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Abstract—Machine learning models are known to be suscepti-
ble to adversarial attacks, which can cause misclassification by
introducing small but well designed perturbations. In this paper,
we consider a classical hypothesis testing problem in order to
develop fundamental insight into defending against such adver-
sarial perturbations. We interpret an adversarial perturbation as
a nuisance parameter, and propose a defense based on applying the
generalized likelihood ratio test (GLRT) to the resulting composite
hypothesis testing problem, jointly estimating the class of interest
and the adversarial perturbation. While the GLRT approach is
applicable to general multi-class hypothesis testing, we first evalu-
ate it for binary hypothesis testing in white Gaussian noise under
£, norm-bounded adversarial perturbations, for which a known
minimax defense optimizing for the worst-case attack provides a
benchmark. We derive the worst-case attack for the GLRT defense,
and show that its asymptotic performance (as the dimension of
the data increases) approaches that of the minimax defense. For
non-asymptotic regimes, we show via simulations that the GLRT
defense is competitive with the minimax approach under the worst-
case attack, while yielding a better robustness-accuracy trade-off
under weaker attacks. We also illustrate the GLRT approach for
a multi-class hypothesis testing problem, for which a minimax
strategy is not known, evaluating its performance under both
noise-agnostic and noise-aware adversarial settings, by providing
a method to find optimal noise-aware attacks, and ideas to find
noise-agnostic attacks that are close to optimal in the high SNR
regime. We show through experiments the application of the GLRT
defense in colored Gaussian noise. We also demonstrate the use of
GLRT defense beyond Gaussian settings by considering Laplacian
noise and illustrating how our rule simplifies.

Index Terms—Adversarial machine learning, hypothesis testing,
robust classification.

I. INTRODUCTION

HILE discussion of security in machine learning pre-
dates deep learning [2], it becomes critical to address
these concerns in view of the widespread adoption of deep
neural networks in safety- and security-critical applications such

Manuscript received 14 November 2021; revised 9 June 2022; accepted 14
July 2022. Date of publication 11 August 2022; date of current version 24
August 2022. The associate editor coordinating the review of this manuscript and
approving it for publication was Dr. Xue Jiang. This work was supported in part
by the Army Research Office under Grant W911NF-19-1-0053, and in part by
the National Science Foundation under Grants CIF-1909320 and CIF-2224263.
This work was presented in part at the 2021 IEEE International Conference on
Acoustics, Speech and Signal Processing [DOI: 10.1109/ICASSP39728.2021].
(Corresponding author: Bhagyashree Puranik.)

The authors are with the Department of Electrical and Computer Engineering,
University of California Santa Barbara, Santa Barbara, CA 93106 USA (e-mail:
bpuranik @ucsb.edu; madhow @ece.ucsb.edu; ramtin@ece.ucsb.edu).

Digital Object Identifier 10.1109/TSP.2022.3198169

, Student Member, IEEE, Upamanyu Madhow

, Fellow, IEEE,
, Senior Member, IEEE

as facial recognition for surveillance, autonomous driving and
virtual assistants. In particular, it is known that deep neural
networks are vulnerable to adversarial attacks: an adversary is
often able to add small perturbations to data in an intelligent way
to cause misclassification with high confidence [3], [4]. Studies
have shown that adversarial examples exist even in real-world
physical systems. For example, an adversarial attack can ma-
nipulate traffic signs to fool autonomous vehicles [5] or tamper
with speech recognition systems [6], [7]. In applications that
demand robustness, such adversarial attacks are fundamental
threats, which motivates a rapidly growing body of research
on both attacks and defenses. Some defenses are certifiably
robust [8], [9], while others are empirical [10], [11]. Many
suggested defenses have been broken by subsequent attacks [12],
[13], [14]. The present state of the art defenses [10], [15], [16]
are purely empirical, relying on adversarial training, wherein
adversarial perturbations are applied while training the neural
network. However, we do not yet have robustness guarantees or
structural insights for such adversarially trained networks. Thus,
existing defenses may be prone to new attacks that are conceived
in the future, possibly taking advantage of the availability of
increased computational power [17]. It is essential, therefore, to
develop at least a statistical understanding of the robustness that
can be provided by a classifier.

In this paper, we take a step back from deep neural net-
works, and attempt to develop fundamental insight into the
impact of adversarial attacks on classification performance in
the framework of classical hypothesis testing. Specifically, we
investigate adversarial classification in the setting of composite
hypothesis testing, in which the class-conditional distributions
of the data are known, and the adversarial perturbation is treated
as a nuisance parameter. We adopt a Generalized Likelihood
Ratio Test (GLRT) formulation for defense against adversarial
attacks, in which we jointly estimate the desired class and the
action of the adversary.

Attack model: The observation to be classified is drawn from
one of several class-conditional distributions, and the adversary
has access to this observation when devising its attack. In the
examples considered in this paper, the observation is modeled as
a class-dependent signal plus noise. In this case, the adversary
knows the class (and hence the signal) as well as the noise
realization when formulating its attack. Our running example for
attacksis an /.. -bounded additive perturbation, which can be tai-
lored by the adversary to the specific realization of the signal and
the noise. Such an adversary can be described as noise-aware. It
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Fig. 1. The double-sided ReLU g, () and its “complement” f().

is worth noting that this adversarial model is different from that
in classical robust hypothesis testing [18], [19], [20], [21], in
which the adversary (or nature) is constrained to a statistical
attack; for example, for each hypothesis, the adversary may
be allowed to choose the observation from a class-conditional
distribution chosen from a set of distributions. In our running
example of signal plus noise plus ¢..-bounded adversarial pertur-
bation, a noise-agnostic adversary whose perturbation depends
only on the class-conditional signal can be interpreted within the
classical robust hypothesis testing framework, even though it is
not one of the typical models [21] considered in such settings.

GLRT versus minimax: The GLRT approach we consider
implicitly defends against the adversary by jointly estimating
its action along with the class. This approach applies to any
composite hypothesis testing problem, although computation of
the joint maximum likelihood estimate of the action and the
class can be challenging. A minimax approach seeks to optimize
worst-case classification performance, with the defender playing
a game against the attacker. However, unlike the GLRT detector,
the existence of a minimax solution is not guaranteed, unless
the problem has a special structure. Furthermore, while the
minimax solution is optimal against a worst-case attack, the
GLRT approach potentially offers a better robustness/accuracy
tradeoff by estimating and adapting to the attack.

We provide detailed insight into the comparison between
the GLRT and minimax approaches via the example of binary
Gaussian hypothesis testing, for which the minimax detector is
known [22]. We briefly illustrate the differences between the
two detectors here. It is shown in [22] that the minimax optimal
classifier, which achieves the optimal adversarial risk (10), is
a linear classifier with coefficients w = g.(u), where g is the
class mean or the “signal template,” € is the attack budget, and
ge(+) is the “double-sided ReLU” function, as shown in Fig 1(a).
Thus, the minimax classifier discards the signal coordinates of
low strengths, specifically those whose signs could be flipped
when the full attack budget is employed by the adversary. It
retains the other coordinates after shrinking them by assuming
the worst-case attack has been used, and provides a minimax
optimal rule based only on these coordinates. In contrast, the
proposed GLRT defense utilizes the signal strength in all the
coordinates and applies the double-sided ReL.U on a function
of the received signal and template. Since GLRT estimates the
perturbation, it adapts better when a weaker attack is employed,
while minimax schemes are too pessimistic. This is the reason
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for better robustness-accuracy trade-off of our defense for dif-
ferent attack budgets.

Contributions: We summarize our contributions as follows:

e The well-known GLRT is proposed as a general approach
to defense, in which the desired class and the perturbation
are estimated jointly. The GLRT approach applies to any
composite hypothesis testing problem [23], unlike mini-
max strategies optimizing for worst-case attacks, which
are difficult to find.

e We compare the performance of the GLRT defense to a
minimax strategy by considering binary Gaussian hypothe-
sis testing with /., bounded attacks, for which the minimax
strategy has been recently derived [22]. We demonstrate via
an asymptotic analysis and by numerical evaluations that
the GLRT approach provides competitive robustness when
the attacker employs the full attack budget, while providing
better robustness-accuracy trade-offs for weaker attacks.

e We illustrate via examples the application of the GLRT
approach to settings for which minimax strategies are not
known. The first example is multi-class Gaussian hypoth-
esis testing, for which we provide an intuitively pleasing
extension of the binary minimax classifier, which we term
as the Pairwise Robust Linear classifier, to benchmark the
performance of the GLRT. The second is binary hypothesis
testing in Laplacian noise, for which we compare the GLRT
against a non-robust maximum likelihood rule.

e We distinguish between noise-agnostic attacks (in which
the attacker knows the correct hypothesis but not the noise
realization) and noise-aware attacks (in which the attacker
knows both the correct hypothesis and the noise realiza-
tion). For the binary setting, we derive the worst-case attack
for the GLRT defense, showing that the same attack is op-
timal for both noise-aware and noise-agnostic adversaries.
For the multi-class setting, we provide an approach for
finding the optimal noise-aware attack, and procedures to
find a noise-agnostic attack which is close to the worst case
at high SNR.

