
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Hybrid Reinforcement Learning based controller for
autonomous navigation

Ajinkya Joglekar
 Automotive Engineering

Clemson University
Greenville, SC, USA
ajoglek@clemson.edu

Venkat Krovi
Automotive Engineering

Clemson University
Greenville, SC, USA
vkrovi@clemson.edu

Mark Brudnak
Ground Vehicle Systems

Center
Warren, MI,USA

mark.j.brudnak.civ@mail.mil

Jonathon M. Smereka
Ground Vehicle Systems

Center
Warren, MI,USA

jonathon.m.smereka.civ@mail.mil

Abstract—Safe operations of autonomous mobile robots in

close proximity to humans, creates a need for enhanced trajectory
tracking (with low tracking errors). Linear optimal control
techniques such as Linear Quadratic Regulator (LQR) and Model
Predictive Control (MPC) have been used successfully for low-
speed applications while leveraging their model-based
methodology with manageable computational demands. However,
model- and parameter- uncertainties or other unmodeled non-
linearities may cause poor control actions and constraint
violations. Nonlinear MPC has emerged as an alternate optimal-
control approach but needs to overcome real-time deployment
challenges (including fast sampling time, design complexity, and
limited computational resources). In recent years, the optimal
control-based deployments have benefitted enormously from the
ability of Deep Neural Networks (DNNs) to serve as universal
function approximators. This has led to deployments in a plethora
of previously inaccessible applications – but many aspects of
generalizability, benchmarking, and systematic verification and
validation coupled with benchmarking have emerged. This paper
presents a novel approach to fusing Deep Reinforcement
Learning-based (DRL) longitudinal control with a traditional PID
lateral controller for autonomous navigation. Our approach
follows (i) Generation of an adequate fidelity simulation scenario
via a Real2Sim approach; (ii) training a DRL agent within this
framework; (iii) Testing the performance and generalizability on
alternate scenarios. We use an initial tuned set of the lateral PID
controller gains for observing the vehicle response over a range of
velocities. Then we use a DRL framework to generate policies for
an optimal longitudinal controller that successfully complements
the lateral PID to give the best tracking performance for the
vehicle.

Keywords—Hybrid Deep Reinforcement Learning Controller,
Real2Sim, Time-Optimal Autonomous Navigation

I. INTRODUCTION
 Operations with Autonomous Wheeled Mobile Robots
(WMRs) in uncertain and unstructured environments have led
to numerous applications ranging from on-road autonomy to
automated last-mile fulfillment systems [1]. Often the
requirement of conditional/full autonomy in these applications
creates a need for WMRs to work in close proximity to other
agents, including humans. Thus, accurate trajectory generation
and tracking in dynamic environments are essential and leave
very low margins for error [2][3].

 Intelligent Perception-Planning-Controls behaviors now
enable WMRs to make critical decisions and act without human

intervention in real-time. Often, a hierarchical partitioning of
realization of intelligence is pursued with: (i) an upper-level
"Perception-Planning" stage and (ii) a lower-level "Planning-
Control" stage. This "Perception-Planning" stage encompasses
the process of sensing the environment (often with multiple
sensor streams) and subsequent perceptual processing to enable
understanding and set the stage for decision-making. In
contrast, the "Planning-Control" stage uses controllers varying
in complexity from a simple reactive PID controller to complex
model-based controllers to interact with the environment.
Complexities arising from unknown environments/situations
now create challenges both for (i) real-time understanding and
decision making, as well as for (ii) ensuing safety guarantees
and controller-adaptability in uncertain environments.

 Linear controllers for WMRs are attractive for providing
adequate tracking capabilities with lower computational
demands. Significant literature compares performance,
computational efficiency, and robustness in various
applications [5-8]. However, time-varying parameters, external
disturbances/sensor failures, model parameters, and functional
constraints could lead to poor tracking performance.[8]
Approaches like Non-Linear Model Predictive Control
(NMPC) can overcome these limitations but require high
computational costs and sensitivity to changing system
dynamics. In this setting, end-to-end data-driven machine
learning-based methods have emerged as an industry approach
to overcome complexity and real-time computational demands.

