
2022-01-0369	 Published 29 Mar 2022

Virtual Evaluation of Deep Learning Techniques for
Vision-Based Trajectory Tracking
Ameya Salvi, Jake Buzhardt, Phanindra Tallapragda, and Venkat N Krovi Clemson University

Jonathon M. Smereka and Mark Brudnak US Army DEVCOM-GVSC

Citation: Salvi, A., Buzhardt, J., Tallapragda, P., Krovi, V.N. et al., “Virtual Evaluation of Deep Learning Techniques for Vision-Based
Trajectory Tracking,” SAE Technical Paper 2022-01-0369, 2022, doi:10.4271/2022-01-0369.

Abstract

Artificial intelligence (AI) enhanced control system
deployments are emerging as a viable substitute to
more traditional control system. In particular, deep

learning techniques offer an alternate approach to tune the
ever increasing sets of control system parameters to extract
performance. However, the systematic verification and
validation (to establish the reliability and robustness) of deep
learning based controllers in actual deployments remains a
challenge. This is exacerbated by the need to evaluate and
optimize control systems embedded within an operational
environment (with its own sets of additional unknown or
uncertain parameters). Existing literature comparisons of
deep learning against traditional controllers, where they may
exist, do not offer structured approaches to comparative
performance evaluation and improvement. It is also crucial
to develop a standardized controlled test environment within

which various controllers are evaluated against a common
metric. Hence, in this paper, we evaluate deep learning based
controllers by a structured selection of pantheon of evaluation
metrics and employ the insights to propose further
modifications to the deep learning algorithms. We first
evaluate a high resolution proportional-integral-derivative
(PID) controller to serve as a common benchmark and develop
the suite of evaluation metrics for a mobile robot to create a
point-to-point trajectory within in the simulation
environment. Against this backdrop, we then evaluate
alternate variants of imitation learning and deep reinforcement
learning controllers which use camera image stream as an
input to develop or tune trajectory tracking output parameters.
Subsequent deployments of control strategies on actual
hardware (in a Sim2Real transition) is anticipated, where the
developed evaluation metrics can be used as a validation tool
when deploying the control strategy on actual hardware.

Introduction

The past decade has seen a resurgence of interest in
deployment of AI based (and more specifically) deep
learning (DL) based control techniques. Such control

techniques leverage iterative training regimes to learn end-
to-end control schemes for different vehicle and robotic
control applications. The concurrent revolutions in computing
(multicore and GPGPU based systems), communication
(Wi-Fi, Bluetooth), enhanced modeling, simulation and test
stand tools leading to greater data availability (large-scale
training sets) and ease of access to end-to-end web-based
frameworks (Keras, Tensorflow) have each contributed to the
increased deployments [8]. The early successes then have set
the stage for ever-increasing complexity of deployments in
actual real-world settings, than could have even been contem-
plated even a decade ago.

As opposed to traditional control schemes, the end-to-
end learning nature of these data-driven controllers offer
tantalizing possibilities in realizing the end-to-end relations
between the observations and control actions [1]. They can
take advantage of either increased simulation fidelity and/or

explicit real-time data-streaming or hybrid combinations of
the two in X-i-L {X=software, hardware, human} settings. It
is also noteworthy that the principal challenges with DL
control systems comes in the training process. In actual
deployments, the deep neural networks based control systems
actually has lower real-time computation needs compared to
a traditional feedback controller [9].

Yet, despite all these potential benefits, there are signifi-
cant challenges to deployment of DL based controllers that
need to be systematically addressed. First and foremost, is a
better characterization of the size, scope and nature of the
control deployments i.e. what can they not do? And what can
they do? And what can they replace? Second, verification and
validation remain an open challenge given the black box
nature of these controllers. The lack of structured approaches
to understand the internal working of such controllers inhibits
ways to target regions of suboptimal performance and improve
only those specific regions. Third, the existence of a support
ecosystem coupled with a workflow for training, test, deploy-
ment and verification (ideally within a continuous improve-
ment cycle) would be crucial. Given the limited scope of this

Received: 14 Feb 2022 	 Revised: 14 Feb 2022 	 Accepted: 12 Jan 2022

Downloaded from SAE International by Clemson University Libraries - PA, Sunday, September 25, 2022

	 2 VIRTUAL EVALUATION OF DEEP LEARNING TECHNIQUES FOR VISION-BASED TRAJECTORY TRACKING

manuscript, we will restrict our attention primarily to the first
two challenges in some depth and with tangential attention
paid to the third.

