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Abstract—Adversarial examples have recently drawn consid-
erable attention in the field of machine learning due to the
fact that small perturbations in the data can result in major
performance degradation. This phenomenon is usually modeled
by a malicious adversary that can apply perturbations to the
data in a constrained fashion, such as being bounded in a certain
norm. In this paper, we study this problem when the adversary is
constrained by the `0 norm; i.e., it can perturb a certain number
of coordinates in the input, but has no limit on how much it can
perturb those coordinates. Due to the combinatorial nature of this
setting, we need to go beyond the standard techniques in robust
machine learning to address this problem. We consider a binary
classification scenario where d noisy data samples of the true label
are provided to us after adversarial perturbations. We introduce
a classification method which employs a nonlinear component
called truncation, and show in an asymptotic scenario, as long
as the adversary is restricted to perturb no more than

√
d data

samples, we can almost achieve the optimal classification error
in the absence of the adversary, i.e. we can completely neutralize
adversary’s effect. Surprisingly, we observe a phase transition in
the sense that using a converse argument, we show that if the
adversary can perturb more than

√
d coordinates, no classifier

can do better than a random guess.

I. INTRODUCTION

It is well-known that machine learning models are sus-
ceptible to adversarial attacks that can cause classification
error. These attacks are typically in the form of a small
norm-bounded perturbation to the input data that are carefully
designed to incur misclassification – e.g. they can be form of
an additive `p-bounded perturbation for some p ≥ 0 [1], [2],
[3], [4], [5].

There is an extensive body of prior work studying ad-
versarial machine learning, most of which have focused on
`2 and `∞ attacks [6], [7], [8], [9]. To train models that
are more robust against such attacks, adversarial training is
the state-of-the-art defense method. However, the success of
the current adversarial training methods is mainly based on
empirical evaluations [5]. It is therefore imperative to study the
fundamental limits of robust machine learning under different
classification settings and attack models.

In this paper, we focus on the important case of `0-bounded
attacks that has been less investigated so far. In such attacks,
given an `0 budget k, an adversary can change k entries of
the input vector in an arbitrary fashion – i.e. the adversarial
perturbations belong to the so-called `0 ball of radius k. In
contrast with `p-balls (p ≥ 1), the `0-ball is non-convex and
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non-smooth. Moreover, the `0 ball contains inherent discrete
(combinatorial) structures that can be exploited by both the
learner and the adversary. As a result, the `0-adversarial
setting bears various challenges that are absent in common `p-
adversarial settings. In thus regard, it has recently been shown
that any piece-wise linear classifier, e.g. a feed-forward deep
neural network with ReLu activations, completely fails in the
`0 setting [10].

Perturbing only a few components of the data or signal
has many real-world applications including natural language
processing [11], malware detection [12], and physical attacks
in object detection [13]. There have been several prior works
on `0-adversarial attacks including white-box attacks that are
gradient-based, e.g. [4], [14], [15], and black-box attacks
based on zeroth-order optimization, e.g. [16], [17]. Defense
strategies against `0-bounded attacks have also been proposed,
e.g. defenses based on randomized ablation [18] and defensive
distillation [19]. None of the above works have studied the
fundamental limits of the `0-adversarial setting theoretically.
In our prior work, we have studied the `0-adversarial setting
for the case of Gaussian mixture model [20]. In this paper,
we generalize our results to the case of binary classification
with general noise distribution. We note that a line of work in
distributed hypothesis testing has considered Byzantine attacks
where a fraction of compromised nodes may cooperatively
transmit fictitious observations according to different arbitrary
distributions. This is different from the `0 attack setting, where
k of the observations can be arbitrarily and adversarially
changed (as opposed to their distribution getting adversarially
changed) [21], [22], [23].

