Decentralized Authorization using Hyperledger
Fabric

Muthukur Venkata Akhil Vasishta
Indian Institute of Technology Kharagpur
India
akhilvasishtamuthukur @iitkgp.ac.in

Abstract—Access control in multi-user web service applications
is an important problem. Access control methods ensure that
only authorised users have access to data and resources by
deciding whether to give access to a resource or not by verifying
credentials of the entity requesting access. In several real-
world situations, these credentials may not be available within a
single authority and it may require verification through multiple
authorities. In this paper, we propose a decentralized framework
using Hyperledger Fabric and Attribute Based Access Control
(ABAC) to verify access requests through multiple authorities in
a decentralized manner. Hyperledger Fabric enables transparent
authorization and immutability of credentials and ensures a
secure operation between authorities. Each authority can safely
store the credentials in their own Hyperleger Fabric network and
our framework performs access requests by automating the end-
to-end process of authorization across multiple authorities. The
framework can be extended to perform access requests across
any number of authorities and is applicable to any attribute
based access control use case. We implemented a prototype of
the framework using Hyperledger Fabric and the results validate
the performance of the proposed approach.

Index Terms—Decentralized Authorization, Computer Sys-
tems, Attribute Based Access Control Model (ABAC), Hyper-
ledger Fabric, Blockchain.

I. INTRODUCTION

Multi-user web service applications generally have a large
number of users and not every user is entitled to access all of
the information. Access control is crucial in determining who
has access to which resources. To ensure that only authorised
users have access to data or resources, various access control
methods have been developed over the last few decades. These
include RBAC (Role Based Access Control) [1] model, IBAC
(Identity Based Access Control) [2] model and LBAC (Lattice
Based Access Control) [3] model. ABAC (Attribute Based
Access Control) [4] model provides significant flexibility in
the formulation of access rules. Unlike other access control
methods such as IBAC, by including subject and object
properties in the access rule instead of subject and object itself,
ABAC considerably reduces the size of the access policy. Due
to this feature, ABAC subsumes all of the existing access
control models [5].

The ABAC model evaluates access rules against the at-
tributes of entities (subject, object, environment) relevant to
a request to regulate access to the objects. Attributes are the
characteristics of the entities, namely the subject, the object,

Balaji Palanisamy
University of Pittsburgh
USA
bpalan @pitt.edu

Shamik Sural
Indian Institute of Technology Kharagpur
India
shamik @cse.iitkgp.ac.in

and the environment. In ABAC terminology, data or resource
is referred to as object and access requesting entity for a
resource is referred to as subject. Each entity has a set of
well-defined attributes, each of which can accept one or more
different values. For example, a subject Nancy can have the
value Student for subject attribute Designation and the value
ECE for subject attribute Department. Similarly, an object File
can have the value Journal Paper for object attribute Filetype
and the value 7990 for object attribute yearOfPublication.
The administrator or owner of objects creates access policy
(set of access rules) for access to the objects using attributes
of entities. Each rule specifies which subjects are authorized
access to which objects in terms of attribute-value pairs. For
example, an access rule can be defined to allow all students
from ECE department to view journal Papers written in 1990.
Here, viewing the file refers to the operation. We can also
include other environment aspects (e.g., location, time) in the
access rule. For instance, we can define at what time the
subject may request to view the file. Every access request in
ABAC is made up of three components: the subject making
the request, the object being requested, and the environment
in which the request is made.

Existing research in ABAC has developed new algorithms
for constructing the rule set from current accesses described
using the components of traditional access control models and
for evaluating access requests in an efficient way. Existing
centralized implementation of cloud-based ABAC becomes
a soft target and involves a single point of attack. On the
other hand, decentralized implementation using blockchain can
maintain immutability of data and if any repudiation of data
occurs, it can be traced and verified on the blockchain.