To overcome these challenges, key performance indices
or evaluation metrics are required that can help compare
multiple data-driven controllers and traditional controllers
through the same lens. The evaluation metrics should
be independent of the inner workings of the controller and
should be derived only from the input-output states. It also
becomes essential, that these evaluation metrics not only
compare performance of two controllers, but also provide
insights on the areas where the controller needs to improve.
The independence of these metrics from the inner workings
of the controller, facilitates comparing any type of feedback
controller and provides ways to compare contemporary
control techniques against traditional feedback controller.

In this paper, multiple evaluation metrics leveraging the
knowledge of standard statistical techniques have been
implemented for a particular application of developing
learning algorithms for vision-based trajectory tracking. The
simplified problem is setup with a skid-steered robot (a
SUMMIT-XL robot as shown in figure 1 [11]) performing path
tracking operation.

Skid-steered vehicles find lot applications with agriculture,
military and in general any off-road terrain where high
maneuverability is desired. The interest of this work in skid-
steered vehicles lies in the fact that the study of cornering
performance, generalized key performance indicators and
most of the research is still tailored around bicycle models,
thus creating a void in literature for skid-steered vehicles.

This visual servoing task has been set up in a standardized
simulation environment of robotics simulation software
CoppeliaSim [11] and using a remote API client to interface
with MATLAB [7], where the learning algorithms are
developed. Such a framework provides with necessary visual
fidelity while leveraging the rapid prototyping tools for control
algorithms provided by MATLAB.

In this paper, a PID tracking algorithm for path tracking
has been first setup in the CoppeliaSim-MATLAB framework.
This algorithm helps to identify the input and output values
that would be available for parametrizing the evaluation

metrics which in turn would be used to benchmark this PID
tracking algorithm. These benchmarked values are used to
investigate the performance of data driven tracking algorithms
like imitation learning and deep reinforcement learning for
the same visual servoing application.

Formulation

Simulation Setup

Track Layout and Sensor Information A vision
sensor plugin enables capture of an image of what the robot
sees in real time and transfers it to the MATLAB environment.
All the image processing steps (as referenced in figure 6) take
place in the MATLAB environment. The sensor and the
actuation information is communicated between MATLAB
and CoppeliaSim at a data transfer rate of 100 Hz.

The objective for track design was to have adequate
number of sharp turns and have them in both clockwise and
counterclockwise manner. This was to make sure that the
training data remains unbiased and the learning algorithms
can generalize well on both the directions. The sharpest turn
was made to be more than the minimum turning radius of
the robot. Skid-steer robots have the ability to turn on the spot
like differential drive robots, but this was avoided to reduce
the training complexity. The minimum turning radius (Rmin)
was found by giving the outer wheels maximum possible
positive velocity and the inner wheels minimum possible
positive velocity.

 FIGURE 1  Robotnik SUMMIT-XL Mobile Robot in
CoppeliaSim [11]

 FIGURE 2  Interfacing MATLAB [7] and CoppeliaSim [11]
using remote API

 FIGURE 3  Raw camera feed as viewed by the robot in
the simulator

Downloaded from SAE International by Clemson University Libraries - PA, Sunday, September 25, 2022

	 3VIRTUAL EVALUATION OF DEEP LEARNING TECHNIQUES FOR VISION-BASED TRAJECTORY TRACKING

	 V
V Vouter inner� �, ,max min

2
	 (1)

ω is acquired from the simulation environment and helps
calculate Rmin as

	 R
V

min � �
	 (2)

Proportional Integral Derivative Tracking
Scheme A PID controller is a feedback controller that
regulates control actions to maintain a desired set point. In
this context, the SUMMIT-XL robot sees the lane and
calculates the center of the lane leveraging the image
processing tools. The horizontal distance between this lane
center and the center of the vision sensor is termed as error,
which the PID controller tries to minimize. With the lane
image as an input, the controller generates a yaw rate for the
robot, which controls the steering action. Figure 5 shows the
lateral error (e) between the camera center (red star) and the
path centroid (blue star).

