, our approach of using core city districts’ pollution levels is reasonable if we

assume that women who give birth in a district are likely to live and move around primarily in

that district and neighboring districts. We are encouraged that our results are not sensitive to our

choice of a proxy for ambient exposure: results are robust to whether we use city-wide pollution

measures or center-city district pollution measures (Appendix Section A.2).

A second limitation of the paper is that it is geographically limited to one locale. Under

the assumption of homogeneous environmental effects across locations, more cities would be

beneficial in terms of additional variance in environmental and temperature exposure variables

and would improve the precision of estimates. However, if effects are heterogeneous across

locations, an average effect obtained from information over multiple locations might not properly

capture varying local effects. Accounting for differences across locations appropriately is

potentially especially important for temperature effects, which are a focus in our paper. Relative

temperature matters—the implications for pregnancy of a given temperature may differ across
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temperature zones. Focusing on a single region has the advantage of avoiding this problem.24

The experience of Guangzhou may not generalize across China, but it offers a case study that is

potentially relevant to other urban settings in south China, and possibly parts of Southeast Asia,

characterized by broadly similar climates, high levels of pollution, and economic conditions.

Finally, the administrative data to which we have access has excellent measurement of birth

outcomes, relative to self-reported survey data. However, it contains very limited information

about mothers. This limitation precludes analysis of other dimensions of socioeconomic status

beyond maternal education or behavioral mechanisms that might explain the patterns we find.

With these caveats in mind, we find strong negative associations between ambient PM10

and extreme temperature exposures and birth weights. For example, a one standard deviation

increase in PM10 exposure—6.6 µg/m3—is associated with a 116 to 258 gram reduction in

birth weights. One standard deviation—on average, 2.7 days—increase in prenatal exposure

to extreme cold temperatures (lower than -0.87 degrees Celsius in universal thermal climate

indices) is associated with a 17 to 63 gram reduction in birth weights. One standard deviation—

on average, 4.3 days—increase in prenatal exposure to extreme hot temperatures (higher than

34.23 degrees Celsius, in universal thermal climate indices) is associated with a 12 to 31 gram

reduction in birth weights. Stronger associations are seen for children with greater levels of

unobserved innate vulnerabilities at lower conditional quantiles.

There is also strong evidence for effect modification with maternal education. Newborns

of mothers with college attainment experience an amelioration of effects on birth weight of

PM10 by about 0 to 14%, and of extreme hot weather by 31 to 70%, with larger buffering effects

experienced by those at lower conditional quantiles. However, there is no effect modification

with maternal education in response to extreme cold weather. This result is understandable in a

context in which centralized heating is not widely available. Although there is usually only a

short spell of very cold weather in each year, our results indicate that even a few days of very cold

weather exposure is associated with lower birth weights. Given the lack of indoor heating, even

24 Our paper capitalizes on full administrative data, rather than sample data from one location. For a study that
is focused on distributional outcomes, it is important to capture the full range of birth weight distributions and
we are able to do this. There are benefits to having more people in the same location, which allows for careful
control of location-specific time-trends that could vary with changes in local economic conditions that might
correlate with birth weight.

26



mothers with higher socioeconomic status might have no effective way of protecting themselves

from exposure to extreme cold weather. In contrast, air conditioning was widely available during

the time period of this study and was very accessible for higher socioeconomic status mothers.

In short, our findings demonstrate that babies of college-educated mothers—compared to

babies of other mothers in the same district of Guangzhou—experienced lower risk in the context

of air pollution and extreme heat exposure. It is important to note that the benefits accruing to

babies of college-educated mothers vary. The protective effects are most pronounced among

those experiencing more environmental risk—more extreme ambient pollution and heat exposure.

Protective effects of maternal education also emerge more strongly for infants with greater

unobserved innate vulnerabilities. In other words, socioeconomic disparities and underlying

child health vulnerabilities both stratify the realized impacts associated with a common ambient

environment—especially when that common ambient environment is extreme pollution or

extreme hot temperatures. Our findings suggest that babies at greatest risk from high pollution

levels and increasingly frequent heat events are those at the nexus of socioeconomic and health

vulnerability.
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Fig. 1. Daily mean ambient air pollution levels for three major pollutants, 2008 to 2011,
Guangzhou, China.

Note: This figure shows daily means for three monitored ambient air pollutants in Guangzhou between
2008 and 2011.
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Fig. 2. Daily mean temperature (Universal Thermal Climate Index), Guangzhou, China, 2008 to
2011.
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Fig. 3. Daily mean ambient PM10 exposure by mother’s education.

Note: The left panel contains observed data, while the right panel depicts the conditional distribution of
daily mean ambient PM10 exposure after controlling for conception year and month interaction fixed
effects.
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Fig. 4. Graphical illustration of mean and conditional quantile estimation coefficients from
models of birth weight (grams) for average daily mean ambient PM10 exposures (µg/m3) (top
row) and composite index (bottom row) for mothers with college education and mothers with
high school or less education (HS).
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Note: The x-axis of the sub-plots corresponds to results from different conditional quantile estimations. We
interpret lower conditional quantiles as corresponding to higher levels of unobserved innate vulnerabilities
for babies. The two subfigures in the top panel are based on estimates from Tables 3 and 5. The two
subfigures in the bottom panel are based on estimates from Appendix Tables A.1 and A.3. The y-axis
reports regression coefficients. The left and right panels depict the same information in two ways. The
solid line in the right panel shows the gap between the HS and college quantile coefficient lines in the
corresponding left panel. The gaps depicted on the right provide a visualization of the maternal college
education and pollution interaction coefficients, from Table 5 in the top panel for PM10 or from Table
A.3 for the composite index. In the top panel, coefficients indicate grams of birth weight change for
each additional µg/m3 of average daily mean ambient PM10 exposures. In the bottom panel, coefficients
indicate grams of birth weight change for each additional index unit of the composite index.

39



Fig. 5. Graphical illustration of predicted college premium in birth weight for different condi-
tional quantiles and at different ambient PM10 exposure levels.
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Note: The x-axis of the figure represents different ambient PM10 exposure levels during the course of
pregnancy, which correspond to the range of ambient PM10 exposure levels reported in Table 2. The y-
axis reports predicted college premium in birth weight–the predicted gap in birth weight between college-
educated and non-college-educated mothers. Given estimates from Tables 3 and 5, each line corresponds
to predictions for children at differing conditional quantiles. The premium is greater at higher ambient
exposure levels and for children with higher levels of unobserved innate vulnerabilities–those at lower
conditional quantiles.

