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Mark Beliaev!, Payam Delgosha?, Hamed Hassani®, and Ramtin Pedarsani

Abstract—In the past two decades we have seen the popularity
of neural networks increase in conjunction with their classification
accuracy. Parallel to this, we have also witnessed how fragile the
very same prediction models are: tiny perturbations to the inputs
can cause misclassification errors throughout entire datasets. In
this paper, we consider perturbations bounded by the /,—norm,
which have been shown as effective attacks in the domains of
image-recognition, natural language processing, and malware-
detection. To this end, we propose a novel defense method that
consists of “truncation' and ‘“adversarial training''. We then
theoretically study the Gaussian mixture setting and prove the
asymptotic optimality of our proposed classifier. Motivated by
the insights we obtain, we extend these components to neural
network classifiers. We conduct numerical experiments in the
domain of computer vision using the MNIST and CIFAR datasets,
demonstrating significant improvement for the robust classification
error of neural networks.

I. INTRODUCTION

Today we see machine learning at the heart of many safety-
critical applications, including image recognition, autonomous
driving, and virtual assistance. This comes with little surprise,
as we have seen deep neural networks gain tremendous popu-
larity due to their success, showing near human performance
in the image-recognition domain [1], as well as successful
application in natural language processing [2], and playing
games [3], [4]. Instead, what is surprising is how fragile these
neural networks are when subjected to adversarial attacks.

Adversarial attacks are methods that try to fool prediction
models by adding small perturbations to their inputs. They
were initially shown to be effective in causing classification
errors throughout different machine learning models [5]-[7].
Following this, a lot of effort has been put into generating
increasingly more complex attack models that can utilize a
small amount of semantic-preserving modifications, while still
being able to fool a classifier [8]-[10]. Typically, this is done
by constraining the perturbations with an £,—norm, where the
most common settings use either ¢, [8], [9], [11]-[15], {2
[9], [16]-[19], or 41 [20], [21]. As of now, the state-of-the-
art empirical defense against adversarial attacks is iteratively
retraining with adversarial examples [8]. While adversarial
retraining by itself can help improve robustness, we have seen
a fundamental trade-off between robustness and clean accuracy,
as well as a lack of generalization across different attacks
[22]-[26].

In this paper we focus on a different setting, where adversar-
ial perturbations are constrained by the fp—norm. This setting
has gained considerable attention [9], [21], [27]-[30] due to
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applications in object detection [31], [32] and NLP [33]. In
these applications, robust guarantees against {y—attacks are
specifically important since there is an inherent limit on the
number of input features that can be modified. In the previously
described settings, the adversary was able to modify all of the
elements of the input, while still satisfying the given constraint.
Conversely, in the ¢, setting the adversary is given a budget £,
and is directly constrained to perturbing at most k coordinates
within the input. In other words, the adversary is allowed to
change the input within the ¢y—ball of radius k, where k is
typically much smaller than the input dimension, and hence
the name sparse attacks. In addition, unlike £,—balls (p > 1),
the /p—ball has a more complex geometry: it is non-convex,
highly non-smooth, and unbounded. In combination with these
properties, the ¢yp—ball’s inherent discrete structure provides
fundamental challenges that are absent in other adversarial
settings studied in the literature, making most techniques from
prior work non-applicable. Crucially, piece-wise linear classifier,
e.g. neural networks with ReL.U activations, were shown to
fail in this setting [34], where recent work has demonstrated
the ability {y—attacks have in confusing image classifiers [9],
[10], [27], [28], [35]. Thus, our current architecture designs
and learning procedures have to be rethought based on the
unique geometry of the /p—norm. We set out to accomplish
this goal in this paper.

Two notable works have proposed defenses against the
related but less powerful (¢ + £ )—adversary: the Analysis by
Synthesis (ABS) model [28] and randomized ablation [30]. Here
the adversary is also constrained by the number of coordinates it
can perturb, but these perturbations can no longer be arbitrarily
large due to the bound posed by the ¢,.—norm on the value that
each coordinate can take. Although the proposed defenses show
improved robustness guarantees when classifying the MNIST
and CIFAR datasets, we see these guarantees vanish as the
{-—bound is relaxed, while our method is able to generalize
to both settings (more details are provided in Table II located
in Section V). On top of this, we note that the aforementioned
defenses rely on computationally expensive solutions.

