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Abstract— A multiscale simulation method is developed to
model a quantum dot (QD) array of germanium (Ge) holes for
quantum computing. Guided by three-dimensional numerical
quantum device simulations of QD structures, an analytical model
of the tunnel coupling between the neighboring hole QDs is
obtained. Two-qubit entangling quantum gate operations and
quantum circuit characteristics of the QD array processor are
then modeled. Device analysis of two-qubit Ge hole quantum gates
demonstrates faster gate speed, smaller process variability, and
less stringent requirement of feature size, compared to its silicon
counterpart. The multiscale simulation method allows assessment
of the quantum processor circuit performance from a bottom-up,
physics-informed perspective. Application of the simulation
method to the Ge QD array processor indicates its promising
potential for preparing high-fidelity ansatz states in quantum
chemistry simulations.
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I. INTRODUCTION

SEMICONDUCTOR materials provide a promising platform for
the hardware realization of quantum computers. Rapid
progress on semiconductor-based quantum computers has been
achieved recently. In particular, two-qubit quantum gates and
quantum processors with fast operation speed and high fidelity
have been demonstrated on semiconductors [1][2][3][4][5].
While most experimental demonstrations of semiconductor
quantum computing devices are based on electrons, recent
experimental demonstrations of hole-based quantum gates and
processors show attractive performance potentials [6][7][8].
For example, a single qubit gate fidelity of 99.9899% has been
demonstrated for hole spins in germanium (Ge) [9]. In two-
qubit quantum gates based on Ge hole spins, a fast two-qubit
gate operation time of <10 ns has been achieved [8]. Compared
to compound semiconductor materials such as GaAs and InAs,
silicon (Si) and Ge can remove nuclear spin dephasing through
isotope engineering. These “quicter” semiconductor material
systems can help to remove quantum decoherence for achieving
longer coherence time and higher quantum fidelity. [10], [11]
Compared to more mature hardware platforms such as
superconducting and trapped ion quantum computing [12],
semiconductor-based quantum computing is limited to a
smaller qubit count. While studies on semiconductor quantum
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computing have mostly focused on single and two-qubit
systems, a 2 X 2 quantum dot (QD) array with controllable
interdot coupling has previously been demonstrated on GaAs
[13]. Recently, a four-qubit quantum processor based on holes
in the Ge QD array was successfully demonstrated [8].
Although it only demonstrated semiconductor quantum
processors up to 4 qubits, the pioneering work opened a door
for scaling up the qubit count of a semiconductor-based
quantum processor [8].

Motivated by these recent experiments and the potential of
semiconductor QDs for quantum computing in the noisy
intermediate-scale quantum (NISQ) era [14], it is imperative to
develop computer-aided simulation and design methods for the
design of quantum processors based on Ge QD array. While
top-down approaches have been generally used for quantum
computing algorithms and circuits, and co-design of quantum
software and hardware has been reported recently [15], a
bottom-up approach that encapsulates essential material and
device physics of quantum circuits has not yet been developed.
Bottom-up approaches have been shown effective for assessing
device options in neuromorphic computing systems [16]. In this
study, a multiscale, bottom-up simulation framework is
developed to model a quantum processor based on a Ge QD
array with a SiGe/Ge heterostructure. We summarize our
contributions as follows:

(1) For physical technological computer-aided-design
simulation of quantum gate device based on holes in Ge, a
three-dimensional numerical device simulation is developed
and used to parameterize an analytical model for the tunnel
coupling strength between the neighboring QDs.

(i1) We assess the performance potential of a two-qubit quantum
gate based on Ge holes and the results show that it can achieve
faster gate operation, smaller device-to-device variability, and
more relaxed the lithographic size requirement compared to that
based on Si holes.

(iii) We develop a bottom-up multiscale simulation method that
allows encapsulating physical properties obtained from
numerical device simulation into the simulation of quantum
circuits for Ge-QD-array-based quantum processors.

(iv) By applying the multiscale simulation method, we show
that the Ge QD array processor has the potential to achieve high
fidelity in preparing the ansatz state in the variational quantum
eigensolver (VQE) algorithm [17].

In the rest of the paper, some related backgrounds and
fundamentals of semiconductor quantum computing are
discussed in Section II. The structure of the Ge-hole-based
quantum computing device and the corresponding modeling
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Fig. 1. Overview of the proposed multiscale simulation method for Ge hole-based quantum gates and quantum circuits.

Table. I. Nominal values of the material and device parameters for simulation. (* marks the hitting parameter.)