40



Table 1: Summary statistics.
Comparison by mother’s education

All <= High school >=College Gap

mean s.d. mean s.d. mean s.d. p-value

Child variables

Sex (male=1) 0.53 0.50 0.54 0.50 0.53 0.50 (0.01)

Birth weight (grams) 3182 473 3167 492 3213 429 (0.00)

Gestational age (days) 273 11.51 273 12.31 273 9.69 (0.00)

Low birth weight 0.06 0.23 0.07 0.25 0.04 0.19 (0.00)

Preterm (%, gestational age < 37weeks) 0.07 0.26 0.08 0.27 0.05 0.23 (0.00)

Small for Gestational Age 0.09 0.29 0.10 0.30 0.08 0.27 (0.00)

Maternal variables

Mother’s age (years) 29.08 4.17 28.84 4.51 29.57 3.35 (0.00)

Mother’s schooling attainment (years) 13.13 2.19 11.75 0.90 15.89 1.15 (0.00)

Parity 1.25 0.51 1.34 0.57 1.06 0.26 (0.00)

Average of daily mean potential pollution exposures during pregnancy

All city districts measurements

PM10 (µg/m3) 73.22 7.16 72.52 6.89 74.64 7.49 (0.00)

NO2 (µg/m3) 41.41 6.13 40.61 6.00 43.01 6.07 (0.00)

SO2 (µg/m3) 35.18 4.63 34.46 4.64 36.62 4.26 (0.00)

Composite index of PM10, NO2, SO2 -0.05 1.56 -0.26 1.53 0.38 1.53 (0.00)

Center-city districts measurements

PM10 (µg/m3) 72.10 6.63 71.53 6.36 73.23 6.99 (0.00)

NO2 (µg/m3) 48.60 6.94 47.73 6.79 50.32 6.90 (0.00)

SO2 (µg/m3) 34.44 4.62 33.74 4.68 35.83 4.18 (0.00)

Composite index of PM10, NO2, SO2 -0.02 1.48 -0.22 1.45 0.37 1.46 (0.00)

Temperature and rainfall during pregancy

Average daily rainfall (mm) 5.15 1.61 5.20 1.64 5.03 1.55 (0.00)

Average daily mean temperature (C◦) 22.38 1.83 22.32 1.86 22.50 1.77 (0.00)

Percent of pregnancy days with potential exposure to extreme temperatures

Extreme heat, above past 99% 1.73 1.61 1.60 1.54 1.98 1.71 (0.00)

Extreme cold, below past 1% 1.70 1.00 1.77 1.01 1.57 0.95 (0.00)

Extreme heat, above past 97.5% 3.73 2.87 3.54 2.75 4.11 3.08 (0.00)

Extreme cold, below past 2.5% 4.40 2.47 4.53 2.52 4.13 2.33 (0.00)

Note: The analytic sample has 53,879 observations. The college subsample has 17,967 observations and the high school or lower subsample
has 35,912 observations. Sources and computations for ambient environmental variables are discussed in the data section of the paper.
‡ P-value from testing whether the mean gap for each variable between college-educated and non-college-educated mothers is statistically
different.
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Table 2: Distribution of cumulative ambient PM10, composite index and extreme
temperature exposures during the course of pregnancy.

Varying cutoffs for extreme temperature exposures

Pollution measures 1 percent cutoff 2.5 percent cutoff

Statistics PM10 composite heat cold heat cold
µg/m3 index percent days percent days percent days percent days

Percentiles

P1 63.05 -2.31 0.00 0.00 0.00 0.00

P5 64.50 -2.18 0.00 0.36 0.00 0.37

P10 65.10 -1.71 0.00 0.43 0.38 1.08

P25 66.80 -1.33 0.71 0.73 1.75 2.50

P50 70.01 -0.25 0.76 1.79 2.59 4.23

P75 76.41 1.20 3.65 2.63 6.88 6.83

P90 82.56 2.29 4.38 2.93 8.39 7.33

P95 86.45 2.66 4.48 3.00 8.58 7.49

P99 88.52 2.92 4.71 3.17 9.02 7.94

Min and Max

Min 51.86 -2.42 0.00 0.00 0.00 0.00

Max 99.91 4.86 6.35 4.35 12.17 10.87

Note: Figures reported in the table represent distributional statistics along the marginal distribution of
ambient pollution and extreme temperature variables.
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Table 3: OLS regression analysis of birth weight with interactions of ambient PM10
and extreme temperature with maternal education.

Varying cutoffs of extreme temperature exposures

1 percent cutoff 2.5 percent cutoff

Variable (1) (2) (3) (4)

Environmental exposure variables

PM10 -17.83∗∗ -18.58∗∗ -14.59∗∗ -15.41∗∗

(2.27) (2.29) (2.31) (2.33)

Extreme heat -22.38∗ -27.06∗∗ 0.09 -2.33

(9.41) (9.57) (5.11) (5.21)

Extreme cold -30.84∗∗ -30.33∗∗ -24.68∗∗ -24.33∗∗

(9.80) (9.96) (4.37) (4.43)

Education and environmental exposure interactions

College educated 44.55∗∗ -115.70∗ 44.85∗∗ -133.00∗

(4.43) (53.17) (4.43) (55.52)

College x PM10 1.95∗∗ 2.19∗∗

(0.68) (0.70)

College x extreme heat 11.82∗∗ 6.26∗∗

(2.93) (1.71)

College x extreme cold -2.15 -1.35

(4.68) (1.87)

Control variables

Male 104.00∗∗ 104.00∗∗ 103.90∗∗ 103.90∗∗

(3.93) (3.93) (3.93) (3.93)

Mother’s age 55.41∗∗ 54.90∗∗ 55.33∗∗ 54.85∗∗

(4.98) (4.98) (4.98) (4.98)

Mother’s age2 -0.90∗∗ -0.89∗∗ -0.89∗∗ -0.89∗∗

(0.08) (0.08) (0.08) (0.08)

Intercept 1,205.00∗∗ 1,276.00∗∗ 1,019.00∗∗ 1,094.00∗∗

(219.90) (221.50) (221.40) (223.30)

Observations 53,879 53,879 53,879 53,879
R2 0.069 0.069 0.069 0.070

Note: Regressions control for conception year and month interaction fixed effects, day of the week
at birth, parity, and daily mean rainfall.
† p < 0.10; ∗ p < 0.05; ∗∗ p < 0.01.
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Table 4: Conditional quantile regression analysis of birth weight with ambient PM10 and extreme
temperature and maternal education.

