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Abstract—Federated learning is a distributed machine learning
paradigm, which aims to train a model using the local data of
many distributed clients. A key challenge in federated learning
is that the data samples across the clients may not be identically
distributed. To address this challenge, personalized federated
learning with the goal of tailoring the learned model to the data
distribution of every individual client has been proposed. In this
paper, we focus on this problem and propose a novel personalized
Federated Learning scheme based on Optimal Transport (FedOT)
as a learning algorithm that learns the optimal transport maps for
transferring data points to a common distribution as well as the
prediction model under the applied transport map. To formulate
the FedOT problem, we extend the standard optimal transport
task between two probability distributions to multi-marginal
optimal transport problems with the goal of transporting samples
from multiple distributions to a common probability domain. We
then leverage the results on multi-marginal optimal transport
problems to formulate FedOT as a min-max optimization problem
and analyze its generalization and optimization properties. We
discuss the results of several numerical experiments to evaluate
the performance of FedOT under heterogeneous data distributions
in federated learning problems.

I. INTRODUCTION

The proliferation of mobile devices requires learning al-
gorithms capable of training a prediction model using data
distributed across local users in a network. Federated learning
[1] is a recent learning paradigm where several users are
connected to a central server and train a machine learning
model through their communications with the server. While
standard federated learning algorithms perform successfully
under identically distributed training data at different users,
this assumption does not usually hold in practical federated
learning settings in which the training samples are collected
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by multiple agents with different backgrounds, e.g. speech and
text data gathered from a multi-lingual community. To address
the heterogeneity of users’ data distributions, federated learning
under heterogeneous data has received great attention in the
machine learning community [2]-[6].

A recently studied approach for federated learning under
non-identically distributed data is to adapt the globally trained
model to the particular distribution of every local user. Based
on this approach, instead of learning a common model shared
by all the users, the learning algorithm tailors the trained model
to the samples observed by every user in the network. As such
personalized federated learning algorithms lead to different
trained models at different users, an important baseline for
their evaluation is a locally-performing learning algorithm in
which every user fits a separate model to only her own data.
Therefore, the conditions under which the users can improve
upon such a non-federated purely local baseline play a key role
in the design of a successful personalized federated learning
method.

In a general federated learning setting with arbitrarily
different users’ distributions, the users do not necessarily benefit
from cooperation through federated learning. For example, if
the users aim for orthogonal classification objectives, their
cooperation according to standard federated learning algorithms
can even lead to worse performance than their locally trained
models. To characterize conditions under which a mutually
beneficial cooperation is feasible, a standard assumption in the
literature is to bound the distance between the distributions of
different users. However, such assumptions on the closeness
of the distributions raise the question of whether federated
learning will remain beneficial if the users’ distributions do
not stay in a small distance from each other.

In this work, we study the above question through the
lens of optimal transport theory and demonstrate that a well-
designed federated learning algorithm can still improve upon
the users’ locally-trained models as long as the transportation
maps between the users’ distributions can be properly learned
from the training data. We show that this condition relaxes the
bounded distance assumption used in the literature and further
applies to any federated learning setting where the learners only
have some rudimentary knowledge of the statistical nature of
distribution shifts, e.g. under affine convolutional filters applied
to change the color, brightness, and intensity of image data.

To learn the personalized models under the above condition,
we introduce FedOT as a Federated learning framework
based on Optimal Transport. According to FedOT, the users
simultaneously learn the transportation maps for transferring
their samples to a common probability domain and fit a global
classifier to the transferred training data. To personalize the
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globally trained model to the specific distribution of every
user, FedOT combines the global classifier with the learned
transportation maps needed for transferring samples from the
original distributions of local users to the common distribution.

In order to formulate and solve FedOT, we leverage optimal
transport theory to reduce FedOT’s learning task to a min-
max optimization problem. To this end, we focus on an
extension of standard optimal transport problems between two
probability domains to a structured multi-marginal optimal
transport task for mapping several different distributions to
a common probability domain. In Section II, we review
several key definitions and results from multi-marginal optimal
transport theory for which we provide a unified set of notations
and novel proofs. We generalize standard duality results in
optimal transport theory to the multi-marginal setting, which
results in a min-max formulation of FedOT. The main results
in this section not only guide us toward formulating a minimax
optimization problem for the FedOT framework (Theorem 1),
but also provide intuition on how to design the function spaces
in the FedOT minimax approach (Theorem 2). Specifically,
we leverage the intuition offered by Theorem 2 to reduce the
size of function spaces in the FedOT minimax problem and
improve the generalization and optimization performance of
the FedOT learners.