Notation: Throughout the paper, we represent vectors in
boldface letters and scalars in regular letters. The norm || - ||
denotes £5 norm unless specified otherwise. We denote N (1, 32)
as the multivariate Gaussian distribution with mean vector ¢ and
covariance matrix X. The symbols ¢(+), ®(-), and Q(-) represent
the standard (zero-mean, unit variance) univariate Gaussian
distribution, its cumulative distribution function (CDF) and the
complementary CDF respectively.

II. RELATED WORK

Certifiable robustness: There is a growing body of research on
developing provable robustness guarantees against adversarial
attacks. A provably robust defense was developed in [9], [24],
which employs semidefinite programs and tight relaxations to
train neural networks. The idea here is that although it is de-
sirable to find defenses for all possible attacks, computation
of worst case error is intractable, hence an upper bound is
optimized as a regularizer during training. Another certifiable
defense [8], [25] is based on linear programming and optimizing
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over relaxed convex networks to bound the robustness. Other
methods such as in [26] obtain guarantees under ¢5 attacks via a
regularization functional, for small neural networks. Sparsity
is exploited in [27] to provide a theoretical framework that
guarantees robustness against ¢, attacks on linear classifiers,
by introducing a front-end to the neural network that attenuates
the impact of adversary. The above line of work on certifiable
defenses considers tools from optimization to provide adversar-
ially robust neural networks.

Insights from simplified models: Robustness in the presence
of adversarial attacks has also been studied through signal
processing tools, such as in [28], [29], [30]. [28] studies the
robustness of subspace learning problems, such as principle
component analysis, where data is modified by an adversary
intentionally. The problem of minimax robust hypothesis testing
with discrete-valued observations is considered in [29], which
distinguishes between two settings: the attacker knows the true
underlying hypothesis and the attacker is unaware of the true
hypothesis. However, the adversary is noise-agnostic. Following
the line of work in [20], they study the problem of minimizing
the maximum probability of error and characterize optimal
attack strategies in binary settings. The attack model is that
after observing a sample, the adversary can change it to another
sample probabilistically. However, the models considered in
our work are more closely aligned with those in papers such
as [22], [31], [32], [33], which seek fundamental insights into
the problem of adversarial robustness by considering simplified
continuous-valued observation models, £, norm bounded addi-
tive attack models and provide provable guarantees or design
optimal classifiers. Limiting the capability of the attacker to
norm-bounded perturbations is motivated by the rich literature
on adversarial machine learning for image classification, where
perturbations which are “imperceptible” to humans can be de-
vised by imposing such bounds [13]. The paper [32] studies
robust classification in the presence of ¢y bounded adversaries
under binary Gaussian setting. They propose a non-linear clas-
sifier that selects certain coordinates of the input and forms
a test statistic based on a truncated inner product operation.
They analyze the performance of the proposed classifier and
derive bounds on the robust classification error. The problem of
finding Bayes-optimal robust classifiers under binary and ternary
settings with ¢2 and /., norm-bounded adversaries is addressed
in [31], where class conditional distributions are Gaussian and
possess symmetric means. Optimal robust classifiers are derived
when the perturbations are ¢ norm bounded. For the case when
perturbations are ¢, norm bounded, they restrict attention to
the class of linear classifiers and then obtain optimum robust
linear classifiers among the restricted class. In general, finding
robust optimal classifiers for ¢,, norm bounded adversarial
perturbations is not easily tractable. Analytical results for /.,
adversaries have been shown only for special cases, such as
in [22], where minimax optimal robust classifiers are charac-
terized in binary classification setting under Gaussian models
with uniform priors, using ideas from optimal transport theory.
We employ this minimax classifier as a benchmark throughout
our paper, and discuss its results in Section III-C. Another recent
paper [33] investigates optimal adversarial risk and classifiers by
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employing optimal transport theory. Comparable to [22], they
characterize optimal adversarial risk for Gaussian models via
optimal couplings, and apply similar strategies to find optimal
classifiers for univariate uniform and triangular distributions.

Connections with classical robust detection: The model for
classical robust hypothesis testing is that the distribution of the
observation conditioned on a class c is itself selected from a set
of distributions P.. While the work of Huber [18] established
the fundamentals of this framework for binary hypothesis testing
decades ago, recent work continues to significantly extend these
ideas to a richer class of models and algorithms [20], [21].
Minimum robust detectors in such settings, when they exist, are
the optimal decision rules corresponding to “least favorable”
distributions selected from among the allowable set of distri-
butions in each class. For specific outlier models [18], [20], it
turns out that the robust likelihood function corresponding to
the optimal decision rule for the least favorable distributions
is a censored version of the likelihood function for nominal
distributions. Interestingly, this robust likelihood function is
obtained by passing the nominal likelihood function through a
nonlinearity which is a scaled version of the double-sided ReLU
that appears in our running example. Under our model, an £,
bounded additive adversarial attack is computed based on ac-
cess to the observation drawn from a nominal class-conditional
distribution. When this nominal model is class-dependent signal
plus noise, such an adversary is noise-aware. A noise-agnostic
adversary, on the other hand, can indeed be modeled within
the framework of classical robust hypothesis testing, with set
of distributions P, for class c indexed by the possible values
taken by the £, bounded adversarial perturbation. To the best of
our knowledge, this particular uncertainty model has not been
considered in the literature in robust hypothesis testing (e.g., see
the recent comprehensive survey [21]). For the binary Gaussian
hypothesis testing example that we study in detail in this paper,
the noise-aware and noise-agnostic attacks are identical. Thus,
as briefly noted in Section III-C, in this specific setting, the
minimax rule derived under the noise-aware attack in [22] is
actually also minimax robust for noise-agnostic attacks, and
can be interpreted within a classical robust hypothesis testing
framework under certain conditions on the uncertainty sets.
Further pursuit of such connections is an interesting direction
for future work, as noted in our concluding remarks.

Our prior work: The work reported here builds on prelim-
inary results reported in our conference paper [1], where we
introduce the GLRT approach for robustness against adversarial
perturbations in the white Gaussian setting and analyze the
performance under a fixed attack, which is the worst-case attack
for the minimax classifier. In the current paper, we prove that
the same attack is also the optimal attack from the adversary’s
point of view against the GLRT defense for binary classification
problems, provide detailed performance analysis and further
show that the analysis is asymptotically exact as the number
of dimensions grows large. In addition, to characterize GLRT
classifier’s robustness in multi-class hypothesis testing prob-
lems, we provide a procedure to obtain a heuristic based attack
that is close to optimal in high SNR regime and illustrate the
performance through examples. We also propose a method to
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identify an optimal noise-aware attack for multi-class settings.
We generalize the formulation of the GLRT defense for colored
Gaussian settings. To exemplify the application of GLRT beyond
Gaussian settings, we show how the GLRT defense simplifies
under Laplacian noise and provide empirical comparisons.

III. ADVERSARIALLY ROBUST CLASSIFICATION

In this section, we propose the GLRT based defense against
adversarial perturbations and illustrate its application in a Gaus-
sian setting. We also describe a the minimax formulation of the
adversarial hypothesis testing problem, developed in [22], and
discuss the merits and limitations of the two approaches.

A. GLRT Based Defense

Consider the following standard classification or hypothesis
testing problem:

Hi : X~ pr(x).

The presence of an adversary increases the uncertainty about
the class-conditional densities, which can be modeled as a
composite hypothesis testing problem:

Hy : X ~ pp(x),0 € O,

where the size of the uncertainty sets ©j depends on the con-
straints on the adversary. The GLRT defense consists of joint
maximum likelihood estimation of the class and the adversary’s
parameter:

k= . 1
arg max max po (x) (1)

The GLRT defense is generic: it can be applied to any model
as long as the optimization in (1) can be efficiently performed. In
the paper, we focus on settings where the class-conditional den-
sities are Gaussian. To describe the application of GLRT defense
in settings beyond the Gaussian distribution, we show how our
rule simplifies to an efficient and interesting form under the case
where the class-conditional densities are zero-mean Laplace (or
the two-sided exponential distribution) in Section VII.

