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Abstract—Adversarial training using empirical risk minimiza-

tion is the state-of-the-art method for defense against adversarial

attacks, that is against small additive adversarial perturbations

applied to test data leading to misclassification. Despite being

successful in practice, understanding generalization properties

of adversarial training in classification remains widely open.

In this paper, we take the first step in this direction by

precisely characterizing the robustness of adversarial training

in binary linear classification. Specifically, we consider the high-

dimensional regime where the model dimension grows with the

size of the training set at a constant ratio. Our results provide

exact asymptotics for both standard and adversarial test errors

under `∞-norm bounded perturbations in a generative Gaussian-

mixture model. We use our sharp error formulae to explain

how the adversarial and standard errors depend upon the over-

parameterization ratio, the data model, and the attack budget.

Finally, by comparing with the robust Bayes estimator, our sharp

asymptotics allow us to study fundamental limits of adversarial

training.

I. INTRODUCTION

Several machine learning models ranging from simple

linear classifiers to complex deep neural networks have been

shown to be prone to adversarial attacks, i.e., small additive

perturbations to the data that cause the model to predict

a wrong label [SZS+13], [MDFF16]. The requirement for

robustness against adversaries is crucial for the safety of

systems that rely on decisions made by these algorithms

(e.g., in self-driving cars). With this motivation, over the

past few years, there have been remarkable efforts by the

research community to construct defense mechanisms, e.g., see

[SN20], [CAD+18] for a survey. Among many proposals in

the already rich literature, perhaps the most popular approach

is that of adversarial training [GSS14]. Among many favorable

properties, adversarial training is flexible and easy-to-adjust

to different types of data perturbations and has also been

shown to achieve state-of-the-art performance in several tasks

[MMS+17]. However, despite major recent progress in the

study and implementation of adversarial training, its efficacy

has been mainly shown empirically without providing much
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theoretical understanding. Indeed, many questions regarding

its theoretical properties remain open even for simple models.

For instance, how does the adversarial/standard error depend

on the adversary’s budget during training time and test time?

How do they depend on the over-parameterization ratio? What

is the role of the chosen loss function?

In this paper, we consider the adversarial training problem for

`∞-norm bounded perturbations in classification tasks, which

solves the following robust empirical risk minimization (ERM)

problem:

min
θ∈Rl

m∑

i=1

max
‖δi‖∞≤ εtr

L̃ (yi, fθ(xi + δi)) + r‖θ‖22. (1)

Here, {(xi, yi)}i∈[m] ∈ R
n×{±1} is the training set, δi ∈ R

n

are the perturbations with l the dimension of the feature space,

fθ : Rn → R is a model parameterized by a vector θ ∈ R
l,

εtr is a user-specified tunable parameter that can be interpreted

as the adversary’s budget during training, and r is the ridge-

regularization parameter. Once the robust classifier θ̂ is obtained

by (1), the adversarial error / robust classification error is

given by Ex,y[ max‖δ‖∞≤εts 1{y 6=sign(f
θ̂
(x+δ))}], where 1{·}

is the 0/1-indicator function, (x, y) ∈ R
n × {±1} is a test

sample drawn from the same distribution as that of the training

dataset, εts is the budget of the adversary, and f
θ̂

uses the

trained parameters θ̂ and the fresh sample x to output a label

guess. The standard classification error is given by the same

formula by simply setting εts = 0.

The goal of this paper is to precisely analyze the performance

of adversarial training in (1) for binary classification with

linear models i.e., fθ(x) = 〈θ,x〉. In our proof we use

the Convex-Gaussian-Min-max-Theorem (CGMT) [TOH15],

[Sto09], [Sto13] and in particular its applications to the

convex ERM that enables its precise analysis, e.g., [TAH18],

[MRSY19], [SAH19], [TPT20b], [TPT21]. However, compared

to previous works, we develop a new analysis for robust

optimization.