Ge Luttinger Device seomet Relative dielectric constant Magnetic field Charge noise*
parameters [25] vice g ry 18], [19], [20] (Zeeman splitting) ge nox
Barrier gate Ge .
Y1 1 V3 Plunger gate length thickness Ge Sio2Geos | ALOs Ez AE, (6t,)
13.25 |4.20| 5.56 | 20 X 20 nm? (Lg —4) nm 20 nm 16 15.2 9.8 1.0 meV 0.1 meV 0.24 pevV

and simulation are discussed in Section III; the simulation
results of QDs and the QD array for quantum processor are
presented in Section IV, and the main conclusions are stated in
the last section.

II. PRELIMINARIES

In this section, we briefly review some related backgrounds
and fundamentals of semiconductor-based quantum computing.
Among various approaches for hardware realization of quantum
computing, semiconductor-based approach has the advantage
of advanced nanofabrication, excellent scalability, and
integratability with integrated circuits. Both nuclear and
electron spins, hosted by either semiconductor quantum dots or
defect and dopant centers, have been investigated for realizing
quantum gates and memory in a variety of semiconductor
material systems, including GaAs, Si, Ge, wide-bandgap
semiconductors [11].

Compared to compound semiconductor such as GaAs qubits,
in group IV semiconductors such as silicon and germanium,
especially in isotopically purified group IV semiconductors,
where the nuclear spin is nearly zero, spin coherence times can
be very long due to weak hyperfine coupling, which is ideal for
quantum information processing and storage. Furthermore,
silicon and germanium-based quantum computing can harvest
and leverage the vast infrastructure and success of the silicon
chip industry, which promises compatibility with CMOS
technologies, excellent scalability, low fabrication cost, and
high integration density. On the other hand, compared to more
mature quantum computing hardware platforms such as
superconducting quantum computing, the qubit counts of
semiconductor quantum chips still lag behind, although the
semiconductor approach has excellent potential for scalability
[10]. Both electrons and hole spins in semiconductors have
been actively explored as quantum information -carriers.

Multiscale quantum computer-aided simulation and design can
be a powerful tool for exploring the understanding the potential
and limitations, and optimizing hardware designs for
semiconductor quantum computing.

III. MULTISCALE SIMULATION APPROACH

A multiscale simulation approach from numerical device
simulations to small-scale quantum circuit simulations is
developed to describe the operation of a hole qubit array. We
make the assumptions that the single qubit gate is ideal, the
phase-shifting during the pulsing is calibrated [6], and spin-
orbit interaction (SOI) dephasing is neglected. The flowchart of
the device simulation is shown in Fig. 1 and described in detail
in the subsections below. The nominal values of the simulation
parameters used are listed in Table I The multiscale framework
is developed for Ge-QD-based quantum gate devices and
circuits. It can be extended to quantum gate devices and circuits
based on other semiconductor QDs.

III. A. Modeled Ge Quantum Processor Device Structure

Figure 2(a) shows a schematic top view of the modeled 2x2
QD array, in which the QDs are defined by the plunger gates
(PGs) and the barriers between the QDs are modulated by the
barrier gates (BGs). In a recent experiment, a QD array based
on Ge holes has been demonstrated for four-qubit quantum
processor operations [8]. Figure 2(b) shows the cross-sectional
view of any pair of neighboring QDs. In the vertical direction,
a quantum well is formed in the Ge layer due to heterostructure
confinement. The confinement is along the [100] direction of a
Ge layer sandwiched by Sio2Geos layers. Vertical confinement
of the heterostructure results in the lift of degeneracy between
the bulk heavy hole (HH) and light hole (LH) bands as
schematically shown in Fig. 2(c). The highest valence subband
derived from the bulk HH band hosts hole spins for quantum
computing. The schematic subband profile of two neighboring



QDs in the in-plane direction is shown in Fig. 2(d). An
entangling two-qubit quantum gate can be achieved by either
creating a detuning potential between QDs or by modulating the
tunnel coupling [21]. The mechanism of tunnel barrier
modulation allows the device to operate at the symmetrically
biased points, in which the impact of charge noise can be
reduced [22], [23]. We, therefore, focus on modeling tunnel
coupling modulation here.