 This is evidenced in the growth of contemporary research in
autonomous driving algorithms building on AI approaches and
Deep Learning-based approaches [9]. A plethora of
supervised/unsupervised based AI approaches have now been
deployed - ranging from subsystem deployments (like semantic
segmentation, object detection, motion estimation for
Perception-Planning") to end-to-end approaches (like behavior
cloning for "Perception-Planning-Control") [4][9].
Reinforcement Learning approaches have found a particular
niche that allows their deployment for autonomous-vehicle
systems.

 In this milieu, Deep neural networks have revolutionized all
aspects of the discipline by their universal function
approximation that allows for a deep representation learning to
map high-dimensional inputs to outputs. Hence, fusing Deep
Neural Networks with Reinforcement Learning gives rise to
Deep Reinforcement Learning, enabling policy generation for

mailto:jonathon.m.smereka.civ@mail.mil

continuous action space problems in a model-free setup. DRL
methods can provide an end-to-end workflow for various
autonomy functionalities. However, these methods remain
susceptible to practical challenges such as simulation-reality
gap, generalizability, brittle reward functions, etc. Additionally,
safety considerations must be factored in the RL decision-
making process for autonomous systems. [4] [9-11]

Thus, there is a need to blend the adaptability of DRL methods
with the computational simplicity and safety guarantees of a
physics-guided controller realization in a DRL formulation.
Such a physics-guided DRL approach can bring significant
task-state-, dependency- and constraint-awareness to enhance
prediction performance, generalizability, interpretability, and
sample efficiency. Hence, we will use innovative approaches to
integrate traditional physics-based modeling (mechanistic
models, theories, and laws) with complementary strengths from
state-of-the-art machine learning techniques (supervised,
unsupervised, and especially in reinforcement learning
settings).

To elucidate and examine these concepts in greater detail,
we consider the following prototypical automotive control
problem of a vehicle navigating the racetrack in an optimal
trajectory. The control challenge in this scenario can be broken
down into lateral and longitudinal control. A traditional
handcrafted PID lateral controller permits operations within a
test environment but with the goal of bootstrapping a physics-
aware DRL longitudinal controller. The performance of this
combined PID and DRL controller is verified against the lateral
reference controller sampled at different velocities.

The paper is organized as follows. Section II presents our
project's experimental setup in the F1/10th scaled vehicle
platform and Software in Loop (SIL) toolchain. Section III
delves into the construction of longitudinal and lateral
controllers. Section IV highlights the workflow for the
experimental setup. Section V presents results and performance
comparisons, and we conclude with discussions on future scope
and challenges in Section VI.

II. SCALED EXPERIMENTAL TESTBED

A. F1/10th scaled vehicle platform

Figure 1: F1/10th scaled vehicle platform [12]

Software in Loop testing and validation is a crucial part of the
traditional V-model development paradigm enabling
optimization of training time, rapid prototyping, and reducing
negative consequences from Hardware-in-Loop testing. We
build upon the F1/10th scaled vehicle ecosystem developed by

researchers at the University of Pennsylvania [13] to pursue the
development/deployment of autonomous driving capabilities in
SIL and HIL settings. Equipped with autonomy capable
hardware with an array of proprioceptive and exteroceptive
sensors like LiDAR, camera, etc., it allows the vehicle to
generate an intermediate representation of the environment
around it, as seen in Fig. 1

B. F1/10th simulator
Simulator software provides a platform to set up experiments

to assess the performance of our algorithms. This enables faster
prototyping at a fraction of the computational and actual costs.
Depending on the operating conditions, a myriad of
environments can be sampled to ensure the viability/robustness
of the project when transitioning to the real world. We consider
various metrics for comparison noted in Santos et al. [18] for
running quantitative analyses of different simulations. The
default F1/10th racing simulator [13] uses a simplified bicycle
dynamic model to capture vehicle performance characteristics.
Within this simulator, we use three tracks of varying
complexities from the F1/10th repository, as highlighted in Fig.
2 viz Torino, Berlin, and Round-Track, to test the performance
of our hybrid controller.