Figure 6 shows the process flow chart of the steps involved
when going from a raw camera image to a control action. The
steps inside the dotted line are the ones that can be directly
replaced by a deep neural network working as a universal
function approximator. At a high level, the neural network
will take camera image as an input and provide the required
yaw rate for tracking the path in the next time step.

Evaluation Metrics
Apart from the fact that more work needs to be put in
increasing the robustness of the network itself, methods of
verifying the robustness are also required. These methods,
rather than being singular numeric values, should be more
intuitive about the internal dynamics and the system’s
characteristics. Along with specifying how good a data driven
controller is, these methods also need to point towards specific
areas for improvement or regions where the controller falls
short of performance. In the following work, two metrics for
gauging the cornering performance of a skid-steered robot
performing path tracking are developed. The first metric
shares an insight on performance similarities between
multiple controllers and the second metric provides an
intuition on how well a deep learning controller has generalized
from the training data.

Accuracy Metric: Divergence from Benchmarked
Values Traditionally, the performance of a neural network
is computed by evaluating statistical error values like the root
mean square error (RMSE) and mean squared error (MAE)
[4]. The challenge with using these values for a checking
performance of a control system is that they do not provide
an intuition about how the system’s characteristics like its
inertia, slip angles and terra-mechanics are impacting the
controller’s performance. For instance, the linear velocity and
yaw rate values predicted by the neural network are simply a
function of the tracking error value and are decoupled from
the system dynamics. This motivates the development of the
first evaluation metric which compares angular acceleration
of a vehicle at different curvature values. In contrast to angular

 FIGURE 6  An end-to-end process flow chart. Steps in the
red dotted square get replaced by a neural network for data
driven control scheme

 FIGURE 4  Track layout in the CoppeliaSim software

 FIGURE 5  Error generated by calculating the centroid of
the high intensity pixels to be used for the feedback controller

Downloaded from SAE International by Clemson University Libraries - PA, Sunday, September 25, 2022

	 4 VIRTUAL EVALUATION OF DEEP LEARNING TECHNIQUES FOR VISION-BASED TRAJECTORY TRACKING

velocity, angular acceleration captures the effects of the error
as well as the system properties like inertia as shown in
equation 3.

	 ��� � � �f error system properties, 	 (3)

Different curvatures of the track are then segregated in
ten different bins. Associated with each bin is a probability
distribution for the expected angular acceleration values.
From figure 7(a), it can be observed that the distribution of
the angular acceleration increases as the curvature increase.
All the samples are then separated in 10 equidistant bins and
mean and standard deviation of angular acceleration value
for each bin is computed.

A Kullback-Leibler (KL) divergence [3] is computed
between the values predicted by the data driven control
techniques and the ones benchmarked by the PID controller.
For two probability distributions P and Q, the KL divergences
computes proximity between P and Q with the
following relationship

	 KL P Q q

p

p p q

q

,� � �
�

�
�

�

�
� �

� �� �
�log

�
�

� � �
�

2 2

22

1

2
	 (4)

Where, μ is the mean of distribution and σ is the standard
deviation. Subscripts p, q are for distribution P and
Q respectively.

Generalization Metric: Difference in Bending
Energy Overfitting is common problem for training deep
neural networks. It is a condition when the neural network
learns only the training data and has a problem generalizing
it over unseen data [10]. In this visual servoing task it is likely
that the data driven controller may learn exact values of yaw
rate as per training data and fail to perform a smooth
interpolation between extreme data points resulting in a
suboptimal function approximation. With this in mind, an
evaluation metric computing the total bending energy of the
realized path of the vehicle can be computed.

The change in curvature from any instant κi to next in
instance κi + 1 is proportional to bending energy of the curve.
We denote this change by |δκi|. Summation of |δκi| over the
entire track is proportional to the total bending energy of
the path.