Building on our prior work [36], we develop an algorithm
that directly tackles the ¢ setting, and prove that in the
Gaussian mixture setting we can achieve asymptotic optimality.
In our prior work [36] we showed that in order to achieve
robustness against sparse attacks, we need two novel and non-
linear components, namely truncation and filtration. However,
filtration turns out to be computationally expensive, hence
in this paper we replace filtration with adversarial training
and prove that in the Gaussian mixture setting, truncation
combined with adversarial training results in a classifier which
is asymptotically optimal. In other words, we propose a

ARBz2d6i6&5ded L59H MR 16 Ini0 0f OROhtEErbara. Download@ibd Beptember 25,2022 at 16:31:12 UTC from IEEE Xplore. Restrictions apply.



2022 IEEE International Symposium on Information Theory (ISIT)

practical classifier which achieves the best possible robust
classification error in the presence of an ¢y adversary in a
certain asymptotic setting. The effectiveness of our proposed
method is validated through empirical study. More precisely,
utilizing the state-of-the-art sparse attack of sparse-rs [29]
as well as the commonly used Pointwise Attack [28],
we show that while adversarial training without truncation
fails in robustifying against {y—attacks, our method has strong
performance both in terms of robustness and computational
efficiency when tested on the MNIST [37] and CIFAR [38]
datasets.

II. PROBLEM SETUP

We consider the general M—class classification problem,
where given an input € R? and its label y € {1,..., M},
we aim to construct a model that can accurately predict the
label given the input. We can think of the input and labels as
coming from some distribution (x,y) € D, with our classifier
belonging to the family of functions C : R% ~ {1,... M},
As a metric for the discrepancy between the label and the
classifier’s prediction for a given input , we use the 0 — 1
loss £(C; ,y) = 1[C(x) # y].

Given this setup we can introduce an ¢y—adversary, which
perturbs the input & within the £y—ball of radius k: By(x, k) :=
{z' € R : ||z —2'||, < k}, where we define ||z|, =
Zle 1[x; # 0] for ® = (21,...,24), and refer to k as the
budget of the adversary. This states that the adversary is allowed
to arbitrarily modify at most k coordinates of x to obtain ',
feeding the new vector @’ to the classifier. Within this scope,
the robust classification error of a classifier C is defined by:

max

ﬁ C k' :Em7 ~
D( ’ ) (@y)~D x'€Bo(x,k)

oe;x' y)l,
where we aim to design classifiers with the minimum robust
classification error. To this end, we can define the optimal
robust classification error as the result of minimizing (1) over

all possible classifiers:

Ly(k) = irclf Lp(Ck). 2)

Our goal is to characterize £}, (k) as a function of the
adversary’s budget k. Specifically, we aim to find robust
classifiers whose performance is close to the optimal robust
classification error. Due to the complex geometry of the {y—
ball, this poses a challenging problem. In fact, we have already
seen how all conventional classifiers fail in this setting [34]. In
order to address this problem, our current architecture designs
and learning procedures have thus to be rethought based on
the geometry of the perturbation set. To this end, we note that
directly solving the optimization problem in (1) and finding the
optimal robust error is intractable. Instead, inspired by robust
statistics [39], we introduce truncation (see Section III-A) as
the main building block of our classifier. We then aim to find
the best robust classifier in the set of truncated classifiers. We
prove in Section IV that this results achieves near-optimal
robust classifiers in the Gaussian mixture setting. Furthermore,
in Section III-C we discuss how we go beyond this Gaussian

setting and use adversarial training to find the best truncated
classifier in the general deep learning scenario.

III. THE PROPOSED ALGORITHM

In this section we will go over the proposed algorithm,
introducing how truncation is defined, followed by an expla-
nation of how it can be extended to fully connected layers
found within neural networks. We then describe the adversarial
training component of our framework. As we will show in our
theoretical and experimental results, coupling truncation with
adversarial training is crucial to robustifying classifiers against
{o—attacks. We defer the explanation of applying truncation to
convolutional networks to Section V, where we discuss our
experiments using the CIFAR dataset.

