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Abstract

Artificial intelligence (AI) enhanced control system 
deployments are emerging as a viable substitute to 
more traditional control system. In particular, deep 

learning techniques offer an alternate approach to tune the 
ever increasing sets of control system parameters to extract 
performance. However, the systematic verification and 
validation (to establish the reliability and robustness) of deep 
learning based controllers in actual deployments remains a 
challenge. This is exacerbated by the need to evaluate and 
optimize control systems embedded within an operational 
environment (with its own sets of additional unknown or 
uncertain parameters). Existing literature comparisons of 
deep learning against traditional controllers, where they may 
exist, do not offer structured approaches to comparative 
performance evaluation and improvement. It is also crucial 
to develop a standardized controlled test environment within 

which various controllers are evaluated against a common 
metric. Hence, in this paper, we evaluate deep learning based 
controllers by a structured selection of pantheon of evaluation 
metrics and employ the insights to propose further 
modifications to the deep learning algorithms. We  first 
evaluate a high resolution proportional-integral-derivative 
(PID) controller to serve as a common benchmark and develop 
the suite of evaluation metrics for a mobile robot to create a 
point-to-point trajectory within in the simulation 
environment. Against this backdrop, we  then evaluate 
alternate variants of imitation learning and deep reinforcement 
learning controllers which use camera image stream as an 
input to develop or tune trajectory tracking output parameters. 
Subsequent deployments of control strategies on actual 
hardware (in a Sim2Real transition) is anticipated, where the 
developed evaluation metrics can be used as a validation tool 
when deploying the control strategy on actual hardware.

Introduction

The past decade has seen a resurgence of interest in 
deployment of AI based (and more specifically) deep 
learning (DL) based control techniques. Such control 

techniques leverage iterative training regimes to learn end-
to-end control schemes for different vehicle and robotic 
control applications. The concurrent revolutions in computing 
(multicore and GPGPU based systems), communication 
(Wi-Fi, Bluetooth), enhanced modeling, simulation and test 
stand tools leading to greater data availability (large-scale 
training sets) and ease of access to end-to-end web-based 
frameworks (Keras, Tensorflow) have each contributed to the 
increased deployments [8]. The early successes then have set 
the stage for ever-increasing complexity of deployments in 
actual real-world settings, than could have even been contem-
plated even a decade ago.

As opposed to traditional control schemes, the end-to-
end learning nature of these data-driven controllers offer 
tantalizing possibilities in realizing the end-to-end relations 
between the observations and control actions [1]. They can 
take advantage of either increased simulation fidelity and/or 

explicit real-time data-streaming or hybrid combinations of 
the two in X-i-L {X=software, hardware, human} settings. It 
is also noteworthy that the principal challenges with DL 
control systems comes in the training process. In actual 
deployments, the deep neural networks based control systems 
actually has lower real-time computation needs compared to 
a traditional feedback controller [9].

Yet, despite all these potential benefits, there are signifi-
cant challenges to deployment of DL based controllers that 
need to be systematically addressed. First and foremost, is a 
better characterization of the size, scope and nature of the 
control deployments i.e. what can they not do? And what can 
they do? And what can they replace? Second, verification and 
validation remain an open challenge given the black box 
nature of these controllers. The lack of structured approaches 
to understand the internal working of such controllers inhibits 
ways to target regions of suboptimal performance and improve 
only those specific regions. Third, the existence of a support 
ecosystem coupled with a workflow for training, test, deploy-
ment and verification (ideally within a continuous improve-
ment cycle) would be crucial. Given the limited scope of this 
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manuscript, we will restrict our attention primarily to the first 
two challenges in some depth and with tangential attention 
paid to the third.

To overcome these challenges, key performance indices 
or evaluation metrics are required that can help compare 
multiple data-driven controllers and traditional controllers 
through the same lens. The evaluation metrics should 
be independent of the inner workings of the controller and 
should be derived only from the input-output states. It also 
becomes essential, that these evaluation metrics not only 
compare performance of two controllers, but also provide 
insights on the areas where the controller needs to improve. 
The independence of these metrics from the inner workings 
of the controller, facilitates comparing any type of feedback 
controller and provides ways to compare contemporary 
control techniques against traditional feedback controller.