The goal of this paper is to characterize the optimal classifier
and the corresponding robust classification error as a function
of the adversary’s budget k. More precisely, we focus on
the binary classification setting with general but i.i.d. noise
distributions, where the input is generated according to the
following model: xi = yµ+ zi, where y ∈ {−1, 1} is the true
label, zi is a zero-mean i.i.d. random noise process, and µ is its
mean vector. We seek to find the robust classification error of
the optimal classifier in this setting. In other words, we would
like to study “how robust” we can design a classifier given a
certain budget for an `0 adversary. Specifically, we consider
the asymptotic regime that the dimension of the input gets
large, and ask the following fundamental question: What is the
maximum adversary’s budget for which the optimal error in the
absence of an adversary (standard error) can still be achieved
and how does this limit scale with the input’s dimension?

The main contributions of the paper to answer the above
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questions are as follows.
• We prove an achievability result by introducing a clas-

sifier and characterizing its performance. Our proposed
classification method finds the likelihood of each data
sample, and applies truncation by removing a few of the
largest and a few of the smallest values. This truncation
phase effectively removes the “outliers” present in the
input due to adversarial modification. We have shown
in a previous work [20] that truncation is effective to
robustify against `0 attacks in a Gaussian mixture setting.
The present work shows the effectiveness of this method
in a much broader setting for general noise distributions.

• We prove a converse result by finding a lower bound on
the optimal robust error, and show that the two bounds
asymptotically match as the dimension d → ∞, hence
our proposed classification method is optimally robust
against such adversarial attacks. The key idea behind the
converse proof is to use techniques from the optimal
transport theory and studying the asymptotic behavior
of the maximal coupling between the data distribution
under the two labels +1 and −1. We use such a coupling
to design a strategy for the adversary by making the
distribution “look almost the same” under the two labels,
hence removing the information about the true label.

• Surprisingly, we observe a phase transition for the optimal
robust error in terms of the adversary’s budget. Roughly
speaking, we observe that if the adversary’s budget is
below

√
d, we can asymptotically achieve the optimal

standard error which corresponds to the case where there
is no adversary, while if the adversary’s budget is above√
d, no classifier can do better than a random guess. In

other words, we can totally compensate for the presence
of the adversary as long as its budget is below

√
d and

achieve a performance as if there were no adversary. On
the other hand, above this threshold

√
d, the adversary

can perturb the data in such a way that the information
about the true label is lost and hence no classifier can
do better than a random guess. Consequently, there is no
trade-off between robustness and accuracy in this setting.

Truncation has been proved to be useful in robustifying
learning algorithms against sparse attacks in other scenarios
as well, such as sparse recovery [24] and learning of graphical
models [25].

In Section II, we give the problem formulation, in Sec-
tion III we discuss the main results, and in Section IV we
conclude the paper. Proof ideas are discussed in the appen-
dices, and the full proofs are given in [26].

We close this section by introducing some notation. We
denote the set of integers {1, . . . , n} by [n]. Φ̄(x) :=
1√
2π

∫∞
x

exp(−t2/2)dt denotes the complementary CDF of a
standard normal distribution. N (µ, σ2) denotes a real-valued
normal distribution with mean µ and variance σ2. dist−−→ and
prob−−→ denote convergence in distribution and convergence in

probability, respectively. X ∼ p(.) means that the random
variable X has distribution p(.). We use the boldface notation

for vectors in the Euclidean space, e.g. x ∈ Rd.

II. PROBLEM FORMULATION

We consider the binary classification setting where the true
label is Y ∼ Unif{±1} and conditioned on a realization
y, d independent real-valued data samples x(d)1 , . . . , x

(d)
d are

generated such that x(d)i = yµd + zi. Here, µd ∈ R is the
conditional expectation of x(d)i given y = 1 and z1, . . . , zd are
i.i.d. samples of a zero-mean real-valued noise distribution
which has a density q(.). We consider a high-dimensional
setting where the dimension d→∞, and µd can depend on the
data dimension d. However, we assume that the noise density
q(.) is fixed and known. Note that since the `0 norm is invari-
ant under scalar multiplication, we can arbitrarily normalize
the quantities, and this assumption is made without loss of
generality. We denote the vector of the input data samples by
x(d) = (x

(d)
i : i ∈ [d]). Throughout this paper, the superscript

(d) emphasizes the dependence on the dimension d. However,
we may drop it from the notations whenever the dimension is
clear from the context. A classifier is a measurable function
C : x 7→ {±1} which predicts the true label from the input
x. We consider the 0-1 loss `(C;x, y) := 1 [C(x) 6= y] as a
metric for discrepancy between the prediction of the classifier
on the input x and the true label y.