Figure 2: Test tracks on the F1/10th simulator

III. METHODOLOGY
 The autonomous driving task can be on a high-level
approach split up as a combination of lateral and longitudinal
controllers.

A. Lateral Bounded PID controller

Figure 3:Wall following [12]

The goal of our reference lateral controller is to enable wall
following, with a piece-wise linear wall segment, by correcting
the angular offset between the wall and the vehicle. Using the

LiDAR sensor data, we can parameterize the scan to obtain both:
(i) perpendicular distance, b, from LiDAR the o the wall; as well
as (ii) the other look-ahead distance, a, at a fixed angle 𝜃 .
Inferring from geometry, we can obtain the vehicle heading
angle 𝛼 = tan−1(

𝑎∗cos 𝜃−𝑏

a sin 𝜃
) , which is minimized using the PID

controller as demonstrated in Fig. 3,4.

𝑢(𝑡) = 𝐾𝑝 + 𝐾𝑖 ∫ 𝑒(𝑡′)𝑑𝑡′ + 𝐾𝑑

𝑑(𝑒(𝑡))

𝑑𝑡

𝑡

0

 (1)

We use a lateral PID controller tuned using the traditional
Ziegler-Nichols to minimize the track's lateral error.

Figure 4: Ziegler Nichols method for PID tuning [16]

B. Twin Delay Deep Deterministic Policy Gradient (DDPG)
based Longitudinal Controller
Reinforcement learning uses a Markov Decision Process

(MDP) formulation to model a sequential decision-making
process. Using the state-action-transition function-reward <S,
A, T, R>, the RL agent develops a stochastic policy defining the
probability of choosing an action given a state to attain the
highest overall reward throughout the episode [4]. The Twin-
Delay Deep Deterministic Policy Gradient (DDPG) algorithm
is an example of the Actor-Critic method in RL, which has been
widely adopted in recent years to solve reinforcement learning
problems pertaining to complex continuous state-action space.
It belongs to the category of off-policy actor-critic algorithms
designed to overcome the limitations of the value-based method
when scaled to continuous space problems [14]. As an update
to the widely used DDPG for continuous state problems, TD3
improves upon the tendency of DDPG to overestimate Q-values
leading to policy breaking using twin critic-networks, delaying
updates to the policy networks and noise regulation to improve
performance [15]. TD3 uses Clipped Q learning for smaller
target values as,

𝑦(𝑟, 𝑠′, 𝑑) = 𝑟 + 𝛾(1 − 𝑑) min
𝑖=1,2

𝑄∅𝑖,𝑡𝑎𝑟𝑔
(𝑠′, 𝑎′(𝑠′)) (2)

and maximizes the policy through the following optimization:

max
𝜃

E
𝑠~𝐷

[𝑄∅1
(𝑠, 𝜇𝜃(𝑠))] (3)

𝐿(∅1, 𝐷) = E
(𝑠,𝑎,𝑟,𝑠′,𝑑)~𝐷

[((𝑄∅1
(𝑠, 𝑎) − 𝑦(𝑟, 𝑠′, 𝑑))

2

] (4)

𝐿(∅2, 𝐷) = E
(𝑠,𝑎,𝑟,𝑠′,𝑑)~𝐷

[((𝑄∅2
(𝑠, 𝑎) − 𝑦(𝑟, 𝑠′, 𝑑))

2
] (5)

The following subsections highlight the key components of
our TD3 agent for optimal longitudinal control.

