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Abstract—Safe operations of autonomous mobile robots in 

close proximity to humans, creates a need for enhanced trajectory 
tracking (with low tracking errors).  Linear optimal control 
techniques such as Linear Quadratic Regulator (LQR) and Model 
Predictive Control (MPC) have been used successfully for low-
speed applications while leveraging their model-based 
methodology with manageable computational demands. However, 
model- and parameter- uncertainties or other unmodeled non-
linearities may cause poor control actions and constraint 
violations. Nonlinear MPC has emerged as an alternate optimal-
control approach but needs to overcome real-time deployment 
challenges (including fast sampling time, design complexity, and 
limited computational resources). In recent years, the optimal 
control-based deployments have benefitted enormously from the 
ability of Deep Neural Networks (DNNs) to serve as universal 
function approximators. This has led to deployments in a plethora 
of previously inaccessible applications – but many aspects of 
generalizability, benchmarking, and systematic verification and 
validation coupled with benchmarking have emerged. This paper 
presents a novel approach to fusing Deep Reinforcement 
Learning-based (DRL) longitudinal control with a traditional PID 
lateral controller for autonomous navigation. Our approach 
follows (i) Generation of an adequate fidelity simulation scenario 
via a Real2Sim approach; (ii) training a DRL agent within this 
framework; (iii) Testing the performance and generalizability on 
alternate scenarios. We use an initial tuned set of the lateral PID 
controller gains for observing the vehicle response over a range of 
velocities. Then we use a DRL framework to generate policies for 
an optimal longitudinal controller that successfully complements 
the lateral PID to give the best tracking performance for the 
vehicle.   

Keywords—Hybrid Deep Reinforcement Learning Controller, 
Real2Sim, Time-Optimal Autonomous Navigation 

I. INTRODUCTION  
 Operations with Autonomous Wheeled Mobile Robots 
(WMRs) in uncertain and unstructured environments have led 
to numerous applications ranging from on-road autonomy to 
automated last-mile fulfillment systems [1]. Often the 
requirement of conditional/full autonomy in these applications 
creates a need for WMRs to work in close proximity to other 
agents, including humans. Thus, accurate trajectory generation 
and tracking in dynamic environments are essential and leave 
very low margins for error [2][3]. 

 Intelligent Perception-Planning-Controls behaviors now 
enable WMRs to make critical decisions and act without human 

intervention in real-time. Often, a hierarchical partitioning of 
realization of intelligence is pursued with: (i) an upper-level 
"Perception-Planning" stage and (ii) a lower-level "Planning-
Control" stage. This "Perception-Planning" stage encompasses 
the process of sensing the environment (often with multiple 
sensor streams) and subsequent perceptual processing to enable 
understanding and set the stage for decision-making. In 
contrast, the "Planning-Control" stage uses controllers varying 
in complexity from a simple reactive PID controller to complex 
model-based controllers to interact with the environment. 
Complexities arising from unknown environments/situations 
now create challenges both for (i) real-time understanding and 
decision making, as well as for (ii) ensuing safety guarantees 
and controller-adaptability in uncertain environments. 

 Linear controllers for WMRs are attractive for providing 
adequate tracking capabilities with lower computational 
demands. Significant literature compares performance, 
computational efficiency, and robustness in various 
applications [5-8]. However, time-varying parameters, external 
disturbances/sensor failures, model parameters, and functional 
constraints could lead to poor tracking performance.[8] 
Approaches like Non-Linear Model Predictive Control 
(NMPC) can overcome these limitations but require high 
computational costs and sensitivity to changing system 
dynamics. In this setting, end-to-end data-driven machine 
learning-based methods have emerged as an industry approach 
to overcome complexity and real-time computational demands. 

 This is evidenced in the growth of contemporary research in 
autonomous driving algorithms building on AI approaches and 
Deep Learning-based approaches [9]. A plethora of 
supervised/unsupervised based AI approaches have now been 
deployed - ranging from subsystem deployments (like semantic 
segmentation, object detection, motion estimation for 
Perception-Planning") to end-to-end approaches (like behavior 
cloning for "Perception-Planning-Control") [4][9]. 
Reinforcement Learning approaches have found a particular 
niche that allows their deployment for autonomous-vehicle 
systems.  