We now apply this framework to Gaussian hypothesis testing
with an adversary which can add a deterministic /.,-bounded
perturbation e: ||e||~ < €, where we term e the “attack budget”
or “adversarial budget”.

Hi X =pr+e+ N,

where X € R and N ~ A/(0, X). We assume that the adver-
sary has complete access: it knows the true hypothesis, class
means, the covariance matrix and could also be aware of the
noise realization.

Conditioned on the hypothesis k and the perturbation e, the
negative log likelihood is a standard quadratic expression. The
GLRT rule for classification in (1) reduces to the following under
the Gaussian setting:

k=argmin min (X —pr—e) S (X —pr—e). 2

k  eile]|x<e
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We view this optimization as a two-step process. We first
estimate e under each hypothesis:
ép=arg min (X—pp—e)/T ' (X —pup—e), 3)

eille]|~<e

and then plug in to obtain the cost function to be minimized over
k:

Co=(X—pp—&)' T (X—pp—&). 4

We remark that estimating the perturbation (3) is a quadratic
program which can be solved efficiently, following which the
GLRT rule involves only the comparison of the costs C, under
each hypothesis.

Now, let us consider the case where the noise is independent
and identically distributed as N ~ N(0, 02 1;). Under this set-
ting, the estimation of the perturbation of the computation of
costs take the form:

&, = arg min ||X — puy —e||?,
e:llef| <€

Cr = [|X — py — & (%)

This yields illustratively pleasing answers in terms of the
function g.(x) = sign(z)max (0, |z| — €), which we term as
the “double-sided ReLU” and its “complement,” f.(z) = x —
ge(x), shown earlier in Fig. 1. The estimated perturbation under
hypothesis k£ no longer requires solving an optimization prob-
lem, but is instead obtained in closed-form as

ék:fe<X_lJ'k)7

where the non-linearity is applied coordinate-wise. Substituting
into (5), we obtain

Cr = llge (X — i) |7 (©6)
where g, (.) is applied coordinate-wise. Thus, the GLRT detector
k= arg mkin Ch 7

is a modified version of the standard minimum distance rule
where the coordinate-wise differences between the observation
and template are passed through the double-sided ReLU.

B. Nature of the Adversary

We consider both noise-aware and noise-agnostic adversarial
settings in our paper. When the adversary knows the noise
realization N, given a classifier # and the true hypothesis H, the
worst-case adversarial attack causes misclassification whenever
possible, depending on the noise realization. The noise-aware
formulation of the worst-case attack which is optimal from the
adversary’s point of view is as below:

sup  1(H(X) # H(X)). ®)

eillef] o <e

e = arg

If the adversary does not have access to the noise realization,
the optimal attack in the noise-agnostic regime is the maximizer
of the class-conditional error, as described below:

e, = arg max Pr(H(X) # H(X)). )

e:|le||x<e
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C. Minimax Approach to Adversarial Robustness

An alternate to the GLRT approach is the minimax formu-
lation of the adversarially robust classification problem, which
is game-theoretic. The attack model considered is an additive
one, where the adversary observes the sample and adds an £,
bounded perturbation. Let H denote the true hypothesis and H
be aclassifier. The adversary attempts to cause misclassifications
by choosing a suitable perturbation, while the defender tries to
choose a classifier such that the expected loss is minimized. The
optimum adversarial risk is:

R*=minE | sup 1(H(X)# H(X))|,

# o |eillellze

(10)

which is solved for the binary Gaussian setting with uniform
priors in [22]. Unfortunately, the minimax approach may be
overly conservative, unnecessarily compromising performance
against attacks that are weaker than, or different from, the worst-
case attack. In such scenarios, we expect the GLRT approach,
which estimates the attack parameters, to provide an advantage.
In an adversarial setting, a defender typically sets the attack
budget conservatively, hence achieving good performance even
at weaker attacks is of interest.

We now describe the binary Gaussian minimax classifier
in [22]. Let the class means be denoted by +p and —p and
the covariance matrix by 3. It is shown that the minimax
optimal robust classifier is a linear classifier with coefficient
vector w := X1 (p — zx () that is based on the solution of
the following convex program:

zs(p) =arg min (p—2)"S"(p-2), (1D

il o <c

where € is termed the adversarial budget. A closed-form expres-
sion for the adversarial risk is provided as:

B =0y =)= ). a2

Under white noise, the linear classifier can be interpreted
as the inner product between the observation and the signal
template after the application of the double-sided ReLU, i.e.,
w = g.(p). The optimal noise-aware attack which achieves the
optimal adversarial risk is € = +¢ - sign(p).

While this formulation is noise-aware, a noise-agnostic coun-
terpart that optimizes for the probability of error can be in-
terpreted within the framework of classical robust hypothesis
testing [21], albeit with an uncertainty model which does not
appear to have been considered before in the literature. Specif-
ically, the set of distributions under each class indexed by the
allowable perturbation values that fall within the /., ball. In
particular, the Gaussian class-conditional distributions come
from an uncertainty set in which the mean is the sum of a
nominal mean plus a norm-bounded shift. We note that (see
Observation 1) the noise-aware and noise-agnostic worst-case
attacks in the binary Gaussian setting and hence the correspond-
ing minimax detectors are the same. It can be shown that the
class-conditional distributions with means equal to +g.(ut) are
the least favorable distributions for these uncertainty classes.
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(We omit the derivation, since our focus here is on the GLRT
detector and the noise-aware attack model.)

In order to compare the minimax and GLRT approaches, we
next specialize to binary Gaussian hypothesis testing with sym-
metric means and equal priors to benchmark the performance
of GLRT, in a setting where the worst-case attacks of both the
classifiers are known. We remark that the analysis developed for
the GLRT defense applies in a more general case of unequal
priors as well, described subsequently.

IV. BINARY GAUSSIAN HYPOTHESIS TESTING

Consider the following binary hypothesis testing problem
with symmetric means and equal priors for which the minimax
rule is known [22]:

H()ZX:[,L+6+N
Hi: X=—pu+e+N

where e is deterministic, chosen by an ¢, bounded adversary,
with adversarial budget ¢, who knows the true hypothesis and
the noise realization, with N ~ N(0,021,;). Moreover, since
the worst-case attack for the minimax classifier is known under
the IID setting, we employ it as a benchmark for the GLRT
classifier in this section.

We first describe the GLRT, minimax and the naive minimum
distance classifiers under this setting. Next, we analyze the
performance of the GLRT defense and show that the analysis is
asymptotically exact as the number of dimensions grows large.
We then derive the worst-case attack of the GLRT detector
and remark on the applicability of our results in settings with
asymmetric means.

A. Relation Between Minimum Distance, Minimax
and GLRT Rules

We now discuss how the structure of the optimal decision
rule without attacks relates to the minimax and GLRT rules. In
the absence of attacks, the optimal rule can be expressed as a
minimum distance rule as follows:

Hy
>

X+ pl? - X — pl?.
H,

(13)

This minimum distance rule can alternatively be expressed as
a linear detector which correlates the “signal template” @ with
the observation:

Hy
T~ >
uX<O.

H,

As shown in [22], the minimax decision rule turns out to be a
linear detector of the form
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That is, the minimax rule applies the double-sided ReLU to the
“signal template” p, and then performs the correlation. Thus,
it simply ignores signal coordinates which are small enough
such that their signs could be flipped using the worst-case attack
budget of €, and shrinks the remaining coordinates to provide
an optimal rule assuming that the worst-case attack has been
applied.

On the other hand, the GLRT rule in this setting simplifies to a
simple modification of the minimum distance rule as following:

Hy
>

Cr=llge X+ ) |I* Z Co=llge (X —p) |I*.
H,y

(14)

Comparing (13) and (14), we see that the GLRT rule applies a
coordinate-wise double-sided ReLLU to the minimum distance
(squared) formulation. Since GLRT applies the double-sided
ReLU to the difference between the actual observation and signal
templates, we expect that, in contrast to the minimax detector,
it should be able to adapt if the attack level is lower than the
worst-case attack employing the full budget e.

One of the possible worst-case attacks for the minimax clas-
sifier is: € = —e - sign(p) under H and e = ¢ - sign(p) under
H1. We prove in Section IV-E that the same attack is indeed the
worst-case attack for our GLRT defense under binary classifica-
tion with Gaussian class-conditionals, for both noise-aware and
noise-agnostic adversarial settings.