In several real-world scenarios, attributes are not always
available with a single authority but available in several
authorities issuing attributes. For example, a patient arriving
at the hospital may request treatment through his/her health
insurance. The hospital will need to check the State ID of the
patient to verify the identity and check the health insurance
information to determine if the insurance is applicable or not.
Here, the hospital may not directly have the attributes of
the patients on the State ID and insurance card. Instead, the
hospital will request the State ID issuing authority to verify
the patient’s identity and the hospital will request his or her
health insurance company to verify the insurance information.

Once the attributes are verified, the hospital can authorize the
patient’s treatment using the insurance.

Blockchains can be used to provide a secure means to
store and verify attributes. As attributes are issued by dif-
ferent authorities, each attribute issuing authority will store
the attributes in their own private blockchain network. As
a result, we require a system or framework that can handle
access requests by communicating with all the attribute issuing
authorities. In our work, we design an ABAC-based framework
using Hyperledger Fabric [6], which serves as a basis for
building modular applications and solutions. Its modular and
adaptable architecture caters to a wide range of industrys
applications and its consensus method allows for scalability
while maintaining anonymity. Key challenges in designing
the proposed ABAC framework includes efficient storage
of attributes on the Hyperledger Fabric, dividing composite
requests into subrequests so that each authority is only respon-
sible for verifying the attributes that it has issued and splitting
global access rules that are present in the general ABAC model
into subrules so that each authority is only responsible for
verifying the part of the global rule involving the attributes
that it has issued. We designed and implemented techniques
for these features through chaincodes that interact with the
Hyperledger Fabric blockchain network. We prototyped the
proposed framework using an institute-library ABAC use case
and the results validate the efficacy of the proposed approach.

II. RELATED WORK

The distributed nature of blockchain tackles the concerns
related to single point of failure in traditional centralized
systems. Consensus mechanisms in the blockchain protocol
ensures that only valid transactions are recorded on the
blockchain. Initially, blockchains were used to implement
cryptocurrencies and financial transactions. The notion of
smart contract enabled the creation of diverse applications
in various fields including healthcare [7] [8], IoT [9] [10],
and supply chain management [11] [12] [13]. Because of the
immutability, durability, auditability, and dependability fea-
tures, blockchains provide significant potential to supplement
traditional access control solutions. Furthermore, by using
smart contracts, we can monitor and enforce access permis-
sions under complex conditions. These features have motivated
researchers to consider blockchain as an infrastructure for
access control systems. [14] gives a deep insight on the state
of the art blockchain-based access control solutions.

Recently the idea of using blockchain to store the attributes
of ABAC is being explored and various blockchain-based
implementations of ABAC have been proposed in recent years.
[15] proposed an implementation of ABAC using extensible
access control markup language (XACML) to define policies.
This implementation used Bitcoin blockchain to store arbitrary
data by which users can transparently view access control
policies on resources. In [16], instead of simple transactions,
smart contracts were used to impose access control regulations
and implementations of XACML policies were deployed on
the Ethereum platform to create a proof of concept.

ABAC policy relating the individual subjects and objects is
implemented using an Ethereum-based attribute-based access
control system [17], in which a smart contract is launched
for each subject-object pair to record the attributes and thus
implement an ABAC policy. When a subject requests access
to an object, the smart contract that regulates the subject and
the object receives a transaction.

Most of the existing implementations were based on the
idea that a single organization is using ABAC to restrict
access to its own resources. In many real world scenarios,
the attributes of a subject are not issued and maintained by
a single organization, but by multiple organizations. Some
access control implementations have considered this aspect.
Using Ethereum blockchain and Solidity smart contracts, in
[18], a platform for role-based access control is designed to
be used by many organisations. It uses a smart contract to
initialise the roles and a challenge-response protocol to verify
role ownership and user verification. [19] proposed an im-
plementation of ABAC for decentralized authorization across
multiple entities. In this implementation, each organization has
their own smart contract to add attributes but the access rule
checking of all attributes is done by the object organization
only. This is not always feasible because it is not possible
for a single organization to have information about all the
attributes of subjects. It results in a need to divide global rules
and access requests into sub rules and sub requests. Also, this
implementation uses Ethereum to store the attributes for all the
organizations. As a result, attributes issued by one organization
will be entirely visible to other organizations and may create
data privacy issues.