In this paper, multiple evaluation metrics leveraging the 
knowledge of standard statistical techniques have been 
implemented for a particular application of developing 
learning algorithms for vision-based trajectory tracking. The 
simplified problem is setup with a skid-steered robot (a 
SUMMIT-XL robot as shown in figure 1 [11]) performing path 
tracking operation.

Skid-steered vehicles find lot applications with agriculture, 
military and in general any off-road terrain where high 
maneuverability is desired. The interest of this work in skid-
steered vehicles lies in the fact that the study of cornering 
performance, generalized key performance indicators and 
most of the research is still tailored around bicycle models, 
thus creating a void in literature for skid-steered vehicles.

This visual servoing task has been set up in a standardized 
simulation environment of robotics simulation software 
CoppeliaSim [11] and using a remote API client to interface 
with MATLAB [7], where the learning algorithms are 
developed. Such a framework provides with necessary visual 
fidelity while leveraging the rapid prototyping tools for control 
algorithms provided by MATLAB.

In this paper, a PID tracking algorithm for path tracking 
has been first setup in the CoppeliaSim-MATLAB framework. 
This algorithm helps to identify the input and output values 
that would be  available for parametrizing the evaluation 

metrics which in turn would be used to benchmark this PID 
tracking algorithm. These benchmarked values are used to 
investigate the performance of data driven tracking algorithms 
like imitation learning and deep reinforcement learning for 
the same visual servoing application.

Formulation

Simulation Setup

Track Layout and Sensor Information A vision 
sensor plugin enables capture of an image of what the robot 
sees in real time and transfers it to the MATLAB environment. 
All the image processing steps (as referenced in figure 6) take 
place in the MATLAB environment. The sensor and the 
actuation information is communicated between MATLAB 
and CoppeliaSim at a data transfer rate of 100 Hz.

The objective for track design was to have adequate 
number of sharp turns and have them in both clockwise and 
counterclockwise manner. This was to make sure that the 
training data remains unbiased and the learning algorithms 
can generalize well on both the directions. The sharpest turn 
was made to be more than the minimum turning radius of 
the robot. Skid-steer robots have the ability to turn on the spot 
like differential drive robots, but this was avoided to reduce 
the training complexity. The minimum turning radius (Rmin) 
was found by giving the outer wheels maximum possible 
positive velocity and the inner wheels minimum possible 
positive velocity.

 FIGURE 1  Robotnik SUMMIT-XL Mobile Robot in 
CoppeliaSim [11]

 FIGURE 2  Interfacing MATLAB [7] and CoppeliaSim [11] 
using remote API

 FIGURE 3  Raw camera feed as viewed by the robot in 
the simulator
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ω is acquired from the simulation environment and helps 
calculate Rmin as
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Proportional Integral Derivative Tracking 
Scheme A PID controller is a feedback controller that 
regulates control actions to maintain a desired set point. In 
this context, the SUMMIT-XL robot sees the lane and 
calculates the center of the lane leveraging the image 
processing tools. The horizontal distance between this lane 
center and the center of the vision sensor is termed as error, 
which the PID controller tries to minimize. With the lane 
image as an input, the controller generates a yaw rate for the 
robot, which controls the steering action. Figure 5 shows the 
lateral error (e) between the camera center (red star) and the 
path centroid (blue star).

Figure 6 shows the process flow chart of the steps involved 
when going from a raw camera image to a control action. The 
steps inside the dotted line are the ones that can be directly 
replaced by a deep neural network working as a universal 
function approximator. At a high level, the neural network 
will take camera image as an input and provide the required 
yaw rate for tracking the path in the next time step.

Evaluation Metrics
Apart from the fact that more work needs to be  put in 
increasing the robustness of the network itself, methods of 
verifying the robustness are also required. These methods, 
rather than being singular numeric values, should be more 
intuitive about the internal dynamics and the system’s 
characteristics. Along with specifying how good a data driven 
controller is, these methods also need to point towards specific 
areas for improvement or regions where the controller falls 
short of performance. In the following work, two metrics for 
gauging the cornering performance of a skid-steered robot 
performing path tracking are developed. The first metric 
shares an insight on performance similarities between 
multiple controllers and the second metric provides an 
intuition on how well a deep learning controller has generalized 
from the training data.