Under this attack, it is easy to see that the “defenseless”
minimum distance detector makes errors with probability at least
half whenever the attack budget satisfies € > ||||?/||p]|1. Thus,
the system is less vulnerable (i.e., the adversary needs a large
attack budget) when the ¢; norm of g is small relative to the /5
norm. That is, signal sparsity helps in robustness, as has been
observed before [27], [34].

B. Performance Analysis of the GLRT Defense

Since the GLRT rule is nonlinear, its performance is more
difficult to characterize than that of a linear detector. However,
we are able to provide insight via a central limit theorem
(CLT) based approximation (which holds for large number of
dimensions d). Let the priors for the two classes be 7y and
1. We perform the following analysis with the attack fixed to
e = —e - sign(p) (ore = +e - sign(p)), which is the worst-case
attack or the optimal perturbation from the attacker’s point of
view under H (or H; respectively), proven in Section IV-E. By
the symmetry of the observation model and the resulting symme-
try induced on the attack model, the class-conditional errors are
equal under both the hypotheses. Hence, we may condition on
Ho and the corresponding worst-case attack e = —e - sign(p),
and consider X = p — esign(pu) + N. The costs are

d

Co = Z(ge(*esign(u[i]) +N[i]))?
d
= Z(ge(Qu[i] — esign(u[]) + N[i)))*.
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and the error probability of interest is
P =moPeo + mPe1 = P
:P[0201—00<0|H0]. (15)

We now perform a coordinate-wise analysis of the cost dif-
ference C[i] = C1[i] — Cyli], where Cy[i] indicates the contri-
bution in cost C', from coordinate 7. Let the mean and variance
of C[i] be denoted by m(; and pém respectively. Applying
CLT on the sum across coordinates, the error probability can be

estimated as:
d d
P (Z Cli] < 0) ~Q izl
- d 2
i=1 Dict Per

The error probability analysis can be made exact in the limit
as d — oo, if the Lindeberg’s condition is satisfied for CLT to
hold for independent, but not necessarily identically distributed
random variables. We show in Section IV-C that Lindeberg’s
condition is indeed satisfied in our setting.

Asymptotic equivalence with minimax classifier: Consider
aparticular coordinate ¢, set C' = C[i], and let p[i] = . Assume
1 > 0 without loss of generality: we simply replace p by |14 after
performing our analysis, since the analysis is entirely analogous
for ;1 < 0, given the symmetry of the noise and the attack.
We can numerically compute the mean and variance of the
cost difference for the coordinate, C' = (g.(2u + N — ¢€))? —
(ge(N — €))2, but the following lower bound yields insight:

P, = (16)

C>Y 2 1> y(t+N)? - N2, (17)

wheret = 2(p — €). Notethatt > 0(|u| > €) corresponds to co-
ordinates that the minimax detector would retain. The high-SNR
(t/o large) behavior is interesting. For ¢ > 0, we can show that
Y = t2 + 2Nt; these coordinates exhibit behavior similar to the
minimax detector. On the other hand, fort < 0,Y ~ —N2;these
coordinates, which would have been deleted by the minimax
detector, contribute noise in favor of the incorrect hypothesis
(this becomes negligible at high SNR). These observations in-
dicate that, at high SNR, the performance of the GLRT detector
approaches that of the minimax detector under worst-case attack.

Without loss of generality, let us redefine t = 2(|u| — €).
The mean and variance of Y, irrespective of sign(u), can be
computed in closed form as follows:

my = Q (_t> (t* +0%) — 0% + ot (t) (18)
o o
P =30 +Q (j) (t* + 4t%0% — 30%)

+ oto(t/o)(t? + 30%) — mi.. (19)

Fig. 2 shows the empirical mean and empirical variance of C'[¢],
i.e., m; and p?, in comparison with my and p3- obtained through
(18) and (19). Here, the adversarial budget is set to ¢ = 1 and
noise variance o2 = 1.

GLRT under low noise limit: The error probability in (16)
can also be bounded by applying CLT on the lower bounding
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Fig.2. Comparison of empirical mean and variance of C[z] with the mean and
variance of lower bounding variable Y.

terms Y; < C/[i] as follows:

(S50 <0) < ($5 o)

d
D i1 MY,
d
Zi:l P%/i

Bounding the probability of error in this fashion helps in yielding
the following insight. Under low noise limit (02 — 0), the
variance p3y. = 0,Vi; and the mean is given by my, = t°, if
|| > €, otherwise it is zero. Thus as long as 3 such that
|e[i]| > €, or equivalently € < ||p||~0, we have P, — 0. Inter-
estingly, for the error of the naive minimum distance detector
to approach zero under low noise limit, € < ||g||?/||p||1 should
hold, which is a more stringent condition than that required by
the GLRT detector.

Also note that since each of the means and variances are
O(1) terms, we have P, < kie *2¢ where ki, ko are positive
constants, irrespective of the SNR requirements.

~Q (20)

C. Asymptotic Exactness Through Lindeberg’s Condition

The random variables Yy, for 1 < k < d, are independent, but
not identically distributed. For brevity, let the mean and variance
of Y}, be denoted by my, and p? respectively. The sum of vari-
ances of all the d random variables is given by s3 = ZZZI i
A sufficient condition for the central limit theorem (CLT) to
hold in the case of independent but not necessarily identically
distributed random variables is the Lindeberg’s condition.

Proposition 1: If the independent, non-identically dis-
tributed, random variables Yy, k € [d], Vo > 0 satisfy the fol-
lowing, then the central limit theorem holds.

1
<2
d—>oo Sg

d
ZIE (Vs — my,)? Ly mk\>68d}] 0.
k=1

21

The proof of this proposition is deferred to the Appendix A.
It can further be shown that the Lindeberg’s condition is also
satisfied by the sum of per coordinate cost differences C[k].
Since showing this is analogous, we do not give the detailed case-
by-case calculation, but only provide a sketch in Appendix A.
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Thus, the approximate equalities in (16) and (20) are indeed
exact.

D. Application to Unequal Means

The analysis in this paper for the GLRT scheme applies,
without loss of generality, to asymmetric means (say po and
[t1), by shifting of coordinates equivalently, leading to the worst
case attack of e = —e - sign(po — p1) under Hg. The perfor-
mance analysis also applies in the general case by converting an
asymmetric means setting to one with symmetric means by the
shift of coordinates, and then due to the symmetry of the attack
model and the observation model, the error probabilities are as in
(15). We note that the minimax classifier also applies in a setting
with generic means po and pq. By change of coordinates, we
can arrive at a symmetric mean setting, where if the attacker
employs e = —e - sign(po — 1) under H, as the worst-case
attack against a linear classifier with w = g (#°5#%), and from
the defender’s point of view, fixing the classifier to the minimax
scheme 1is still optimal given such an attack. In general, the
minimax classifier takes the form:

Hy

—p\" + >
ge Ho — M1 X _ Ho + M1 0.
2 2 <

H,

(22)

E. Worst-Case Attack Under Binary Setting

In this section, we find the optimal attack from the adver-
sary’s point of view, also termed the worst-case attack, given
a classifier. Firstly, we note that the worst-case attack for the
GLRT defense is not unique. In the following proposition, we
show that an attack that is oblivious to the noise realization is
also a worst-case attack in the noise-aware setting for binary
hypothesis testing under the GLRT classifier.

Proposition 2: A worst-case attack for the GLRT defense in
a binary Gaussian classification problem with class means p
and p1, under both noise-aware and noise-agnostic adversarial
settings, is given by

(23)
(24)

e" = —e-sign(pg — 1), under Hg
e = —e - sign(p; — po), under H;.

Proof: Without loss of generality, let us first consider the
symmetric mean case. Following the notation in Section I'V-B,
we first show that for all coordinates where 1+ > 0, the per coor-
dinate cost difference under H, given by C[i], is non-decreasing
in e[i], and where p < 0, C[i] is decreasing in e[é]. The proof
is deferred to Appendix B. Let e; and e be two attacks and
N a noise realization. Denoting ), C'[i] = C for brevity, and
assuming that o > 0 for all the coordinates, it follows from the
monotonicity of per-coordinate cost difference, that for any fixed
N,ife; = ey, thenC(e1,N) > C(ey,N).Letes = —e - 1. For

any other attack eq, and VNN,
C(er,N) > C(—¢-1,N). (25)

Relaxing the assumption on p and utilizing the result that the per
coordinate cost difference for indices where ;1 < 0is decreasing
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in corresponding e[, it follows that

C(e,N) > C(—e - sign(p),N) (26)
for any e and VIN. For binary classification, it suffices that the
per-coordinate cost difference is negative to cause misclassifi-
cation. Under 7—20, we can see from (26) that the attack e =
—e - sign(p) is sufficient to cause misclassification, whenever
possible, for any noise realization. Extending to generic means
by shift of coordinates, the worst case attack under H is thus
given by e* = —e¢ - sign(po — p1)- Since the attack does not
utilize the noise realization, it is also the best a noise-agnostic
adversary can do. ]

Observation 1: The same attack e* = —e - sign(po — 1) is
the worst-case attack in the presence of both noise-agnostic and
noise-aware adversaries under binary settings for minimax and
also the naive minimum distance based classifier.