Our main contributions are summarized as follows:

• We precisely analyze, for the first time, the performance of

adversarial training with `∞ attacks in binary classification for
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the Gaussian Mixtures Model. See Section III.

• Numerical illustrations in Section III-A show tight agreements

between our theoretical and empirical results and also allow

us to draw intriguing conclusions regarding the behavior of

adversarial and standard errors as functions of key problem

parameters such as the sampling ratio δ := m/n, the budget of

the adversary εts, and the robust-optimization hyper-parameter

εtr in our studied settings.

A. Novelty and Prior Works

Relevant to the flavour of our results, the recent work

[JSH20] studies precise tradeoffs and performance analysis in

adversarial training with linear regression with `2 perturbations

and isotropic Gaussian data. Compared to [JSH20], our results

hold for binary models. Moreover, we consider regularized

ERM allowing us to study the behavior of adversarial training

in the over-parameterized regime in the limit of λ → 0. Similar

results on the behavior of adversarial training in classification

are only derived in a concurrent work by [JS20]. On the

one hand, compared to [JS20] our analysis applies to the

regularized ERM. Additionally, we examine how our formulae

on adversarial training compare with those of the Bayes robust

estimator. On the other hand, [JS20] extend their analysis to

robust support vector machines (SVM). Note however that

we can retrieve the same results regarding the performance

of adversarially-robust SVM by evaluating our formulae on

regularized ERM with logistic loss and vanishing regularization

parameter.

To see, at a high-level, why adversarial training differs from

standard ERM or standard SVM analysis note the following

complications in the analysis. First, because adversarial training

is formulated as a min-max optimization, it is not at all

apparent that the machinery of Gaussian comparison theorems

applies. Second, the performance metric here is robust error

(rather than standard error), and we show that this changes

the statistics that needs to be tracked by the CGMT analysis.

Third, the primary optimization to which we eventually apply

the CGMT involves an “effective" `1-regularizer which unlike

previous works appears inside the argument of the loss function,

requiring new techniques to scalarize the auxiliary optimization.

The Adversarial Bayes risk for Gaussian-mixtures has been

recently characterized in [BCM19]. Here, we combine their

results with our precise asymptotics on the practically relevant

adversarial training method, allowing us to investigate funda-

mental limits of adversarial training. The references [CRWP19],

[AZL20] discuss optimization landscape of adversarial training,

however these works do not address generalization properties

of adversarial training, as done in this paper. Another related

line of work studies trade-offs between the standard and

adversarial errors e.g., see [TSE+18], [RXY+19], [ZYJ+19],

[DHHR20], but for simpler algorithms and data models, rather

than adversarial training, which we focus on here. The benefits

of unlabeled data in robustness have been investigated in several

works, e.g. [RXY+20], [CRS+19]. An exciting direction

opening up with our analysis is investigating adversarial training

performance for random features and neural tangent models. To

date, precise asymptotics for such models have been obtained

only very recently and for the simpler problem of standard

ERM [MM19], [GMKZ20], [DL20], [DL21], [GMMM19].

II. PROBLEM FORMULATION

In this section, we describe the data model, the specific

form of (1), and the asymptotic regime for which our results

hold. After this section, it is understood that all our results

hold in the setting described here without any further explicit

reference.

A. Data Model

We study Gaussian Mixture model (GMM) where the

conditional distribution of the feature vectors is a Gaussian with

mean ±θ?
n (depending on the label yi ∈ {±1}). The subscript

n emphasizes the dependence on dimension. Formally, the

GMM assumes

P(yi = 1) = π ∈ [0, 1], xi|yi ∼ N (yiθ
?
n, In) . (2)

We assume that each entry of the true vector θ? is sampled iid

from a fixed distribution D, i.e., θ?
i

iid∼D. Moreover, without

loss of generality we assume that θ? is normalized such that

‖θ?‖2= 1.