Accuracy Metric: Divergence from Benchmarked 
Values Traditionally, the performance of a neural network 
is computed by evaluating statistical error values like the root 
mean square error (RMSE) and mean squared error (MAE) 
[4]. The challenge with using these values for a checking 
performance of a control system is that they do not provide 
an intuition about how the system’s characteristics like its 
inertia, slip angles and terra-mechanics are impacting the 
controller’s performance. For instance, the linear velocity and 
yaw rate values predicted by the neural network are simply a 
function of the tracking error value and are decoupled from 
the system dynamics. This motivates the development of the 
first evaluation metric which compares angular acceleration 
of a vehicle at different curvature values. In contrast to angular 

 FIGURE 6  An end-to-end process flow chart. Steps in the 
red dotted square get replaced by a neural network for data 
driven control scheme

 FIGURE 4  Track layout in the CoppeliaSim software

 FIGURE 5  Error generated by calculating the centroid of 
the high intensity pixels to be used for the feedback controller
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velocity, angular acceleration captures the effects of the error 
as well as the system properties like inertia as shown in 
equation 3.

	 ��� � � �f error system properties,  	 (3)

Different curvatures of the track are then segregated in 
ten different bins. Associated with each bin is a probability 
distribution for the expected angular acceleration values. 
From figure 7(a), it can be observed that the distribution of 
the angular acceleration increases as the curvature increase. 
All the samples are then separated in 10 equidistant bins and 
mean and standard deviation of angular acceleration value 
for each bin is computed.

A Kullback-Leibler (KL) divergence [3] is computed 
between the values predicted by the data driven control 
techniques and the ones benchmarked by the PID controller. 
For two probability distributions P and Q, the KL divergences 
computes proximity between P and Q with the 
following relationship
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Where, μ is the mean of distribution and σ is the standard 
deviation. Subscripts p, q are for distribution P and 
Q respectively.

Generalization Metric: Difference in Bending 
Energy Overfitting is common problem for training deep 
neural networks. It is a condition when the neural network 
learns only the training data and has a problem generalizing 
it over unseen data [10]. In this visual servoing task it is likely 
that the data driven controller may learn exact values of yaw 
rate as per training data and fail to perform a smooth 
interpolation between extreme data points resulting in a 
suboptimal function approximation. With this in mind, an 
evaluation metric computing the total bending energy of the 
realized path of the vehicle can be computed.

The change in curvature from any instant κi to next in 
instance κi + 1 is proportional to bending energy of the curve. 
We denote this change by |δκi|. Summation of |δκi| over the 
entire track is proportional to the total bending energy of 
the path.

	 � ���i Total bending energy  	 (5)

The higher this value, more sharp curves your vehicle 
undertakes while traversing the track. A lower value is indica-
tive of smoother transition between two consecutive 
tracking points.

Data Driven Learning 
Algorithms
Imitation Learning Imitation learning or behavior 
cloning is a data driven end-to-end supervised learning 
approach in which the neural network based controller learns 

 FIGURE 7  (a), 7(b), 7(c) [top to bottom]. Instantaneous 
angular acceleration as curvature increase, mean of 
instantaneous angular acceleration as curvature increases, 
standard deviation of angular acceleration as 
curvature increases
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the control actions by associating them with certain learning 
inputs [2]. In this path tracking example, a neural network is 
trained to associate each raw image to a desired velocity and 
yaw rate. The vehicle first goes around the track by collecting 
structured data of images and associated linear velocity and 
yaw rate values as provided by the PID controller.

Training Details The vehicle went around the track for 
multiple laps collecting a total of 6000 samples of raw pixel 
images and the associated velocity values which were to 
be treated as labels. The training takes place on a 16 layered 
convolution neural network defined by the hyperparameters 
in table 1. The input to the neural network is a 32x32 grayscale 
image and the output is a regression layer predicting linear 
velocity or yaw rate. The selection of the convolution structure 
of neural network is inspired from the NVIDIA’s neural 
network tailored for behavior cloning [1]. The choice of 
optimizer and initial hyperparameters were selected based on 
M. Abdou et al.’s work [12], which is a sucessions of NVIDIA’s 
work .  Hy per para meters were t hen tuned for 
improving performance.