For minimum distance classifier, the cost of choosing hypoth-
esis H; is C; = ||X — p;||*. For binary problems, if a noise-
aware adversary wants to cause misclassification, it requires
to pick a perturbation such that under Hg, costs are such that
C1 < Cy, whichreduces to finding a perturbation such that given
noise N,

min_ (po — p11)" (e + N).
e:|lel|x<e
However, irrespective of noise, the perturbation e = —¢-
sign(po — p1) minimizes the above, due to which it is an
optimal attack when the minimum distance classifier is used
by a defender. This is also optimal for an agnostic adversary as
the attack does not require the knowledge of noise. It is also
shown in detail in Observation 2.

Similarly, for the minimax classifier, from (22) it can be

deduced that the adversary attempts to perform

(B ey

Ho—H1
2

min
e:|lel|x<e

under H, leading toe = —e - sign(g.( )), which is equiv-
alent to e = —¢ - sign(po — p1). Thus the same attack is opti-
mal for the three classifiers under binary setting.

V. BINARY EXAMPLES AND DISCUSSION

Focusing on binary classification problems with symmetric
means in this section, we consider settings where a fraction p of
the coordinates have means i = ae and a fraction (1 — p) have
= be, where a > 1 and 0 < b < 1. We consider such class
means for ease of representation and remark that this is typical of
data employed in learning applications, which is sparse, leading
to a small fraction of high-valued coordinates and a large fraction
of coordinates closer to zero. Let the designed adversarial budget
be € and the actual attack be e = Frsign(p), where 0 < k < e.
Under this setting, it is simple to approximate (or describe
exactly in the case of minimax classifier) the error through
computation of the effective signal-to-noise ratio (SNR).

For the minimax scheme, note that only the fraction p of the
coordinates contribute to signal energy. The decision statistic is
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Fig. 3.  Robustness v/s accuracy trade-off as the actual attack is varied, while
the designed adversarial budget is fixed to € = 1.

(ge(p))T X, from which it follows that the effective SNR is:
€2
SNRpinimax = (a - k)2dp <*>
o
For the GLRT scheme, the SNR can be obtained directly from
(16) as
(pma + (1 _p)mb)2
ppz + (1 —p)p;

SNRGirT = d

)

where m, and my, are means, p2 and pj are variances of a
single component of C'[i] contributed by terms with component
means ae and be respectively. The probability of error for both
the classifiers is given by Q(+v/SNR). Note that for the GLRT
detector, it is only an approximation as convergence is slow at
high SNR, and we need to rely on simulations for more accurate
error probabilities. With the above setting in mind, we will now
illustrate the performance of the GLRT defense. We also remark
that in the binary IID setting, since the worst-case noise-agnostic
and noise-aware attacks are identical for GLRT, minimax and the
minimum distance rules, we do not provide a distinct treatment
of the aware and agnostic scenarios in this section.

A. Trade-Off Between Robustness and Accuracy

We consider binary classification problems with symmet-
ric means and uniform priors to draw a comparison with the
minimax optimal scheme, and also a naive minimum distance
classifier that is optimal under zero attack. The GLRT detector
performs better than minimax for weaker attacks, and it has a
significant advantage over minimax in settings where the class
mean g has components which are smaller than ¢, but larger
than the actual attack. GLRT utilizes signal energy from these
components while for minimax, such components are nulled.
Fig. 3 depicts the performance advantage of GLRT under weaker
attacks, for a problem with parameters e = 1, d = 20, p = 0.1,
a = 1.1, b = 0.9 and noise variance o2 = 1.

The naive minimum distance classifier does poorly under a
large attack, specifically in settings where p has a large num-
ber of small components. Under strong attacks, these smaller
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Fig. 4. Probability of error as a function of (¢/o)? for different values « of
actual attack (withe = 1,a = 2, b = 0.5).

components contribute to costs in such a way that the wrong
class is favored by the naive detector. Consider a problem
with parameters d = 10, p =0.1, e =1, a =2, b= 0.5 and
0% = 0.25. The comparison of all three detectors under this
setting is plotted in Fig. 3, which clearly indicates the failure of
naive scheme at high attacks, emphasizing the need for a robust
detector. Fig. 4 shows the variation of the error probability as a
function of (¢/c)2, under four different values of actual attack,
for the same problem setting.

In summary, the GLRT defense serves as a graceful inter-
mediate between the naive minimum distance rule which fails
under a large attack, and the minimax classifier which is too
pessimistic if the actual attack is weaker than the one which the
classifier is designed for. The margin of improvement which the
GLRT defense provides over the other classifiers depends on
the parameters of the setting, as demonstrated by the two set
of parameters that we consider in Fig. 3. In situations where the
defender does not possess an exact knowledge of the adversary’s
budget, the defender would make an informed guess about it
and design the classifier pessimistically. Hence, considering
the performance of the designed classifier at weaker attacks
becomes important.

B. Speed of Convergence

Using CLT to approximate the error probability of the GLRT
defense holds only in the limiting case of large d. We observe that
the distributions of per-coordinate cost differences for each of
the coordinates, specifically under low noise, could have narrow
asymmetric tails, due to which convergence is slow. We consider
a setting with parameters « = 1.1, 6 =0.9,p = 0.3, e = 1 and
compare the error probabilities as indicated by simulation and
those calculated from (16), where the means and variances of
each coordinate of C[i] are computed empirically. We consider
two attacks of the form e = —« - sign(p), one with the full
strength of attack k = € = 1, and another, a weaker attack k =
0.8. For both these settings, the true error is fixed to two different
values P,,,, ~ Q(+/5) and P, = Q(+/8) respectively. Since
error is a smooth function of noise variance, the value of o2 for
a particular d and the fixed P, is found through grid search.
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Fig. 5. Asymptotic convergence of error predicted from CLT approximation
to the simulation performance.

As expected, Fig. 5 shows that the theoretical performance
approaches that of the simulation as the number of dimensions
ZrOws.

C. Colored Noise Setting

In this subsection, we empirically compare the GLRT and
minimax classifiers under non-spherical covariance matrix set-
tings. Previously, we have illustrated the benefit of GLRT de-
fense under weak attacks in the white Gaussian settings where
its worst-case attack is known. Since, the worst-case attack for
the GLRT classifier under colored Gaussian noise is unknown,
comparing the performance of minimax and GLRT for a fixed
attack direction with variation in the strength of the attack,
as done in Fig. 3 is not meaningful. Instead, we compare the
adversarial risks (10) of the two classifiers.

Given a binary setting with equal priors, symmetric means and
covariance matrix XJ, it is shown in [22] that the adversarial risk
can be calculated in closed-form from (12). Given hypothesis
H, the adversarial risk of the GLRT defense is:

RELET — g | sup 1(Harrr(X) # H(X))

eillef] o <e

27

Since the worst-case attack is not characterized, the adversarial
risk can only be computed empirically. One needs to check, for
each noise realization seen, if there exists a perturbation e within
the /., ball of radius ¢ that can cause a misclassification. For the
GLRT rule, this implies checking for a perturbation that results
in a smaller cost for an incorrect hypothesis. For the binary
setting, under H(, we have X = p + e + N, and the problem
of finding a feasible attack reduces to the following optimization

min Cl — CV()7 (28)

eillel[x<e

and checking if the minimizer indeed makes C; < Cy. However,
note that in the above objective function, cost C} depends
on parameter €, which in turn depends on the given attack
e through the observation X (see (3)). This is potentially a
non-convex problem, which we solve by numerical optimization
in our experiments. This leads to alower bound on the adversarial
risk of the GLRT classifier since the numerical search does not
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Fig. 6. Adversarial risk of the GLRT and minimax classifiers under colored
noise setting.

guarantee arriving at a feasible attack if it exists. We observe
in our simulations that the lower bound obtained as such is
close to the exact adversarial risk in the lower dimensional
settings. We also empirically compute the adversarial risk of
GLRT through a grid search and compare with the lower bound
obtained. Fig. 6 shows the bound and exact adversarial risk
of the GLRT classifier and the optimal adversarial risk of the
minimax classifier, for a binary setting with parameters d = 2,
o = [2,0.5], g1 = [—2, —0.5], designed adversarial budget of
e = 1, and covariance matrix

0.25 0.35
0.35 0.75

b

where c is a scalar multiplier which is varied. Note that the
minimax classifier, by definition, achieves the minimum adver-
sarial risk and that of the GLRT classifier is comparable with
the optimal. In addition, the GLRT is expected to possess a
better robustness-accuracy trade-off when a weaker attack is
employed, as previously demonstrated.