 In this milieu, Deep neural networks have revolutionized all 
aspects of the discipline by their universal function 
approximation that allows for a deep representation learning to 
map high-dimensional inputs to outputs. Hence, fusing Deep 
Neural Networks with Reinforcement Learning gives rise to 
Deep Reinforcement Learning, enabling policy generation for 
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continuous action space problems in a model-free setup.  DRL 
methods can provide an end-to-end workflow for various 
autonomy functionalities. However, these methods remain 
susceptible to practical challenges such as simulation-reality 
gap, generalizability, brittle reward functions, etc. Additionally, 
safety considerations must be factored in the RL decision-
making process for autonomous systems. [4] [9-11]  

Thus, there is a need to blend the adaptability of DRL methods 
with the computational simplicity and safety guarantees of a 
physics-guided controller realization in a DRL formulation. 
Such a physics-guided DRL approach can bring significant 
task-state-, dependency- and constraint-awareness to enhance 
prediction performance, generalizability, interpretability, and 
sample efficiency. Hence, we will use innovative approaches to 
integrate traditional physics-based modeling (mechanistic 
models, theories, and laws) with complementary strengths from 
state-of-the-art machine learning techniques (supervised, 
unsupervised, and especially in reinforcement learning 
settings).  

To elucidate and examine these concepts in greater detail, 
we consider the following prototypical automotive control 
problem of a vehicle navigating the racetrack in an optimal 
trajectory. The control challenge in this scenario can be broken 
down into lateral and longitudinal control. A traditional 
handcrafted PID lateral controller permits operations within a 
test environment but with the goal of bootstrapping a physics-
aware DRL longitudinal controller. The performance of this 
combined PID and DRL controller is verified against the lateral 
reference controller sampled at different velocities. 

The paper is organized as follows. Section II presents our 
project's experimental setup in the F1/10th scaled vehicle 
platform and Software in Loop (SIL) toolchain. Section III 
delves into the construction of longitudinal and lateral 
controllers. Section IV highlights the workflow for the 
experimental setup. Section V presents results and performance 
comparisons, and we conclude with discussions on future scope 
and challenges in Section VI.  

II. SCALED EXPERIMENTAL TESTBED 

A. F1/10th scaled vehicle platform 

 
Figure 1: F1/10th scaled vehicle platform [12] 

Software in Loop testing and validation is a crucial part of the 
traditional V-model development paradigm enabling 
optimization of training time, rapid prototyping, and reducing 
negative consequences from Hardware-in-Loop testing. We 
build upon the F1/10th scaled vehicle ecosystem developed by 

researchers at the University of Pennsylvania [13] to pursue the 
development/deployment of autonomous driving capabilities in 
SIL and HIL settings. Equipped with autonomy capable 
hardware with an array of proprioceptive and exteroceptive 
sensors like LiDAR, camera, etc., it allows the vehicle to 
generate an intermediate representation of the environment 
around it, as seen in Fig. 1 

B. F1/10th simulator 
Simulator software provides a platform to set up experiments 

to assess the performance of our algorithms. This enables faster 
prototyping at a fraction of the computational and actual costs. 
Depending on the operating conditions, a myriad of 
environments can be sampled to ensure the viability/robustness 
of the project when transitioning to the real world. We consider 
various metrics for comparison noted in Santos et al. [18] for 
running quantitative analyses of different simulations. The 
default F1/10th racing simulator [13] uses a simplified bicycle 
dynamic model to capture vehicle performance characteristics. 
Within this simulator, we use three tracks of varying 
complexities from the F1/10th repository, as highlighted in Fig. 
2 viz Torino, Berlin, and Round-Track, to test the performance 
of our hybrid controller. 
 

 
Figure 2: Test tracks on the F1/10th simulator 

III. METHODOLOGY 
 The autonomous driving task can be on a high-level 
approach split up as a combination of lateral and longitudinal 
controllers. 

A. Lateral Bounded PID controller 

 
Figure 3:Wall following [12] 

The goal of our reference lateral controller is to enable wall 
following, with a piece-wise linear wall segment, by correcting 
the angular offset between the wall and the vehicle. Using the 



LiDAR sensor data, we can parameterize the scan to obtain both: 
(i) perpendicular distance, b, from LiDAR the o the wall; as well 
as (ii) the other look-ahead distance, a, at a fixed angle 𝜃 . 
Inferring from geometry, we can obtain the vehicle heading 
angle 𝛼 =  tan−1(

𝑎∗cos 𝜃−𝑏

a sin 𝜃
) , which is minimized using the PID 

controller as demonstrated in Fig. 3,4.  
 