Next, we show that FedOT’s min-max formulation is capable
of being decomposed into a distributed form, and thus FedOT
provides a scalable federated learning framework. We further
analyze the generalization and optimization properties of the
proposed FedOT approach. Under the condition that the sample
complexity of learning the classifier dominates the complexity
of finding the transportation maps, we prove that FedOT enjoys
a better generalization performance in comparison to locally
trained models. In addition, we show that the formulated min-
max optimization problem can be solved to a stationary min-
max solution by a standard distributed gradient descent ascent
(GDA) algorithm. Therefore, the min-max formulation leads to
a tractable distributed optimization problem, since the iterative
GDA updates can be decomposed into a distributed form.

Finally, we discuss the results of our numerical experiments
comparing the performance of FedOT with several standard
federated learning schemes. Our experimental results demon-
strate the success of FedOT under various types of distribution
changes including affine distribution shifts and image color
transformations. We can summarize the main contributions of
this work as follows:

o Introducing FedOT as an optimal transport-based approach
to the federated learning problem under heterogeneous data,

« Extending standard results of optimal transport theory to the
multi-marginal optimal transport problem with the goal of
transporting the input distributions to a common probability
domain,

« Analyzing the generalization and optimization properties
of FedOT and establishing conditions under which FedOT
improves upon locally-learned models,

o Demonstrating the efficacy of FedOT through several
numerical experiments on standard image recognition
datasets and neural network architectures.

Related Work on Federated Learning and Min-Max
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Optimization. There has been a vast variety of tools and
techniques used to address the prersonalization challenge in
federated learning. As discussed before, utilizing only a shared
global model for all the clients fails to capture the discrepancies
in users’ data distributions. On the other hand, local models
would not benefit from the samples of other clients if a mere
local training is implemented. Therefore, a combination of the
two trained models, global and local ones, would naturally
provide a degree of personalization [7]-[9] which is also known
as model interpolation.

Meta-learning-based approaches to federated learning under
heterogeneous data distributions have been proposed by the
related works [10]-[12]. According to these approaches, a
local and personalized model is adapted for each client by
performing a few gradient steps on a common global model.
This family of federated learning algorithms have been shown
to be successful in handling unstructured distribution shifts
where the learners have no prior knowledge of the structure
of distribution shifts in the underlying network. On the other
hand, the main focus of our proposed FedOT framework is
on the learning scenarios where the learners have some prior
knowledge of the type of distribution shifts.

In a data interpolation approach to personalized federated
learning [7], [8], a local model is trained for each client
by minimizing the loss over a mixture of local and global
distributions. [13], [14] propose to learn a common repre-
sentation for personalized federated learning. Similarly, [15]
develop a personalized federated learning approach through
a group of hypernetworks to update the neural net classifier.
While our work pursues a similar goal of learning a common
representation, it introduces a novel minimax learning algorithm
by leveraging optimal transport theory.

Cluster-based federated learning methods based on clustering
users with similar underlying distributions have also been
explored in several related works [16]-[19] to overcome
the challenge of heterogeneous data in federated learning.
As another approach, [20] propose applying local batch
normalization to train personalized neural network classifiers.
In a slightly different approach to handle the data heterogeneity
challenge in federated learning, [21]-[23] propose different
min-max formulations to train robust models against non-i.i.d.
samples. Aside its federated learning applications, nonconvex-
concave min-max optimization and its complexity guarantees
have been extensively studied in the literature [24]—-[27].

Related Work on Optimal Transport Frameworks in
Machine Learning. A large body of related works apply
optimal transport theory to address various statistical learning
problems. These applications include generative adversarial
networks (GANs) [28]-[30], distributionally robust supervised
learning [31]-[33], learning mixture models [34], [35], and
combining neural network models [36]. Multi-marginal optimal
transport costs [37] have also been studied in other machine
learning contexts including GANs [38], domain adaptation [39],
and Wasserstein barycenters [40]-[42].

II. MULTI-INPUT OPTIMAL TRANSPORT PROBLEMS

A useful approach to learning under heterogeneous data
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distributions is to transport the different input distributions to a
shared probability domain and then learn a supervised learning
model for the shared probability domain. This task can be cast
as a multi-input optimal transport problem, since the goal is to
map the input distributions to a common distribution. In this
section, we review the key definitions and tools from multi-
input optimal transport theory to address the transportation
task. The results in this section guide us toward formulating
a minimax optimization problem for federated learning under
heterogeneous distributions, and further help to reduce the
statistical and computational complexities of the learning
problem through leveraging prior knowledge of the structure
of distribution shifts in the federated learning setting.