VI. MULTI-CLASS GAUSSIAN HYPOTHESIS TESTING

The GLRT defense applies to multi-class setting with generic
means and priors naturally, as described in (7). In order to
benchmark the performance of GLRT, we do the following:

1) We first note that deriving a minimax optimal classifier
in multi-class setting is a difficult problem, even with the
assumption of uniform priors. We consider a heuristic-
based extension of the binary minimax classifier, termed
the Pairwise Robust Linear (PRL) classifier, which we
employ to benchmark the performance of GLRT, along
with comparing it with the minimum distance classifier.

2) We illustrate that finding an optimal noise-agnostic at-
tack in the multi-class setting is a difficult problem, and
provide a heuristic attack, that is close to the optimal
noise-agnostic attack in the high SNR regime, by obtain-
ing a procedure to identify the neighboring class which
contributes the most to errors.
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3) We provide a simple method to identify the optimal noise-
aware attack in multi-class problems by extending our
knowledge about the optimal noise-aware attack in binary
setting. This also gives a lower bound on the classifier’s
performance.

We begin by first describing the Pairwise Robust Linear
classifier that we propose to provide a benchmark for the per-
formance of GLRT defense in multi-class settings. Given an
M -ary classification problem, we can form (]\2/[ ) pairs of binary
minimax classifiers. The observation is classified as belonging
to class k if k is a clear winner in all M — 1 binary tests
v/s H;, i # k, else it is considered an error. We term this as the
PRL classifier, since the binary minimax classifier is linear. Note
that the PRL classifier need not be minimax optimal. Instead of
requiring that a particular class wins against all others, one could
also make a decision based on the majority winner among all
classes, but for simplicity, we restrict ourselves to requiring a
clear winner against all other hypotheses.

Next, we will describe the procedure to find a near-optimal
attack when the adversary is agnostic to noise, and later provide a
way to find an optimal noise-aware attack in multi-class settings.

A. Noise-Agnostic Attacks

The optimal noise-agnostic attack, described in (9), is difficult
to obtain in closed-form for non-binary settings due to the
complicated geometry of the problem. However, our approach
to find a near-optimal noise-agnostic attack is the following.
Given M classes, the class conditional error is upper bounded
by the sum of errors of pairwise binary hypothesis tests, and at
high SNR, we can assume that there is a single competing class
that dominates the error calculations. Thus we are interested
in finding this competing nearest neighbor class. Given M
classes, under H ;, one can think of M — 1 binary classification
problems H; v/s H;, where i # j, and find which of these binary
hypothesis tests yields the worst probability of error. At high
SNR, the class conditional error for M-ary hypothesis testing
depends primarily on the worst of the M — 1 binary hypothesis
tests. We term the competing class which yields this worst
probability of error as the nearest neighbor class. As a proxy
for the true worst-case attack in the multi-class setting, one can
use the worst-case attack of the binary hypothesis test against
the nearest neighbor (NN) class. Therefore, we want to find the
NN class, under every hypothesis.

We provide procedures to identify the NN class under the
minimum distance, GLRT and PRL classifiers through the below
series of observations, which we substantiate in the rest of this
section, culminating in Observation 4 which identifies the NN
class for the GLRT classifier in the most generic setting.

Observation 2: The NN class under hypothesis H; for the
minimum distance classifier is:

[l [1

; (29)
12|

k(j) = argmin [|pji]| — e

where p;, = (p; — px)/2.
We substantiate the above observation as follows. Let us
first consider the minimum distance classifier under binary,
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symmetric means setting. Under o, wehave X = p + e + N,
and the linear classifier of the form w;.., = p as discussed
earlier. The class conditional error simplifies as follows:

Pe\Ho = P(IJ’TX < O)

= P(|lpllP + p"e+ "N <0)
Te +
o (el

g

and the worst case noise-agnostic attack is:

€,y = Arg min euTe/HuH + 1.

eifleffw<

Through Holder’s inequality, we have pu” e > —||e||oo||]|1 >
—e€l||p]|1,and equality is achieved when e = —e - sign(p). Thus,
the error corresponding to the worst attack is of the form

Sy (CEE LT

g

In the case of asymmetric means g and g1, it follows that the
WOrst-case error is:

PEIH() = Q(
—0 <||M01| —€|N01||1/||Ho1||> 7

g

|| ot || — e Hogir ||, /|| gt |>

g

(30)

where we denote (o — p1)/2 as po1. The optimal noise-

agnostic attack in binary setting is hence e, ,,, = —¢ - sign(po —
1), under Hy. Generalizing to a multi-class setting under
hypothesis #;, under high SNR the error probability would be
dominated by the binary hypothesis test between class j and
another closest neighbor class. A heuristic way of proposing
an agnostic attack that is close to the optimal agnostic attack
is to simply attack that class which contributes the most error.
Using (30) and the fact that ((.) is a monotonically decreasing
function, the binary test that contributes the largest error is
against the class determined in (29), which is termed as the
nearest neighbor class.

This equation also captures that sparsity improves robustness
of the naive classifier. For a system with fixed /5 norm of the
pairwise separation between means p 1, the class with greater
£1 norm corresponds to the NN class.

Observation 3: A procedure to identify the NN class for
GLRT under hypothesis H; is:

k(j) = arg m}jn

Y (el —o?

il il [ 2

€19}

and the attack under hypothesis H;, that is close to the opti-
mal noise-agnostic attack is e, g, = —¢ - sign(uj,;(j)). As SNR
increases, €q4,, approaches ey,

The above is demonstrated as follows. From (20), the class
conditional error can be upper bounded by using CLT on the
bounding variables Y'[i]. Observe that in the high-SNR regime,
the bound in (17) is close to equality. Thus the true probability of
error can be approximated as the error found through CLT on the
bounding variables. Suppose that a fraction p of the coordinates
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are such that | [7]| > €. From (17) and following the notation
from Section I'V-B, the mean and variance of Y [¢] can be verified
to be the following, based on t; = 2(po[¢] — €) being positive
or negative.

my, =

i

2 ift>0
—o?ift <0

o [4o?t2ift >0
PYi =\ 20% ift <0

The error is estimated as the following under high SNR:

N S my,

_ o[ =0 =pdo® + 5 4lposlil - 02
V20— p)dot + 402 Y2, (| paonli] - €)?

~Q (5 [ X Aol - o2

it[pok [i]|>€

Thus, it follows that we can identify the NN class for GLRT
under hypothesis H; as in Observation 3, and further simplify
as:

Y (el —o?

il (i) =€

Y (wanld)? = 2e(pjnlil))

i:lpgk [i] > €

k(j) = arg mkin

(32)

= argmin
k

= argmin ||gc(p;)||*
and the attack is eqq,, = —€ - sign(ujl;(j)).

It is interesting to note that the same coordinates would have
been retained by the PRL classifier under the high SNR regime,
leading to the same NN class. Note that the analysis above
implicitly assumes that the attack utilizes the entire adversarial
budget. If the actual attack is a weaker attack of the form
e = Fr - sign(p), where k < ¢, it follows, analogous to (17),
that

Cli] = (ge2uli] + N[i] — £))* = (9e(N[i] — ))*
> LNz (ti + N[i])* — (N[i])?
2y (33)

where we redefine t; = 2ufi] — k —e.
Observation 4: Under attacks that are weaker than the de-
signed budget, the NN class for GLRT is given by

k(j) = arg min Z

2| ][ 2+

@lpplill — k=€) (34

It is interesting to note that method for determining the NN
class derived here implicitly depends on the sparsity of separa-
tion between the pairwise means 3, but measured only over
the surviving coordinates as expressed by (32).
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GLRT class-conditional error for different attacks
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Fig.7.  Error surface for the ternary GLRT classifier and its worst case attack.