Estimates at conditional quantiles

Variable P10 P25 P50 P75 P90

Environmental exposure variables

PM10
a,b,c,d -38.90∗∗ -26.34∗∗ -22.16∗∗ -15.30∗∗ -17.50∗∗

(3.49) (2.44) (2.09) (2.38) (2.83)

Extreme heat -17.88 -13.15† -19.06∗ -8.10 -7.43

(13.26) (7.84) (8.90) (11.00) (12.17)

Extreme cold a,b -62.61∗∗ -29.79∗∗ -19.68∗ -23.89∗ -16.82

(16.30) (9.85) (9.37) (10.15) (13.97)

Education

College educated a,b,c,d 64.59∗∗ 33.20∗∗ 21.79∗∗ 9.10 11.19

(8.08) (5.72) (4.81) (5.87) (7.39)

Control variables

Male 92.62∗∗ 98.92∗∗ 111.94∗∗ 117.30∗∗ 132.60∗∗

(7.67) (5.07) (4.42) (4.80) (6.75)

Mother’s age 64.30∗∗ 45.91∗∗ 46.47∗∗ 51.18∗∗ 46.37∗∗

(10.01) (5.79) (5.63) (5.53) (8.81)

Mother’s age2 -1.09∗∗ -0.73∗∗ -0.73∗∗ -0.78∗∗ -0.69∗∗

(0.17) (0.10) (0.09) (0.09) (0.15)

Intercept 917.89∗ 1,168.25∗∗ 1,835.52∗∗ 1,897.93∗∗ 2,226.62∗∗

(378.70) (252.98) (200.27) (232.69) (334.94)

Observations 53,879 53,879 53,879 53,879 53,879

Note: Regressions control for conception year and month interaction fixed effects, day of the week at birth, parity,
and daily mean rainfall.
Given bootstrapped simultaneous conditional quantile estimates, superscripts a, b, c, and d indicate whether
estimates across conditional quantiles are statistically different for the three ambient environment or education
variables.
a P10, P25, and P50 are significantly different at 0.05 sig. level.
b P10 and P90 are significantly different at 0.05 sig. level.
c P25 and P75 are significantly different at 0.05 sig. level.
d P50, P75, and P90 are significantly different at 0.05 sig. level.
† p < 0.10; ∗ p < 0.05; ∗∗ p < 0.01.Bootstrap standard errors are shown in parentheses.
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Table 5: Conditional quantile regression analysis of birth weight with interactions of ambient
PM10 and extreme temperature with maternal education.

Estimates at conditional quantiles

Variable P10 P25 P50 P75 P90

Environmental exposure variables

PM10
a,b,c,d -40.75∗∗ -28.15∗∗ -22.55∗∗ -16.04∗∗ -18.06∗∗

(3.03) (2.83) (2.14) (2.15) (3.09)

Extreme heat -37.30∗∗ -23.23∗ -23.50∗∗ -12.04 -13.12

(13.73) (10.64) (8.23) (10.92) (13.12)

Extreme cold a,b -65.43∗∗ -28.98∗∗ -17.15∗ -22.28∗ -13.74

(15.79) (10.57) (8.75) (10.45) (12.38)

Education and environmental exposure interactions

College educated a,b,c -396.40∗∗ -216.76∗∗ -83.69 -95.51 2.20

(99.62) (59.02) (58.77) (60.23) (87.96)

College x PM10
a,b 5.69∗∗ 3.11∗∗ 1.31† 1.39† -0.02

(1.30) (0.78) (0.72) (0.78) (1.10)

College x extreme heat a,b 26.35∗∗ 11.83∗∗ 7.30∗ 5.24 6.19

(5.42) (3.91) (3.27) (3.50) (4.75)

College x extreme cold 3.30 2.21 -2.68 -3.97 -1.34

(9.12) (6.28) (4.94) (5.87) (7.69)

Control variables

Male 90.14∗∗ 98.32∗∗ 112.02∗∗ 116.40∗∗ 132.55∗∗

(8.38) (5.15) (4.42) (5.15) (6.12)

Mother’s age 62.49∗∗ 44.68∗∗ 46.26∗∗ 48.33∗∗ 45.30∗∗

(10.02) (6.04) (5.07) (5.70) (8.91)

Mother’s age2 -1.06∗∗ -0.71∗∗ -0.73∗∗ -0.74∗∗ -0.67∗∗

(0.17) (0.10) (0.09) (0.10) (0.15)

Intercept 1,240.85∗∗ 1,415.85∗∗ 1,888.54∗∗ 2,032.87∗∗ 2,357.66∗∗

(371.67) (263.70) (206.46) (202.99) (369.89)

Observations 53,879 53,879 53,879 53,879 53,879

Note: Regressions control for conception year and month interaction fixed effects, day of the week at birth, parity,
and daily mean rainfall.
Given bootstrapped simultaneous conditional quantile estimates, superscripts a, b, c, and d indicate whether
estimates across conditional quantiles are statistically different for the three ambient environment or education
variables.
a P10, P25, and P50 are significantly different at 0.05 sig. level.
b P10 and P90 are significantly different at 0.05 sig. level.
c P25 and P75 are significantly different at 0.05 sig. level.
d P50, P75, and P90 are significantly different at 0.05 sig. level.
† p < 0.10; ∗ p < 0.05; ∗∗ p < 0.01.Bootstrap standard errors are shown in parentheses.
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ONLINE APPENDIX

Same environment, stratified impacts? Air pollution, extreme
temperatures, and birth weight in south China

Xiaoying Liu, Jere R. Behrman, Emily Hannum, Fan Wang, and Qingguo Zhao

A Additional Estimation Results

A.1 Composite Pollution Index

In this Appendix section, we repeat the analyses for PM10 with the composite index pollution

measure. Results are presented in Appendix Tables A.1, A.2 and A.3. Patterns in the temperature

results are robust to choice of pollution measure. The results from the composite index analysis

closely mirror the patterns revealed in the PM10 analysis. There is a protective effect of maternal

education with regard to pollution, and the finding persists across conditional quantiles of birth

weight (see the dotted lines in Figure 4 Bottom Row). Further, quantile regressions show that

the negative associations between the pollution and birth weight, and the protective effects of

maternal education with respect to pollution, are magnified at lower conditional quantiles (see

the solid lines and shaded areas in Figure 4 Bottom Row). See Section 4.3 for more discussion.
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Table A.1: OLS regression analysis of birth weight with interactions of ambient
composite index and extreme temperature with maternal education.

