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Abstract—Adversarial training using empirical risk minimiza-
tion is the state-of-the-art method for defense against adversarial
attacks, that is against small additive adversarial perturbations
applied to test data leading to misclassification. Despite being
successful in practice, understanding generalization properties
of adversarial training in classification remains widely open.
In this paper, we take the first step in this direction by
precisely characterizing the robustness of adversarial training
in binary linear classification. Specifically, we consider the high-
dimensional regime where the model dimension grows with the
size of the training set at a constant ratio. Our results provide
exact asymptotics for both standard and adversarial test errors
under /~.-norm bounded perturbations in a generative Gaussian-
mixture model. We use our sharp error formulae to explain
how the adversarial and standard errors depend upon the over-
parameterization ratio, the data model, and the attack budget.
Finally, by comparing with the robust Bayes estimator, our sharp
asymptotics allow us to study fundamental limits of adversarial
training.

I. INTRODUCTION

Several machine learning models ranging from simple
linear classifiers to complex deep neural networks have been
shown to be prone to adversarial attacks, i.e., small additive
perturbations to the data that cause the model to predict
a wrong label [SZS*13], [MDFF16]. The requirement for
robustness against adversaries is crucial for the safety of
systems that rely on decisions made by these algorithms
(e.g., in self-driving cars). With this motivation, over the
past few years, there have been remarkable efforts by the
research community to construct defense mechanisms, e.g., see
[SN20], [CAD™ 18] for a survey. Among many proposals in
the already rich literature, perhaps the most popular approach
is that of adversarial training [GSS14]. Among many favorable
properties, adversarial training is flexible and easy-to-adjust
to different types of data perturbations and has also been
shown to achieve state-of-the-art performance in several tasks
[MMS*17]. However, despite major recent progress in the
study and implementation of adversarial training, its efficacy
has been mainly shown empirically without providing much
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theoretical understanding. Indeed, many questions regarding
its theoretical properties remain open even for simple models.
For instance, how does the adversarial/standard error depend
on the adversary’s budget during training time and test time?
How do they depend on the over-parameterization ratio? What
is the role of the chosen loss function?

In this paper, we consider the adversarial training problem for
{~-norm bounded perturbations in classification tasks, which
solves the following robust empirical risk minimization (ERM)
problem:

m

min max

L (y: i+ 0 ClIER 1
OER! = [|8i| < eux (Wi, fo(wi + 6:)) +7(|0])3 (1)

Here, {(;,y:) }iepm) € R™ x {£1} is the training set, §; € R"
are the perturbations with [ the dimension of the feature space,
fo : R" — R is a model parameterized by a vector 6 € R/,
€t 1S a user-specified tunable parameter that can be interpreted
as the adversary’s budget during training, and r is the ridge-
regularization parameter. Once the robust classifier 6 is obtained
by (1), the adversarial error / robust classification error is
given by o, [maxs) . <c.. L{ysign(ss(e+6))]; Where 11y
is the 0/1-indicator function, (x,y) € R™ x {£1} is a test
sample drawn from the same distribution as that of the training
dataset, s is the budget of the adversary, and fz uses the
trained parameters 6 and the fresh sample « to output a label
guess. The standard classification error is given by the same
formula by simply setting €5 = 0.

The goal of this paper is to precisely analyze the performance
of adversarial training in (1) for binary classification with
linear models i.e., fo(x) = (0,x). In our proof we use
the Convex-Gaussian-Min-max-Theorem (CGMT) [TOH15],
[Sto09], [Stol13] and in particular its applications to the
convex ERM that enables its precise analysis, e.g., [TAH18],
[MRSY19], [SAH19], [TPT20b], [TPT21]. However, compared
to previous works, we develop a new analysis for robust
optimization.

Our main contributions are summarized as follows:

e We precisely analyze, for the first time, the performance of
adversarial training with ¢, attacks in binary classification for
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the Gaussian Mixtures Model. See Section III.

o Numerical illustrations in Section III-A show tight agreements
between our theoretical and empirical results and also allow
us to draw intriguing conclusions regarding the behavior of
adversarial and standard errors as functions of key problem
parameters such as the sampling ratio ¢ := m/n, the budget of
the adversary e, and the robust-optimization hyper-parameter
€ty in our studied settings.