We assume that an adversary is allowed to perturb the input
x within the `0 ball of radius k:

B0(x(d), k) := {x′(d) ∈ Rd : ‖x(d) − x′
(d)‖0 ≤ k},

where ‖x(d)‖0 :=
∑d
i=1 1

[
x
(d)
i 6= 0

]
. Effectively, the adver-

sary can change at most k data samples. The parameter k is
called the adversary’s budget. Similar to the above, whenever
the dimension d is clear from the context, we may denote the
adversary’s perturbed data samples as x′ = (x′i : i ∈ [d]). In
this setting, the robust classification error (or robust error for
short) associated to a classifier C is defined to be

L(d)
µd,q

(C, k) := E
[

max
x′∈B0(x,k)

`(C;x′, y)

]
, (1)

where the expectation is taken with respect to the above
mentioned distribution parametrized by d, µd, and q. The
optimal robust classification error (or optimal robust error
for short) is defined by optimizing the robust error over all
possible (measurable) classifiers:

L∗(d)µd,q
(k) := inf

C
L(d)
µd,q

(C, k). (2)

In words, L∗(d)µd,q
(k) is the minimum error that any classifier

can achieve in the presence of an adversary with an `0 budget
k. In other words, no classifier can obtain a robust error
smaller than L∗(d)µd,q

(k) in this setting. Whenever the problem
parameters are clear from the context, we may drop them from
the notation and write L(d)(C, k) or L(C, k), and L∗(d)(k) or
L∗(k).

In the absence of the adversary, or equivalently when k = 0,
L∗(0) reduces to the optimal standard error, which is optimal
Bayes error of estimating Y upon observing the noisy samples
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x1, . . . , xd. In order to fix the baseline, specifically to have a
meaningful asymptotic discussion as d→∞, we assume that
µd is such that the optimal standard error L∗(d)µd,q

(0) remains
constant as d → ∞. As we will see later (see Theorem 2 in
Section III-A), this is achieved when µd = c/

√
d for some

c > 0. Motivated by this, we study the setting where µd =
c/
√
d for some constant c > 0 throughout this paper.

III. MAIN RESULTS

In order to prove our main results, we need the following
assumptions on the noise distribution q(.). We will show later
(see Section III-D) that all of these assumptions are satisfied
for a large class of distributions, including the exponential
family of distributions with polynomial exponents, e.g. the
normal distribution.

Assumption 1. We have q(z) > 0 for all z ∈ R, q(.) is three
times continuously differentiable, and∫ ∞

−∞
q′(z)dz =

∫ ∞
−∞

q′′(z)dz = 0,

where q′(.) and q′′(.) denote the first and second derivatives
of q(.). Furthermore, the location family of distributions

q(z; θ) := q(z − θ), (3)

parameterized by θ ∈ R has well-defined and finite Fisher
information {Iq(θ)}θ∈R.

The Fisher information of the parametric family of distri-
butions q(z; θ) where z, θ ∈ R is defined to be

Iq(θ) :=

∫ (
∂

∂θ
log q(z; θ)

)2

q(z; θ)dz.

See, for instance, [27] for more details. Since q(z; θ) = q(z−
θ) is a location family, it turns out that Iq(θ) is independent
of θ. The common value, which we denote by Iq by an abuse
of notation, is given by

Iq :=

∫ ∞
−∞

(q′(z))2

q(z)
dz. (4)

Assumption 2. There exists ζ > 0 such that

EZ∼q(.)