Varying cutoffs of extreme temperature exposures

1 percent cutoff 2.5 percent cutoff

Variable (1) (2) (3) (4)

Environmental exposure variables

Composite index -140.90∗∗ -144.50∗∗ -127.10∗∗ -131.00∗∗

(11.82) (11.90) (11.88) (11.95)

Extreme heat -28.61∗∗ -32.21∗∗ -4.47 -6.28

(9.49) (9.64) (5.06) (5.16)

Extreme cold -27.97∗∗ -27.43∗∗ -23.38∗∗ -23.04∗∗

(9.76) (9.92) (4.36) (4.42)

Education and environmental exposure interactions

College educated 44.61∗∗ 29.45∗∗ 44.89∗∗ 29.82∗

(4.43) (11.15) (4.43) (12.06)

College x composite index 9.38∗∗ 10.43∗∗

(2.87) (2.84)

College x extreme heat 9.19∗∗ 4.73∗∗

(2.77) (1.57)

College x extreme cold -2.25 -1.28

(4.68) (1.87)

Control variables

Male 104.30∗∗ 104.30∗∗ 104.20∗∗ 104.20∗∗

(3.92) (3.92) (3.92) (3.92)

Mother’s age 55.11∗∗ 54.54∗∗ 55.07∗∗ 54.51∗∗

(4.97) (4.97) (4.97) (4.97)

Mother’s age2 -0.89∗∗ -0.88∗∗ -0.89∗∗ -0.88∗∗

(0.08) (0.08) (0.08) (0.08)

Intercept -218.50 -203.60 -147.60 -133.10

(136.30) (136.40) (136.80) (136.90)

Observations 53,879 53,879 53,879 53,879
R2 0.071 0.072 0.072 0.072

Note: Regressions control for conception year and month interaction fixed effects, day of the week
at birth, parity, and daily mean rainfall.
† p < 0.10; ∗ p < 0.05; ∗∗ p < 0.01.
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Table A.2: Conditional quantile regression analysis of birth weight with ambient composite
index and extreme temperature and maternal education.

Estimates at conditional quantiles

Variable P10 P25 P50 P75 P90

Environmental exposure variables

Composite index a,b,c,d -292.98∗∗ -192.96∗∗ -150.52∗∗ -111.98∗∗ -123.83∗∗

(19.50) (14.10) (11.00) (12.61) (17.25)

Extreme heat -38.50∗∗ -20.23∗ -21.52∗∗ -9.73 -7.79

(14.26) (9.76) (8.01) (9.38) (14.53)

Extreme cold a,b -58.07∗∗ -25.52∗∗ -14.43† -21.52∗ -12.97

(16.27) (9.62) (8.16) (10.45) (12.83)

Education

College educated a,b,c,d 66.01∗∗ 33.64∗∗ 23.00∗∗ 9.63 9.46

(8.56) (5.72) (4.85) (6.11) (7.50)

Control variables

Male 92.49∗∗ 99.08∗∗ 112.03∗∗ 117.86∗∗ 131.44∗∗

(8.66) (4.88) (3.93) (4.90) (6.67)

Mother’s age 63.22∗∗ 45.16∗∗ 46.75∗∗ 49.19∗∗ 43.76∗∗

(10.97) (6.31) (5.19) (6.16) (8.42)

Mother’s age2 -1.07∗∗ -0.73∗∗ -0.73∗∗ -0.75∗∗ -0.64∗∗

(0.19) (0.10) (0.09) (0.10) (0.14)

Intercept -1,626.65∗∗ -564.20∗∗ 260.17∗ 844.02∗∗ 1,028.68∗∗

(228.99) (164.71) (128.89) (163.68) (256.45)

Observations 53,879 53,879 53,879 53,879 53,879

Note: Regressions control for conception year and month interaction fixed effects, day of the week at birth, parity,
and daily mean rainfall.
Given bootstrapped simultaneous conditional quantile estimates, superscripts a, b, c, and d indicate whether
estimates across conditional quantiles are statistically different for the three ambient environment or education
variables.
a P10, P25, and P50 are significantly different at 0.05 sig. level.
b P10 and P90 are significantly different at 0.05 sig. level.
c P25 and P75 are significantly different at 0.05 sig. level.
d P50, P75, and P90 are significantly different at 0.05 sig. level.
† p < 0.10; ∗ p < 0.05; ∗∗ p < 0.01.Bootstrap standard errors are shown in parentheses.
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Table A.3: Conditional quantile regression analysis of birth weight with interactions of ambient
composite index and extreme temperature with maternal education.

Estimates at conditional quantiles

Variable P10 P25 P50 P75 P90

Environmental exposure variables

Composite index a,b,c,d -303.74∗∗ -201.06∗∗ -151.02∗∗ -113.65∗∗ -125.04∗∗

(20.20) (14.57) (12.55) (12.82) (14.82)

Extreme heat a,b -53.19∗∗ -26.34∗ -23.50∗ -12.95 -15.17

(15.83) (11.66) (9.34) (10.00) (12.36)

Extreme cold a,b -63.15∗∗ -26.51∗ -13.36 -19.48† -11.46

(15.67) (11.10) (8.64) (10.39) (13.96)

Education and environmental exposure interactions

College educated 24.22 9.96 16.40 7.32 -0.30

(17.25) (13.52) (13.34) (15.17) (19.60)

College x composite index a,b,c 24.70∗∗ 15.12∗∗ 6.34∗ 6.63† 0.12

(5.69) (3.90) (3.04) (3.52) (4.77)