II1.B. Device Simulation of Hole-Based Quantum Gate

Finite-element device simulation: The hole QDs for quantum
computing are formed on the SiGe/Ge/SiGe heterostructure.
Low energetic hole states can be described by the anisotropic
Luttinger-Kohn (LK) Hamiltonian approximation [24][25],
which is used here for computational efficiency. Atomistic
simulations, which are computationally much more demanding,
can be useful for describing atomistic scale features of
interfaces and defects, which are not treated here. To compute
the subband profile and charge density in the heterostructure,
we numerically discretize a 4-band LK k - p Hamiltonian, H;,
in the vertical confinement direction [25], which treats HH and
LH bands as:
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Here, h is the reduced Planck constant, and the Luttinger
parameters that characterize the anisotropic mass of the holes
are y; = 13.25,y, =4.20,y; =556 for Ge, and y; =
4.26,y, = 0.34,y; = 1.45 for Si [25]. The interface valence
band discontinuity is AE, = 0.3 eV for a Si1«Gex/Ge/Si1-xGex
heterostructure, which corresponds to x = 0.8. The LK
Hamiltonian can be discretized along the z direction to compute
the heterostructure charge distribution and subbands of the
quantum well. The heavy hole bands behave like a spin-3/2

system, i.e., j, =m+s, = i%, where the total z component

singular momentum j, is the sum of the orbital component m
and spin component s,,.

Strain in the SiixGeyx/Ge/SiixGex structure induces a Bir-
Pikus (BP) Hamiltonian term Hgp, which results in a total
Hamiltonian of H = H;x + Hgp. The BP Hamiltonian can be
approximated as adding additional diagonal terms to the
corresponding HH and LH terms in (2), with [26]

_av(exx + Eyy + €22), 3)

by
Y (Exx + €yy — 2622)’ (4)

HHH,e =

HLH,e =

SH barrier

Fig. 2. (a) Schematic layout of a 2 X 2 QD array for a quantum
processor. PG;is the ith plunger gate, and BG; is the ith barrier gate.
(b) The schematic cross section between 2 neighboring QDs cut at
the dashed line in (a). (c) Schematic bulk hole band structure with
HH, LH, and split-off hole (SH) bands. (d) Along x direction, the
plunger gates are two hole QDs, and the barrier gate modulates the
tunnel barrier between QDs.

where a,, = 2.0 eV and b, = —2.3 eV. By taking the strain
values of €y, =€), = —0.006 and €,, ~ 0.0042 [26], the
major effect of the BP Hamiltonian is to change the HH-LH
energy split by a constant of ~40 meV.

To simulate the quantum gate device shown in Fig. 2(b),

numerical device simulations are first performed by solving a
3-D Poisson equation with the Schrodinger equation by using
the finite element method (FEM). The FEM 3-D Poisson solver
is discretized by using a prism lattice for the device [27]. The
Schrodinger equation is solved by discretizing the LK
Hamiltonian for holes in the finite element grid. A mode space
approach, which first computes the vertical confinement modes
and uses the mode space as the basis in the vertical direction
with the discretization of the Hamiltonian in real space for the
horizontal space, is used to expedite the solution of the
Schrodinger equation [28][29]. The single-particle wave
equation and eigen-energies obtained from the FEM
Schrodinger-Poisson device simulation can be subsequently
used to parameterize the tunnel coupling and on-site Coulomb
repulsion terms in the quantum gate Hamiltonian as described
below.
Quantum gate Hamiltonian and parameter extraction from
device simulation: The Hamiltonian of an entangling quantum
gate between two neighboring QDs, as shown in Figs. 2(b) and
(d), can be described as follows in the basis set of the HH states
{111, 14, Sy, Soz} [30],

E,/2 0 0 0 0
0 A4E,/2 o 0 t, t,
0 0 —AE,/2 0 —t —t,
H — z Cc c
0 0 0 0 —-E;/2 0 0o I )
0 t, —t, 0 Uy—¢ 0
0 te —t. 0 0 Up+e

where S,, (Sy,) are doubly occupied singlet states on QD1
(QD2), the Zeeman splits are E, = pg(g,B; + g;B;), AE, =
up(g1B; — g2B,), in which pg is the Bohr magneton, B , are
the static magnetic fields and g, , are the effective Ge HH g-
factors [31] of the QDs 1 and 2 respectively, t. is the tunnel
coupling, U,;, is the on-site Coulomb interaction, € =



—q(Vpg1 — Vpg2), where q is the elementary electron charge, is
the detuning energy controlled by the applied detuning voltage,
which is set to € = 0 for the symmetrically biased point.