[
sup

t∈[Z,Z+ζ]

∣∣∣∣ d3dt3 log q(t)

∣∣∣∣
]
<∞. (5)

Assumption 3. There exist ζ > 0 such that

EZ∼q(.)

[
sup

t∈[Z,Z+ζ]

∣∣∣∣ d2dt2 log q(t)

∣∣∣∣2
]
<∞. (6)

Assumption 4. There exist constants γ > 0 and C4 > 0 such
that

lim
d→∞

P
(

max
1≤i≤d

∣∣∣∣ ddz log q(Zi)

∣∣∣∣ > C4(log d)γ
)

= 0,

where Zi are i.i.d. with distribution q(.).

The following theorem formalizes the phase transition we
discussed previously, i.e. if adversary’s budget is orderwise

below
√
d, we can totally compensate for its presence, while

if adversary’s budget is orderwise above
√
d, no classifier can

do better than a random guess. As we discusses previously, we
assume that µd = c/

√
d for a constant c > 0 to ensure that

the standard error is asymptotically constant (see Theorem 2
in Section III-A).

Theorem 1. Assume that µd = c/
√
d for some constant c > 0,

and the assumptions 1-4 are satisfied for the noise density q(.).
Then, if kd is a sequence of adversary’s `0 budget, then we
have

1) If lim supd→∞ logd kd < 1/2, there exists a sequence of
classifiers C(d)kd

such that

lim sup
d→∞

L(d)
µd,q

(C(d)kd
, kd)− L∗(d)µd,q

(0) = 0.

In other words, the excess risk of this sequence of
classifiers as compared to the optimal standard error
(when there is no adversary) converges to zero.

2) If lim infd→∞ logd kd > 1/2, we have

lim inf
d→∞

L∗(d)µd,q
(kd) ≥ 1/2.

In other words, no classifier can asymptotically do better
than a random guess.

The proof of this result essentially follows from Theorems 3
and 4 below. More precisely, in Section III-B, we prove an
achievability result by introducing a sequence of robust clas-
sifiers in the sub-

√
d regime (first part of the theorem), while

in Section III-C, we prove a converse result by introducing
a strategy for the adversary in the super-

√
d regime which

perturbs the data in such a way that the information about
the true label is asymptotically removed (second part of the
theorem). See [26] for a complete proof of Theorem 1.

A. Asymptotic Standadrd Error

Recall that in the absence of the adversary, or equivalently
when adversary’s budget k is zero, the optimal robust error
L∗(d)µd,q

(0) reduces to the optimal Bayes error of estimating Y
upon observing the noisy samples x1, . . . , xd. With an abuse
of notation, we write L∗(d)µd,q

(or L∗ for short) for this optimal
Bayes error. Our goal in this section is to find the appropriate
scaling of µd with d such that L∗(d)µd,q

converges to a constant
as d→∞.

In order to characterize L∗, note that since there is no
adversary, and the prior on Y is uniform, the optimal Bayes
classifier is the maximum likelihood estimator that computes
the likelihood

d∑
i=1

x̃
(d)
i where x̃

(d)
i := log

q(x
(d)
i − µd)

q(x
(d)
i + µd)

, (7)

and returns the estimate ŷ of y as

ŷ =

{
1

∑d
i=1 x̃

(d)
i > 0

−1 otherwise.
(8)
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The following Theorem 2 shows that if µd = c/
√
d, then the

optimal Bayes error converges to a constant. See Appendix A
for proof ideas and [26] for a full proof.

Theorem 2. Assume that assumptions 1 and 2 are satisfied
for the noise density q(.). Then, if µd = c√

d
for some constant

c > 0, we have

lim
d→∞

L∗(d)µd,q
= Φ̄(c

√
Iq).

Furthermore, in this case, as d→∞, conditioned on Y = +1,
the log likelihood

∑d
i=1 x̃

(d)
i converges in distribution to a

normal N (2c2Iq, 4c2Iq) where Iq was defined in (4) and
is the Fisher information associated to the location family
defined in (3). Moreover, conditioned on Y = −1,

∑d
i=1 x̃

(d)
i

converges in distribution to a normal N (−2c2Iq, 4c2Iq).