In the literature, the optimal transport problem is typically
defined for transporting samples between two probability
domains [43]. For a cost function ¢(x, ') measuring the cost
of transporting = to ', optimal transport cost W.(P, Q) is
defined through finding the coupling that leads to the minimum
expected cost of transporting samples between P, ):

— : !
WC(P7 Q) = ﬂegl(ng) E(X,X')Nﬂ' [C(Xv X )} .
Here TI(P, Q) denotes the set of all joint distributions on
(X, X’) that are marginally distributed as P and Q. Note that
the above optimal transport cost quantifies the optimal expected
cost of mapping samples between the domains P and Q.

However, for several problems of interest in machine learning
one needs to extend the above definition to multi-input cost
functions where the goal is to transport samples across multiple
distributions. To define the n-ary optimal transport cost, a
standard extension [37] is to consider an n-ary cost function
c(x1,- -+ ,x,) and define the n-ary optimal transport map as:

chv"';Pn = i E, Xv"'aXn ’
P B = Ry Brle X X))
where II(Py, -+ , P,) denotes the set of joint distributions on
(X1,...,X,) that are marginally distributed as P,..., P,,
respectively.

Inspired by the personalized federated learning problem
where our goal is to map the different input distributions to a
common probability domain, we focus on the following type
of n-ary cost functions throughout this paper, which is also
referred to as the infimal convolution cost [37]. The optimal
transport costs resulting from the following type of n-ary costs
preserve the key features of standard optimal transport costs
with binary cost ¢(z, z’):

n
c(ry, -+ ,x,) =min Yy é(z',x;). (1)
Such an n-ary cost function lets us focus on n-ary transportation
problems where the goal is to transport all the n inputs to
a single point that minimizes the total cost of transportation.
The following proposition by [44] connects the n-ary optimal
transport costs to binary optimal transport costs.

Proposition 1 ( [44], Prop. 3). Consider the n-ary cost in (1).
Then,

n

We(Pr, - 2
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Proof: We defer the proof to the Appendix. [ ]
We note that if the binary cost function is chosen as a
powered norm difference ¢(x,x’) = |x — x/||%, then the

proposed multi-marginal optimal transport cost simplifies to
the well-known family of Wasserstein barycenters. Next, we
present a generalization of the Kantorovich duality theorem
to m-ary optimal transport costs with the characterized cost
function. This result has been already shown in the optimal
transport theory literature [44], and we present our new proof
of the result in the Appendix. In the following theorem, we
use the standard definition of the c-transform of a real-valued
function ¢ as ¢°(x) := min, &(x, ") + ¢(a’).

Theorem 1. For the n-ary cost in (1), we have the following
duality result where each variable ¢; : R® — R denotes a
real-valued function:

Wc(Pla"'apn):

max

< D Ep[ei(X)].

1:n N
Vi Y, i (x)=0 =1

Proof: We defer the proof to the Appendix. [ ]

In above and henceforth, we use the short-hand notation

ay.y, = {ay, - ,a,}, fornvectors ay, - - - , a,. Next, we apply

the above result to standard norm-based cost functions and

simplify the dual maximization problem for these Wasserstein
costs:

Example 1. For the 1-Wasserstein cost ¢1(X1, - ,X,) =
ming Y, ||x; — x'||, we have
We, (P, Po) = max Y Ep[¢:(X)].

¢1:n: 1-Lipschitz 4
VxS, ¢i(x)<0 =1
Note that in the special case n = 2, the triangle inequality
implies that ¢1(x1,X2) = ||x1 — Xa|| which leads to standard
1-Wasserstein distance in the optimal transport theory literature

[43].

Example 2. For the 2-Wasserstein cost ca(X1, - ,X,) =
ming Y, [|x; — x'||3, we have

WCQ(P17"' ;Pn):

max

n
1
Er | =|IX]?
¢@1.n: convex, Vx: Zl P1|:2 H
L3 0< I3 =

- ¢:<x>}<s>

In the above, ¢* denotes the Fenchel conjugate defined as
¢*(x) == sup,, x' x' — ¢(x'). For the special case n = 2,
one can see c3(x1,X2) = 3||x1 — X2||3 which results in the

standard 2-Wasserstein distance in the literature [43].

The next result shows that in the case of the 2-Wasserstein
cost the optimal potential function ¢7.,, will transport samples
to a common probability domain matching the distribution Q*
in (2) with the optimal sum of Wasserstein costs to the input
distributions. This result has been previously shown in [44],
and we present a new proof in the Appendix.

Theorem 2. Suppose that ¢7,---, ¢ denote the optimal
solutions to (3) for 2-Wasserstein dual optimization problem.
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Then,

dist

V1<i,j<n: V¢ (X;)= Ve (X;).

In the above, each X, denotes the ith random variable
. . dis

distributed according to P; and = means the two random

variables share an identical distribution.

Proof: We defer the proof to the Appendix. ]

As implied by the above theorem, the gradients of optimal
potential functions lead to transportation maps for transporting
samples from the different input distributions to a common
probability domain. As we discuss later, transporting input
samples to a common probability distribution can help to
reduce the generalization error of a distributed learning task.