A. Novelty and Prior Works

Relevant to the flavour of our results, the recent work
[JSH20] studies precise tradeoffs and performance analysis in
adversarial training with linear regression with ¢5 perturbations
and isotropic Gaussian data. Compared to [JSH20], our results
hold for binary models. Moreover, we consider regularized
ERM allowing us to study the behavior of adversarial training
in the over-parameterized regime in the limit of A\ — 0. Similar
results on the behavior of adversarial training in classification
are only derived in a concurrent work by [JS20]. On the
one hand, compared to [JS20] our analysis applies to the
regularized ERM. Additionally, we examine how our formulae
on adversarial training compare with those of the Bayes robust
estimator. On the other hand, [JS20] extend their analysis to
robust support vector machines (SVM). Note however that
we can retrieve the same results regarding the performance
of adversarially-robust SVM by evaluating our formulae on
regularized ERM with logistic loss and vanishing regularization
parameter.

To see, at a high-level, why adversarial training differs from
standard ERM or standard SVM analysis note the following
complications in the analysis. First, because adversarial training
is formulated as a min-max optimization, it is not at all
apparent that the machinery of Gaussian comparison theorems
applies. Second, the performance metric here is robust error
(rather than standard error), and we show that this changes
the statistics that needs to be tracked by the CGMT analysis.
Third, the primary optimization to which we eventually apply
the CGMT involves an “effective" ¢;-regularizer which unlike
previous works appears inside the argument of the loss function,
requiring new techniques to scalarize the auxiliary optimization.

The Adversarial Bayes risk for Gaussian-mixtures has been
recently characterized in [BCM19]. Here, we combine their
results with our precise asymptotics on the practically relevant
adversarial training method, allowing us to investigate funda-
mental limits of adversarial training. The references [CRWP19],
[AZL20] discuss optimization landscape of adversarial training,
however these works do not address generalization properties
of adversarial training, as done in this paper. Another related
line of work studies trade-offs between the standard and
adversarial errors e.g., see [TSET18], [RXYT19], [ZYJT19],
[DHHR20], but for simpler algorithms and data models, rather
than adversarial training, which we focus on here. The benefits
of unlabeled data in robustness have been investigated in several

works, e.g. [RXY'20], [CRST19]. An exciting direction
opening up with our analysis is investigating adversarial training
performance for random features and neural tangent models. To
date, precise asymptotics for such models have been obtained
only very recently and for the simpler problem of standard
ERM [MM19], [GMKZ20], [DL20], [DL21], [GMMM19].

II. PROBLEM FORMULATION

In this section, we describe the data model, the specific
form of (1), and the asymptotic regime for which our results
hold. After this section, it is understood that all our results
hold in the setting described here without any further explicit
reference.

A. Data Model

We study Gaussian Mixture model (GMM) where the
conditional distribution of the feature vectors is a Gaussian with
mean +67 (depending on the label y; € {£1}). The subscript
n emphasizes the dependence on dimension. Formally, the
GMM assumes

]P)(yz = ]-) =meE [01 1]7 wz|yz ~ N(yzGZ;an) )

We assume that each entry of the true vector 8* is sampled iid

from a fixed distribution D, i.e., 8} <. Moreover, without
loss of generality we assume that 6* is normalized such that
16%]l2= 1.

B. Asymptotic Regime

We consider the high-dimensional asymptotic regime in
which the size m of the training set and the dimension n of
the feature space grow large at a proportional rate. Formally,
m,n — oo at a fixed ratio § = m/n.

C. Robust Learning

Let §n be a linear classifier trained on data generated
according to the data model (2). As is typical, given §n a
decision is made about the label of « based on sign({x, §n>)
Thus, letting y be the label of a fresh sample x, the standard
error is given by

~

E(On) £ gy 1{y#si9ﬂ(<w7§n>)ﬂ ' )

Here, the expectation is over a fresh pair (x,y) also generated
according to the GMM model. Next, we define the adversarial
error with respect to a worst-case ¢,,-norm bounded additive
perturbation. Let £¢5 > 0 be the budget of the adversary. Then,
the adversarial error is defined as follows:
N\ A

gfits (0") = vay |:|51|Ioloa§€ts 1{y7531gn((m+6,§n))}:| . 4)
Adversarial training leads to a classifier én that solves the
robust optimization problem (1) with £(y, fo(x + d)) replaced
by L(y(0,x + 8)). The loss function £ : R — [0,00) is
chosen as a convex approximation to the 0/1 loss. Specifically,
throughout the paper, we assume that £ is convex and
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decreasing. This includes popular choices such as the logistic,
hinge and exponential losses.