Figure 5: TD3 pseudocode [15]

Actor/Critic Networks

 TD3 algorithm uses four neural networks: a deterministic
actor, target actor, Q-value critic, and a target Q-value critic.
The deterministic actor 𝜋(𝑠|𝜃) returns action maximizing
the long term reward while the Q-value critic 𝑄𝑘(𝑠, 𝑎|∅𝑘)
returns expectation of long-term rewards due to the action
from the actor. Both the target actor 𝜋𝑡(𝑠|𝜃𝑡) and target
critic 𝑄𝑡𝑘(𝑠, 𝑎|∅𝑡𝑘) are used to improve the stability by
periodically updating the actor/critic parameters. Fig. 6
shows the network diagram for our actor/critic networks.

Figure 6: TD3 actor-critic networks

State Representation

At any instance of time 𝑡 , the state of the system captures
the interaction between the agent and the environment through
observation 𝑠𝑡. As noted earlier, a physics-aware formulation of
the RL problem can better represent the agent's interaction with
its environment. Six states capture the physics of the agent in the
simplified kinematic bicycle model – [𝑥 �̇� 𝑦 �̇� 𝜑 �̇�]
where 𝑥, 𝑦, 𝜑 are the position and orientation of the vehicle and
�̇�, �̇�, �̇� are the linear and angular velocities derived from the
odometry. Additionally, the lateral error, longitudinal distance
in the front using LiDAR measurement segmentation and the

previous action from the controller 𝑎𝑡−1 comprise of our state
observation vector.
Action Definition

 Using the target policy smoothening, the TD3 actor agent
generates an action based on the state which is clipped to lie
in the bounded range of actions as defined in the
hyperparameters for the algorithm.

𝑎′(𝑠′) = 𝑐𝑙𝑖𝑝 (𝜇𝜃𝑡𝑎𝑟𝑔
(𝑠′) + 𝑐𝑙𝑖𝑝(𝜖, −𝑐, 𝑐), 𝑎𝐿𝑜𝑤 , 𝑎𝐻𝑖𝑔ℎ) , 𝜖 ~ 𝑁(0, 𝜎)

𝑠. 𝑡 𝑎𝑡 ∈ 𝑅 ∃ 𝑎𝑚𝑖𝑛 < 𝑎𝑡 < 𝑎𝑚𝑎𝑥 (6)

In our experiments, these limits on the forward velocity are
bounded in the range [0,6.5] m/s.

Reward Function Formulation

 The RL agent generates a policy that optimizes the
reward function based on the problem's constraints. M. Grzes
et al. [17] highlight the importance of reward function
shaping on the performance of the RL agent.
Considering the task in hand to generate an optimal policy
for a longitudinal controller, the reward function 𝑟𝑡 is given
by:

𝑟𝑡 = {
−µ ∗ 𝑒𝑟𝑟𝑜𝑟𝑙𝑎𝑡𝑒𝑟𝑎𝑙 − β ∗ (5 − 𝑎𝑡) …

+γ ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡𝑜𝑡𝑎𝑙 − δ ∗ �̇�, 𝑁𝑜 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛
−10, 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛

 (7)

 The agent's goal is to maximize the reward function.
There are penalties for deviating from the center of the lane,
having lower velocity than 5m/s, and higher angular velocity
to discourage the vehicle from going in circles. The policy
rewards the total distance covered during an episode, thus
balancing speed and consistent performance. The trade-off
between speed and safety can be tuned by changing the value
of constants µ, 𝛽, 𝛾, 𝛿 in the reward function

Table Column Head
Hyperparameter Function Value

Sample Time Simulation Time 0.01s
Target Smooth
Factor

Parameter for target actor and
critic update [0,1]

0.001

Experience Buffer
Length

Number of steps of experience
saved during an episode.

1e6

Discount Factor Prioritize between immediate
or overall rewards.

0.99

Mini Batch Size Samples from the experience
buffer for updating the critic
model.