III. FEDOT: FEDERATED LEARNING BASED ON OPTIMAL
TRANSPORT

A. Federated Learning Setting

We focus on a federated learning scenario with n local nodes
connected to a single parameter server. We assume that every
node i € [n] observes m training samples {(X; j,¥ij)}71,
which are independently sampled from distribution P;. Note
that the input distributions are in general different, leading to
a non-i.i.d. federated learning problem.

To model the heterogeneity of the distributions across the
network, we suppose that for each node i, there exists an
invertible transportation map 1; : R? — R? that maps a
sample (X;,Y;) observed by node i to a common distribution,
ie.,

dist

V1<ij<n: (¥:(X),Y:) = (¥;(X;),Y5).

In the above, ™ denotes an identical probability distribution
for the transported samples. Therefore, the mappings 1.,
transfer the input distributions across the network to a common
probability domain. Furthermore, we assume that there exists
a space of functions ¥ = {19 : @ € O} parameterized by
6 containing the underlying transportation map ;’s in our
described federated learning setting.

In the above federated learning setting, one can simplify the
federated learning problem to finding a prediction rule fy € F
which predicts label Y from the transported data vector in
the shared probability domain of ;(X;)’s. Here F = {fw :
w € W} is the set of models for training the prediction rule
parameterized by the vector w. Since 1;(X;)’s are identically
distributed across the network, the collected transported samples

from all the nodes can be used to train the prediction rule fy,.

Note that after finding the optimal classification rule fy,«, every
node ¢ can personalize the classification rule by combining
the transportation function 1; and f~. Here, the personalized
classifier for node ¢ will be fy- (¢ (+)).

Remark 1. According to the Brenier’s theorem [43], [45], the
existence of the invertible transportation maps ; : R* — R?
for i =1,...,n mapping client distribution P;’s to a common
domain is guaranteed under the regularity assumption that the
input distributions are absolutely continuous with respect to
one another. Furthermore, we note that our analysis requires
this assumption only for the underlying client distributions and
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does not need the condition for the empirical distributions of
training samples.

Remark 2. While the described setting requires the same
marginal distribution Py for every client’s label variable Y,
the optimal transport-based framework can be further extended
to cases with heterogeneous marginal distributions. To do
this, we need to extend the assumption on the clients’ feature
distribution Px to the clients’ conditional feature distribution
Px|y—y for every label outcome y € Y. In the extended
setting, we further assume that for every y € ), invertible
transportation map 1y ;’s exist such that the conditional
Jeature distribution Py . (x,)|v,=y is identical for different
clients. In this work, our main focus is on the setting with
heterogeneous feature distributions, as the gain attained by
the optimal transport approach is obtained through leveraging
the structures on the features distribution shifts. Nevertheless,
we still note that the optimal transport approach can be
further extended to learning settings with different marginal
distributions on the label variable Y .

B. FedOT as a Min-Max Optimization Problem

In order to train a personalized classification rule fy,
and transportation maps g,,,, we consider the following
optimization problem:

min L(W7 Olm), s.t. W, (Pwel (X1)s" " ,Pwen (X")) <e.

w,01.n

In the above problem, we denote the empirical risk under
transport maps g,., as

~

n m
E(W, elzn) = % Z Z E(fw(wel (Xi,j))7 yiﬁj)a

i=1j=1
which quantifies the empirical risk associated with the mn
transported data samples across the n nodes and We(-,--- ,)
denotes the n-ary optimal transport cost which measures the
distance among the input distributions. Ideally, one wants
the n-ary optimal transport cost to take a zero value that
is necessary for having the same probability distribution for
different g, (X;)’s. However, due to the generalization error
in estimating the optimal transport cost from finite training
data we allow an e-bounded optimal transport cost in the above
formulation.

In our analysis, we transfer the constraint bounding the
optimal transport cost to the objective via a Lagrangian penalty
and study the following optimization problem for a non-
negative constant A > 0:

min E(W, 01:1’7,) —|— )\Wc (Pwel ()(1)7 *ty ngn (Xn)) .

w,01:n
In order to solve the above optimization problem, we apply
the generalized Kantorovich duality in Theorem 1 and reduce
the above optimization problem to a min-max optimization
task:

min E(W70137L7¢1:7L) =

max
w,01.1, :

(6)

P1in
Vi 32, 61 (x)=0

% D> (fwlWe, (i) yis)) + A (W, (xi,7)-

i=1 j=1

eptember 25,2022 at 16:31:38 UTC from |EEE Xplore. Restrictions apply.