B. Asymptotic Regime

We consider the high-dimensional asymptotic regime in

which the size m of the training set and the dimension n of

the feature space grow large at a proportional rate. Formally,

m,n → ∞ at a fixed ratio δ = m/n.

C. Robust Learning

Let θ̂n be a linear classifier trained on data generated

according to the data model (2). As is typical, given θ̂n, a

decision is made about the label of x based on sign(〈x, θ̂n〉).
Thus, letting y be the label of a fresh sample x, the standard

error is given by

E(θ̂n) , Ex,y

[
1{y 6=sign(〈x,θ̂n〉)}

]
. (3)

Here, the expectation is over a fresh pair (x, y) also generated

according to the GMM model. Next, we define the adversarial

error with respect to a worst-case `∞-norm bounded additive

perturbation. Let εts ≥ 0 be the budget of the adversary. Then,

the adversarial error is defined as follows:

Eεts(θ̂n) , Ex,y

[
max

‖δ‖∞≤εts
1{y 6=sign(〈x+δ,θ̂n〉)}

]
. (4)

Adversarial training leads to a classifier θ̂n that solves the

robust optimization problem (1) with L̃(y, fθ(x+δ)) replaced

by L(y〈θ,x + δ〉). The loss function L : R → [0,∞) is

chosen as a convex approximation to the 0/1 loss. Specifically,

throughout the paper, we assume that L is convex and
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decreasing. This includes popular choices such as the logistic,

hinge and exponential losses.

III. MAIN RESULTS

In this section, we focus on the case of bounded `∞-

perturbations. Specifically, let θ̂n be a solution to the following

robust minimization:

min
θn

m∑

i=1

max
‖δi‖∞≤ εtr√

n

L (yi 〈xi + δi,θn〉) + r‖θn‖22. (5)

In our asymptotic setting, εtr is of constant order and the

factor 1/
√
n in front of it is the proper normalization needed

to ensure that the perturbations norm ‖δi‖2, in comparable to

the norm of the true vector ‖θ?
n‖2, i.e., both are constant in the

high-dimensional limit n → ∞. We explain this normalization

further in Section III-B.

Before presenting our main result, we need to introduce

some necessary definitions. We write

Mf (x;κ) , min
v

1

2κ
(x− v)2 + f(v), (6)

for the Moreau envelope of a function f : R → R at x ∈ R

with parameter κ > 0 [RW09]. We also define the following

min-max optimization over eight scalar variables. Denote v̄ ,

(α, τ1, w, µ, τ2, β, γ, η) and define f : R8 → R as follows:

f(v̄) , −γw − µ2τ2
2α

− αβ2

2δτ2
− ατ2

2
+

βτ1
2

+ ηµ− η2α

2τ2
,

We introduce the following min-max objective based on the

eight scalars,

min
α,τ1,w∈R+,

µ∈R

max
τ2,β,γ∈R+,

η∈R

E

[
ML

(√
µ2 + α2 G+ µ− w; τ1/β

)]

+ γεtr E

[
M`1

(
αβ

τ2
√
δ
H +

αη

τ2
Z;

αγεtr
τ2

)]
+ f(v̄), (7)

where G,H
iid∼N (0, 1) and Z ∼ D. Notice that the objective

function of (7) depends explicitly on the sampling ratio δ and

on the training parameter εtr. Moreover, it depends implicitly

on θ?
n via D, and on the specific loss L via its Moreau envelope.

The nature of allowed perturbations (the `∞-type) is reflected

in (7), via the Moreau-envelope of the dual-norm (the `1 norm).

We are now ready to state our main result in Theorem 1,

which establishes a relation between the solutions of (7) and

the adversarial risk of the robust classifier θ̂n. The proof is

deferred to the long version of the paper [TPT20a].