A. Truncation

Given w,x € R? and an integer 0 < k < d/2, we define
the k—truncated inner product of w and x as the summation
of the element-wise product of w and x after removing the
top and bottom k elements, and denote it by (w, x). If we
define u := w ® x € R? as the element-wise product of w
and x, then letting s = (s1,...8,) = sort(u) be the result
obtained after sorting w in descending order, we can define

d—k
(w, x)y, = Z S

i=k+1

3)

Note that when k = 0, the truncation operation in (3) reduces
to the normal inner product denoted by (w, x). We can see
that truncation is a natural method by which one can remove
“outliers” found in the data after an adversary has modified
some coordinates. Since an {y—adversary with a budget of k
can modify at most k of the input’s coordinates by an arbitrary
amount, we can expect the k—truncated inner product to be
robust against these ¢y perturbations. In fact, we formalize this
result in Section IV and show that truncation can be directly
used to construct the optimally robust classifier in the setting
of Gaussian mixture models attacked by an ¢y—adversary. Until
then, we will focus the discussion on how we use truncation
to construct robust neural networks.

To test the usability of the proposed truncation operator,
we must consider how it can be applied within typical neural
network architectures to improve their robustness. Within the
scope of our notation in Section II, we restrict the family
of classifiers C : R? + {1,..., M} to functions that can be
represented by feed-forward neural networks composed of fully
connected (FC) layers and non-linearities.

We denote a fully connected feed-forward neural network
with L layers as a function F'(x;0) = y parameterized by 6,
which takes an input & € R?, and returns the predicted label
y € {1,..., M}. This network can be viewed as a composite of
L functions, referred to as layers, with non-linearities applied
between the layers:

F(:I?,a) :O'L(WLCTLfl(WLfl...O’l(Wlw)..‘)), (4)

where the parameters are 8 = (W1,..., W) with W, €
R4 *di-1 and dy = d, and the non-linearities are o; : R% —
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R4 . In our work we use the well known ReLU [40] activation
function for all of our non-linearities other than the one at
the output layer oy, which is implemented as a softmax so
that our function outputs a probability vector. Also note that
we have left out denoting the bias terms added within the FC
layers, as this can be taken care of by appending a constant
coordinate to the input.

B. Robust Fully Connected Networks

We can naturally extend truncation to FC layers by defining
this operation to act on a weight matrix W as such:

(W, x)) := u, where u; := (WTi], ), 5)

using W] to denote the ¢’th row of the weight matrix W.
Note that (5) returns a vector w, whose i’th entry w, is the
result of applying our truncation operation shown in (3) on
the row Wi] and vector x. To form our k-truncated fully
connected network (%) we replace the first FC layer Wix
in (4) with its k—truncated version defined in (5).

F®¥)(2;0) = or,(Wrop—1(Wi_1...01 (Wi, z)g)...)).
(6)
Note that with this formulation, F(©) = F, since (W,x), =
W x when k = 0. Applying truncation on the first layer ensures
that the effect of the adversary is compensated at the early
stages of the network and does not propagate through the
layers.

C. Adversarial Training

Although truncation on its own is expected to increase a
classifier’s robustness, we suggest going further and coupling
our framework with adversarial training as originally proposed
by [8]. In the Gaussian mixture setting considered in Section
IV, we prove that the asymptotically optimal classifier requires
truncation, and to find its weights we need an optimization
step that resembles adversarial training. We hypothesize that
extending these theoretical results to neural networks will
help improve their robustness, and we set out to improve the
robust guarantees of a FC network F' against an {y—attack
with budget k. We accomplish this by turning F' into its k—
truncated counterpart F'(*), and performing adversarial training
(details provided in Section V) on F(¥) by iteratively appending
adversarial examples to the training data.

IV.

In this section, within the setup of Section II, we consider a
Gaussian mixture setting and show that our algorithm achieves
near optimal robust classification error, i.e., we show that the
deviation from optimality is asymptotically vanishing. The
key insight that we obtain from our theoretical analysis is
that truncation and adversarial training are the two major
components that enable provable robustness against {y—attacks.

More precisely, we consider the binary classification scenario
where the distribution D is as follows. We have y € {£1}
with P(y = +1) = P(y = —1) = 1/2, and conditionally on
y, we have & = yu + z where p € R% and z ~ N(0,%) is
a Gaussian vector with zero mean and diagonal covariance

THEORETICAL FRAMEWORK

matrix . To simplify the discussion, we assume that X
has strictly positive diagonal entries o7,...,03. It is easy to
verify that in the absence of the adversary, the optimal Bayes
classifier is the linear classifier sgn((w,z)) with w = 7!
The corresponding optimal standard error of this classifier is
®(||[=~12p||2), where ®(.) denotes the complementary CDF
of the standard normal distribution. Therefore, in order to
fix the baseline, without loss of generality we assume that
[2=%2pl|2 = 1 so that the optimal standard error is ®(1).
Motivated by the fact that the optimal Bayes classifier in this
setting is linear, we consider neural networks with a single layer.
More premsel we consider the family of k—truncated linear
classifiers C&t : @’ — sgn((w, z')1). Adopting our notation
in (1), we denote the robust classification error of a classifier
C,(f in this family by Eu,g(Cﬂf), k). Moreover, as in (2), we
denote the optimal robust classification error by L}, (k). To
simplify the notation, when the problem parameters p and X
are clear from the context, we may remove them from the
above notations and simply write L’(Cgf ), k) and L*(k).