(gjires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Journal on Selected Areas in Information Theory. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JSAIT.2022.3182355

We call the above min-max framework Federated Learning
based on Optimal Transport (FedOT). We note that FedOT
represents a family of federated learning algorithms for different
cost functions.

To solve the above min-max problem of FedOT for neural
network function variables ¢;.,,, we enforce the zero sum
condition in the above problem through constraining every
neural net in ¢;., to share the same weights for all the layers
before the last layer and satisfy a zero summation of the weights
of the last layers. Here, for activation function p(-) and weight
matrices U := [Uy,...,UyL], we let ¢y represent the neural
network’s mapping to the last layer and vj., stand for the
weights of the last layers with a zero sum, i.e., Zl v; =0,
and hence we use the following function variables:

$i(x) = v pu(x), ¢u(x):=p(Urp(---p(Uix)---)
s.t. ZV,; =0.

In the following, we characterize the FedOT learning problems
for 1-Wasserstein and 2-Wasserstein cost functions as earlier
defined in Examples 1 and 2.

Example 3. Consider the FedOT problem with the 1-
Wasserstein cost in Example 1. This formulation with neural
net ¢;’s leads to the 1-FedOT min-max problem:

1] A&
' — ¢ e Mo
Wr’ﬂellr:l“ vllnﬂav)é mn < Z |: (fw (1/)01 (X%J))a yz7.7)
v ¢ I-Lipschitz, =1 j=1
>, vi=0

+ A7 ou(ve, (xi5)) | (1)

Example 4. Consider the FedOT problem with the 2-
Wasserstien cost in Example 2. This formulation leads to the
2-FedOT min-max problem:

n

1 m
1 — Z w i 1,7))s Yi,j
oy oYY ) ©
v;rzi)U 1-convex, i=1j=1
Zivi:O

A *
+35 e, (i )P =A(v] du) (e, (xi5))

Here, a function g(x) is called 1-convex if g(x) + 3|x||3 is a

convex function. Also, (v ¢u)* denotes the Fenchel conjugate
T

of v, ¢u.

Next, we reduce (8) to an Lo-regularized min-max optimiza-
tion problem with no Fenchel conjugates.

Proposition 2. Suppose that the maximization variables in (8)
are constrained such that v ¢ is y-smooth, i.e., Vv, ¢ (x)
is v-Lipschitz w.rt. X, and the operator norm of every layer of
neural net ¢y satisfies |U;||2 < 1. Then, the min-max objective
in (8) is lower-bounded by:

1
mn

Z[dfwwei(xi,j)),yi,j) 9)

1 =1

n m
7=
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A
+ AV;F¢U(¢91‘ (xi,5)) — m(”viﬂg + HUH%) )
where ||U||p denotes the Frobenius norm of U = [Uy,...,UL]
L
defined as U5 == 32;2, Uil %

Proof: We defer the proof to the Appendix. [ ]
Note that if v, ¢u (e, (x)) is 7/-smooth as a function of
v;, U where ' < ﬁ then the min-max objective in (9) will
be )\(ﬁ —~/)-strongly concave in terms of the maximization
variables, resulting in a nonconvex strongly-concave min-max
problem. We later show a federated gradient descent ascent
(GDA) algorithm can solve such a min-max problem to find a
first-order stationary min-max solution.

IV. GENERALIZATION AND OPTIMIZATION PROPERTIES OF
FEDOT

A. Generalization Guarantees

As discussed in the previous section, FedOT formulates the
federated learning problem through the min-max optimization
problem in (III-B). In the heterogeneous case where every
agent ¢ observes samples drawn from a different distribution
P;, the min-max objective of (III-B) provides an empirical
estimation of the following true min-max objective:

£(W7 91:n7¢1:n) =

=3 En [ (ful00,(X)). Y) + A6 (1o, (X)) .
i=1

With no assumptions on the optimal transport functions,
estimating the above objective for all ¢;’s will require an
exponentially growing number of training samples in the
dimension of data variable X [46]. In order to mitigate such
an exponential complexity, we assume that for any feasible
underlying P;, the optimal potential functions ¢7.,, belong
to a set of functions ® with bounded complexity. Under the
assumption that for all feasible 6,’s, ¢; € ® is satisfied for
optimal ¢;’s one can equivalently solve the min-max problem
(ITI-B) with the additional constraints Vi : ¢; € ®, which as
will be shown attains a bounded generalization error.

In our generalization analysis, we use the following standard
definition of the covering number N (F, ¢, | - ||) of a set of
functions F with respect to the L.,-norm:

N(F, e [loo) == min{N € N:

an e-covering of F exists w.r.t. | - ||oc with size N'}.
In order to simplify our theoretical statements,
we use the following notation in our theorems
where M = sup;cryer f(x) and V(F) =

i \/Tog N(F, Me, || - [[oo) de.