B. Noise-Aware Attacks

When the true class and the noise realization is known, the
attacker aims to employ the worst attack that causes misclassifi-
cation, when possible. Note that given the noise realization and
true label, it is not computationally hard to find the worst-case
attack. The adversary checks for feasibility, i.e., whether there
exists a perturbation that can cause misclassification. However,
rather than compute such an attack numerically, we provide a
simple procedure to identify the optimal noise-aware attack in
multi-class settings, that builds upon the optimal noise-aware
attack in binary settings, identified in Observation 1.

We will now address the question of finding optimal noise-
aware attack for M —ary classification problems. Recall that
the adversary needs to find a perturbation e : ||e||, < € such
that under true hypothesis H;, the cost for the classifier under
some incorrect hypothesis #;, (given by (6) for the GLRT
classifier), is smaller than the cost under the true hypothesis
‘H;. Since the adversary knows the true class and the noise
realization, it can compute and check if by employing any of
the M — 1 binary optimal noise-aware attacks for H; v/s H;,
J # 1, if the resulting costs are such that C'; < C;, for some j.
If there exists such a class j, then e = —e - sign(p; — p;) is
sufficient to cause misclassification. If such j is not found, then
itimplies that none of the incorrect class costs can be made small
enough, which means it is not possible to cause misclassification
in the multiclass setting. Thus using this procedure for every
realization of noise seen, the adversary can behave optimally in
the noise-aware multiclass setting. The costs under hypotheses
are clear for the minimum distance classifier. Since the PRL is
an extension of binary minimax classifier, adversary can attack
S0 as to cause at least one of the binary minimax hypothesis
tests to fail. Thus the costs for minimax classifier can be used
in this procedure to find an optimal noise-aware attack for PRL
classifier.

C. Ternary Classification Examples

Let us consider a simple two-dimensional ternary classifi-
cation problem with parameters po = [0,0], gy = [2.5,0.25],
po = [~1.75,—2.25] and 02 = 0.1, and empirically explore
the variation of class-conditional error as a function of the
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Fig. 8.  Error surface for the ternary pairwise robust linear classifier and its
worst case attack.

attack, for all valid attacks. Figs. 7 and 8 illustrate the class-
conditional error under true class is Hg, for GLRT and PRL
classifier respectively. The error surface and the direction of
the optimal noise-agnostic attack is different for these classi-
fiers, as indicated in the figures. We also observe that the error
surface for GLRT drops faster, for the considered example, in
comparison to the error of PRL classifier. The NN class under
Ho as suggested by (31) is Ho, and the corresponding attack
e = —e¢-sign(po — p2) = [—1,—1], which agrees with €],
as seen in Fig. 7. We also checked empirically that the same
attack leads to the worst class-conditional error for the PRL
classifier, albeit not at the noise level considered in Fig. 8, but
at a higher SNR, for the same problem. Though it is simple in
a two-dimensional setting to empirically verify that the optimal
noise agnostic attack at a particular SNR concurs with the attack
suggested by employing NN class calculations, for a large di-
mensional problem, it is hard to know if the noise variance is low
enough for the heuristics to hold, and the optimal noise-agnostic
attacks for GLRT, PRL and minimum distance classifiers could
be different.

We now consider a ternary setting with equi-probable classes,
and parameters d = 20, ¢ = 1, noise variance o2 = 0.1, class
mean pt( such that the first py = 0.15 fraction of the coordinates
are at 0, and the rest at 1, i.e., po = [0,0,0,1,...,1], pq such
that the first p; = 0.1 fraction of the coordinates at —2.1 and
rest at 0.9 (u; = [—2.1,—2.1,0.9,...,0.9]), and p2 such that
the first po = 0.2 fraction of the coordinates at —1.8 and rest
at 1.75 (uo = [-1.8,—1.8,-1.8,—1.8,1.75,...,1.75]). The
strength of the attack is is varied such that 0 < k < € = 1. These
mean parameters, though seemingly arbitrary, have been chosen
such that the pairwise difference between the means possess (i)
large number of small components (ii) some components that
are smaller the designed budget, but larger than actual attack
strength employed. Recall from Section V that settings with
these properties showcase simultaneously the quick deteriora-
tion of minimum distance classifier as attack strength increases
and superiority of GLRT over minimax for weak attacks. This
can be observed in Fig. 9, which shows the error probabilities
(or error frequencies) of GLRT, PRL and minimum distance
classifiers, for both noise-agnostic and noise-aware adversaries.
For each of the classifiers, their respective noise-aware optimal
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Fig. 9. Performance of GLRT, PRL and minimum distance classifiers for the
ternary classification problem considered.

attacks are employed to obtain the performance of the classi-
fiers under noise-aware settings. In the case of performance
under noise-agnostic adversaries, at each value of the attack
strength, the direction of attack is chosen based on the heuristic
noise-agnostic attack for each of the classifiers by identifying
their respective NN classes (for GLRT, PRL as per (34), and for
minimum distance classifier as per (29)). Due to the complex
geometry of the problem in multi-class settings, it is not easy to
provide insights on how better a noise-aware adversary could do
in comparison with an agnostic one, but the example considered
here serves the purpose of showing a case where the performance
under aware and agnostic adversaries is not too different. In
general the gap between the performance depends on the sepa-
ration between class mean parameters and noise variance. The
plots for optimal noise-aware attacks also give a lower bound
on the performance of the respective classifiers for adversarial
hypothesis testing.

Note that the noise variance is small (62 = 0.1). At such
relatively high SNR, we expect that each class-conditional error
will be dominated by misclassifications occurring due to its
nearest neighbor class. Hence the optimal attack in the multi-
class setting would essentially be close to the binary worst-case
attack corresponding to the nearest neighbor class. The aware
and agnostic attacks are the same in binary setting, due to which
at high SNR, the performance of aware of agnostic adversaries
in multi-class setting is close, and the empirical results in Fig. 9
support the same. As the noise variance grows larger, one will
observe a larger gap in the performance of noise-aware and
noise-agnostic adversaries.

VII. GLRT DEFENSE BEYOND GAUSSIANITY

While we have focused on the Gaussian setting for which an
adversarially robust minimax rule is known, in this section, we
illustrate the application of GLRT defense beyond the Gaussian
setting. Consider that the noise is distributed as an independent
and identically distributed zero-mean Laplace random variable
N[i] ~ Laplace(0,b), where the zero-mean Laplace density is
given by
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Fig. 10. Performance of GLRT defense under Laplacian noise in comparison
with a non-robust ML classifier.

Under this setting, the GLRT rule in (1) simplifies to

d
k = argmin min Z |XT[i] — per[t] — efd]]- (35)

k : <
et <c

Breaking the above optimization, the estimation of the pertur-
bation is essentially

min

€, = arg
e:llef| <€

d
S X — pali] - efil]

i=1

which reduces to €, = f.(X — ), just as in the Gaussian
setting, and the cost under each hypothesis now takes the form
Cr = ||ge(X — pi)||1, analogous to (6).

In the absence of any perturbation, the maximum likelihood
detection rule under the Laplacian noise would result in the
minimization of the cost CL = ||X — pg||1. In comparison,
the adversarially robust GLRT classifier requires only an ad-
ditional step of the simple coordinate-wise application of the
double-sided ReL.U, like in the Gaussian setting.

The adversarial risk can be obtained by a feasibility check
for causing misclassifications. Given an adversarial budget of
¢, for each noise realization seen, one can check if there exists
a perturbation within the /., ball of radius ¢, that can result
in a smaller cost for an incorrect hypothesis for the GLRT
classifier, thus causing a misclassification. For the binary setting,
under H, the problem of finding a feasible attack as in (28) is
solved by numerical optimization to obtain a lower bound on the
adversarial risk of the GLRT classifier under Laplacian noise.

Alternately, the adversarial risk can be inferred by finding
the optimal attack from the adversary’s point of view, and the
error probability under that worst-case attack is the adversarial
risk. We conjecture that for this setting as well, the attack
e = —c-sign(pg — p1) is indeed the worst-case attack. To
support the same, we find the maximum adversarial risk in a
smaller dimensional setting by a grid search for a perturbation
that causes misclassification, under each noise realization seen,
and we observe that the error probability obtained through grid
search coincides with that when the attack is fixed to e =
—e - sign(po — p1). For comprehensive comparison, we also
evaluate through simulations, the performance of a non-robust
detector in this setting, such as the maximum-likelihood rule
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which minimizes the ¢; distance of the observation from the
mean.