III. SYSTEM DESIGN

The proposed framework includes an Object Authority
which maintains objects and multiple Subject Attribute Issuing
Authorities (AIAs) since subject attributes are maintained by
more than one authority. Each authority (either Object Author-
ity or ATA) comprises of four main components namely (i) Ap-
plication (ii) API-Server (iii) Chaincode and (iv) Hyperledger
Fabric Network (HF) and CouchDB. The basic operations
involved in a general ABAC model are (i) Adding subjects and
objects, (ii) Adding rules and (iii) Processing access requests.
Next, we explain how these basic operations are carried out
in multiple substeps for a multi-organization setup using our
framework. The workflow of these basic operations in our
framework is depicted in Figure 1.

A. Adding Subjects and Objects

To add objects in the Object Authority, Object Adminis-
trator will enter the values (V7,V5) of the object attributes
(OA1,0A5) of the object O into the Object Application as
shown in Figure 2. OI; is the identifier of the object O; in
the Object Authority. Object Application then sends a request
to the Object Server to call add_object function in the Object
Chaincode. This function adds object in the Object CouchDB
database and also the logs of adding the object will be stored
as transactions in the Object Hyperledger Fabric network. If

Object Authority

finalresult'

add/modify object”

add/modify object?_

finalresult(Access Granted/Denied)’?

merge(result1,result2)!!

result1®
l process(objectsubrequest)5

add/modify object®

add global rule’

APPLICATION

_add global rule? o | —

divideintosubrules®

array of subrules*

L&

add/modify subjec

|_add/modify subject® |

add/modify subjec_tl

APPLICATION

Subject Admin Subject Application

v

.

3>

subrule(subjectsubrule)®

Subject Server

General
ABAC
Operations

1.Adding Subjects and Objects
2.Adding Rules

3.Processing Access Requests

Superscript indicates the step numbers of the operations

Object Admin Obiect A ncatﬁﬂed(access? Object Server Ob.j_ec'f Chaincode
! App 4 |add subruIe(objec'(subrule)5
‘:g divideintosubrequests®
bl ey
o © 4
QO c " array of subrequests
% © 0 c
- 5 ==
T o-1-1o
QO = @ (2]
578 21 e
o 35 w [y Q
o c E_J" [} é'\
e 2182 & ﬂ
. R RER A
Subject AIA AR
) 2 |3 ’y
result2? —
process(subjectsubrequest)® Subject Database
vv vl

Fig. 1. System Architecture

someone tries to modify the attributes of the object at a later
point of time, one can verify them with the immutable entries
of these logs stored in the blockchain.

Similar workflow is followed by all AIA’s to add subjects as
depicted in Figure 2. Instead of add_object function in Object
Authority’s chaincode, all AIA’s chaincodes would be having
add_subject function. For example, information related to the
State ID, Insurance card are subject attributes and these are
issued by different Authorities. Each of these authorities will
be having their own independent Hyperledger Fabric networks,
Chaincodes, Applications, API-Servers. SI;, S,
are the identifiers of subject Sy in AITA;, Al A,, ..., ATA,
authorities. SA11, SA;2 are subject attibutes issued by AT A,
similarly S As;, SAgy are subject attibutes issued by ATAs
and so on. V71,Vi, are values of attributes (SAq1, SAq3) for
subject S7 similarly for all attributes.