To wunderstand the quantum gate operation on the
computational basis, the Hamiltonian can be projected to the
computational basis of {|TT), |Tl), IT), [{{)} by using the
Schrieffer-Wolff transformation. The effective Hamiltonian
can be expressed as [30],

1
Hepp = #3(913151,2 + 923252_2) +] (51 ©Sy — —)

4
E,/2 0 0 0
0 A4E,/2—]/2 /2 0 ©
0 ]/2 —AE,/2-]/2 0
0 0 0 —E,/2

where s;, are the spin-1/2 operator on QD1 (QD2), the
subscript z denotes its z component, and the exchange
interaction can be expressed as,
. _2tU1+Up)
I = mowsre @

In the adiabatic approximation, the off-diagonal terms of Hegr
renormalize the states of {|Tl),[{T)} to a new basis set
{|ﬁ), [IT)'} By modulating the exchange ] through controlling
the tunnel barrier height, and thereby, the tunnel coupling, the
energy shift —//2 of {|TL), |IT)} with regard to {|11), |LL)}
can be used to create two-qubit quantum gates. [8] The
operation difference between the controlled-phase and
controlled-Z (CZ) quantum gates is only single qubit operations
[8], [21]. At the symmetrically biased case, i.e., € =0,
modulation of exchange is achieved through modulation of the
tunnel coupling by the barrier gate voltage. It is important to
model the dependence of the tunnel coupling on the barrier gate
voltage accurately.

The value of the tunnel coupling between the QDs can be
simulated numerically from the energy levels obtained by using
the FEM device simulations described earlier. For the
symmetric double quantum dot (DQD) structure, the lowest
eigen-energy state is a binding state with energy Eg and the 2nd
lowest energy state is an anti-binding state with energy E,p.
[32] The tunnel coupling matrix element can be expressed as

te = [(Y2 (P)|HE) [2(F))|, where Yy, is the ground-state
wave function of QD1 (QD2) and H is the Hamiltonian of the
DQD system. In the weak tunneling regime, (Y, [1,) < 1, the

binding state wave function is ¢p5 = \/% (¥, + ¥,), and the anti-

binding state wave function is ¢, = \/% (Y1 — ). The energy

difference between the anti-binding state and the binding state
18 |Exp — Ep| = |(¢AB|H|¢AB) - (¢B|H|¢B>| ~ 2t. . The
tunnel coupling can be computed by numerically simulated E 5
and Ej,
te = |Eap — Epl/2, (®)
. The on-site Coulomb interaction is calculated by numerical
integration as:
__a

U= ATEYEY f d
where €, and €, are the vacuum and relative dielectric constant,
respectively, and ¥ (7) is the QD wave function when one dot
is occupied.
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III.C. Modeling of Dephasing Noise and Quantum Gate
Dynamics
Charge noise modeling: At the symmetrically biased point, the
tunnel noise is dominant over the detuning noise, which is
modeled in [33]. The tunnel noise Hamiltonian in the basis of
{ITL), 1T), S50, So2} can be expressed as [34],

0

0 1 1

10 0 -1 -1
H, = 1 -1 0 o ot,, (10)

1 -1 0 0

where 6t is the stochastic fluctuation of the tunnel coupling
due to charge noise. dt, is assumed to follow a Gaussian
distribution with a mean value of 0 and the standard deviation
of A,,, which characterizes the noise amplitude. In the time
domain, the noise is assumed to obey the stochastic time
dynamics of random telegraph noise [35], with a characteristic
time of t,,. Due to the small size of the QD, only a single or
small number of two-level fluctuators are expected for each
qubit [22]. Furthermore, the characteristic time of the charge
traps is much longer than the quantum gate time of nanoseconds,
and the charge noise spectrum density is dominantly in the low-
frequency range [36]. The results are insensitive to the exact
noise spectral distribution.

Noise due to nuclear spin and spin-orbit interaction: In this
study, hole spin dephasing due to nuclear spin is assumed to be
neglected, because the nuclear spin noise in Ge can be removed
by using isotopically purified Ge.

For Ge hole spin qubits, all-electric-control of single-qubit
gates can be achieved based on electric dipole spin resonance
(EDSR) [37]. Despite noise due to spin-orbit interaction, single
qubit gates with very high fidelity values have been
demonstrated [9]. In this work, we focus on two-qubit quantum
gates, where charge noise is dominant and whose fidelity is
limiting the overall quantum circuit performance, and neglect
noise of single-qubit gates.