A. Asymptotic Optimality of our Algorithm

To show that k—truncated linear classifiers are asymptotically
optimal, we must first recall the results from our prior
work which established a lower bound on the optimal robust
classification by developing an attack strategy for the adversary
and showing that no classifier can achieve better performance.
We directly copy the result below for convenience:

Theorem 1 (Theorem 2 in [36]).
Assume that ¥ is diagonal and let v =
AC{l,...,d}, we have

Y12, Then for any

= 1
Bvac o) ~ oo

where v and v zc denote the coordinates of v in the sets A
and A€, respectively.

L* ([[vallylogd) >

As discussed in Section III, we use adversarial training in
order to obtain the model weights, as it is indeed a ;)roxy for
optimizing w in the class of k-linear classifiers C Letting
w*(k) € arg min,, E(Cw , k), we show that the performance
of Cff3 (k in the presence of an adversary with ¢y budget % is
comparable to the optimal robust classification error, with an
asymptotically vanishing deviation.

To this end, given an error threshold ®(1) < ¢ < 1/2
where ¢ ranges between the standard error ®(1) and the error
corresponding to a random guess, we define kTM(g) :=
max{k : E(C(k (k) k) < €} as the maximum adversarial
budget that the class of truncated linear classifiers can
tolerate to achieve a robust error of at most ¢, with the
truncation parameter chosen to be equal to adversary’s budget.
Defining k*(¢) := max{k : £*(k) < €} as the maximum
adversarial budget that an optimal classifier can tolerate under
the constraint of having a robust error of at most £, we can
see that k*(g) > kTun¢(¢).

As we will formally show below, kT and k* are close to
each other up to multiplicative factors that are sublinear in d.
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In order to have a first order analysis and focus on the behavior
of the adversary’s budget as a power of the dimension d, we
define a™(g) := log, k™™™ (¢) and a*(¢) = log, k*(¢).
The following theorem shows that modulo some vanishing
terms in d, o™ is close to a*. In other words, the class
of linear truncation classifiers are asymptotically optimal for
the above mixture Gaussian setting. Proof of Theorem 2 is
provided in the full version of this paper [41].

2/logd < e < %

Theorem 2. Given ®(1) + 1/logd + 5
there are constants ¢; = c;(e,d), i € {1,2}, which do not
depend on the parameters of the problem (i.e. p and %) such
that limg_, o ¢;(e,d) = 0 for i € {1,2} and

a*(e) > o™ (g) > a*(e — ¢1) — co.

Theorem 2 essentially says that up to asymptotically van-
ishing terms, the truncated classifier can tolerate as much
adversarial budget as an optimal robust classifier. In order
to prove this result, we use Theorem | which enables us to
make sure that no other classifier can achieve better asymptotic
performance, hence our algorithm is asymptotically optimal.

V. EXPERIMENTS

To present our experimental results, we discuss (i) how we
chose and modified the /y—attacks utilized in our experiments,
and (ii) how under these modifications we saw the robust
guarantees of prior work’s previously proposed and well-studied
{y—defense method vanish. Following this in V-A, we show
how our k—truncated FC networks performed on MNIST, and
propose a heuristically motivated extension of truncation to
2—-dimensional convolution layers, testing it on CIFAR.

For our work, we mainly utilize sparse-rs [29], a
sparse black-box [y-attack framework. Given a pixel budget k,
time budget ¢, input image x, and a classifier C, this attack
performs a random search where it tries to change a set of
k pixels in x that cause the new adversarial image @’ to be
misclassified by C. The creators of sparse-rs have shown
their framework outperforms all previous black- and white-box
attacks, and hence we use this attack within our adversarial
training framework and after training to approximately measure
the robust accuracy of our classifier. We also utilize the
Pointwise Attack [28] to directly compare our results
with other /p-defense techniques [30]. This attack tries to
greedily minimize the {y—norm by first adding salt-and-pepper
noise, and then repeatedly resetting perturbed pixels while
keeping the image misclassified. Since here we cannot directly
control the number of allowed perturbations k, we only use
this attack to measure the median adversarial attack magnitude
as was done in prior work [30], denoting this value with p.