B. Achievability: Upper Bound on the Optimal Robust Error

In this section, we introduce a classifier and study its
robustness against `0 adversarial perturbations. Recall that
if k is the adversary’s budget, the input to the classifier
is x′ = (x′1, . . . , x

′
d) which is different from the original

sequence x1, . . . , xd in at most k coordinates. Recall from
Section III-A that in the absence of the adversary, the optimal
Bayes classifier is the maximum likelihood estimator based on∑d
i=1 x̃i, as was defined in (7). Motivated by this, we define

x̃
′(d)
i := log

q(x′
(d)
i − µd)

q(x′
(d)
i + µd)

. (9)

Note that if x̃′(d) denotes the vector (x̃
′(d)
i : i ∈ [d]), since

‖x′(d) − x(d)‖0 ≤ k, we have

‖x̃′(d) − x̃(d)‖0 ≤ k. (10)

We define the truncated classifier C(d)k as follows. Given a
vector u = (ui : i ∈ [d]) ∈ Rd and an integer k ≥ 0, we define
the truncated summation TSumk(u) to be the summation of
coordinates in u except for the top and bottom k coordinates.
More precisely, let s = (si : i ∈ [d]) = sort(u) be obtained
by sorting the coordinates of u in descending order. We then
define

TSumk(u) :=
d−k∑
i=k+1

si. (11)

When k = 0, this indeed reduces to the normal summation.
Motivated by (10), we replace

∑d
i=1 x̃

(d)
i with its robustified

version TSumk(
∑d
i=1 x̃

′(d)
i ) and define

C(d)k (x′
(d)

) :=

{
+1 TSumk(x̃′(d)) > 0

−1 otherwise.
(12)

This method essentially removes the “outliers” introduced by
the adversary into the data.

The following theorem shows that this classifier is asymp-
totically robust against adversarial attacks with `0 budget
of at most

√
d. A matching lower bound is provided in

Section III-C. The proof outline of Theorem 3 below is given
in Appendix B. See [26] for a full proof.

Theorem 3. Assume that Assumptions 1-4 are satisfied for the
noise density q(.), and µd = c/

√
d for some c > 0. Then if kd

is a sequence of adversary’s budgets so that kd < d
1
2−ε for

some ε > 0, then we have

lim sup
d→∞

L(d)
µd,q

(C(d)kd
, kd) ≤ Φ̄(c

√
Iq). (13)

In particular, we have

lim sup
d→∞

L(d)
µd,q

(C(d)kd
, kd)− L∗(d)µd,q

= 0. (14)

Note that L∗(d)µd,q
, as was defined in Section III-A above, is

the optimal Bayes error in an ideal scenario when there is no
adversary, and L(d)

µd,q(C
(d)
kd
, kd)−L∗(d)µd,q

is the excess error of
our truncated classifier with respect to this ideal scenario. In
fact, (14) implies that our truncated classifier is asymptotically
optimal in the specified regime of adversary’s budget. The
truncated classifier manages to compensate for the presence
of the adversary, and performs as if there is no adversary.

C. Converse: Lower Bound on the Optimal Robust Error
In this section, we provide a lower bound on the optimal

robust error. We do this by introducing an attack strategy for
the adversary. In this strategy, the adversary with a sufficiently
large budget, perturbs the input data in such a way that all
the information about the true label Y is lost, resulting in a
perturbed data which has a vanishing correlation with the true
label. The proof outline of Theorem 4 is given in Appendix C.
See [26] for a complete proof.

Theorem 4. Assume that Assumptions 1-4 are satisfied for the
noise density q(.), and µd = c/

√
d for some c > 0. Then, if

kd is a sequence of adversary’s budgets so that kd > d1/2+ε

for some ε > 0, then we have lim infd→∞ L∗(d)µd,q
(kd) ≥ 1/2.