B. Adding Rules

1) Splitting Global Rule into SubRules: Being the owner of
objects, Object Administrator designs rules describing which

attributes should be possessed by subjects to gain access
to objects with certain attributes. A rule in ABAC can be
described as conjunction of attribute value pairs of subject and
object. As shown in Figure 3, Object Administrator will enter
the global rules (R;) into the Object Application which are a
conjunction of all the subject and object attribute value pairs.
Object Server will call divide_into_subrules function in the
Object Chaincode. This function separates the global rule (R1)
into subrules (SRara,, SRara,,....5Rara, . SRoa) for each
authority based on information of which attributes are verified
by which authority, so that each authority is only responsible
for validating attributes issued by themselves. This information
is provided in the form of configuration files.

2) Adding Subrules in individual Hyperledger Fabric Net-
works: Once Object Server gets back the subrules for all
authorities, it will send the subrule for each authority to the
appropriate servers. Each authority server will then call the
function add_subrule in their chaincodes which will add the
subrule in their respective couchDB database and the logs of
adding subrule will be stored in the respective Hyperledger

HF-Object Object CouchDB
OIy.{
Logs(OIy) OA1:Vy
0A5:V>
b
Object Chaincode

add_object(0Iy)

Object Server

oI :{)
OA;:V;
OA,:V3
B
Object Application

Enters values of object
attributes OA,0A; of

Ol4 is identifier of Object
Oy in OA.

Object O4 into application.

HF-AIA4 AlA1 CouchDB ‘ ‘ HF-AlA AlA, CouchDB
SIy.{ SIx:{
Logs(SIy) SA11:Vig Logs(SI3) SAz1:Vaq
SA12:Vi2 SA22:V22
¥ ¥
AlA, Chaincode

AlA4 Chaincode

add_subject(SI;)

IA1 Server
SIy:{
SA11:Vi1
SA12:Vio
b

| >

AlA1 Application
Enters values of subject
attributes SA11,SA1; of
Subject Sy into application
SI; is identifier of Subject
Sy in AIA;

add_subject(SI3)

AlA, Server

Sha{
SA21:Va1
SA22:V22
b

AlAy Application
Enters values of subject
attributes SA1,SA5; of
Subject Sy into application
SI, is identifier of Subject
S; in AIA;

HF-AIA,, AIA,, CouchDB
SIn{
SAn1:Vn1
SAR2:Vn2
N

Logs(SIy)

AlA,, Chaincode

add_subject(SI,)

1A, Server
SIn:{
SAn1:Vn1
SAn2:Vn2
¥

| >

AlA;, Application

Enters values of subject
attributes SAn1,SApz of
Subject Sy into application
SI, is identifier of Subject
Sy in AIA,

AlA, Administrator

Object Administrator AlA{ Administrator

Object Authority

AlA, Administrator ‘

n Attribute Issuing Authorities for subject

Fig. 2. Issuing Attributes to Entities (Subjects/Objects)

Ry
SA11:V11
SA12:Vi2
SA21:V21
SA22:V22

Enters global rule in terms of
attribute-value pairs into
application

calls divide_into_subrules(R1)
function in chaincode which returns
array of subrules for each authority

S —
Object Administrator ‘ Object Application

1
‘4
[€

Object Server

|
‘ Object Chaincode
1

SRaIAT{ SRaIA2:{ SRaiand{ SRoax
R R1:{ Ry R1:{
SA11V1 SA21:V21 SAR1Vn1 OAf1:Vq
SA12:V12 SA22:V22 SAp2:Vn2 OAg:Vo
! } } }
} } } }

Fig. 3. Splitting a Global Rule into Sub Rules

Fabric network.

C. Processing Access Requests

1) Splitting Global Access Request into Sub Access Re-
quests: When a subject requests access for an object, he/she
will present his/her identifiers in each of the subject Attribute
Issuing Authorities (AIA’s) and the identifier of the object
for which access is being requested. As shown in Figure 4,
subject (S7) enters these identifiers (S1, S1s, ...,S1,, Ol) as
an access request (AR7) into the Object Application. Object
Server will call the function divide_into_subreq in Object
Chaincode. This function divides the global access request into
subrequests (SARAr4,, SARA1Ays <oy SARALA,, SAROA)
based on the information of which identifier is being verified
by which authority. Again, the server receives this information
in the form of configuration files.