	 � ���i Total bending energy 	 (5)

The higher this value, more sharp curves your vehicle
undertakes while traversing the track. A lower value is indica-
tive of smoother transition between two consecutive
tracking points.

Data Driven Learning
Algorithms
Imitation Learning Imitation learning or behavior
cloning is a data driven end-to-end supervised learning
approach in which the neural network based controller learns

 FIGURE 7  (a), 7(b), 7(c) [top to bottom]. Instantaneous
angular acceleration as curvature increase, mean of
instantaneous angular acceleration as curvature increases,
standard deviation of angular acceleration as
curvature increases

Downloaded from SAE International by Clemson University Libraries - PA, Sunday, September 25, 2022

	 5VIRTUAL EVALUATION OF DEEP LEARNING TECHNIQUES FOR VISION-BASED TRAJECTORY TRACKING

the control actions by associating them with certain learning
inputs [2]. In this path tracking example, a neural network is
trained to associate each raw image to a desired velocity and
yaw rate. The vehicle first goes around the track by collecting
structured data of images and associated linear velocity and
yaw rate values as provided by the PID controller.

Training Details The vehicle went around the track for
multiple laps collecting a total of 6000 samples of raw pixel
images and the associated velocity values which were to
be treated as labels. The training takes place on a 16 layered
convolution neural network defined by the hyperparameters
in table 1. The input to the neural network is a 32x32 grayscale
image and the output is a regression layer predicting linear
velocity or yaw rate. The selection of the convolution structure
of neural network is inspired from the NVIDIA’s neural
network tailored for behavior cloning [1]. The choice of
optimizer and initial hyperparameters were selected based on
M. Abdou et al.’s work [12], which is a sucessions of NVIDIA’s
work . Hy per para meters were t hen tuned for
improving performance.

Reinforcement Learning As compared to imitation
learning, which is a supervised learning approach,
reinforcement learning algorithm learns the control
commands by maximizing a user specified reward function
[5]. Reinforcement learning leverages the strength of compute
power for iterative trial and error approach to guess the correct
control values and improves the prediction over time. This is
in contrast to supervised learning where the correct control
values are provided as identification labels and a loss function
is minimized to improve the prediction. A reinforcement
learning agent interacts with its environment over numerous
iterations and undertakes control actions as a function of some
state observations to maximize the user defined reward
function over time (figure 11). In an explicit sense, the
reinforcement learning agent is trying to learn a function that

maps state observations to optimal control actions. In
reinforcement learning terms this function is called a policy
and denoted by π.

The training setup has been done similar to the imitation
learning and the PID control scheme, with CoppeliaSim being
used as a dynamics simulation engine and the training &
control algorithm implemented in MATLAB.

Training Details Similar to the imitation learning based
control, the reinforcement learning algorithm accepts raw
pixel images and predicts a yaw rate associated with those
images. These input-output features vary in a continuous
space (the intensity of any pixel could be anywhere between
0 to 255 and the yaw rate could take any value between the
lower and upper limit [-0.825 rad/s ; 0.825 rad/s]) as opposed

 FIGURE 8  An illustration of the sharp corners of the track.
The 12 peaks in figure 9(a) are indicative of the 12 sharp corners
illustrated here.

 FIGURE 9  (a), 9(b) [top to bottom]. Instantaneous
curvature across entire track (positive values for
counterclockwise turns and negative for clockwise turns),
Zoomed in section of the track enclosed in the red dotted line
(height of peaks and valleys are indicatives of sharpness of the
turn undertaken by the car)

Downloaded from SAE International by Clemson University Libraries - PA, Sunday, September 25, 2022

	 6 VIRTUAL EVALUATION OF DEEP LEARNING TECHNIQUES FOR VISION-BASED TRAJECTORY TRACKING

to a discrete space where both the input and output features
could be from a set of predefined values. This required a
reinforcement learning agent that worked with continuous
input and output states, leading to the choice of deep
deterministic policy (DDPG) agent [6] for training. The
DDPG agent was trained with hyperparameters mentioned
in table 2.