𝑢(𝑡) =  𝐾𝑝 + 𝐾𝑖 ∫ 𝑒(𝑡′)𝑑𝑡′ + 𝐾𝑑

𝑑(𝑒(𝑡))

𝑑𝑡

𝑡

0

  (1) 

We use a lateral PID controller tuned using the traditional 
Ziegler-Nichols to minimize the track's lateral error. 
 

 
Figure 4: Ziegler Nichols method for PID tuning [16] 

B. Twin Delay Deep Deterministic Policy Gradient (DDPG) 
based Longitudinal Controller 
Reinforcement learning uses a Markov Decision Process 

(MDP) formulation to model a sequential decision-making 
process. Using the state-action-transition function-reward <S, 
A, T, R>, the RL agent develops a stochastic policy defining the 
probability of choosing an action given a state to attain the 
highest overall reward throughout the episode [4]. The Twin-
Delay Deep Deterministic Policy Gradient (DDPG) algorithm 
is an example of the Actor-Critic method in RL, which has been 
widely adopted in recent years to solve reinforcement learning 
problems pertaining to complex continuous state-action space. 
It belongs to the category of off-policy actor-critic algorithms 
designed to overcome the limitations of the value-based method 
when scaled to continuous space problems [14]. As an update 
to the widely used DDPG for continuous state problems, TD3 
improves upon the tendency of DDPG to overestimate Q-values 
leading to policy breaking using twin critic-networks, delaying 
updates to the policy networks and noise regulation to improve 
performance [15]. TD3 uses Clipped Q learning for smaller 
target values as, 

𝑦(𝑟, 𝑠′, 𝑑) = 𝑟 + 𝛾(1 − 𝑑) min
𝑖=1,2

𝑄∅𝑖,𝑡𝑎𝑟𝑔
(𝑠′, 𝑎′(𝑠′)) (2) 

and maximizes the policy through the following optimization: 

max
𝜃

E
𝑠~𝐷

[𝑄∅1
(𝑠, 𝜇𝜃(𝑠))] (3) 

𝐿(∅1, 𝐷) = E
(𝑠,𝑎,𝑟,𝑠′,𝑑)~𝐷

[((𝑄∅1
(𝑠, 𝑎)  −  𝑦(𝑟, 𝑠′, 𝑑))

2

 ] (4) 

𝐿(∅2, 𝐷) = E
(𝑠,𝑎,𝑟,𝑠′,𝑑)~𝐷

[((𝑄∅2
(𝑠, 𝑎)  −  𝑦(𝑟, 𝑠′, 𝑑))

2
 ] (5) 

The following subsections highlight the key components of 
our TD3 agent for optimal longitudinal control.  

 
Figure 5: TD3 pseudocode [15] 

Actor/Critic Networks 

 TD3 algorithm uses four neural networks: a deterministic 
actor, target actor, Q-value critic, and a target Q-value critic. 
The deterministic actor 𝜋(𝑠|𝜃)  returns action maximizing 
the long term reward while the Q-value critic 𝑄𝑘(𝑠, 𝑎|∅𝑘) 
returns expectation of long-term rewards due to the action 
from the actor. Both the target actor 𝜋𝑡(𝑠|𝜃𝑡)  and target 
critic  𝑄𝑡𝑘(𝑠, 𝑎|∅𝑡𝑘)  are used to improve the stability by 
periodically updating the actor/critic parameters. Fig. 6 
shows the network diagram for our actor/critic networks. 

 
Figure 6: TD3 actor-critic networks 

State Representation 

At any instance of time 𝑡 , the state of the system captures 
the interaction between the agent and the environment through 
observation 𝑠𝑡. As noted earlier, a physics-aware formulation of 
the RL problem can better represent the agent's interaction with 
its environment. Six states capture the physics of the agent in the 
simplified kinematic bicycle model –  [𝑥 �̇� 𝑦 �̇� 𝜑 �̇�] 
where 𝑥, 𝑦, 𝜑 are the position and orientation of the vehicle and 
�̇�, �̇�, �̇�  are the linear and angular velocities derived from the 
odometry. Additionally, the lateral error, longitudinal distance 
in the front using LiDAR measurement segmentation and the 



previous action from the controller 𝑎𝑡−1 comprise of our state 
observation vector. 
Action Definition 

 Using the target policy smoothening, the TD3 actor agent 
generates an action based on the state which is clipped to lie 
in the bounded range of actions as defined in the 
hyperparameters for the algorithm.  