Theorem 1. Assume that the training dataset {(xi, yi)}mi=1, is

generated according to the data model (2). Consider the robust

classifiers {θ̂n}, obtained by adversarial training in (5). Then,

the high-dimensional limit for the adversarial error satisfies,

E εts√
n

(θ̂n)
P−→ Q

(µ? − w? εts/εtr√
µ?2 + α?2

)
. (8)

where Q(·) denotes the Gaussian Q-function and (α?, µ?, w?)

is the unique solution to the scalar minimax problem (7).

The asymptotics for adversarial error in Theorem 1 are

precise in the sense that they hold with probability 1, as

m,n → ∞. In the following section, we demonstrate the

precise theoretical values and the corresponding numerical

values.

A. Numerical Illustrations

In this section, we illustrate the theoretical predictions for var-

ious values of the different problem parameters, including δ =

m/n and the attack budgets εtr and εts. For numerical results

here, we focus on the hinge-loss i.e., L(t) = max (1− t, 0) and

on the GMM with isotropic features. We further assume that D
is standard normal and fix regularization parameter r = 10−4.

To solve (7), we derive the solution of the corresponding saddle-

point equations by iterating over the equations and finding the

fixed-point solution after 100 iterations. For the numerical

results, we set n = 200 and solve the ERM problem (5) by

gradient descent. The resulting estimator is used to compute the

adversarial test error by evaluating (3) on a test set of 3× 103

samples. We then average the results over 20 independent

experiments. The results for both numerical and theoretical

values are depicted in Figures 1-2. Next, we discuss some of

the insights obtained from these figures.

a) Impact of δ on standard/adversarial errors.: Figure

1 depicts the adversarial and standard errors as a function

of δ = m/n. The dashed lines show the Bayes Adversarial

Error, i.e., the smallest adversarial error obtained by any

classifier [BCM19], [DWR20], [DHHR20]. Note that both

errors decrease as the sampling ratio δ grows, with the

adversarial error approaching the Bayes adversarial error of

the corresponding value of εts. More generally, in light of

comparison between the error formulae of Theorem 1 and

the Bayes adversarial error, Figure 1 provides a means to

quantify the sub-optimality gap of adversarial training for all

values of the oversampling ratio δ > 0 and for different values

of the adversary’s budget. A related study was performed in

[SST+18], but therein the authors derive error bounds for a

simple averaging estimator. Instead, our analysis is precise

and holds for the broader case of convex decreasing losses.

Next, we comment on the shape of the error curves as a

function of the sampling ratio. Note that a second sharp

decrease in standard and adversarial errors appears right after an

separability threshold δ∗εtr√
n

, which we define as the maximum

value of δ for which the data-points are (`∞, εtr√
n
)-separable

(for definition, see the discussion on Robust Separability in

Section IV). This constantly decreasing behavior of the error is

in contrast to the corresponding behavior in linear regression

with `2 perturbations and `2 loss analyzed in [JSH20], where

error based on δ starts rising after the first decrease and then

again decreases as δ grows. This double-descent behavior can

be considered as extension of the more familiar double-descent

behavior in standard ERM (first observed in numerous high-

dimensional machine learning models [BHMM18], [BHX19],
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error (left) and the Bayes standard error (right). Note that the adversarial error of estimators obtained from adversarial training,

approaches the Bayes adversarial error as δ grows.
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for εts = 0.5 (Left) and εts = 0.9 (Middle). The blacked dashed lines denote the Bayes adversarial error for the corresponding

values of εts. The colored dashed lines depict the optimal value of each curve. Note that the optimal value of εtr decreases

as δ grows. Right: Impact of adversarial training on the standard test error, illustrating that adversarial training can improve

standard accuracy.