2) Processing of Sub Access Request by all Authorities:
Once Object server receives the subrequests that need to
be processed by each authority, it will send the subrequests
corresponding to each authority to their corresponding servers.
The function proc_subreq in their chaincode will subsequently
be called by each authority server. Subrequest processing is
done by this function. All authorities process sub requests
by retrieving attributes from their CouchDB database and
determining whether or not the subrules stored in their HF
networks give access to those attributes. Once each authority
server receives the result of subrequest, they return the results
back to Object Server.

3) Combining Sub Request Results from all Authorities:
When Object Server receives all the subrequest results from
all authorities, it will call the Object Chaincode function
proc_sub_results. This function basically processes all sub

AR7:{

SIpia1:SIy
SIpia2:SIH
Requests access for an objectby e
entering his identifiers in each Slatan:SIn
attribute issuing authority and OI:0I4
identifier of object Y 3}

calls divide_into_subreq(AR1)

function in chaincode which returns
array of subaccessrequests for each authority

‘ Object Server ‘ | Object Chaincode ‘

SARpIaT{ SARpjA2 SARalAn{ SARpA{
Slaar:Sly SlaapiSly e Slaan:Sl, OLOl
} } } I

Fig. 4. Dividing a Global Access Request into Sub Access Requests

Subject ‘ Object Application
TABLE I
EXECUTION TIME OF ALL FUNCTIONS

S.No| Operation Time(secs)
1 Adding Attributes/SubRules to Blockchain 2.15

2 Splitting GlobalRules/Requests into SubRules/requests | 0.028

3 Any Server to Server Interaction 0.25

4 Processing of Subrequests 0.056

5 Processing sub access results 0.011

request results and returns whether access is granted or not. If
all sub request results grant access then access will be granted
or else access will be denied. One must note that logs of sub
request results and final result are all stored as transactions
in the respective Hyperledger Fabric networks making this
process immutable and safe.

IV. IMPLEMENTATION AND RESULTS

We have implemented three templates for automatically
generating the chaincode and server application. The tem-
plate files for the application, server, chaincode are written
in HTML, Nodejs and Javascript respectively. To use our
framework, one needs to create configuration files for each of
the participating authority. There are 2 different configuration
files and template files. One is generalized for any subject
Attribute Issuing Authority(AIA) and the other is for Object
Authority. A javascript code in our framework generates these
configuration files in json format and they are loaded into
template files to generate application code, server code and
the chaincode for all authorites. Object Authority’s configura-
tion file contains information about attributes issued by each
authority which will be used by Object Server to split global
rules/requests into sub rules/requests.

We study the effectiveness of the framework by varying the
following parameters namely (i) number of AIA’s involved
in the framework, (ii) number of attributes issued by each
authority (AIA or Object Authority), (iii) number of rules
designed by Object authority.

Table I shows the execution time of different operations
involved in the framework with 3 AIA’s, each issuing 50
attributes and 50 rules being designed by Object Authority.

Operations 1, 2, 3 take an almost constant amount of time
irrespective of the variation in the 3 parameters, whereas the

55
£
2 50| .
=
e
E
g 45| 1
s
o
[0)
£
2 40F .
ol
2
o
35 | | | | | | | |
5 10 15 20 25 30 35 40 45 50

Number of Rules

Fig. 5. SR Processing time Vs No. of Rules

time required to perform 4, 5 operations is observed to vary
with the change in the parameters. The time it takes to process
sub requests varies depending on the number of rules and
attributes issued by that authority. The time it takes to process
sub access results varies depending on the number of rules
and AIAs involved.