The reward function in its elementary form needed to
be shaped such that the tracking error is minimized.

	 Reward error� � 2	 (6)

Since the reward computation occurs at each time step,
small errors accumulate over time. This leads a trivial
optimality condition with equation 6 in which the vehicle
does not move forward. To counter this, progression to the
next simulation step is provided as a positive feedback and
the net reward is calculated as

	 Reward k i m error� � � �2 2	 (7)

Where, i is the number of simulation steps, and k and m
are weights for the function parameters.

From a technology specific viewpoint, the reinforcement
learning setup was carried out in a synchronous fashion in
contrast to the PID and imitation learning control schemes
which were done asynchronously. In a synchronous simulation,
the simulation engine pauses after every time step till the next
control action is received. This was necessary to implement a
seamless coordination between CoppeliaSim engine and the
MATLAB Reinforcement Learning Toolbox.

Results

Divergence
The trained neural network obtained from the imitation
learning controller and the policy obtained from the
reinforcement learning training were tested for their
prediction by simply switching the control scheme block from
a PID controller to the trained neural network. The output
data was reorganized as required by the evaluation metrics.

The initial observation from the angular acceleration
values showed that the imitation learning algorithm behaved
similar to the PID controller in the sense that predicted
angular acceleration values increased as the track curvature
increased. The distribution of the predicted values was slightly
offset towards negative values. This can be indicative that the
training images were biased with more images with
counterclockwise turns. Shuffling the images or adding more
images with clockwise turns to the data set could be a few
options that can be undertaken to reduce the offset. The
second observation is that the imitation learning framework
has disregarded the outliers in the data set as peak prediction
values are almost half the values of the PID controller. This is
indicative that the neural network has generalized over the
entire track space rather than learning the exact numeric values.

Comparing the reinforcement learning output to the PID
controller, it is evident that the angular acceleration values
are different in magnitude. The very high angular acceleration
values are indicative that the reinforcement learning controller
tries to minimize the error at very high rate which reflects
that the weight provided to error term of reward function is
very high. Tuning the weights of the reward function, specifi-
cally the coefficient of the error term (m), will result in reduced
angular acceleration values.

Computing the KL divergence of the distributions helps
to compare different prediction algorithms by quantifying
the proximity in their performance. Figure 13(a) compares
how similar the values predicted by the imitation learning

 FIGURE 10  Each image is associated with a linear velocity
and yaw rate.

TABLE 1 Training details of imitation learning algorithm

Count of training data set
images

16000

Input feature Image (1024 x 1)

Output layer Regression

Network layers 16

Learning rate 1e-3

Optimizer Adam

Training : Validation split 70:30

Total training epochs 50

 FIGURE 11  A schematic diagram for reinforcement learning.

TABLE 2 Training details of for reinforcement
learning algorithm

Training agent Deep deterministic policy
agent

Observations [Image; Linear Velocity;
Angular Velocity]

Actions Yaw Rate

Simulation environment CoppeliaSim (synchronous
simulation)

Target smoothening factor 1e-3

Discount factor 0.99

Simulation step size 10 ms

Downloaded from SAE International by Clemson University Libraries - PA, Sunday, September 25, 2022

	 7VIRTUAL EVALUATION OF DEEP LEARNING TECHNIQUES FOR VISION-BASED TRAJECTORY TRACKING

algorithms are to the values output by the PID controller.
Since the imitation learning algorithm is trained using the
values provided by the PID controller, it has lower divergence
values for different curvature sections. The curvature bin
number 3 has the highest divergence for the imitation learning
algorithm indicating that the algorithm can now be trained
specifically on curvature values from bin number 3 to
improve performance.

Since the reinforcement learning agent learns by itself,
the predicted values are very different from that of the PID
controller and thus diverges more. This by anyway is not
indicative of the performance of the algorithm itself as KL

 FIGURE 12  (a), 12(b), 12(c). The instantaneous yaw rates
provided by the PID controller, the instantaneous yaw rates
predicted by the imitation learning controller, the
instantaneous yaw rates predicted by the reinforcement
learning controller

 FIGURE 13  (a), 13(b) [top to bottom]. The divergence of the
imitation learning controller from the PID controller, the
divergence of reinforcement learning controller from the
PID controller.