College x extreme heat a 19.62∗∗ 9.08∗ 4.80 3.01 7.33†

(5.59) (3.60) (3.01) (3.44) (4.04)

College x extreme cold 3.24 2.74 -3.23 -3.38 -1.79

(7.92) (5.31) (5.38) (6.21) (8.21)

Control variables

Male 88.50∗∗ 98.64∗∗ 111.87∗∗ 117.91∗∗ 131.37∗∗

(8.14) (4.92) (4.50) (5.04) (6.36)

Mother’s age 64.58∗∗ 45.67∗∗ 46.16∗∗ 49.16∗∗ 44.13∗∗

(10.77) (5.67) (4.72) (6.09) (8.70)

Mother’s age2 -1.09∗∗ -0.73∗∗ -0.72∗∗ -0.75∗∗ -0.65∗∗

(0.18) (0.10) (0.08) (0.10) (0.15)

Intercept -1,534.26∗∗ -562.73∗∗ 273.06∗ 845.59∗∗ 1,061.62∗∗

(246.88) (159.04) (124.02) (150.09) (249.14)

Observations 53,879 53,879 53,879 53,879 53,879

Note: Regressions control for conception year and month interaction fixed effects, day of the week at birth, parity,
and daily mean rainfall.
Given bootstrapped simultaneous conditional quantile estimates, superscripts a, b, c, and d indicate whether
estimates across conditional quantiles are statistically different for the three ambient environment or education
variables.
a P10, P25, and P50 are significantly different at 0.05 sig. level.
b P10 and P90 are significantly different at 0.05 sig. level.
c P25 and P75 are significantly different at 0.05 sig. level.
d P50, P75, and P90 are significantly different at 0.05 sig. level.
† p < 0.10; ∗ p < 0.05; ∗∗ p < 0.01.Bootstrap standard errors are shown in parentheses.
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A.2 All City Districts PM10 Measurements

Rather than using pollution data from monitoring stations in the four contiguous districts located

in the center of the city, in this robustness check, we use pollution data from the whole city of

Guangzhou, including information from districts that are further away. There are 11 districts in

Guangzhou, five districts are located to the north of the center-city districts, and two districts are

located to the south. Guangzhou city’s total area is 7434 square kilometers. The four center-city

districts’ total area is 280 square kilometers.

Given the proximity, it is more likely that mothers who deliver in the center-city district

where our data comes from reside in center-city districts. However, it is also possible that some

of them come from further-away districts. Additionally, in a metropolitan city with convenient

local transport networks, it is likely that Guangzhou residents travel beyond their district borders

throughout the city for work, leisure, shopping, and health and other social services. So it is

plausible that the appropriate measure for ambient pollution should be based on city-wide data

rather than district-specific data.

Summary statistics in Table 1 shows that pollution measurements from all city districts

and center-city districts are quiet similar. The mean and standard deviation of the average

daily mean potential PM10 exposure are 73.2 and 7.2 for all city districts and 72.1 and 6.6 for

center-city districts. The all city and center-city composite index also have similar means and

standard deviations. The similarity in pollution exposure within the confines of Guangzhou is

not surprising given that that these pollutants are formed and spread through lower-atmosphere

and are usually not highly localized (He, Liu, and Salvo 2019).

We present results using all-city district data in Table A.4, which presents parallel results as

in Table 3, except that center-city districts PM10 measurements are replaced by all city districts

measurements. Table A.4 estimates are almost identical to Table 3 results. Similarly, results

from using the two types of measures are also similar for conditional quantile estimations and

estimation using the composite index. Given their similarity, those results are not presented.
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Table A.4: OLS regression analysis of birth weight with interactions of ambient PM10
and extreme temperature with maternal education. Using all city districts pollution
measurements.

Varying cutoffs of extreme temperature exposures

1 percent cutoff 2.5 percent cutoff

Variable (1) (2) (3) (4)

Environmental exposure variables

PM10 all city districts -17.81∗∗ -18.55∗∗ -14.84∗∗ -15.64∗∗

(2.18) (2.21) (2.21) (2.24)

Extreme heat -21.91∗ -26.27∗∗ 0.15 -2.10

(9.51) (9.67) (5.15) (5.25)

Extreme cold -33.55∗∗ -33.36∗∗ -25.75∗∗ -25.51∗∗

(9.81) (9.97) (4.37) (4.42)

Education and environmental exposure interactions

College educated 44.48∗∗ -117.60∗ 44.79∗∗ -132.60∗∗

(4.43) (48.99) (4.43) (49.90)

College x PM10 all city districts 1.96∗∗ 2.07∗∗

(0.61) (0.61)

College x extreme heat 11.07∗∗ 5.83∗∗

(2.85) (1.64)

College x extreme cold -1.09 -0.97

(4.74) (1.89)

Control variables

Male 104.00∗∗ 104.00∗∗ 103.90∗∗ 103.90∗∗

(3.93) (3.93) (3.93) (3.93)

Mother’s age 55.40∗∗ 54.87∗∗ 55.31∗∗ 54.81∗∗

(4.98) (4.98) (4.98) (4.98)

Mother’s age2 -0.89∗∗ -0.89∗∗ -0.89∗∗ -0.89∗∗

(0.08) (0.08) (0.08) (0.08)

Intercept 1,216.00∗∗ 1,288.00∗∗ 1,019.00∗∗ 1,125.00∗∗

(215.60) (217.10) (221.40) (218.60)

Observations 53,879 53,879 53,879 53,879
R2 0.069 0.069 0.069 0.070

Note: Regressions control for conception year and month interaction fixed effects, day of the week
at birth, parity, and daily mean rainfall.
† p < 0.10; ∗ p < 0.05; ∗∗ p < 0.01.
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A.3 Sample Truncation Based on Gestational Age at Birth

Research on the effects of pollution on birth weight often include both pre-term (with gestational

age less than 37 weeks) and full-term births (Klepac et al. 2018; Stieb et al. 2012). Some studies

restrict the analytic sample to full-term births. Full-term sample selection may be important for

creating a balanced sample to study the differential effects of pollution during different trimesters

(Morello-Frosch et al. 2010) or each month of gestation (Huang et al. 2020). In this paper, we

are interested in the average exposure effects from ambient pollution and extreme temperature

throughout the course of pregnancy and do not estimate gestation-specific effects.A.1

In the text, we focus on the distribution of birth weights. Following Abrevaya (2001), Firpo,

Fortin, and Lemieux (2009), and Koenker and Hallock (2001), we focus on all live singleton

births and do not truncate based on gestational age. Gestational age in our sample ranges from

171 to 319 days. While we believe it is important to analyze the full distributional outcomes

without gestational truncation, to facilitate comparisons to papers that do impose gestational

truncation, in Table A.5, we conduct the same estimation with the same variables as in Table 3,

but now restrict our sample to only individuals with gestational age longer than 36 weeks.