Execution times of proc_subreq and proc_sub_results chain-
code functions are plotted in Figure 5 and Figure 6 as the
number of rules designed by Object Authority is varied from
0 and 50. During this process, we have fixed the number of
AlIA’s to be 3 and the number of attributes to be issued by each
authority to be 5. Execution time of sub request processing
increases as number of rules designed by Object Authority is
increased as more number of rules needs to be processed. As
each sub access result is of the size of the number of rules,
execution time of merging or processing sub access results also
increases as number of rules designed by Object Authority is
increased.

One has to note that object server sending subrequests
to each authority’s server is a sequential process i.e. object
server will send subrequests and get subresults authority after
authority i.e the object server will first send the subrequest that

proc_sub_results execution time (ms)

\ | \ | \ \
20 25 30 35 40 45 A0

Number of Rules

5 10 15

Fig. 6. Merging time Vs No. of Rules

needs to be processed by AIA; to ATA;. AT A; will process
subrequest and send the result back to object server. After
that only, object server will send subrequest that needs to be
processed by AI Ay to AI Ay and this process continues for
all authorities. In case of subrules as well, once Al A; finished
adding its subrule into its HF-network, then only object server
will send the subrule to Al A,.

V. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we proposed a decentralized framework using
Hyperledger Fabric and Attribute Based Access Control to
verify access requests from multiple authorities in a decen-
tralized manner. Hyperledger Fabric enables transparent autho-
rization and immutability of credentials and ensures a secure
operation between authorities. Each authority can safely store
the credentials in their own Hyperleger Fabric network. The
framework is designed to support decentralized authorization
across multiple attribute issuing authorities. We implemented
a prototype of the framework using HyperLedger Fabric and
the results validate the performance of the proposed approach.
We plan to enhance this model by parallelizing all the server
to server interactions to further reduce the access request time
and the time taken for adding rules. We also plan to extend
the framework to supporting multiple Object attribute issuing
authorities.

ACKNOWLEDGMENTS

Balaji Palanisamy acknowledges the partial support under
Grant #2020071 from the US National Science Foundation
(NSF) SaTC program. The work of Shamik Sural is partially
supported by CISCO University Research Program Fund,
Silicon Valley Community Foundation award number 2020-
220329 (3696). Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the funding
sources.

[1]

[2]

[3]
[4]

[5]

[6]
[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

REFERENCES

R. S. Sandhu, E. J. Coyne, H. L. Feinstein and C. E. Youman, “Role-
based access control models” in Computer, vol. 29, no. 2, pp. 38-47,
Feb. 1996, doi: 10.1109/2.485845.

B. B. Gupta and Megha Quamara, ”An identity based access control
and mutual authentication framework for distributed cloud computing
services in IoT environment using smart cards”, Procedia Computer
Science, vol. 132, pp. 189-197, 2018, doi: 10.1016/j.procs.2018.05.185.
R. S. Sandhu, “Lattice-based access control models” in Computer, vol.
26, no. 11, pp. 9-19, Nov. 1993, doi: 10.1109/2.241422.

Vincent C. Hu, David Ferraiolo, Rick Kuhn, A. Schnitzer, Kenneth
Sandlin, R. Miller and Karen Scarfone, Guide to attribute based access
control (ABAC) definition and considerations”, National Institute of
Standards and Technology Special Publication, pp. 162-800, 2014.

H. Shen and F. Hong, ”An Attribute-Based Access Control Model for
Web Services”, 2006 Seventh International Conference on Parallel and
Distributed Computing, Applications and Technologies (PDCAT’06), pp.
74-79, 2006, doi: 10.1109/PDCAT.2006.28.
https://hyperledger-fabric.readthedocs.io/en/release-2.2/

A. Azaria, A. Ekblaw, T. Vieira and A. Lippman, "MedRec: Using
Blockchain for Medical Data Access and Permission Management”,
2016 2nd International Conference on Open and Big Data (OBD), pp.
25-30, 2016, doi: 10.1109/0BD.2016.11.