𝑎′(𝑠′) = 𝑐𝑙𝑖𝑝 (𝜇𝜃𝑡𝑎𝑟𝑔
(𝑠′) + 𝑐𝑙𝑖𝑝(𝜖, −𝑐, 𝑐), 𝑎𝐿𝑜𝑤 , 𝑎𝐻𝑖𝑔ℎ) ,    𝜖 ~ 𝑁(0, 𝜎) 

𝑠. 𝑡   𝑎𝑡  ∈ 𝑅  ∃  𝑎𝑚𝑖𝑛 < 𝑎𝑡 <  𝑎𝑚𝑎𝑥  (6) 
 
In our experiments, these limits on the forward velocity are 
bounded in the range [0,6.5] m/s. 
 
Reward Function Formulation 

 The RL agent generates a policy that optimizes the 
reward function based on the problem's constraints. M. Grzes 
et al. [17] highlight the importance of reward function 
shaping on the performance of the RL agent. 
Considering the task in hand to generate an optimal policy 
for a longitudinal controller, the reward function 𝑟𝑡 is given 
by: 

𝑟𝑡 = {   
−µ ∗ 𝑒𝑟𝑟𝑜𝑟𝑙𝑎𝑡𝑒𝑟𝑎𝑙 − β ∗ (5 − 𝑎𝑡) …

+γ ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡𝑜𝑡𝑎𝑙 − δ ∗ �̇�, 𝑁𝑜 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛
−10,                                                           𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛

 (7) 

 The agent's goal is to maximize the reward function. 
There are penalties for deviating from the center of the lane, 
having lower velocity than 5m/s, and higher angular velocity 
to discourage the vehicle from going in circles. The policy 
rewards the total distance covered during an episode, thus 
balancing speed and consistent performance. The trade-off 
between speed and safety can be tuned by changing the value 
of constants µ, 𝛽, 𝛾, 𝛿 in the reward function 

Table Column Head 
Hyperparameter Function  Value 

Sample Time Simulation Time 0.01s 
Target Smooth 
Factor 

Parameter for target actor and 
critic update [0,1] 

0.001 

Experience Buffer 
Length 

Number of steps of experience 
saved during an episode. 

1e6 

Discount Factor Prioritize between immediate 
or overall rewards. 

0.99 

Mini Batch Size Samples from the experience 
buffer for updating the critic 
model. 

64 

Table 1: Hyperparameter description for DRL agents 

IV. IMPLEMENTATION  

A. Workflow 
 Upon classifying the Reinforcement Learning problem, it is 
necessary to set up a workflow to interact with the simulation 
environment, access the required states, formulate rewards, 
and relay back the action from the RL policy. We used the 
MATLAB ROS toolbox to interface with our ROS framework 
and create external nodes. This capability further extends to 
subscribing to the network of ROS topics which encode 
information from the simulator in a time-synchronized method. 
The Deep Reinforcement Learning toolbox is then used as an 

abstraction to encapsulate our DRL agents. The entire 
workflow is illustrated in Fig. 7 

 
Figure 7: MATLAB ROS RL workflow 

B. Trajectories with constant linear velocity and lateral PID 
controller 

 Using the PID controller described in Section II, we generate 
our reference trajectory, which is set as a benchmark to 
compare the performance of our DRL agent. As the lateral 
controller has fixed controller gains, we increase the constant 
longitudinal velocity and observe the vehicle response with 
increasing linear velocity. 

 

C. Training DRL agent 
Using the workflow described in Section IV.A, we train 

individual TD3 agents for each of the above tracks. We train the 
network for 1000 episodes with 1000 steps per episode. Once 
the DRL agent is trained, the trajectory and linear/angular 
velocity profiles resulting from our hybrid controller are 
compared and contrasted with responses from Section IV.B. 

 

 
Figure 8: Snapshot of DRL agent training 

V. RESULTS 

A. Comparing trajectories from DRL agent v/s PID controller 
Fig. 9,10,11 highlight the different trajectories resulting from 
using a lateral PID controller with varying velocities sampled 
at 1.5m/s,2.5m/s, and 3.5m/s (left) and resulting trajectory from 
the hybrid PID+RL controller (right).  