Reinforcement Learning As compared to imitation 
learning, which is a supervised learning approach, 
reinforcement learning algorithm learns the control 
commands by maximizing a user specified reward function 
[5]. Reinforcement learning leverages the strength of compute 
power for iterative trial and error approach to guess the correct 
control values and improves the prediction over time. This is 
in contrast to supervised learning where the correct control 
values are provided as identification labels and a loss function 
is minimized to improve the prediction. A reinforcement 
learning agent interacts with its environment over numerous 
iterations and undertakes control actions as a function of some 
state observations to maximize the user defined reward 
function over time (figure 11). In an explicit sense, the 
reinforcement learning agent is trying to learn a function that 

maps state observations to optimal control actions. In 
reinforcement learning terms this function is called a policy 
and denoted by π.

The training setup has been done similar to the imitation 
learning and the PID control scheme, with CoppeliaSim being 
used as a dynamics simulation engine and the training & 
control algorithm implemented in MATLAB.

Training Details Similar to the imitation learning based 
control, the reinforcement learning algorithm accepts raw 
pixel images and predicts a yaw rate associated with those 
images. These input-output features vary in a continuous 
space (the intensity of any pixel could be anywhere between 
0 to 255 and the yaw rate could take any value between the 
lower and upper limit [-0.825 rad/s ; 0.825 rad/s]) as opposed 

 FIGURE 8  An illustration of the sharp corners of the track. 
The 12 peaks in figure 9(a) are indicative of the 12 sharp corners 
illustrated here.

 FIGURE 9  (a), 9(b) [top to bottom]. Instantaneous 
curvature across entire track (positive values for 
counterclockwise turns and negative for clockwise turns), 
Zoomed in section of the track enclosed in the red dotted line 
(height of peaks and valleys are indicatives of sharpness of the 
turn undertaken by the car)
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to a discrete space where both the input and output features 
could be from a set of predefined values. This required a 
reinforcement learning agent that worked with continuous 
input and output states, leading to the choice of deep 
deterministic policy (DDPG) agent [6] for training. The 
DDPG agent was trained with hyperparameters mentioned 
in table 2.

The reward function in its elementary form needed to 
be shaped such that the tracking error is minimized.

	 Reward error� � 2	 (6)

Since the reward computation occurs at each time step, 
small errors accumulate over time. This leads a trivial 
optimality condition with equation 6 in which the vehicle 
does not move forward. To counter this, progression to the 
next simulation step is provided as a positive feedback and 
the net reward is calculated as

	 Reward k i m error� � � �2 2	 (7)

Where, i is the number of simulation steps, and k and m 
are weights for the function parameters.

From a technology specific viewpoint, the reinforcement 
learning setup was carried out in a synchronous fashion in 
contrast to the PID and imitation learning control schemes 
which were done asynchronously. In a synchronous simulation, 
the simulation engine pauses after every time step till the next 
control action is received. This was necessary to implement a 
seamless coordination between CoppeliaSim engine and the 
MATLAB Reinforcement Learning Toolbox.

Results

Divergence
The trained neural network obtained from the imitation 
learning controller and the policy obtained from the 
reinforcement learning training were tested for their 
prediction by simply switching the control scheme block from 
a PID controller to the trained neural network. The output 
data was reorganized as required by the evaluation metrics.

The initial observation from the angular acceleration 
values showed that the imitation learning algorithm behaved 
similar to the PID controller in the sense that predicted 
angular acceleration values increased as the track curvature 
increased. The distribution of the predicted values was slightly 
offset towards negative values. This can be indicative that the 
training images were biased with more images with 
counterclockwise turns. Shuffling the images or adding more 
images with clockwise turns to the data set could be a few 
options that can be  undertaken to reduce the offset. The 
second observation is that the imitation learning framework 
has disregarded the outliers in the data set as peak prediction 
values are almost half the values of the PID controller. This is 
indicative that the neural network has generalized over the 
entire track space rather than learning the exact numeric values.

Comparing the reinforcement learning output to the PID 
controller, it is evident that the angular acceleration values 
are different in magnitude. The very high angular acceleration 
values are indicative that the reinforcement learning controller 
tries to minimize the error at very high rate which reflects 
that the weight provided to error term of reward function is 
very high. Tuning the weights of the reward function, specifi-
cally the coefficient of the error term (m), will result in reduced 
angular acceleration values.

Computing the KL divergence of the distributions helps 
to compare different prediction algorithms by quantifying 
the proximity in their performance. Figure 13(a) compares 
how similar the values predicted by the imitation learning 

 FIGURE 10  Each image is associated with a linear velocity 
and yaw rate.