Quantum gate dynamics and performance assessment: A
quantum trajectories method (QTM) is used to simulate the
time-evolution of quantum gates and quantum circuits in the
presence of noise. The quantum gate operator is calculated by
exponentiating the time integral of the Hamiltonian, averaged
over the stochastic realizations of quantum trajectories in
Monte-Carlo sampling of the charge noise Hamiltonian [23]
[38]. Compared to directly solving the master equation, QTM
reduces the computation of evolution of O(N?) density matrix
elements to simpler Monte Carlo simulation of O (N) quantum
state space, which helps to improve the time efficiency of
simulation. Furthermore, the QTM method treats non-
Markovian evolution of the open-quantum system [38]. The
method is applied to simulate quantum dynamic properties of
both the two-qubit quantum gates and quantum processor
circuits consisting of multiple qubits as described in detail
below in Section III.D. The quantum gate time is measured for
the CZ quantum gate, with the phase of the target qubit rotated
by m.

II1.D. Simulation of QD Array Processor

To model the implementation of a quantum algorithm on a

quantum circuit based on Ge QD array, we straightforwardly

evolve the many-body wave function in the 2N-dimensional
Fock space by cascading one-qubit and two-qubit quantum
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Fig. 3. (a) The simulated in-plane E-k relation (solid lines) of the HH
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direction of Ge, compared to Si, where 6 is the angle to the horizontal
[100] crystal direction. The Ge or Si layer thickness is 20 nm.

gates. A single qubit fidelity of 99.9899% has been
demonstrated for Ge hole spins[9]. Because of significantly
higher fidelity and faster gate operation compared to the two-
qubit entangling gate operations, the single-qubit quantum
gates are not the limiting factor of the quantum circuit fidelity.
The single-qubit operations are assumed to be ideal. For each
two-qubit gate operation, the charge noise model described in
(10) is used. The result, therefore, represents the upper limit of
the quantum circuit fidelity limited by charge-noise of the two-
qubit quantum gate operations.

To model dephasing and noise in preparing a quantum state
by using a quantum processor, the QTM is used to
stochastically evolve the many-body initial quantum state of
multiple qubits through Monte Carlo sampling of quantum
trajectories [38]. The stochastic Schrodinger equations in the
presence of stochastic noise are solved to determine time-
dependent evolution of quantum states (quantum trajectories),

i
lpn,k (t) = exp (_E (HO + Hn,k)t) lnbO' (1 1)
where ), is the initial wave state and Hy, y is the kth Monte-
Carlo realization of the noise Hamiltonian. The method allows
the system to be modeled by Monte Carlo simulations of
quantum wave states instead of handling a matrix equation [38].
The physical quantities of interest can be obtained from
expectation values of Monte Carlo samples of the quantum
trajectories. The fidelity of preparing the quantum state is
assessed as:
F= (Irbf,ideal|pf,n|l»bf,ideal>’ (12)
where Yg;geq is the ideal wave function, and the noisy density

matrix ps, = |1,bf’n)(l,l)f‘n| Yy, is the noisy wave function of
the final state, and the average is over quantum trajectories.

III.E. Limitations of the Multiscale Simulation Method for Ge-
QD Quantum Processor

The multiscale simulation method provides a framework to

evaluate Ge-based quantum processors with essential material
and device physics encapsulated into quantum circuit
simulations. The capability is especially important for physical
designs of the quantum processor. It, however, still has the
following limitations:
(1) Although the multiscale approach already significantly
reduced computational cost for bottom-up quantum circuit
simulations, the simulation is performed in a classical computer,
which limits the simulation to a quantum processor with a
relatively small number of qubit counts.

(i1) The coupling between the quantum dots in the circuit is
limited to nearest neighbors. The nearest neighbor coupling is
what was used in state-of-the-art experiments to demonstrate
simple algorithms [8].

Limitation (i) is imposed by the fact that the computational
cost to simulate an entangled state on a classical computer
exponentially grows as the qubit counts increase. For limitation
(i), an interconnection scheme such as exchange-based
quantum state transfer only requires nearest neighbor coupling
[39]. A resonator-based interconnecting scheme for remote
coupling of semiconductor-based qubits has also been
experimentally explored [40]. Future studies are needed to
systematically study and model these quantum interconnection
schemes. State-of-the-art experimental demonstrations of
semiconductor-QD-based processors have been limited to four
qubits with nearest neighbor coupling. Considering the
limitations, the multiscale simulation method is intended for
early physical design and exploration of semiconductor-QD
based processors to discuss device impacts on small-scale
quantum processor characteristics and performance limits by
quantum hardware engineering.