The main results in Table A.5 are similar in directions but smaller in magnitudes than the

results in Table 3: we continue to find negative associations between pollution and extreme

temperatures and birth weight, and find that mothers’ college education status is associated with

reduced vulnerability to ambient air pollution and extreme heat exposures.A.2 In particular, we

find a 1 µg/m3 increase in average daily PM10 potential exposure during pregnancy is associated

with an 8.85 gram reduction of birth weight (s.e. 1.56) in Table A.5 column 1, but the same

increase is associated with a 17.83 gram reduction of birth weight (s.e. 2.27) in Table 3 column

1. Additionally, we find a maternal college education and PM10 interaction coefficient of 0.72

(s.e. 0.59) in Table A.5 column 2 and of 1.95 (s.e. 0.68) in Table 3 column 2. Corresponding

A.1 In Equations (1) and (2), we implicitly assume that the effects of pollution and extreme temperature exposures
are the same across gestational periods. Given our sample and location constraints, we do not have sufficient
power to identify quantile- and gestation-period-specific estimates.

A.2 In both Tables 3 and A.5, we find a weak negative coefficient for the maternal-college-education and extreme-
cold interaction variable. The coefficient is not significant in Table 3 and weakly significant in Table A.5. As
shown in Table 5, these relationships fluctuate between weakly positive and negative across the quantiles for
results without gestational restrictions. Quantile results with gestational restrictions are similar.
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quantile regression results with full-term birth also show similar patterns as in Tables 4 and 5.

A.4 Low Birth Weight, Preterm, and Small for Gestational Age

In the text we focus on a continuous measure of birth weight. But in some cases studies

focus on related binary variables: low birth weight (birth weight under 2500 grams), preterm

(gestational age less than 37 weeks), and small for gestational age (1 is defined as those with

birth weight under 10 % in sex-and gestational-age specific distributions). The three binary

outcome division strategies could be interpreted geometrically. With gestational-age along the x-

axis and birth-weight along the y-axis, low birth weight cuts the data horizontally, preterm cuts

the data vertically, and small-for-gestational-age cuts the data diagonally. While each strategy

generates valuable outcomes of interest, these data-reduction strategies eliminate much of the

distributional variations in the data and preclude quantile analysis.

In this section, to facilitate comparison of our results to papers that focus on these binary

outcomes, we present regression results for low birth weight, preterm and small for gestational

age in Tables A.6 and A.7. Tables A.6 and A.7 differ from Table 3 by replacing least-squares

with logistic regressions and replacing birth weight with binary outcome variables, but the same

right-side specifications are used. Table A.6 presents results as marginal effects, and Table A.7

presents results as odds-ratios.A.3

The results from Tables A.6 and A.7 largely match-up with results from Table 3. First,

greater PM10, extreme heat, as well as extreme cold exposure are all associated with increased

probabilities for low birth weight, preterm, and small for gestational age. PM10 and and extreme

heat have the strongest associations with preterm, extreme cold has the strongest association

with low birth weight, and the environmental measures are positively but not significantly

associated with higher chance for small for gestational age. Second, maternal college education is

significantly inversely associated with all three binary outcomes: its strongest association is with

low birth weight and its weakest association is with small for gestational age. Third, we find that

A.3 From the summary statistics in Table 1, 6% of the analytical sample have low birth weight (7% for high school
educated, and 4% for college educated), 7% of the analytical sample are borne preterm (8% for high school
educated, and 5% for college educated), and 9% are small for gestational age (10% for high school educated,
and 8% for college educated).
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Table A.5: OLS regression analysis of birth weight with interactions of ambient PM10
and extreme temperature with maternal education. Using only full-term births.

Varying cutoffs of extreme temperature exposures

1 percent cutoff 2.5 percent cutoff

Variable (1) (2) (3) (4)

Environmental exposure variables

PM10 -8.85∗∗ -9.14∗∗ -7.70∗∗ -8.05∗∗

(1.56) (1.58) (1.57) (1.60)

Extreme heat -8.56 -10.37 0.15 -0.71

(6.68) (6.78) (3.52) (3.58)

Extreme cold -16.54∗ -14.19∗ -12.69∗∗ -11.61∗∗

(6.99) (7.12) (3.04) (3.09)

Education and environmental exposure interactions

College educated 12.33∗∗ -35.51 12.49∗∗ -44.00

(3.98) (47.06) (3.98) (49.35)

College x PM10 0.72 0.89

(0.59) (0.62)

College x extreme heat 4.15 1.96

(2.60) (1.51)

College x extreme cold -7.54† -3.65∗

(4.17) (1.67)

Control variables

Male 111.10∗∗ 111.10∗∗ 111.00∗∗ 111.00∗∗

(3.48) (3.48) (3.47) (3.47)

Mother’s age 39.56∗∗ 39.28∗∗ 39.52∗∗ 39.27∗∗

(4.26) (4.26) (4.26) (4.26)

Mother’s age2 -0.60∗∗ -0.59∗∗ -0.60∗∗ -0.59∗∗

(0.07) (0.07) (0.07) (0.07)

Intercept 2,193.00∗∗ 2,217.00∗∗ 2,131.00∗∗ 2,159.00∗∗

(170.90) (171.90) (171.90) (173.10)

Observations 49,973 49,973 49,973 49,973
R2 0.037 0.038 0.038 0.038

Note: Regressions control for conception year and month interaction fixed effects, day of the week
at birth, parity, and daily mean rainfall.
† p < 0.10; ∗ p < 0.05; ∗∗ p < 0.01.
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mothers’ college education status is associated with reduced vulnerability to ambient air pollution

and extreme heat exposures. Results are similarly for low birth weight and preterm but weaker for

small for gestational age. Associations are greater for the extreme heat exposure interaction and

are weakly significant for the PM10 exposure interaction. Interesting, we also find a protective

effect of maternal college education for the association between extreme cold and preterm.