[HMRT19]), to the adversarial training case. Finally, we

highlight the following observation from Figure 1 (right):

For highly over-parametrized models (very small δ), standard

accuracy remains the same for different choices of εtr. As

δ grows, adversarial training (perhaps surprisingly) seems to

(also) improve the standard accuracy. However, for very large

δ, increasing εtr hurts standard accuracy. These observations

are consistent and theoretically validate corresponding findings

on the role of data-set size on standard accuracy that were

empirically observed in [TSE+18] for neural network training

with non-synthetic datasets (e.g., MNIST).

b) Impact of εtr on standard/adversarial errors.: Adver-

sarial and Standard error curves based on the hyper-parameter

εtr are illustrated in Figure 2. Note that the adversarial error

behavior based on εtr is informative about the role of the

data-set size on the optimal value of εtr. The top figures show

that the optimal value of εtr is typically larger than εts. Also

note that as δ gets smaller, larger values of εtr are preferrable

for robustness. Figure 2(Right) illustrates the impact of εtr
on the standard error, where similar to Figure 1(Right), we

observe that adversarial training can help standard accuracy. In

particular, we observe that in the under-parameterized regime

where δ > δ εtr√
n

(as we will define in Section IV), adversarial

training with small values of εtr is beneficial for accuracy. As

δ increases, such gains diminish and indeed adversarial training

starts hurting standard accuracy.

B. Proof Sketch

The complete proof of Theorem 1 is deferred to the long

version of the paper [TPT20a]. Here, we provide an outline of

the key steps in deriving (7) and (8).

a) Reducing (5) to a minimization problem.: For a

decreasing loss function, picking δ?i , −yi sign(θn) εtr/
√
n,

optimizes the inner maximization in (5). Therefore, (5) is

equivalent to,

min
θn

m∑

i=1

L
(
yi 〈xi,θn〉 −

εtr√
n
‖θn‖1

)
+ r ‖θn‖22. (9)

From (9), we can see now why the specific normalization of εtr
is needed in (5). Recall that, xi ∼ N (yiθ

?
n, In) and ‖θ?

n‖2= 1.
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For fixed θ, the argument yi〈xi,θ〉 behaves as ‖θ‖2(S + 1),

where S ∼ N (0, 1). Thus, for θs that are such that ‖θ‖2= Θ(1)

(which ought to be the case for “good" classifiers in view of

‖θ?
n‖2= 1), the term yi〈xi,θ〉 is an Θ(1)-term. Now, thanks

to the normalization 1/
√
n in (5), the second term εtr√

n
‖θ‖1 in

(9) is also of the same order. Here, we used again the intuition

that ‖θ‖1= Θ(
√
n), as is the case for the true θ?. Our analysis

formalizes these heuristic explanations.

b) The key statistics for the adversarial error: Our key

observation is that the asymptotics of the adversarial error

of a sequence of arbitrary classifiers {θn}, depend on the

asymptotics of only a few key statistics of {θn}. This is

formalized in the following lemma.

Lemma 2. Define projection matrices Θn and Θ⊥
n as Θn ,

θ?
nθ

?
n
>/‖θ?

n‖22, Θ⊥
n , In −Θn. Assume that the sequence of

{θn} is such that the following limits hold

{εtr ‖θn‖1 /
√
n} P→ w, {‖Θnθn‖2} P→ µ, {‖Θ⊥

n θn‖2}
P→ α,

Then, in the high-dimensional limit, the adversarial error

satisfies

Eεts(θn)
P→ Q

(µ− w εts/εtr√
µ2 + α2

)
(10)

Lemma 2 reduces the goal of computing asymptotics of

the adversarial risk of θ̂n to computing asymptotics of the

corresponding statistics ‖θ̂n‖1, ‖Θnθ̂n‖2, and ‖Θ⊥
n θ̂n‖2.

c) Scalarizing the objective function: The previous two

steps set the stage for the core of the analysis, which we

outline next. Thanks to step 1, we are now asked to analyze

the statistical properties of a convex optimization problem. On

top of that, due to step 2, the outcomes of the analysis ought to

be asymptotic predictions for the quantities ‖θn‖1, ‖Θnθn‖2
and ‖Θ⊥

n θn‖2. However, note that the term ‖θn‖1 appears

inside the loss function. In particular, this is a new challenge,

specific to robust optimization compared to previous analysis

of standard regularized ERM. The first step to overcome these

challenges is to identify an appropriate minimax Auxiliary

Optimization (AO) problem that is probabilistically equivalent

to (9). The second crucial step is to scalarize the AO based on

an appropriate Lagrangian formulation. Finally, we perform

a probabilistic analysis of the scalar AO. This results in the

deterministic minimax problem in (7). See [TPT20a] for details.