IV. RESULTS FROM MULTISCALE SIMULATIONS OF GE-QD-
BASED QUANTUM PROCESSORS

IV.A. Heterostructure Simulation for In-Plane Effective Mass

The tunnel coupling between neighboring quantum dots is
strongly dependent on the tunneling effective mass. We first
examine the horizontal in-plane E-k relation. Figure 3(a) and
(b) show the E-k relation of the highest-HH and LH subbands
along the in-plane [100] direction. The large subband spacing
of the Ge layer is beneficial for suppressing of decoherence of
HH spins due to SOI [37]. The extracted in-plane effective mass
of HHs is lighter than that of the LHs, which is referred as mass
reversal. Figure 3(b) plots the in-plane effective mass values for
Ge and Si structures. The results show that the in-plane
effective mass is approximately independent of the in-plane
direction. Furthermore, the very light effective mass of Ge,
m ge ~ 0.058, is nearly 4 times smaller than that of Si,
mys; & 0.24. In addition, we also vary the semiconductor layer
thickness between 5 nm and 20 nm, and the extracted in-plane
effective mass values remains approximately the same. The
much smaller effective mass can significantly enhance the
tunneling coupling and quantum entanglement between
neighboring spins of the DQD structure for two-qubit quantum
gates, as discussed below.

IV. B. Two-qubit Quantum Gate Simulation and Model
Parameter Extraction

In a 2D array structure for the QD-based quantum processor
as shown in Fig. 2(a), two-qubit quantum gate operations can
be realized between any pairs of neighboring QDs, whose cross
section is shown in Fig. 2(b). Figure 4(a) shows the simulated
HH subband profile along the DQD direction (x-direction in
Fig. 2(b)). The horizontal dashed line shows the simulated
ground state of the DQD structure. The corresponding wave
function is shown in Fig. 4(b), which is a symmetric binding
state between two QDs. The wave function of the next state is
shown in Fig. 4(c), which is an anti-binding state. The behavior
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Fig. 4. (a) The valence subband profile along x for the two-qubit hole
quantum gate as shown in Fig. 2(b), where Ly = 40 nm and |V | = 40
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function of (b) binding state and (c) anti-binding state. (d) Tunnel
coupling vs. the DQD spacing at different barrier gate voltage
magnitudes of [Vp;| = 0,20,40 mV. The lines show the analytical
model, and the dots show the numerical simulation results.

resembles an H2 molecule, and the tunnel coupling determines
the energy spacing between the biding and anti-binding states.

Electrostatic gate modulation of the tunnel coupling plays a
central role in two-qubit quantum gates. We next examine its
dependence on the barrier gate voltage and DQD spacing. The
symbols in Fig. 4(d) show the simulated tunnel coupling vs. the
dot spacing Lg shown in Fig. 2(b), at different barrier gate
voltages. We focus on the gate voltage choice and DQD designs
that produce a tunnel coupling value t. around the range of
~1 peV to ~100 peV. Furthermore, the applied barrier gate
voltage range shall not produce an excessively low barrier so
that the two QDs are not well confined. The exponential
sensitivity of the tunnel coupling to the DQD spacing and
applied voltage is a signature of quantum tunneling behavior.

To enable efficient simulations of quantum processor, the
above numerical simulation of tunneling coupling between
neighboring QDs in the processor is parameterized to a physics-
based analytical model. The tunnel coupling can be described
by an analytical model from the WKB approximation, which is
shown by the lines in Fig. 4(d). In the model, the tunnel
coupling can be approximated as [41],

—‘/th*EbLs), (13)

where t; is a tunnel coupling parameter independent of E,, and
L, but dependent on the material such as Si or Ge, m* is the in-
plane effective mass, and the barrier height is
Ey, = Epo — BqVe, (14)

where (3 is the gating efficiency factor of the barrier gate, E is
the barrier height constant, and Vg, is the barrier gate voltage.
The model is fitted to the numerical simulation results in Fig.
4(d) with the fitting values of § = 0.5, E;; = 40 meV, and
to = 12 meV and t, = 2 meV for Ge and Si, respectively.

Figure 5 plots the exchange interaction vs. the magnitude
of the barrier gate voltage, compared between Ge hole two-
qubit gates with different DQD spacing and a silicon two-qubit
gate. The barrier gate effectively modulates the tunnel coupling,
leading to an average inverse slope of ~20 mV/dec modulation
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Fig. 5. Exchange interaction J vs. the barrier gate voltage
magnitude for the Ge hole gate with a DQD spacing of Lg =
30 nm(blue solid curve) and 40 nm (green dash curve) and a Si
hole gate with Ly = 16 nm (red dash-dot curve).
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Fig. 6. Quantum gate speed and variability: (a) the gate time vs. the
DQD spacing L, for Ge- and Si-hole-based CZ gates. The magnitude
of the applied barrier gate voltage is fixed at |Vzs| = 40 mV. (b)
Histogram distribution of the normalized CZ gate time for Ge hole,
compared to (c) Si hole, with the DQD spacing L, variations, which
has a Gaussian distribution with a standard deviation of 0.5 nm. The
distribution of the normalized gate time is insensitive to the exact
value of L;. The normalized standard deviation values are 6T¢;/
Tez0 =0.087 and 0.173 for Ge and Si holes, respectively, where T¢z,
is the nominal value of the gate time without variation.