TABLE 1 Training details of imitation learning algorithm

Count of training data set 
images

16000

Input feature Image (1024 x 1)

Output layer Regression

Network layers 16

Learning rate 1e-3

Optimizer Adam

Training : Validation split 70:30

Total training epochs 50

 FIGURE 11  A schematic diagram for reinforcement learning.

TABLE 2 Training details of for reinforcement 
learning algorithm

Training agent Deep deterministic policy 
agent

Observations [Image; Linear Velocity; 
Angular Velocity ]

Actions Yaw Rate

Simulation environment CoppeliaSim (synchronous 
simulation)

Target smoothening factor 1e-3

Discount factor 0.99

Simulation step size 10 ms
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algorithms are to the values output by the PID controller. 
Since the imitation learning algorithm is trained using the 
values provided by the PID controller, it has lower divergence 
values for different curvature sections. The curvature bin 
number 3 has the highest divergence for the imitation learning 
algorithm indicating that the algorithm can now be trained 
specifically on curvature values from bin number 3 to 
improve performance.

Since the reinforcement learning agent learns by itself, 
the predicted values are very different from that of the PID 
controller and thus diverges more. This by anyway is not 
indicative of the performance of the algorithm itself as KL 

 FIGURE 12  (a), 12(b), 12(c). The instantaneous yaw rates 
provided by the PID controller, the instantaneous yaw rates 
predicted by the imitation learning controller, the 
instantaneous yaw rates predicted by the reinforcement 
learning controller

 FIGURE 13  (a), 13(b) [top to bottom]. The divergence of the 
imitation learning controller from the PID controller, the 
divergence of reinforcement learning controller from the 
PID controller.

TABLE 3 Training details of imitation learning algorithm

PID Control 1036

Imitation learning 970

Reinforcement learning 13801
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divergence will only point towards how closely two controllers 
are performing.

Total Bending Energy
As mentioned in the Formulation section, the total bending 
energy is representative of how fast the vehicle changes its 
turning radius between two time steps. A low bending energy 
indicates that the vehicles traverses in smooth trajectories 
where as a high bending energy is result of a zigzag motion. 
The total bending energy for the three control schemes are 
shown in table 3.

The values indicate that the imitation learning algorithms 
generates smoother trajectories even compared to the PID 
controller on the basis of which it was trained. This is also 
evident from figure 14 (a) and 14 (b) where imitation learning 
provides smoother transition from one peak (corner) to other. 
A possible explanation for this is that since the convolution 
neural network learns to generalize between set of data points, 
it tries to fit a smooth curve in the intermediate data points. 
This is also an indicator that the neural network has done a 
good job of approximating a function and has not learnt the 
exact track values (which would indicate overfitting).

For the reinforcement learning algorithm, the high 
transition in the instantaneous curvature values indicate that 
the vehicle takes very sharp turns. This can again be a product 
of poor reward shaping in which high weight to the error term 
makes it perform like a proportional controller. A strategy 
similar to PD control scheme can be tried over here where the 
reward function includes the rate of change of error along 
with the instantaneous error. This can potentially lower the 
zigzag motion giving rise to smoother trajectories.

The updated reward function may look like equation

	 Reward k i m error n error� � � � � ��
�
�

�
�
�

2 2
2�
	 (8)

Where, i is the number of simulation steps, and k, m and 
n are weights for the function parameters. Tuning these 
weights will also have an impact on which function parameter 
dominates the overall performance.

Conclusions and Future 
Work
In this work, two evaluation metrics for path tracking 
algorithms have been discussed. The first metric measures 
performance proximity of two algorithms and the other is 
indicative of how the algorithm can regress between extreme 
tracking points. Along with providing quantitative values of 
the performance of the algorithm, these metrics also help 
narrow down specific areas of improvement so that only those 
could be targeted for performance improvement. Since these 
metrics are based simply on the input and output values of a 

 FIGURE 14  (a), 14(b), 14(c) [top to bottom]. The 
instantaneous curvature values for three controllers focused 
only on a certain section of the track.
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controller, they could be implement for any type of a controller 
regardless of its internal working.

This work has been established for a mobile robot 
performing path tracking on a flat surface but given the 
off-terrain nature of the environment on which skid-steered 
robots are used, it is imperative to develop these evaluation 
metrics for those terrains. This future work would involve 
working with the roll and pitch of the vehicle along with the 
yaw motion.
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