Gaby G. Dagher, Jordan Mohler, Matea Milojkovic and Praneeth Babu
Marella, ”Ancile: Privacy-preserving Framework for Access Control
and Interoperability of Electronic Health Records Using Blockchain
Technology”, Sustainable Cities and Society, vol. 39, pp. 283-297, 2018,
doi: 10.1016/j.5¢cs.2018.02.014.

0. J. A. Pinno, A. R. A. Gregio and L. C. E. De Bona, ”"ControlChain:
Blockchain as a Central Enabler for Access Control Authorizations in
the IoT”, GLOBECOM 2017 - 2017 IEEE Global Communications
Conference, pp. 1-6, 2017, doi: 10.1109/GLOCOM.2017.8254521.

M. Samaniego and R. Deters, “Internet of Smart Things - IoST: Using
Blockchain and CLIPS to Make Things Autonomous”, 2017 IEEE
International Conference on Cognitive Computing (ICCC), pp. 9-16,
2017, doi: 10.1109/IEEE.ICCC.2017.9.

T. Bocek, B. B. Rodrigues, T. Strasser and B. Stiller, ”Blockchains ev-
erywhere - a use-case of blockchains in the pharma supply-chain”, 2017
IFIP/IEEE Symposium on Integrated Network and Service Management
(M), pp. 772-777, 2017, doi: 10.23919/INM.2017.7987376.

S. Chen, R. Shi, Z. Ren, J. Yan, Y. Shi and J. Zhang, ”A Blockchain-
Based Supply Chain Quality Management Framework”, 2017 IEEE 14th
International Conference on e-Business Engineering (ICEBE), pp. 172-
176, 2017, doi: 10.1109/ICEBE.2017.34.

Kari Korpela, Jukka Hallikas and Tomi Dahlberg, “Digital Sup-
ply Chain Transformation toward Blockchain Integration”, Hawaii
International Conference on System Sciences (HICSS), 2017, doi:
10.24251/HICSS.2017.506.

Sara Rouhani and Ralph Deters, “Blockchain based access control
systems: State of the art and challenges”, 2019 IEEE/WIC/ACM Interna-
tional Conference on Web Intelligence, WI 2019, Thessaloniki, Greece,
ACM, pp. 423-428, 2019, doi:10.1145/3350546.3352561.

Damiano Maesa, Paolo Mori and Laura Ricci, "Blockchain Based Ac-
cess Control”, IFIP International Conference on Distributed Applications
and Interoperable Systems(DAIS), pp. 206-220, 2017, doi:10.1007/978-
3-319-59665-5_15.

D. Di Francesco Maesa, P. Mori and L. Ricci, ”"Blockchain Based Access
Control Services”, 2018 IEEE International Conference on Internet of
Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CP-
SCom) and IEEE Smart Data (SmartData), pp. 1379-1386, 2018, doi:
10.1109/Cybermatics_2018.2018.00237.

Y. Zhang, S. Kasahara, Y. Shen, X. Jiang and J. Wan, ”"Smart Contract-
Based Access Control for the Internet of Things” in IEEE Internet
of Things Journal, vol. 6, no. 2, pp. 1594-1605, April 2019, doi:
10.1109/J10T.2018.2847705.

J. P. Cruz, Y. Kaji and N. Yanai, "RBAC-SC: Role-Based Access Control
Using Smart Contract” in IEEE Access, vol. 6, pp. 12240-12251, 2018,
doi: 10.1109/ACCESS.2018.2812844.

M. Varun, M. V. A. Vasishta , B. Palanisamy and S. Sural, "Decentralized
Authorization in Web Services Using Public Blockchain”, in Lee K.,
Zhang LJ. (eds) Blockchain — ICBC 2021. Lecture Notes in Computer
Science, vol 12991. Springer, Cham, doi: 10.1007/978-3-030-96527-3_3