III. MAIN RESULTS

In this section, we focus on the case of bounded /.-
perturbations. Specifically, let 8,, be a solution to the following
robust minimization:

m

minz max (10,13

0 = [8:]loe< S

(&)

In our asymptotic setting, €y, is of constant order and the
factor 1/4/n in front of it is the proper normalization needed
to ensure that the perturbations norm ||d;||2, in comparable to
the norm of the true vector |02, i.e., both are constant in the
high-dimensional limit n — co. We explain this normalization
further in Section III-B.

Before presenting our main result, we need to introduce
some necessary definitions. We write

(6)

for the Moreau envelope of a function f : R — R at z € R
with parameter « > 0 [RW09]. We also define the following
min-max optimization over eight scalar variables. Denote v =
(o, 71, w, i, 72, B,7,n) and define f : R® — R as follows:

My () 2 min oz — o) + f(0),

We introduce the following min-max objective based on the
eight scalars,

min max E[M[, (\/u2+a2G+u*w;ﬁ/5)]
a,71,wER Y, 72,8,7ER Y,
nER neRr

+ mE[M«l( ap H+—Z m“)] +I®), O

V8 T2

where G, H id wr (0,1) and Z ~ D. Notice that the objective
function of (7) depends explicitly on the sampling ratio § and
on the training parameter €y,. Moreover, it depends implicitly
on 87 via D, and on the specific loss £ via its Moreau envelope.
The nature of allowed perturbations (the /..-type) is reflected
in (7), via the Moreau-envelope of the dual-norm (the ¢; norm).

We are now ready to state our main result in Theorem 1,
which establishes a relation between the solutions of (7) and
the adversarial risk of the robust classifier §n The proof is
deferred to the long version of the paper [TPT20a].

Theorem 1. Assume that the training dataset {(x;,y;)}™, is
generated according to the data model (2). Consider the robust
classifiers {én}, obtained by adversarial training in (5). Then,
the high-dimensional limit for the adversarial error satisfies,

~ P ﬂ* —w* gts/gtr)
Exse (0) > Q( ). @®)
where Q(-) denotes the Gaussian Q-function and (o*, p*, w*)

is the unique solution to the scalar minimax problem (7).

The asymptotics for adversarial error in Theorem 1 are
precise in the sense that they hold with probability 1, as
m,n — oo. In the following section, we demonstrate the
precise theoretical values and the corresponding numerical
values.

A. Numerical Illustrations

In this section, we illustrate the theoretical predictions for var-
ious values of the different problem parameters, including § =
m/n and the attack budgets ¢, and &is. For numerical results
here, we focus on the hinge-loss i.e., £(t) = max (1 — ¢, 0) and
on the GMM with isotropic features. We further assume that D
is standard normal and fix regularization parameter 7 = 10~
To solve (7), we derive the solution of the corresponding saddle-
point equations by iterating over the equations and finding the
fixed-point solution after 100 iterations. For the numerical
results, we set n = 200 and solve the ERM problem (5) by
gradient descent. The resulting estimator is used to compute the
adversarial test error by evaluating (3) on a test set of 3 x 103
samples. We then average the results over 20 independent
experiments. The results for both numerical and theoretical
values are depicted in Figures 1-2. Next, we discuss some of
the insights obtained from these figures.

a) Impact of & on standard/adversarial errors.: Figure
1 depicts the adversarial and standard errors as a function
of § = m/n. The dashed lines show the Bayes Adversarial
Error, i.e., the smallest adversarial error obtained by any
classifier [BCM19], [DWR20], [DHHR20]. Note that both
errors decrease as the sampling ratio & grows, with the
adversarial error approaching the Bayes adversarial error of
the corresponding value of eys. More generally, in light of
comparison between the error formulae of Theorem 1 and
the Bayes adversarial error, Figure 1 provides a means to
quantify the sub-optimality gap of adversarial training for all
values of the oversampling ratio § > 0 and for different values
of the adversary’s budget. A related study was performed in
[SST*18], but therein the authors derive error bounds for a
simple averaging estimator. Instead, our analysis is precise
and holds for the broader case of convex decreasing losses.
Next, we comment on the shape of the error curves as a
function of the sampling ratio. Note that a second sharp
decrease in standard and adversarial errors appears right after an
separability threshold 55“ , which we define as the maximum