TABLE 3 Training details of imitation learning algorithm

PID Control 1036

Imitation learning 970

Reinforcement learning 13801

Downloaded from SAE International by Clemson University Libraries - PA, Sunday, September 25, 2022

	 8 VIRTUAL EVALUATION OF DEEP LEARNING TECHNIQUES FOR VISION-BASED TRAJECTORY TRACKING

divergence will only point towards how closely two controllers
are performing.

Total Bending Energy
As mentioned in the Formulation section, the total bending
energy is representative of how fast the vehicle changes its
turning radius between two time steps. A low bending energy
indicates that the vehicles traverses in smooth trajectories
where as a high bending energy is result of a zigzag motion.
The total bending energy for the three control schemes are
shown in table 3.

The values indicate that the imitation learning algorithms
generates smoother trajectories even compared to the PID
controller on the basis of which it was trained. This is also
evident from figure 14 (a) and 14 (b) where imitation learning
provides smoother transition from one peak (corner) to other.
A possible explanation for this is that since the convolution
neural network learns to generalize between set of data points,
it tries to fit a smooth curve in the intermediate data points.
This is also an indicator that the neural network has done a
good job of approximating a function and has not learnt the
exact track values (which would indicate overfitting).

For the reinforcement learning algorithm, the high
transition in the instantaneous curvature values indicate that
the vehicle takes very sharp turns. This can again be a product
of poor reward shaping in which high weight to the error term
makes it perform like a proportional controller. A strategy
similar to PD control scheme can be tried over here where the
reward function includes the rate of change of error along
with the instantaneous error. This can potentially lower the
zigzag motion giving rise to smoother trajectories.

The updated reward function may look like equation

	 Reward k i m error n error� � � � � ��
�
�

�
�
�

2 2
2�
	 (8)

Where, i is the number of simulation steps, and k, m and
n are weights for the function parameters. Tuning these
weights will also have an impact on which function parameter
dominates the overall performance.

Conclusions and Future
Work
In this work, two evaluation metrics for path tracking
algorithms have been discussed. The first metric measures
performance proximity of two algorithms and the other is
indicative of how the algorithm can regress between extreme
tracking points. Along with providing quantitative values of
the performance of the algorithm, these metrics also help
narrow down specific areas of improvement so that only those
could be targeted for performance improvement. Since these
metrics are based simply on the input and output values of a

 FIGURE 14  (a), 14(b), 14(c) [top to bottom]. The
instantaneous curvature values for three controllers focused
only on a certain section of the track.

Downloaded from SAE International by Clemson University Libraries - PA, Sunday, September 25, 2022

© 2022 SAE International; CCDC GVSC. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or
by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE International.

Positions and opinions advanced in this work are those of the author(s) and not necessarily those of SAE International. Responsibility for the content of the work lies
solely with the author(s).

ISSN 0148-7191

	 9VIRTUAL EVALUATION OF DEEP LEARNING TECHNIQUES FOR VISION-BASED TRAJECTORY TRACKING

controller, they could be implement for any type of a controller
regardless of its internal working.

This work has been established for a mobile robot
performing path tracking on a flat surface but given the
off-terrain nature of the environment on which skid-steered
robots are used, it is imperative to develop these evaluation
metrics for those terrains. This future work would involve
working with the roll and pitch of the vehicle along with the
yaw motion.

References
	 1.	 Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B.F.

et al., 2016, “End to End Learning for Self-Driving Cars,” 1-9.
http://arxiv.org/abs/1604.07316.

	 2.	 Chella, A., Dindo, H., and Infantino, I., “A Cognitive
Framework for Imitation Learning,” Robotics and
Autonomous Systems 54, no. 5 (2006): 403-408. https://doi.
org/https://doi.org/10.1016/j.robot.2006.01.008.

	 3.	 Contreras-Reyes, J.E. and Arellano-Valle, R.B., “Kullback-
Leibler Divergence Measure for Multivariate Skew-Normal
Distributions,” Entropy 14, no. 9 (2012): 1606-1626. https://
doi.org/10.3390/e14091606.