of the tunnel coupling for Ge at a DQD spacing of L, = 30 nm.
The slope is even steeper as Lg increases, which also leads to a
decrease of the exchange interaction. Benefiting from the
smaller hole effective mass, Ge achieves a similar switching
behavior compared to a silicon hole-based quantum gate with
significantly shorter DQD spacing, which is illustrated by the
case of Ly = 40 nm for Ge compared to Ly = 16 nm for Si as
shown in Fig. 5, with a slightly steeper switching slope.

We next quantify the improvement of the two-qubit quantum
gate speed of Ge holes, benefiting from the small hole effective
mass and enhanced tunnel coupling. Figure 6(a) shows the
quantum gate time Tey as a function of the device size. To
achieve a fast, sub-10 ns CZ gate time, a DQD spacing of Ly <
37 nm is needed for Ge holes. However, the requirement is
L¢ < 13 nm for Si holes, which is nearly 3 times more stringent.
The comparison is done at a similar barrier height between
DQDs. The gate time is sensitive to the exchange coupling
determined by the tunnel coupling strength. The smaller
effective mass of Ge holes facilitates tunnel coupling for faster
gate operations. The lithographic feature size requirement is
much less stringent in the Ge system.

To scale up the qubit count in an integrated quantum system,
device-to-device variabilities impose significant challenges.
Semiconductor fabrication process variability can result in
variations in the QD spacing. The effect can be especially
important for QD-based quantum processors because the tunnel
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Fig. 7. (a) Quantum circuit diagram for simulating exchange
oscillation in (b). The controlled phase gate Z(t) is realized by the
DQD device structure and simulated using the QTM as described in
text. (b) The simulated exchange oscillation (solid line) compared to
the experimental data of the exchange oscillation envelope extracted
from Ref. [8] (symbols). The dashed line is an envelope function of
Pup = exp (—(t/7)?) fitted to the simulated oscillation with T =
180 ns. p,,, is the spin up probability.
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coupling, which determines the strength of entanglement
between neighboring dots, is exponentially sensitive to the QD
spacing. To explore the device variability, Monte-Carlo
simulations are performed to sample a Gaussian distribution of
the DQD spacing, and the simulated distributions of the
normalized CZ gate time of Ge and Si are shown in Figs. 6(b)
and (c). The results can be understood by differentiating (13),
1|dte) _ 2By (15)
te ldLg n
which indicates that the normalized sensitivity of £, to L, is

proportional to v/m*. The smaller effective mass of Ge holes
results in reduced process-induced device-to-device variability.

Quantum dynamic characteristics of the two-qubit Ge hole
quantum gate in the presence of charge noise are investigated
next. We simulate the exchange oscillations in the two-qubit
CPHASE gate by using the QTM, as shown in Fig. 7(a). The
modeled Ge device structure has a DQD spacing of Ly = 35 nm
and a plunger gate size of 20 X 20 nm?, which results in a
tunnel coupling of t, =~ 28.4peV and on-site Coulomb
interaction of U; = U, = 11 meV. The QTM simulation
results, as shown in Fig. 7(b), capture non-Markovian dynamics
of exchange oscillation, in which the envelope of oscillation fits
to exp (—(t/7)?). The expression is a Kohlrausch-Williams-
Watts (KWW) function with an exponential component y = 2,
which takes the non-Markovian feature of the Rabi oscillation
decay into consideration and is previously used to extract spin
dephasing time from experimental data [42]. Furthermore, by
comparing to the experimental data from [8], the
phenomenological charge noise magnitude can be extracted as
(6t.) = 0.24 peV, which results in a decay time of T = 180 ns.
The long decay time compared to the CZ gate time promises
high gate fidelity.

IV.C. Model Ge QD array for Quantum Processor

A recent experiment has demonstrated the generation of a
four-qubit entangling Greenberger—Horne—Zeilinger (GHZ)
state on a 2x2 QD array processor [8]. In a QD array processor,
a universal set of quantum gates for quantum computing can be
realized by two-qubit gates discussed above together with one-
qubit rotational gates. Quantum chemistry simulation of a small
molecule can provide a concrete context to explore and assess
the potential practical applications of the QD array processor as
a noisy intermediate-scale quantum (NISQ) hardware [17][43].