Table A.6: Marginal-effects from logistic regression analysis of binary birth outcomes with
interactions of ambient PM10 and extreme temperature with maternal education.

Different binary birth-related outcomes

Low birth weight Preterm Small for gestational age

Variable (1) (2) (3) (4) (5) (6)

Environmental exposure variables

PM10 0.0066∗∗ 0.0067∗∗ 0.0080∗∗ 0.0082∗∗ 0.0010 0.0011

(0.0011) (0.0011) (0.0012) (0.0012) (0.0010) (0.0010)

Extreme heat 0.0041 0.0053 0.0155∗∗ 0.0168∗∗ 0.0064 0.0071

(0.0048) (0.0048) (0.0057) (0.0057) (0.0044) (0.0044)

Extreme cold 0.0156∗∗ 0.0157∗∗ 0.0127∗ 0.0145∗∗ 0.0094∗ 0.0087†

(0.0049) (0.0050) (0.0053) (0.0053) (0.0045) (0.0046)

Education and environmental exposure interactions

College educated -0.0301∗∗ 0.0272 -0.0251∗∗ 0.0419 -0.0195∗∗ 0.0012

(0.0025) (0.0301) (0.0026) (0.0301) (0.0029) (0.0346)

College x PM10 -0.0007† -0.0006 -0.0003

(0.0004) (0.0004) (0.0004)

College x extreme heat -0.0043∗∗ -0.0045∗∗ -0.0019

(0.0016) (0.0016) (0.0019)

College x extreme cold -0.0005 -0.0079∗∗ 0.0033

(0.0028) (0.0029) (0.0031)

Control variables

Male -0.0125∗∗ -0.0125∗∗ 0.0060∗∗ 0.0060∗∗ 0.0025 0.0024

(0.0019) (0.0019) (0.0021) (0.0021) (0.0025) (0.0025)

Mother’s age -0.0141∗∗ -0.0139∗∗ -0.0144∗∗ -0.0143∗∗ -0.0108∗∗ -0.0107∗∗

(0.0019) (0.0019) (0.0021) (0.0021) (0.0028) (0.0028)

Mother’s age2 0.0002∗∗ 0.0002∗∗ 0.0003∗∗ 0.0003∗∗ 0.0002∗∗ 0.0002∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Observations 53,879 53,879 53,879 53,879 53,879 53,879

Note: Regressions control for conception year and month interaction fixed effects, day of the week at birth, parity, and daily mean
rainfall.
† p < 0.10; ∗ p < 0.05; ∗∗ p < 0.01.
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Table A.7: Odds-ratio from Logistic regression analysis of binary birth outcomes with interac-
tions of ambient PM10 and extreme temperature with maternal education.

Different binary birth-related outcomes

Low birth weight Preterm Small for gestational age

Variable (1) (2) (3) (4) (5) (6)

Environmental exposure variables

PM10 1.137∗∗ 1.141∗∗ 1.143∗∗ 1.146∗∗ 1.012 1.013

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Extreme heat 1.084 1.109 1.293∗∗ 1.321∗∗ 1.081 1.090

(0.102) (0.105) (0.122) (0.125) (0.058) (0.059)

Extreme cold 1.357∗∗ 1.360∗∗ 1.235∗ 1.272∗∗ 1.121∗ 1.111†

(0.132) (0.132) (0.108) (0.111) (0.061) (0.062)

Education and environmental exposure interactions

College educated 0.554∗∗ 1.704 0.660∗∗ 2.000 0.790∗∗ 1.014

(0.027) (1.004) (0.028) (0.997) (0.028) (0.425)

College x PM10 0.987† 0.990 0.996

(0.007) (0.006) (0.005)

College x extreme heat 0.920∗∗ 0.928∗∗ 0.978

(0.029) (0.025) (0.023)

College x extreme cold 0.990 0.878∗∗ 1.040

(0.054) (0.042) (0.039)

Control variables

Male 0.782∗∗ 0.782∗∗ 1.104∗∗ 1.105∗∗ 1.030 1.030

(0.029) (0.029) (0.038) (0.038) (0.031) (0.031)

Mother’s age 0.759∗∗ 0.761∗∗ 0.788∗∗ 0.789∗∗ 0.877∗∗ 0.878∗∗

(0.028) (0.028) (0.028) (0.028) (0.030) (0.030)

Mother’s age2 1.005∗∗ 1.005∗∗ 1.004∗∗ 1.004∗∗ 1.002∗∗ 1.002∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Observations 53,879 53,879 53,879 53,879 53,879 53,879

Note: Regressions control for conception year and month interaction fixed effects, day of the week at birth, parity, and daily mean
rainfall.
† p < 0.10; ∗ p < 0.05; ∗∗ p < 0.01.
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B Acquiring Environmental Data

A wide array of environmental data is available at detailed geographical units across the globe

from the the European Centre for Medium-Range Weather Forecasts (ECMWF) at the Coperni-

cus Climate Change Service. Copernicus provides data access via a free and publicly accessible

API service. In this appendix section, we describe how we obtained key environmental data

used in this paper using Copernicus.

B.1 Data Retrieval

Copernicus offers a range of data in different formats with similar data request structures. In

particular, temperature as well as other environmental data based on observations from across

the globe (with reanalysis) are available from the ERA5 Pressure Level as well as the ERA5

Single Level datasets.

B.1.1 Single Data Retrieval Request

To acquire Chinese data for the particular period in which our birth outcome data are avail-

able, we need to specify the appropriate time ranges as well as the geographical coordinates.

We retrieve hourly data from every day between the year 2007 and 2012 by specifying the

appropriate year, month, day, and time parameters. We specify our data acquisition geo-

graphical area as to the south-east of latitude and longitude coordinates (in decimal degrees)

(23.50,113.00) and to the north-west of coordinates (22.25,114.50), which covers the broad

geographical area that is relevant for our paper. Our specification for the area parameter is there-

fore [23.50,113.00,22.25,114.5].