Before moving on, we point out that we normalize the
coordinates of our inputs to be within some defined range
[—a, a]. By design, the ¢yp—attacks mentioned also require the
perturbed coordinates to lie within some range [—0Sa, Sal,
meaning they are indeed ({y + ) bounded. Formally, we
define these attacks as being bounded by an ¢y—norm of k, and
an /. —norm of Sa, where 3 is a factor by which we scale

the original domain [—a, a]. Since our goal is to develop a
defense against a true {y—attack, unless otherwise stated, we
set 8 = 100 as this effectively removes the /., constraint.

We compare with two defense methods: Analysis by Syn-
thesis (ABS) model [28] and randomized ablation [30]. The
ABS model relies on optimization-based inference by using
variational auto-encoders that take 50 steps of gradient descent,
repeating this 1000 times for each prediction. Randomized
ablation use thousands of ablated samples for each input
to construct a set of images, following which the classifier
performs a majority vote on this set to decide the best label for
the original image. Both of these methods are computationally
costly, while our method’s complexity comes from the first
k—truncated FC layer, where if the input array has dimension
d, removing the top and bottom k only adds O(d) (when k is
constant) more operations per neuron, which is small compared
to the overall complexity of deep neural networks.

For the ABS model on MNIST, using sparse-rs with
an /p—budget of 12 and a time budget of 10,000 the robust
accuracy decreases to 45%, which was significantly lower than
the previously reported 78%. Additionally, the Pointwise
Attack was used to calculate p to be 22 pixels. Note that
both of these results were achieved for § = 1, when testing
these statistics for higher 5 € (1,100] we found that the
robust guarantees vanished within the first hundred iterations
i.e., the robust accuracy became 0%, and p became 1 pixel.
For methods utilizing randomized ablation, robust guarantees
were improved in relation to the ABS model: p was reported
to be 31 pixels when 5 = 1. Using code provided by the
authors [30], we were able to confirm that 5 = 1 was used in
their experiments, unfortunately we could not test their robust
accuracy with the stronger sparse-rs framework, nor could
we increase [ to see if their defense would break similar to the
ABS model. Due to these reasons, and the fact that truncation
can act independently of ablation, we do not compare our
results directly with theirs.

A. Results on MNIST and CIFAR

We first discuss our results when testing the proposed k—
truncated FC network on the MNIST dataset. All networks F(*)
were trained via stochastic gradient descent, and had the same
architecture, consisting of 5 FC layers with ReLU activations
between them, where the first layer was replaced with the
k—truncated matrix transformation from (5). For adversarial
training we used the sparse-rs attack with {y—budget of
10 pixels and time budget ¢ = 300 queries. Using this attack
on the training data itself, we derive a new set of adversarial
examples which are all misclassified by our network F*),
and append this set to our training data. We then train on the
appended dataset, repeatedly calculating a new set of adversarial
examples every 25 epochs and appending them as well. Hence
the adversarial examples are chosen according to a procedure
which is adaptive w.r.t. to our network F®) and we use this
procedure as a means of solving the minimax problem in (2).
We provide more details on the training framework used in the
full version of the paper [41].
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Robust FC networks with MNIST
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Fig. 1: In (a) we show the robust accuracy of our F® (orange)
and F(©) (green) without adversarial training, where k = kg4,
is shown on the x-axis. We see that F(*) outperforms F(©),
but at k£ > 13 the attack becomes too strong. In (b) we show
the effect of adversarial training on F19) (orange) and F(©)
(green), varying the fp—budget on the x-axis as k. We can
see as compared to without adversarial training, F(1®) has
substantially improved.

First, we look at the effect the truncation parameter k£ and
fo—budget k.4, have on the initial robust accuracy, without
adversarial training. We can see the strength of the attack
portrayed in Fig. la, where the unprotected network F(©) fails
for kugq, > 1, and even F(*) becomes fully susceptible to
{y—attacks with budget k.4, > 13. We set out to improve the
robustness of the specific classifier F(19) via adversarial train-
ing (using an {y—budget of 10 pixels), where we demonstrate
this robustness by testing F'(10) against fy—attacks with varying
budgets kqq, < 10. Note that during adversarial training we
use a time budget of ¢ = 300 queries, and hence we believe
our robust accuracy should be tested with an attack of similar
time budget. However, we use a much larger time budget of
t = 5000 queries for the results displayed in Table I, while in
Fig. 1 we use ¢ = 1000 queries.