	 4.	 Japkowicz, N. and Shah, M., Evaluating Learning Algorithms:
A Classification Perspective (Cambridge University Press,
2011). https://doi.org/10.1017/CBO9780511921803

	 5.	 Kober, J., Bagnell, J.A., and Peters, J., “Reinforcement
Learning in Robotics: A Survey,” The International Journal of
Robotics Research 32, no. 11 (2013): 1238-1274. https://doi.
org/10.1177/0278364913495721.

	 6.	 Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N.M.O. et al.,
“Continuous Control with Deep Reinforcement Learning,”
CoRR abs/1509.02971 (2016): n. pag.

	 7.	 MATLAB, Version 7.10.0 (R2010a) (Natick, Massachusetts:
The MathWorks Inc., 2010)

	 8.	 Nair, A., Srinivasan, P., Blackwell, S., Alcicek, C. et al., 2015,
“Massively Parallel Methods for Deep Reinforcement
Learning,” CoRR, abs/1507.04296, 2015. URL http://arxiv.
org/abs/1507.04296.

	 9.	 Kumar, P., Spielberg, S., Tulsyan, A., Gopaluni, B. et al., “A
Deep Learning Architecture for Predictive Control,” IFAC-
PapersOnLine 51, no. 18 (2018): 512-517. https://doi.org/
https://doi.org/10.1016/j.ifacol.2018.09.373.

	10.	 Roelofs, R., Fridovich-Keil, S., Miller, J. et al., “A Meta-
Analysis of Overfitting in Machine Learning,” Advances in
Neural Information Processing Systems 32, no.
NeurIPS (2019).

	11.	 Rohmer, E., Singh, S.P.N., and Freese, M., 2013,
“CoppeliaSim (Formerly V-REP): A Versatile and Scalable
Robot Simulation Framework,” in Proc. of The International
Conference on Intelligent Robots and Systems (IROS).

	12.	 Abdou, M. et al., 2019, “End-to-End Deep Conditional
Imitation Learning for Autonomous Driving,” in 31st
International Conference on Microelectronics (ICM), 2019,
346-350, doi:10.1109/ICM48031.2019.9021288.

Contact Information
Ameya Salvi
Graduate Student, Department of Automotive Engineering,
Clemson University.
Email: asalvi@clemson.edu

Acknowledgement
This work was supported by the Automotive Research Center
(ARC), a US Army Center of Excellence for modeling and
simulation of ground vehicles, under Cooperative Agreement
W56HZV-19-2-0001 with the US Army DEVCOM Ground
Vehicle Systems Center (GVSC).

Downloaded from SAE International by Clemson University Libraries - PA, Sunday, September 25, 2022

http://arxiv.org/abs/1604.07316
https://doi.org/https://doi.org/10.1016/j.robot.2006.01.008
https://doi.org/https://doi.org/10.1016/j.robot.2006.01.008
https://doi.org/10.3390/e14091606
https://doi.org/10.3390/e14091606
https://doi.org/https://doi.org/10.1017/CBO9780511921803
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1177/0278364913495721
http://arxiv.org/abs/1507.04296
http://arxiv.org/abs/1507.04296
https://doi.org/https://doi.org/10.1016/j.ifacol.2018.09.373
https://doi.org/https://doi.org/10.1016/j.ifacol.2018.09.373
http://dx.doi.org/10.1109/ICM48031.2019.9021288
Email: asalvi@clemson.edu

	10.4271/2022-01-0369: Abstract
	Introduction
	Formulation
	Simulation Setup
	Track Layout and Sensor Information
	Proportional Integral Derivative Tracking Scheme
	Evaluation Metrics
	Accuracy Metric: Divergence from Benchmarked Values
	Generalization Metric: Difference in Bending Energy
	Data Driven Learning Algorithms
	Imitation Learning
	Training Details
	Reinforcement Learning
	Training Details

	Results
	Divergence
	Total Bending Energy

	Conclusions and Future Work

	References
	Acknowledgement