D. Exponential Family of Distributions
In this section, we show that assumptions 1-4 are all satisfied

for a large class of distributions, namely the exponential family
of noise distributions of the form q(z) = exp(ψ(z))

A where
ψ(z) = −a2nz2n+a2n−1z

2n−1+ . . . a1z+a0 is a polynomial
in z with even degree 2n > 0 such that a2n > 0. Here, A :=∫∞
−∞ ψ(z)dz is the normalizing constant. Note that since ψ(.)

has an even degree with a negative leading coefficient, we
have A < ∞. Proof ideas of Theorem 5 below are given in
Appendix D. See [26] for a complete proof.

Theorem 5. Assumptions 1- 4 are all satisfied for the density
q(.) of the form discussed above.

IV. CONCLUSION

We studied the binary classification problem in the presence
of an adversary constrained by the `0 norm. We introduced a
robust classification method which employs truncation on the
log likelihood. We showed that this classification method can
asymptotically compensate for the presence of the adversary as
long as adversary’s budget is orderwise below

√
d. Moreover,

we showed a phase transition through a converse argument in
the sense that no classifier can asymptotically do better than
a random guess if adversary’s budget is orderwise above

√
d.

2022 IEEE International Symposium on Information Theory (ISIT)

1734Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 25,2022 at 16:30:50 UTC from IEEE Xplore.  Restrictions apply. 



APPENDIX A
THEOREM 2: PROOF IDEAS

We have L∗(d)µd,q
= 1

2P
(∑d

i=1 x̃
(d)
i ≤ 0|Y = +1

)
+

1
2P
(∑d

i=1 x̃
(d)
i > 0|Y = −1

)
. From now on, we focus on the

term conditioned on Y = +1, since the second term can be
analyzed similarly. In this case, with µd = c/

√
d, we may

write
d∑
i=1

x̃
(d)
i =

d∑
i=1

log
q(zi)

q(zi + 2µd)
=

c√
d

d∑
i=1

1

µd
log

q(zi)

q(zi + 2µd)
.

(15)
It can be seen that writing the Taylor expansion of log q(zi +
2µd) around zi and simplifying, we get

d∑
i=1

log
q(zi)

q(zi + 2µd)
=
−2c√
d

d∑
i=1

d

dz
log q(zi)︸ ︷︷ ︸

=:T1

+

−2cµd√
d

d∑
i=1

d2

dz2
log q(zi)︸ ︷︷ ︸

=:T2

+
−4cµ2

d

3
√
d

d∑
i=1

d3

dz3
log q(zi + εi)︸ ︷︷ ︸

=:T3

,

(16)
with εi ∈ (0, 2µd). The rest of the proof follows by asymp-
totically studying the above three terms. More precisely, it
can be shown that using the central limit theorem, we have
T1

dist−−−→
d→∞

N (0, 4c2Iq). Moreover, law of large numbers

implies that T2 converges to 2c2Iq almost surely. Additionally,
it can be seen that assumption 2 together with the law of large
numbers ensure that T3 converges to zero almost surely. Using
these in (15) and (16), we realize that conditioned on Y = +1,∑d
i=1 x̃

(d)
i converges in distribution to N (2c2Iq, 4c2Iq), and

therefore P
(∑d

i=1 x̃
(d)
i ≤ 0|Y = +1

)
converges to Φ̄(c

√
Iq).

APPENDIX B
THEOREM 3: PROOF IDEAS

We have

L(d)
µd,q

(C(d)k , kd)

=
1

2
P
(
∃x′(d) ∈ B0(x(d), kd) : TSumk(x̃′(d)) ≤ 0|Y = +1

)
+

1

2
P
(
∃x′(d) ∈ B0(x(d), kd) : TSumk(x̃′(d)) ≥ 0|Y = −1

)
.