Theorem 3. Suppose that the loss function { is Lg-Lipschitz
and the expected loss is bounded by M under all feasible
distributions. Assume that for any w € W, ¢ € @, 0 € O, fy,
¢, g are Ly, Ly, Lo-Lipschitz. Then, Y6 > 0 with probability
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Algorithm 1: FedOT-GDA

Initialize initial models (wo, vo), stepsizes 11, 172, number of local updates 7

fort=1,---,T—1do

if ¢t { 7 then
‘ w1 =W, —mVwLi(wi,vy) and vi ., =vi+1m2VLi(wy, Vi)
end
else
i 1 ¢ S 7 i 1 ¢ S A
Wit1 = n Z {Wf - ﬁlvwﬁk(wfvvf) and vy, = n Z [Vf + 7]2Vv£k(wi€vvf)}
k=1 k=1
end
end

W — L n i = _ 1 n i
Output W=7 31", wpand Vo= > ", Vi,

at least 1 — ¢ the following holds for all w € W in (7)

(- R
vx: Y, ¢i(x)=0
Cmi L(W, 0., brm
(- R
Vx: Y, ¢i(x)=0
2
V(W V(O)) log(1/6
«%M%M¢u )+ V() 10g(1/5)
mn

+ >\L¢L9M\/(V(q>) + V(@))Qlog(n/é) N MLy Ly
m A

Proof: We defer the proof to the Appendix. ]

The above theorem suggests that the sample complexity
will scale linearly with mn, which is the total number of
samples observed in the network, under the condition that
V(@) +V(©) < %, i.e., if the complexity measure of the
classifier function space W is lower-bounded by the product
of the number of users and the total complexity measure of ®

and O.

B. Optimization Guarantees

To solve FedOT nonconvex-strongly-concave minimax prob-
lem (9), we propose a gradient descent-ascent (GDA) method
in Algorithm 1, namely FedOT—-GDA, and further analyze its
optimization properties. For the purpose of readability, we
present our method and results using the following notation
for the minimax formulation:

N 1 n R
min max L(w, V) = - Z/ji(w,v), (10)
i=1

wew vey

where each LAZ denotes the local loss function corresponding
to node 7’s samples. Here, w and v respectively denote the
minimization and maximization variables described in (9), i.e.
w = {w,01.,} and v = {vy.,, U}. We propose the following
iterative GDA routine summarized in Algorithm 1. Let us
denote by (wi,v?) the local variable corresponding to node
1 at iteration t. In every round, each node ¢ updates its local
models (wi,vi) using the stepsizes 71,72 for T successive
iterations. Then, all updated local variables are uploaded to the
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parameter server and the corresponding averages are sent back
to local nodes as the initial point for the next round of updates.
There, Vy L; and V., L; denote stochastic gradients of local
losses w.r.t. their first and second arguments. It is important
to note that FedOT—-GDA imposes small communication (with
periodic synchronization) and computation burden (by one
gradient computation per iteration) on the network which is
essential in federated learning methods.

As mentioned in Section III, for smooth enough loss
functions, the minimax objective in (9) is nonconvex-strongly-
concave. That is, £(w,v) in (10) is nonconvex in w and
strongly-concave in v. The following set of assumptions
formally characterizes the setting.

Assumption 1. (i) V is a convex and bounded set with a
diameter D. (ii) Local functions L;(w,v) have L-Lipchits
gradients and are -strongly concave in v. That is, for both
x € {w,v}

IV Li(w,v) = V., Li(w',v)|]?
<L (lw—=w'[? + v —=v'[?).

We denote the condition number by k := L/pu. (iii) (Gradient
Diversity) There are constants pw and py such that for both x €
{w, v}, we have that = "7 | ||V Li(w,v)=V.L(w,V)|]* <
P

Since the global loss function L (w, v) is nonconvex w.r.t. the
minimization variable w, we aim to find e-statioAnary solutions
for the primal function A(w) = maxyey £(W,Vv). Next
theorem characterizes the convergence rate of the proposed
FedOT-GDA in Algorithm 1 to find a stationary solution for
ming ey A(w).