We can see from Fig. 1b that adversarial training improves
the robust accuracy of our k—truncated classifier, agreeing with
our theory. When comparing to the initial results in Fig. la,
adversarial training shows no effect on the robust accuracy
of the regular classifier F(*), while displaying substantial
improvements when applied to F(10),

We highlight these results in Table I, showing that for lower
budgets k.4, We can maintain high robust accuracy even as the
time budget ¢ increases. Also, there is no loss in classification
accuracy from truncation as both F(®) and F(19 reach the
same clean accuracy after adversarial training, which is slightly
lower than the base classifier’s clean accuracy of 99.3%. Here
we refer to the accuracy on the test set without adversarial
examples as the clean accuracy, and the classifier derived when
trained without an adversary as the base classifier. We note
that for higher k4, one can only expect so much improvement
until the {y—attack becomes too powerful for any classifier,
although we suspect tuning k and running the attack for longer
while training can help improve robustness further.

To underline our results we refer to the Pointwise
Attack, where we display in Table II the values of p for
our classifiers. We ran 10 iterations of the attack, utilizing
the entire test set of MNIST images. We confirm that F(10)
outperforms its unprotected counterpart F(°), and does just

Setup Rob. acc. sparse-rs (%)
Net Acc. (%) lo-budget t=3e2 t=1e3 t=>5e3
FO 98.02 3,5,8 0.00 0.00 0.00
F(10) 98.73 3 95.51 94.73 92.97
F(10) 98.73 5 93.55 89.65 81.84
F(10) 98.73 8 85.94 73.24 58.79
VvGG(®  87.68 3 64.45 52.73 39.65
VGG(®  87.68 8 52.92 40.23 26.36
vGG(10)  g87.97 3 77.73 71.67 67.77
VGG(10)  g7.27 8 70.70 61.33 53.13

TABLE I: Adversarial training using sparse—-rs on MNIST
and CIFAR. The table above shows the final robust accuracy
of F(19) and F(O) after adversarial training on MNIST, as well
as VGG vGG'?) on CIFAR. We give the clean accuracy
(Acc. %) of the classifiers along with the /p—budget used to
attack them. We then show the robust accuracy (Rob. acc.) as
we vary the adversary’s time budget ¢. Note F(?) fails for any
budget greater than zero.

Setup Median (pixels)
Architecture  Dataset [ =100 g=1
F(0) MNIST 1 13
F(10) MNIST 17 21
VGG CIFAR 2 3
VGG(10) CIFAR 11 17

TABLE II: p using the Pointwise Attack. The table
above shows the median adversarial attack magnitude denoted
as p for both our fully connected and convolution networks.
Note that the ABS model as well as randomized ablation are
not effective when 8 = 100, while for 8 = 1 the ABS model
achieves an identical p = 21.

as well as the ABS model even when 8 = 1 [28]. Since we
know that both the ABS model and F(°) have no robustness
guarantees when 8 = 100, we think it is significant that under
this setting F'(19) still achieves a high p of 17 pixels.

We believe our results for MNIST convey the efficiency
and potential of utilizing truncation when designing robust
classifiers. We also understand that in order to expand the
applicability of truncation, we need to consider how it can be
utilized within convolutional neural networks. Unlike with FC
layers, the extension of truncation to 2d-convolutional layers is
heuristically motivated, where our approach is directly applying
truncation before the first layer of VGG-19 [42].

As with FC networks, VGG and its k—truncated counter-
part VGG were trained with an lo—budget kyq, = 10, and
attacked with varying time budgets and ¢p—budgets. The results
are displayed in Table I. We see that although VGG is able
to maintain a robust accuracy above 0% thanks to adversarial
training, we can improve this by adding our truncation
component. We also see that the clean accuracy did not suffer
when utilizing truncation, and the end result was comparable
to the base classifier’s accuracy of approximately 91%. We
think this is significant since prior methods showed large trade-
offs between robust accuracy and test set performance [28],
[30], while truncation combined with adversarial training does
strictly better than adversarial training alone.
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