Given this information and after registering with Copernicus to obtain an user-specific url

and passkey, Source Code 1 provides a API call to acquire temperature data from Copernicus in

grib format.
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Source Code 1: Single Data Retrieval Call

1 # Library
2 import cdsapi
3 import urllib.request
4

5 # download folder
6 spt_root = "C:/data/"
7 spn_dl_test_grib = spt_root + "test_china_temp.grib"
8 # request
9 c = cdsapi.Client()

10 res = c.retrieve("reanalysis-era5-pressure-levels",
11 {
12 'product_type': 'reanalysis',
13 'variable': 'temperature',
14 'pressure_level': '1000',
15 'year': [ '2007', '2008','2009', '2010', '2011', '2012' ]
16 'month': [ '01','02','03','04','05','06', '07','08','09','10','11','12'],
17 'day': [
18 '01','02','03','04','05','06','07','08','09','10','11','12',
19 '13','14','15','16','17','18','19','20','21','22','23','24',
20 '25','26','27','28','29','30','31'
21 ],
22 'time': [
23 '00:00', '01:00', '02:00', '03:00', '04:00', '05:00', '06:00', '07:00', '08:00',
24 '09:00', '10:00', '11:00', '12:00', '13:00', '14:00', '15:00', '16:00', '17:00',
25 '18:00', '19:00', '20:00', '21:00', '22:00', '23:00'
26 ],
27 'area': [23.50, 113.00, 22.25, 114.5],
28 'grid': [1.25, 0.25],
29 "format": "grib"
30 },
31 spn_dl_test_grib
32 )

B.1.2 Subdivided Data Retrieval Request

A challenge to taking full advantage of the data is that, given the fine geographical and time units,

the resulting data files can become very large. A single call to acquire all relevant data as shown in

the example above can only be implemented on a server with access to Terabytes of storage space.

To deal with this challenge, we divide our API calls into smaller components. We make

multiple requests of data at shorter time intervals. Each time we aggregate and process the

relevant data before downloading the next set of data. Given the computational resources at our

disposal, we download the data at six months intervals, as shown in Source Code 2. Given the

computing resources available to the researcher, the time intervals can be further shortened to

circumvent computational challenges from using the data.
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Source Code 2: Sub-Period Data Retrieval Call

1 # date lists
2 ar_years = 2001:2019
3 ar_months_g1 = ['01','02','03','04','05','06']
4 ar_months_g2 = ['07','08','09','10','11','12']
5

6 # Loop over time periods
7 for it_yr in ar_years:
8 for it_mth_group in [1, 2]:
9 if it_mth_group == 1:

10 ar_months = ar_months_g1
11 if it_mth_group == 2:
12 ar_months = ar_months_g2
13

14 c = cdsapi.Client()
15 res = c.retrieve(
16 'reanalysis-era5-pressure-levels',
17 {
18 'product_type': 'reanalysis',
19 'variable': 'temperature',
20 'pressure_level': '1000',
21 'year': [it_yr],
22 'month': ar_months,
23 'day': [
24 '01','02','03','04','05','06','07','08','09','10','11','12',
25 '13','14','15','16','17','18','19','20','21','22','23','24',
26 '25','26','27','28','29','30','31'
27 ],
28 'time': [
29 '00:00', '01:00', '02:00', '03:00', '04:00', '05:00', '06:00', '07:00', '08:00',
30 '09:00', '10:00', '11:00', '12:00', '13:00', '14:00', '15:00', '16:00', '17:00',
31 '18:00', '19:00', '20:00', '21:00', '22:00', '23:00'
32 ],
33 'area': [23.50, 113.00, 22.25, 114.5],
34 'grid': [0.25, 0.25],
35 'format': 'grib'
36 },
37 "china_temp.grib")

B.2 Data Processing

The data we download is at finer detail than required by the statistical analysis. For each sub-

period of data downloaded, we process the data using a variety of tools. Data in the grib format

is processed using the xarray package as shown in Source Code 3. Data in netCDF format

is processed using the netCDF4 package as shown in Source Code 4. We store the resulting

aggregate data as csv files and combine that with the rest of our child birth outcome data to

conduct relevant statistical analysis.
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Source Code 3: Grib Data Processing with xarray

1 # Load Packages
2 import pandas as pd
3 import xarray as xr
4

5 # Process grid data
6 snm_data_grib, snm_data_csv = "data.grib", "data.csv"
7 dsxr = xr.load_dataset(snm_data_grib, engine='cfgrib')
8 pd.concat([dsxr['u10'].to_series(), dsxr['v10'].to_series(),
9 dsxr['d2m'].to_series(), dsxr['t2m'].to_series(),

10 dsxr['msl'].to_series(), dsxr['sp'].to_series()],
11 axis=1).to_csv(snm_data_csv, index=True)

Source Code 4: netcdf Data Processing with netCDF4

1 # Load Packages
2 import pandas as pd
3 from netCDF4 import Dataset, date2num, num2date
4

5 # Process netCDF data
6 snm_data_nc, snm_data_csv = "data.nc", "data.csv"
7 ds_src = Dataset(snm_data_nc)
8 var_tp = ds_src.variables['tp']
9

10 # Get the three dimensions, time, lat, and long
11 time_dim, lat_dim, lon_dim = var_tp.get_dims()
12 time_var = ds_src.variables[time_dim.name]
13 times = num2date(time_var[:], time_var.units)
14

15 # The flattening at the end converts variables to single column
16 latitudes = ds_src.variables[lat_dim.name][:]
17 longitudes = ds_src.variables[lon_dim.name][:]
18

19 # Convert to dataframe
20 [mt_times, mt_lat, mt_long] = np.meshgrid(times, latitudes, longitudes, indexing='ij')
21 ar_times = np.ravel(mt_times)
22 ar_lat = np.ravel(mt_lat)
23 ar_long = np.ravel(mt_long)
24 df = pd.DataFrame({'time': [t.isoformat() for t in ar_times],
25 'latitude': ar_lat, 'longitude': ar_long, 'tp': var_tp[:].flatten()})
26

27 # Get date and hour
28 df['date'] = pd.to_datetime(df['time']).dt.date
29 df['hour'] = pd.to_datetime(df['time']).dt.hour
30

31 # sort and group, and summ
32 sr_day_sum = df.groupby(['latitude','longitude','date'])['tp'].sum()
33 df_day_sum = sr_day_sum.reset_index()
34

35 # convert to csv
36 df_day_sum.to_csv(snm_data_csv, index=False)
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