All of the above comparisons are plotted in Fig. 10, for a
binary Laplacian setting with d = 2, the designed adversarial
budgetofe = 1, o = [2,0.5] and pq = [—2, —0.5]. We remark
that the GLRT defense thus applies naturally to a wide range of
such settings where adversarially robust minimax classifiers are
not known or are hard to derive.

VIII. CONCLUSION

Our study of binary Gaussian hypothesis testing under /.,
bounded adversarial attacks shows that the GLRT approach is
competitive with the known minimax benchmark. The GLRT
detector has the same asymptotic performance as the minimax
detector at high SNR for perturbations at the attack level that
the minimax detector is designed for. For lower attack levels,
the GLRT detector can provide better performance, depending
on the specific values of the signal components relative to the
attack budget. In general, the minimax detector is difficult to
find (and may not exist), but the GLRT is a generic multi-class
detector that can work with any priors and for multiple classes, as
illustrated by our examples for multi-class hypothesis testing in
Gaussian noise and binary hypothesis testing in Laplacian noise.

In principle, the GLRT is applicable to any classification
problem in which the data distributions are known or can be
estimated, but obtaining such generative models for real-world
datasets is intractable in high dimensions. Even if such models
were known, the computational complexity of joint estimation
of the adversarial perturbation and the class can be excessive.
Thus, while our results and those of related papers such as
[22] indicate the potential of detection-theoretic approaches
to adversarial machine learning, adapting these ideas to more
complex data sets is a wide open problem.

Another interesting connection worth exploring is the
connection with ideas from classical robust hypothesis
testing [21], which considers a weaker adversary without access
to the signal realization. As discussed in Section III-C, for
binary Gaussian hypothesis testing, minimax robust detection
with a noise-aware adversary (as in the adversarial machine
learning literature) is identical to that with a noise-agnostic
adversary (as in classical robust hypothesis testing). Thus,
another interesting area for further research is the investigation
of uncertainty models within the classical framework which are
consistent with the norm-bounded additive perturbation models
considered in the adversarial machine learning literature.

APPENDIX A
LINDEBERG’S CONDITION FOR CONVERGENCE

Denoting p[k] = g, recall that the difference of costs under
the two classes for coordinate k is given by:

C[K] = (9¢(2px + N = €))* = (9 (N — )

TNzt (e + N)2 —~N?2Y,,

Y]

where t, = 2(|ux| — €).
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From (18) and (19) we note that the per-coordinate means
and variances are finite constants. Let us define the unfavorable
event as By, = {|Y, — my| > 0s4}. Note that the probability of
this event is small. By Chernoff bounding, it can be shown, for
constants k1 > 0 and ko > 0 that

P(By,) < kye k2054, (36)

In the above, we used the fact that in piecewise intervals, Y}
obeys the distribution of polynomials in a Gaussian random
variable, and noted that its moment-generating function exists.

The expectation term in (21) can be split as follows by
conditioning on the event By, and observing that under By,
the expectation is zero. Thus, we have

E [(Yk. — mk)z]l{\yk—mk\zésd}]
=E [(Yx — m1)?|B] P(By)
= (B [V2I1B:] +m} — 2miB IBi]) P(By) @)

Consider the computation of E[Y}| By|. Further conditioning on
the event Ay, = {N < —t;}, it simplifies as
E [Yi|Br] = E [Yx|Ag, Br] P(Ax|By)
+ E [Yi| A%, Bi] P(AL|Br). (38)

It can be checked from (36) the definitions of the events that
under Ay, and By, Y}, = —N?2, governed by the conditions N <
—tr and N < —v/dsq — my, for large d. Further, for any § >
0, d can be chosen to be sufficiently large, so that the stricter
condition turns out to be the latter. Thus, we have

lim E [Yk|Ak, Bk} P(Bk)

d—o0

= lim E [—N2|N < /354 — mk} P(By)
— 00

L —o?ap(—ajo) — o*®(—a/o)
- *(~a/o)

)P

d—o0

Rsa k:4> P(By), (39)

dyomso (R(a /o)
where o = v/d0sq — my. and k3 and k4 are finite constants. The
quantity R(«a) = 1;‘?{5?) is called the Mills’ ratio. For « > 0,
it has been shown in [35] that lim,,_,~ «R(c) = 1. Using this
fact and (36), we can write

(40)

Under the events Aj and By, we have Y}, = ti + 2t N, with
condition N > (8sq + my, — t3)/2t),. Thus, we have the fol-
lowing equations:

Jim B [Yi|AL, Bi] P(Bg) (41)
—00
. 9 08q + my, — ti
= lim E |2 + 26, N|N > 24Tk “ "k | p(B,)
d—o0 2ty
— dim (ks =0 P(By)
T daow \ 0 R(a/o) b
=0, 42)
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65d+mk*ti .
where o = — 5, and ks and kg are finite constants and

we again used the limiting value of the Mills’ ratio and the
exponential bound on P(Bjy,). Therefore, we have,

lim E [Yi| A%, Be] P(AL|Br) P(By) =0 (43)
Similarly, it can be seen that limg_,, E[Y,f |Ag, Bg]P(Bx) =0
as shown below:

lim E [Y,?|Ay, Bx] P(By)
d—oo

— lmE [N4|N < =054 — mk} P(By)

d—o0
02a%(2) + 30 (ad(52) + B(—a/0))
()

o

= lim
d,a—00

- P(Bg)

~0, (44)

where av = \/dsq — my. Along similar lines, it can be checked
that limg . E[Y}?|AS, Bi]| P(By) = 0. Thus from (37), (40),
(43), and (44) the Lindeberg’s condition for CLT holds.

It can further be shown that the Lindeberg’s condition is also
satisfied by the sum of per coordinate cost differences C[k].
Assuming 5, > €, the expressions for C'[k] are obtained as

Clk] =

(21 + N —2€)2 — (N — 2¢)? N > 2¢
(2pr + N — 2¢)? 0< N <2
(2ur + N — 2€6)2 — N? % — 2, <N <0
—N? —2p, < N < 26 — 2
(Qﬂk+N)2—N2 N < —2puy

(45)

The mean and variance of C[k] are finite, as they involve
conditional expectations of Gaussian powers. Following through
the steps in the previous proof, computing E[C'[k]| B] requires
conditioning on the events A%, i € {1,2...,5}, considered in
the branches of (45). These events partition the sample space of
N.Itcanbe shown thatlimg_,., E[C[k]| A}, Bx|P(By) = 0and
limgoo E[C[K]?| AL, By]P(Bs;) = 0analogous to (40), and the
proof follows.

APPENDIX B
MONOTONICITY OF PER-COORDINATE COST DIFFERENCE

The per-coordinate cost difference under H, restated below,
is given by the following:

C=Cy—Co=(ge(2u+N+e))® — (g:(N +e)* (46)

The above expression can take one of the nine possible values
based on the relative values of mean, attack and noise, that deter-
mine in which region of the double-sided ReL U their arguments
lie. We show that for cases that are valid, the derivative of cost
difference with respect to attack is non-negative when p > 0.
1) Letus first consider the case when parameters are such that
the arguments of double-sided ReLU terms in both C'; and
Cy liein the negative linear region,i.e.,2p + e + N < —e
and e + N < —e. We have,
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C=Q2u+e+N+e?—(e+N+e)?,

and 9C'/de = 411 is non-negative.

2) (' innegative linear region and Cy in the null region (2 +
e+ N < —eand —e < e+ N < ¢): these conditions are
contradictory and the value of C' defined by these regions
is not legitimate.

3) Note that similar contradictions result when C'; is in the
null region and Cy in positive linear region (e + N > ¢).

4) (1 in positive linear and Cj in negative linear region:
we have 0C/0e = 4(pu — €). If u > e, it is clear that the
derivative is non-negative. If i1 < ¢, the conditions are not
simultaneously satisfied, resulting in a contradiction.

5) For the other five cases not explicitly shown, it follows
from a simple substitution of the conditions on the ar-
guments of the double-sided ReLU and evaluating the
expression for C' that 9C/0e > 0. Thus for any N, the
per coordinate cost difference C' is monotonically non-
decreasing in e.

Following similar steps, when p < 0, it can be shown that C
is monotonically decreasing in e. When (' is in negative linear
and Cy in positive linear regions, 0C'/de = 411 + 4e, which is
negative when |u| > €. Otherwise, we note that the inequalities
2u+e+ N < —e and e + N > € are not simultaneously sat-
isfied and this case cannot occur. Similar contradictions occur
when i) C in null and Cj in negative linear region; ii) C; in
positive linear and CY in null region of the double-sided ReLLU.
For all other cases, it is easy to verify that C' is decreasing in e,
if g < 0.
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