Round-track 

 
Figure 9: Round track trajectory comparison 

Berlin track 

 
Figure 10: Berlin track trajectory comparison 

Torino track 

 
Figure 11: Torino track trajectory comparison 

As expected, when the constant longitudinal velocity is 
increased with fixed state of tune for PID lateral controller, the 
vehicle starts to overshoot its desired trajectory. This leads to 
oscillations while the lateral controller dampens down the error. 
This is more prevalent in challenging circuits as shown in Fig. 
10 and 11. In contrast, our hybrid "PID+DRL" controller can 
modulate velocity of the vehicle to maximize the rewards. This 
leads to increased speed during straight patches of the track and 
reduced speed during the corners to compliment the lateral PID 
controller. As a result, the oscillations are regulated 
considerably. This leads to smoother trajectories at higher 
average speed. 

B. Comparative Analyses (linear and angular velcity) 
Currently, we use the measured timestamped odometry data 

to recreate the actual angular and linear velocity profiles for the 
various comparative analyses.  It is noteworthy that actual 
(average) velocities lag behind the desired input velocities, 
which we attribute to simulation fidelity. Fig. 12, 13 and 14 

highlight the measured angular velocity profile (left) and linear 
velocity profile (right) as the vehicle traverses the Round, 
Berlin and Torino track contrasted with PID lateral controller 
at linear speed of 3.5m/s. 
Round-track 

 
Figure 12: Round track linear and angular velocity profile 

Berlin track 

 
Figure 13: Berlin track linear and angular velocity profile 

Torino track 

 
Figure 14: Torino track linear and angular velocity profile 

The x-axis represents the percentage of the track covered by the 
vehicle over each test run. The inferences from these tests are 
summarized in Table II. 

Metric PID + 
1.5m/s 

PID + 
2.5m/s 

PID + 
3.5m/s 

PID + RL 

Round-track 

Avg Lin Vel 
(m/s) 

1.47 2.43 3.37 2.85 

Avg Ang Vel 
(deg/sec) 

0.25 0.67 2.05 0.56 

Berlin track 

Avg Lin Vel 
(m/s) 

1.48 2.455 3.39 2.83 

Avg Ang Vel 
(deg/sec) 

1.09 1.84 2.52 1.21 

Torino track 

Avg Lin Vel 
(m/s) 

1.47 2.44 3.38 2.86 

Avg Ang Vel 
(deg/sec) 

0.44 1.03 2.35 1.31 

 Table 2: Linear and Angular Velocity comparison 



Considering the tuning of the reward function, the goal of 
the RL agent is to strike a balance between speed and jerk in 
form of angular velocity while traversing the tracks. This is 
evident from the average longitudinal velocity of 2.84m/s. 
Using interpolation via 2nd order fitting function for PID 
controller response at different velocities, we can compare the 
performance from our hybrid controller.  

The hybrid PID+RL controller trained on Round-track 
experiences 51.1% reduction in average angular velocity 
compared to the response from PID controller sampled at 
constant velocity of 2.85 m/s. Similarly, the hybrid controller 
on Berlin and Torino track show 43% and 15% reduction 
compared to response of PID sampled at 2.83m/s, 2.86m/s 
respectively. 

C. Generalization to unknown tracks 
Adaptability and generalizability are potential challenges 

for deployment of Reinforcement Learning based applications 
which make a huge impact in providing safety guarantees [4]. 
Using a baseline lateral controller (PID) with DRL based 
longitudinal agent provides boundedness and generalizability. 
This can be measured through the performance of an RL agent 
in a different environment it was initially trained on. Fig. 15 
highlights generalization of the trained agents across all three 
tracks. The 3 RL agents are the ones trained on Round-track, 
Berlin track and Torino track respectively. We use them in 
conjunction with the PID lateral controller and test performance 
across different tracks. The maximum fluctuation for average 
linear velocity (3.5%) and average angular velocity (16%) 
across all tracks supporting our case for performance 
generalization of our hybrid PID+RL based controllers on 
different tracks.  

 
Figure 15: Average Linear and Angular Velocity comparisons  

VI. DISCUSSION AND FUTURE SCOPE 
In this study we examined fusing Reinforcement Learning 

agent with a baseline controller enables us to design a bounded 
and adaptable controller capable of constructing an optimal 
policy for the given controller gains. Consequently, the 
generalizability of this approach has been tested and is 
presented here in the form of SIL deployment. 

We plan to test the validity of this SIL deployment on the 
real F1/10th vehicle and additional metrics based on ground 
truth using an indoor localization platform can be used to 
further improve performance. Challenges include the Sim2Real 
transition for RL based controllers and noisy data from the 
onboard sensors. 
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