Theorem 4. Consider the iterates {wi,vi} in Algorithm I
and let Assumption 1 hold. Moreover, assume that the local
stochastic gradients are unbiased and variance bounded, i.e.,
E|V.Li(w,v) — V.Li(w,V)|? < 02 for x € {w,v}. Then,

there exists iteration t € {0,--- ,T — 1} for which
Ar  k3LD? o2 o2
E|VAF)|I? <O — + ——— - LY
VAP < (mT+ R I o
+n2k2LAr + ngm2L272> ,
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Dataset MNIST CIFAR-10 Colored-MNIST
Method m=50 m=100 m=500 | m=50 m=100 m=500 | m=50 m=500
FedOT, 7=1 87.0% 95.6% 97.0% 42.2% 51.6% 61.8% 86.0% 96.6%
FedOT, T=5 85.4% 94.4% 96.4% 40.8% 51.2% 63.0% 88.6% 97.4%
FedAvg, 7=1 72.0% 78.4% 86.8% 22.8% 26.4% 37.2% 75.8% 90.8%
FedAvg, T=5 64.8% 72.6% 82.2% 18.8% 25.0% 36.6% 73.2% 91.4%
L-FedAvg, 7=1 66.4% 74.2% 88.0% 17.8% 23.0% 39.0% 71.0% 91.2%
L-FedAvg, 7=5 61.2% 71.2% 85.0% 16.0% 22.6% 36.8% 69.8% 92.0%
FedMI, 7=1 64.0% 75.8% 87.4% 21.0% 27.0% 40.2% 64.0% 91.8%
FedMI, 7=5 61.8% 74.0% 85.4% 17.6% 25.4% 37.0% 62.2% 92.6%
Fed-FOMAML, 7=1 52.2% 81.0% 89.0% 14.8% 31.4% 46.4% 66.8% 94.6%
Fed-FOMAML, 7=5 44.0% 77.8% 88.2% 12.0% 28.6% 45.6% 58.4% 94.2%

TABLE I: AlexNet results: Average test accuracy under affine distribution shifts (MNIST & CIFAR-10) and color transformations
(Colored-MNIST) and different training set sizes per user m computed for FedOT vs. the baseline methods including FedAvg,
Local-FedAvg (L-FedAvg), Federated Model Interpolation (FedMI), and Federated First-Order Model Agnostic Meta

Learning Fed-FOMAML.

where 17 = 105, + 1307, 1y = nipl, +uspy and Ay =
A(wp) — mingew A(w).

Proof: We defer the theorem’s proof to the Appendix. W
The result of Theorem 4 indicates that after 7" iterations of
FedOT-GDA in Algorithm 1 and for proper choices of the
stepsizes 171 = O(1/vT) and 12 = O(1/VT), an e-stationary
solution W for the min-max problem (10) (and hence (9)) can be
obtained for which E||VA(W)||?> < O(1/vT). However, we still
note that this result requires the inner maximization objective to
be strongly-concave. Extending this result to general nonconvex-
nonconcave settings is an interesting future direction to this
work.

V. NUMERICAL RESULTS

We evaluated the empirical performance of our proposed
FedOT method on standard image recognition datasets in-
cluding MNIST [47], CIFAR-10 [48], and Colored-MNIST
[49]. We used the standard AlexNet [50] and InceptionNet
[51] neural network architectures in our experiments which we
implemented in the TensorFlow platform [52]. For the federated
learning setting, we used a network of n = 100 users and ran
every experiment with three user-based training size values:
m = 50,100, 500. We also tested two values of 7 = 1,5 for
the number of local steps before every synchronization. In
our experiments, we simulated the following two types of
distribution shifts:

1) Affine distribution shifts: Here, we drew n = 100
random isotropic Gaussian vectors z; ~ N(0,01;) with
o = 1 and n random uniformly-distributed vectors s; ~
Unif([0.5,1.5]¢) and manipulated every training sample
X;,; at the ith node as follows

Vi,j i x; ;= diag{si}x; ; + 2.

2) Color-based distribution shifts: We experimented color-
based shifts on MNIST samples. Here, we used a threshold
of ( = 10™* to detect near-zero pixel values for every
MNIST sample. Then, we drew n pairs of uniformly-
distributed vectors a;, b; € Unif([0,1]®) (corresponding
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to the three RGB channels) and manipulated every pixel
(I1,13) as follows:

a; if i <G

Ti gy, bi @0, > C

.. 12
Vi, gl la X5 50,0, = {

We use the insight offered by Theorem 2 to design the
class of potential functions in these numerical experiments. As
shown in Theorem 2, the optimal potential function will also
be the integral of the optimal transport maps which will be
an affine transformation under affine distribution shifts and a
piecewise affine transformation under color-based distribution
shifts. Therefore, we used the following class of functions &
and © in our experiments:

1) For affine distribution shifts, we applied affine transforma-
tions 1)g,,, and quadratic potential functions ¢i.,, where
Vi,

1
Yo, (x) = 0;1x+ 0,0, Py, (x) = §XTVZ;OX + VLX»

s.t. zn:Vw =0 and ivm =0.
i=1 i=1

2) For color-based distribution shifts, we considered one-
hidden layer neural networks with ReLU activation
(ReLU(z) = max{z,0}) for both g, and potential
functions ¢y.,, where