(17)
From this point forward, we focus on the term condi-
tioned on Y = +1, and the other term can be analyzed
similarly. Note that for x′

(d) ∈ B0(x(d), kd), we have
‖x̃′(d) − x̃(d)‖0 ≤ 0. Therefore, using [20, Lemma 1],
for all x′

(d) ∈ B0(x(d), k0), we have TSumk(x̃′(d)) ≥(∑d
i=1 x̃

(d)
i

)
− 8kd‖x̃(d)‖∞. This implies that the first

term on the right hand side of (17) is bounded from
above by 1

2P
(∑d

i=1 x̃
(d)
i ≤ 8kd‖x̃(d)‖∞|Y = +1

)
. Note that

from Theorem 2, conditioned on Y = +1, we have∑d
i=1 x̃

(d)
i

dist−−−→
d→∞

N (2c2Iq, 4c2Iq). Therefore, it suffices to

show that kd‖x̃(d)‖∞
prob−−−→
d→∞

0 provided that kd < d1/2−ε.

This can be done by writing the Taylor expansion similar to
the proof of Theorem 2 up to the second order term. More
precisely, it can be shown that

‖x̃(d)‖∞ ≤
2c√
d

max
1≤i≤d

∣∣∣∣ ddz log q(zi)

∣∣∣∣︸ ︷︷ ︸
=:T1(d)

+
2c2

d
max
1≤i≤d

sup
t∈[zi,zi+2µd]

∣∣∣∣ d2dt2 log q(t)

∣∣∣∣︸ ︷︷ ︸
=:T2(d)

,

(18)

where εi ∈ (0, 2µd). It can be shown that from assumption 4,
kdT1(d)

prob−−−→
d→∞

0. Also, it can be shown that assumption 3

together with the law of large numbers, kdT2(d)
prob−−−→
d→∞

0.

Hence, kd‖x̃(d)‖∞
prob−−−→
d→∞

0 and we obtain the desired bound.

APPENDIX C
THEOREM 4: PROOF IDEAS

Let q(d)+ and q(d)− be the densities of Z+µd and Z−µd, when
Z ∼ q(.). Using ideas from the optimal transport theory, we
can couple these two distributions with a mismatch probability
bounded by dTV(q

(d)
+ , q

(d)
− ), where dTV denotes the total vari-

ation distance. Now we can introduce a strategy for the adver-
sary using this optimal coupling. Roughly speaking, in case of
a mismatch, the adversary changes the data value to zero. This
ensures that the information about the true label is completely
removed. Since we have d data samples, the average required
`0 budget for this strategy is d× dTV(q

(d)
+ , q

(d)
− ), which using

the Pinsker’s inequality is bounded by d

√
1
2D(q

(d)
+ ‖q

(d)
− ),

where D(.‖.) denotes the KL divergence. It can be shown
that D(q

(d)
+ ‖q

(d)
− ) asymptotically behaves like 2µ2

dIq + o(µ2
d),

which scales as 1/d since µd = c/
√
d. Hence, with an average

adversary’s budget of order d/
√
d =

√
d, we can effectively

remove the information about the true label.

APPENDIX D
THEOREM 5: PROOF IDEAS

Assumption 1 is easy to verify, since q′(z) = ψ′(z)q(z),
ψ′(z) is a polynomial in z, and

∫
poly(z) exp(ψ(z)) < ∞

for any polynomial poly(z). To verify assumptions 2 and
3, note that dr/dtr log q(z) is a polynomial in z for any
integer r. Furthermore, it can be show that for any polynomial
p(z) and ε > 0, the function z 7→ supt∈[z,z+ε] p(t) can
be bounded above by another polynomial in |z| with the
same degree as p(.). Additionally, the expectation of any
polynomial with respect to the density q(.) is finite. These
together are sufficient to verify assumptions 2 and 3. To verify
assumption 4, we first study the tail behavior of q(.) and
show that with high probability, max1≤i≤d |Zi| is bounded
by O(log d)1/2n. On the other hand, since d

dz log q(z) is a
polynomial in z, max1≤i≤d |Zi| can be used to obtain the
desired upper bound for max1≤i≤d | ddz log q(Zi)| which holds
with high probability.
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