value of ¢ for which the data—points are (0o, f}) separable
(for definition, see the discussion on Robust Separability in
Section IV). This constantly decreasing behavior of the error is
in contrast to the corresponding behavior in linear regression
with /5 perturbations and /5 loss analyzed in [JSH20], where
error based on § starts rising after the first decrease and then
again decreases as 0 grows. This double-descent behavior can
be considered as extension of the more familiar double-descent
behavior in standard ERM (first observed in numerous high-

dimensional machine learning models [BHMM18], [BHX19],
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Fig. 1: Adversarial/Standard test error based on ¢ := m/n. Solid lines correspond to theoretical predictions while markers denote
the empirical results derived by solving ERM using gradient descent (r = 10~%). The dashed lines denote the Bayes adversarial
error (left) and the Bayes standard error (right). Note that the adversarial error of estimators obtained from adversarial training,

approaches the Bayes adversarial error as § grows.
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Fig. 2: Theoretical (solid lines) and Empirical (markers) results for the impact of adversarial training on the adversarial test error
for e = 0.5 (Left) and ¢ = 0.9 (Middle). The blacked dashed lines denote the Bayes adversarial error for the corresponding
values of €. The colored dashed lines depict the optimal value of each curve. Note that the optimal value of ¢, decreases
as 0 grows. Right: Impact of adversarial training on the standard test error, illustrating that adversarial training can improve

standard accuracy.

[HMRT19]), to the adversarial training case. Finally, we
highlight the following observation from Figure 1 (right):
For highly over-parametrized models (very small §), standard
accuracy remains the same for different choices of ey.. As
0 grows, adversarial training (perhaps surprisingly) seems to
(also) improve the standard accuracy. However, for very large
0, increasing e, hurts standard accuracy. These observations
are consistent and theoretically validate corresponding findings
on the role of data-set size on standard accuracy that were
empirically observed in [TSET 18] for neural network training
with non-synthetic datasets (e.g., MNIST).

b) Impact of e, on standard/adversarial errors.: Adver-
sarial and Standard error curves based on the hyper-parameter
€ty are illustrated in Figure 2. Note that the adversarial error
behavior based on &, is informative about the role of the
data-set size on the optimal value of £¢,. The top figures show
that the optimal value of ¢y, is typically larger than es. Also
note that as § gets smaller, larger values of ey, are preferrable
for robustness. Figure 2(Right) illustrates the impact of ey,
on the standard error, where similar to Figure 1(Right), we

observe that adversarial training can help standard accuracy. In
particular, we observe that in the under-parameterized regime
where § > .. (as we will define in Section IV), adversarial
training with small values of ey 1 beneficial for accuracy. As
0 increases, such gains diminish and indeed adversarial training
starts hurting standard accuracy.

B. Proof Sketch

The complete proof of Theorem 1 is deferred to the long
version of the paper [TPT20a]. Here, we provide an outline of
the key steps in deriving (7) and (8).

a) Reducing (5) to a minimization problem.: For a
decreasing loss function, picking 87 L i sign(0,) e /N,
optimizes the inner maximization in (5). Therefore, (5) is
equivalent to,

Etr

. 2
min 3£ (s (@:,00) = 210 ) + 710415 O

From (9), we can see now why the specific normalization of ey,
is needed in (5). Recall that, z; ~ N (y;0%,1,,) and ||0}||2= 1.
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For fixed 6, the argument y;{x;, @) behaves as ||0]|2(S + 1),
where S ~ N (0, 1). Thus, for s that are such that ||@||s= ©(1)
(which ought to be the case for “good" classifiers in view of
6% |l2= 1), the term y;(x;,0) is an ©(1)-term. Now, thanks
to the normalization 1/4/n in (5), the second term E—jﬁ 0| in
(9) is also of the same order. Here, we used again the intuition
that ||0]|1= ©(y/n), as is the case for the true 6*. Our analysis
formalizes these heuristic explanations.

b) The key statistics for the adversarial error: Our key
observation is that the asymptotics of the adversarial error
of a sequence of arbitrary classifiers {6, }, depend on the
asymptotics of only a few key statistics of {6,,}. This is
formalized in the following lemma.