Vi : g, (X) = ReLU(@i72x + 01',1) + 01‘70, v, (X)

= Vz‘T,z ReLU(Vix + vg), s.t. Zvi,g =0.
i=1

We used the FedOT-GDA algorithm (Algorithm 1), that is
a distributed mini-batch stochastic GDA, for solving the
regularized FedOT’s min-max problem as formulated in
Proposition 2. We used a batch-size of 20 for every user and
tuned the minimization and maximization stepsize parameters
n1 = 1z = 10~* while applying 10 maximization steps per
minimization step. For the Ly-regularization penalty, we tuned
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Dataset MNIST CIFAR-10 Colored-MNIST
Method m=50 m=100 m=500 | m=50 m=100 m=500 | m=50 m=500
FedOT, 7=1 76.6% 83.2% 91.0% 50.4% 59.2% 70.4% 77.4% 97.0%
FedOT, T=5 73.0% 82.6% 90.6% 48.4% 57.8% 72.2% 72.0% 96.6%
FedAvg, 7=1 70.8% 78.8% 84.2% 29.2% 34.6% 44.0% 69.8% 89.8%
FedAvg, T=5 66.2% 75.0% 83.4% 25.0% 32.8% 45.2% 67.2% 90.6%
L-FedAvg, 7=1 67.4% 78.0% 84.6% 23.4% 32.8% 43.8% 65.4% 92.2%
L-FedAvg, 7=5 63.0% 76.8% 83.8% 19.6% 30.4% 46.6% 63.6% 92.4%
FedMI, 7=1 58.2% 73.6% 82.6% 23.6% 33.6% 44.8% 61.4% 92.0%
FedMI, 7=5 54.6% 74.6% 83.2% 19.2% 34.0% 45.2% 59.8% 92.6%
Fed-FOMAML, 7=1 58.0% 80.2% 86.6% 16.8% 34.0% 49.4% 67.0% 94.2%
Fed-FOMAML, 7=5 46.2% 73.8% 86.0% 16.2% 32.6% 48.8% 65.6% 94.2%

TABLE II: InceptionNet results: Average test accuracy under affine distribution shifts (MNIST & CIFAR-10) and color
transformations (Colored-MNIST) and different training set sizes per user m computed for FedOT vs. the baseline methods
including FedAvg, Local-FedAvg (L-FedAvg), Federated Model Interpolation (FedMI), and Federated First-Order Model

Agnostic Meta Learning Fed-FOMAML.

a coefficient of A = 4 for the CIFAR-10 experiments and
A =1 for the MNIST experiments. For baseline methods, we
used the the following three methods: (1) standard FedAvg
[1], (2) localized FedAvg (L-FedAvg) where each client
personalizes the final shared model of FedAvg by locally
updating it via 500 additional local iterations, (3) federated
model interpolation (FedM1I) [8] where each client averages the
global and its own local models, and (4) federated first-order
model agnostic meta learning (Fed-FOMAML) [11] applying a
first-order meta learning approach to update the local models.
Note that our evaluation metric is the test accuracy averaged
over the individual distributions of the n = 100 nodes.

Table I includes the test accuracy scores of our experiments
with the AlexNet architecture. In these experiments, we
applied affine distribution shifts for the MNIST and CIFAR-
10 experiments and used color transformation shifts for the
Colored-MNIST experiments. As shown by our numerical
results, FedOT consistently outperformed the baseline methods
in all the experiments and with a definitive margin which was
above 15% in six of the eight experimental settings. Similarly,
Table II shows that FedOT also achieves the best performance
for the InceptionNet architecture. Overall, our numerical results
indicate that FedOT can lead to a significant performance
improvement when the learners can learn and reverse the
underlying distribution shifts via the optimal transport-based
framework.

VI. CONCLUSION
In this paper, we introduced the optimal transport-based

FedOT framework to address the federated learning problem
under heterogeneous data distributions. The FedOT framework
leverages multi-input optimal transport costs to measure the
discrepancy between the input distributions and also learn
the transportation maps needed for transferring the input
distributions to a common probability domain. We demonstrated
that such a transportation to a common distribution offers
an improved generalization and optimization performance in
learning the personalized prediction models. In addition, the
optimal transport-based analysis results in an upper-bound on

. . ©2022 IEEE, Personal use is permitted, but republication/redistribution re
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the statistical complexity of the federated learning problem.
The applied approach can be potentially useful for bounding
the sample complexity of learning under heterogeneous data
distributions which appear in other transfer and meta learning
settings, and can complement information theoretic tools
for deriving lower bounds on the statistical complexity. An
interesting future direction is to analyze the tightness of the
generalization error bound in Section IV through developing
information theoretic lower-bounds on the sample complexity
of learning under different input distributions.
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