IV. ROBUST SEPARABILITY

An instance of special interest in practice is solving the

unregularized version of the min-max problem:

min
θn

1

m

m∑

i=1

max
‖δi‖∞≤ ε

L (yi 〈xi + δi,θn〉) . (11)

Following the same proof techniques as above, we can show

that the formulas predicting the statistical behavior of this

unconstrained version are given by the same formulas as in

Theorem 1 with r = 0 and also provided that the sampling

ration δ is large enough so that a certain robust separability

condition holds. In what follows, we describe this condition.

We start with some background on (standard) data separability.

Recall, that training data {(xi, yi)} are linearly separable

if and only if ∃θ ∈ R
n such that for all training samples

yi〈xi,θ〉 ≥ 1. Now, we say that data are (`∞, ε)-separable if

and only if ∃θ ∈ R
n s.t. yi〈xi,θ〉− ε‖θ‖1 ≥ 1, ∀i ∈ [m].

Note that (standard) linear separability is equivalent to (`∞, 0)-

separability as defined above. Moreover, it is clear that (`∞, ε)-

separability implies (`∞, 0)-separability for any ε ≥ 0. Recent

works have shown that in the proportional limit data from

stylized models are (`∞, 0)-separable if and only if the

sampling ratio satisfies δ < δ∗ [CS18], [MRSY19] for some

δ∗ > 2. We conjecture that there is a threshold δ∗ε , depending

on ε, such that data are (`∞, ε)-separable if and only if δ∗ε . We

believe that our techniques can be used to prove this conjecture

and determine δ∗ε , but we leave this interesting question to

future work. Instead here, we simply note that based on the

above discussion, if such a threshold exists, then it must satisfy

δ∗ε ≤ δ∗, for all values of ε, and in fact it is a decreasing

function of ε. Now let us see how this notion relates to solving

(5) and to our asymptotic characterization of its performance.

Recall from (9) that the robust ERM for decreasing losses

reduces to the minimization minθ
∑m

i=1 L(yi〈xi,θ〉−ε‖θ‖1).
Thus, using again the decreasing nature of the loss, it can

be checked that the solution to the objective function above

becomes unbounded for θ such that the argument of the loss

is positive for any i ∈ [m]. This is equivalent to the condition

of (`∞, ε)-separability. In other words, when data are (`∞, ε)-

separable, the robust estimator is unbounded. Recall from

Section III-B that the minimax optimization variables w, µ, α

represent the limits of ‖θn‖1, ‖Θnθn‖2, and ‖Θ⊥
n θn‖2. Thus,

if θn is unbounded, then w?, µ?, α? are not well defined. In

accordance with this, we conjecture that the minimax problem

(7) for r = 0 (corresponding to (11)) has a solution if and only

if the data are not (`∞, ε)-separable, equivalently, iff δ > δ∗ε .

V. CONCLUSIONS AND FUTURE DIRECTIONS

We studied the generalization behavior of adversarial training

in a binary classification setting. In particular, we derived pre-

cise theoretical predictions for the performance of adversarial

training for the Gaussian-mixture model. Numerical simulations

validate theoretical predictions even for relatively small problem

dimensions and demonstrate the role of all problem paramters

on adversarial robustness. Finally, we remark that the current

analysis can be extended to general convex regularization

functions building on our ideas. An interesting future direction

is analyzing adversarial training for Random Features and

Neural Tangent Kernel models. One other natural question is

considering attacks other than `q-norm attacks considered in

this paper.
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