Lemma 2. Define projection matrices ©,, and O as 9,, =
0:0:"/)10%]2, OL &1, — ©,. Assume that the sequence of
{0,.} is such that the following limits hold

P P P
{eer 10ll, /Vn} = w, {[048nll2} = 1, {1056nll2} = a

Then, in the high-dimensional limit, the adversarial error
satisfies

£...(0,) 5 (1 iulom) (10)

JiEta
Lemma 2 reduces the goal of computing asymptotics of
the adversarial risk of §n to computing asymptotics of the
corresponding statistics ||§n\|1, ||®n§n|\2, and ||@f;§n||2
c) Scalarizing the objective function: The previous two
steps set the stage for the core of the analysis, which we
outline next. Thanks to step 1, we are now asked to analyze
the statistical properties of a convex optimization problem. On
top of that, due to step 2, the outcomes of the analysis ought to
be asymptotic predictions for the quantities ||0y]1, ||©:6x |2
and ||©:,,||2. However, note that the term ||6,,||; appears
inside the loss function. In particular, this is a new challenge,
specific to robust optimization compared to previous analysis
of standard regularized ERM. The first step to overcome these
challenges is to identify an appropriate minimax Auxiliary
Optimization (AO) problem that is probabilistically equivalent
to (9). The second crucial step is to scalarize the AO based on
an appropriate Lagrangian formulation. Finally, we perform
a probabilistic analysis of the scalar AO. This results in the
deterministic minimax problem in (7). See [TPT20a] for details.

IV. ROBUST SEPARABILITY

An instance of special interest in practice is solving the
unregularized version of the min-max problem:

1

min — max L (y; (x; +6;,0,)).
6. m;naiuofga (5 o B3z O

m

(1)

Following the same proof techniques as above, we can show
that the formulas predicting the statistical behavior of this
unconstrained version are given by the same formulas as in
Theorem 1 with » = 0 and also provided that the sampling

ration ¢ is large enough so that a certain robust separability
condition holds. In what follows, we describe this condition.
We start with some background on (standard) data separability.
Recall, that training data {(x;,y;)} are linearly separable
if and only if 30 € R™ such that for all training samples
yi{x;, 0) > 1. Now, we say that data are (¢, )-separable if
and only if 30 € R™ s.t. y;(z;,0) —€]|0|; > 1, Vi € [m].
Note that (standard) linear separability is equivalent to (¢, 0)-
separability as defined above. Moreover, it is clear that ({o, €)-
separability implies (¢, 0)-separability for any ¢ > 0. Recent
works have shown that in the proportional limit data from
stylized models are ({,0)-separable if and only if the
sampling ratio satisfies § < 6* [CS18], [MRSY19] for some
0* > 2. We conjecture that there is a threshold 67, depending
on &, such that data are (¢, €)-separable if and only if 6. We
believe that our techniques can be used to prove this conjecture
and determine §7, but we leave this interesting question to
future work. Instead here, we simply note that based on the
above discussion, if such a threshold exists, then it must satisfy
07 < 4%, for all values of ¢, and in fact it is a decreasing
function of €. Now let us see how this notion relates to solving
(5) and to our asymptotic characterization of its performance.
Recall from (9) that the robust ERM for decreasing losses
reduces to the minimization ming y .-, £(y;(x;, 0) —|0]]1).
Thus, using again the decreasing nature of the loss, it can
be checked that the solution to the objective function above
becomes unbounded for @ such that the argument of the loss
is positive for any 7 € [m]. This is equivalent to the condition
of ({0, €)-separability. In other words, when data are (¢, €)-
separable, the robust estimator is unbounded. Recall from
Section III-B that the minimax optimization variables w, p, &
represent the limits of ||0,,||1, [|©,,60,]2, and ||©:-8,,||2. Thus,
if @,, is unbounded, then w*, u*, a* are not well defined. In
accordance with this, we conjecture that the minimax problem
(7) for r = 0 (corresponding to (11)) has a solution if and only
if the data are not (¢, €)-separable, equivalently, iff § > §*.

V. CONCLUSIONS AND FUTURE DIRECTIONS

We studied the generalization behavior of adversarial training
in a binary classification setting. In particular, we derived pre-
cise theoretical predictions for the performance of adversarial
training for the Gaussian-mixture model. Numerical simulations
validate theoretical predictions even for relatively small problem
dimensions and demonstrate the role of all problem paramters
on adversarial robustness. Finally, we remark that the current
analysis can be extended to general convex regularization
functions building on our ideas. An interesting future direction
is analyzing adversarial training for Random Features and
Neural Tangent Kernel models. One other natural question is
considering attacks other than £;-norm attacks considered in
this paper.
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