(@) a. [T} [Goat0im Pr—
|
a2 |0)—) Uso(f2) Usi(02.) |

93 0)— Uso(fs) @H_

Ga |0)—‘ Usp(f4)

[
|
|
|
|
|
|
|
i
|

Qs |0) U&_u(ea) UG,#(BB‘K) |
|
ds |0)—‘ Uso(Bs) N Uu.tc(eu‘i.-)/
S =" XN
1.0 ——— ]
3 a3
PG1 = G2 > PG3
3‘0'9
£
8G6 8G3 he]
*0.8

N

PG6 PG5 = PG4 o (C)
& by .
(b) 1 3 N 4 5 6

Fig. 8. (a) Quantum circuit for preparing a VQE ansatz state in
simulation a BeH, molecule. The subcircuit in the cashed box can
be repeated in cascade for N = 1 times. (b) Design of a six-qubit
quantum processor of a 2D QD array for efficiently implementing
the quantum circuit in (a). (c) The fidelity of preparing the ansatz

We next explore the design of a QD array processor for the
VQE algorithm, which is a widely used algorithm in quantum
chemistry [17][43]. A key challenge for quantum chemistry
simulation is to achieve chemical accuracy, for which high
fidelity of preparing the ansatz state is indispensable. As an
example of VQE simulation, six qubits are sufficient for
preparing the ansatz state for simulating the BeH2 molecule,
with a quantum circuit as shown in Fig. 8(a) [17][44]. The
subcircuit in the dashed line box needs to be repeated in cascade
for N times to provide flexibility of parameterizing the ansatz
state. This ansatz circuit can be efficiently implemented with a
2%3 QD array, whose schematic top view is shown in Fig. 8(b).
The six qubits in the quantum circuit in Fig. 8(a) reside in the
QDs defined by PG1 to PG6 in order. For each CZ gate, it only
involves two nearest neighbors in the QD array as shown in
Table. I, which can be achieved by modulating the barrier gate
between the pair of QDs. The designed QD array, therefore, can
provide an efficient platform for preparing the ansatz state in
VQE simulation of a small molecule.

To assess the fidelity for preparing the ansatz state, we
simulate the quantum circuit by considering the decoherence
stemming from each two-qubit quantum gate operation, by
using the CZ gate device and noise parameters extracted in Fig.
8. The assessment, therefore, represents the upper limit due to
the charge noise in each two-quantum gate operation. For the
VQE circuit parameters used to prepare the ansatz state of BeHz,
we simulate the fidelity of preparing the quantum ansatz state
as a function of the number of cascade stages N, as shown in
Fig. 8(c). The results show the potential to achieve an ansatz
state preparation fidelity of F > 0.99 when the circuit is
shallow with N = 1. To achieve better flexibility of the ansatz
state, a larger value of N is often required, which results in a
deeper quantum circuit with decreased fidelity. Even with the
circuit cascade depth increasing to N = 6, the prepared ansatz
state fidelity is F > 0.96. The high fidelity is due to the fast,
sub-10 ns CZ gate operation compared to the quantum



decoherence time. Furthermore, the non-Markovian dynamics
results in a slower initial decay of ~exp (—(t/7 )?) for fidelity,
compared to the simple Markovian exponential decay of
~exp (—t/t"). The results indicate the potential of Ge-hole-
based QD array processors in implementing the VQE algorithm
for quantum chemistry simulations.

V. CONCLUSIONS

A multiscale simulation method is developed to model and
assess the Ge-hole-based QD array for quantum processor. The
multiscale process takes a bottom-up approach, which allows
essential device physics to be incorporated in the assessment of
quantum circuit performance for a Ge-QD-based quantum
processor. The results show that the Ge hole array provides a
promising semiconductor platform to enhance entanglement
between neighboring QDs for two-qubit quantum gate noise.
Furthermore, a two-qubit quantum gate based on holes in Ge
can achieve fast gate speed, and smaller device variability
compared to its Si counterpart. To efficiently simulate the QD
array for implementing a quantum circuit in the quantum
processor, a simple analytical model is extracted from
numerical quantum device simulations to describe the
dependence of the tunnel coupling on the applied gate voltage
and device size. Design and multiscale simulation of the Ge QD
array processor shows its potential to achieve high fidelity in
preparing the ansatz state of quantum chemistry simulations
based on VQE. The bottom-up, multiscale method developed
here can allow physical design and assessment of
semiconductor-QD-based quantum processors from physical
properties of quantum gate devices and their underlying
material properties.
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