64

Table 1: Hyperparameter description for DRL agents

IV. IMPLEMENTATION

A. Workflow
 Upon classifying the Reinforcement Learning problem, it is
necessary to set up a workflow to interact with the simulation
environment, access the required states, formulate rewards,
and relay back the action from the RL policy. We used the
MATLAB ROS toolbox to interface with our ROS framework
and create external nodes. This capability further extends to
subscribing to the network of ROS topics which encode
information from the simulator in a time-synchronized method.
The Deep Reinforcement Learning toolbox is then used as an

abstraction to encapsulate our DRL agents. The entire
workflow is illustrated in Fig. 7

Figure 7: MATLAB ROS RL workflow

B. Trajectories with constant linear velocity and lateral PID
controller

 Using the PID controller described in Section II, we generate
our reference trajectory, which is set as a benchmark to
compare the performance of our DRL agent. As the lateral
controller has fixed controller gains, we increase the constant
longitudinal velocity and observe the vehicle response with
increasing linear velocity.

C. Training DRL agent
Using the workflow described in Section IV.A, we train

individual TD3 agents for each of the above tracks. We train the
network for 1000 episodes with 1000 steps per episode. Once
the DRL agent is trained, the trajectory and linear/angular
velocity profiles resulting from our hybrid controller are
compared and contrasted with responses from Section IV.B.

Figure 8: Snapshot of DRL agent training

V. RESULTS

A. Comparing trajectories from DRL agent v/s PID controller
Fig. 9,10,11 highlight the different trajectories resulting from
using a lateral PID controller with varying velocities sampled
at 1.5m/s,2.5m/s, and 3.5m/s (left) and resulting trajectory from
the hybrid PID+RL controller (right).

Round-track

Figure 9: Round track trajectory comparison

Berlin track

Figure 10: Berlin track trajectory comparison

Torino track

Figure 11: Torino track trajectory comparison

As expected, when the constant longitudinal velocity is
increased with fixed state of tune for PID lateral controller, the
vehicle starts to overshoot its desired trajectory. This leads to
oscillations while the lateral controller dampens down the error.
This is more prevalent in challenging circuits as shown in Fig.
10 and 11. In contrast, our hybrid "PID+DRL" controller can
modulate velocity of the vehicle to maximize the rewards. This
leads to increased speed during straight patches of the track and
reduced speed during the corners to compliment the lateral PID
controller. As a result, the oscillations are regulated
considerably. This leads to smoother trajectories at higher
average speed.

B. Comparative Analyses (linear and angular velcity)
Currently, we use the measured timestamped odometry data

to recreate the actual angular and linear velocity profiles for the
various comparative analyses. It is noteworthy that actual
(average) velocities lag behind the desired input velocities,
which we attribute to simulation fidelity. Fig. 12, 13 and 14

highlight the measured angular velocity profile (left) and linear
velocity profile (right) as the vehicle traverses the Round,
Berlin and Torino track contrasted with PID lateral controller
at linear speed of 3.5m/s.
Round-track

Figure 12: Round track linear and angular velocity profile

Berlin track

Figure 13: Berlin track linear and angular velocity profile

Torino track

Figure 14: Torino track linear and angular velocity profile

The x-axis represents the percentage of the track covered by the
vehicle over each test run. The inferences from these tests are
summarized in Table II.

Metric PID +
1.5m/s

PID +
2.5m/s

PID +
3.5m/s

PID + RL

Round-track

Avg Lin Vel
(m/s)

1.47 2.43 3.37 2.85

Avg Ang Vel
(deg/sec)

0.25 0.67 2.05 0.56

Berlin track

Avg Lin Vel
(m/s)

1.48 2.455 3.39 2.83

Avg Ang Vel
(deg/sec)

1.09 1.84 2.52 1.21

Torino track

Avg Lin Vel
(m/s)

1.47 2.44 3.38 2.86

Avg Ang Vel
(deg/sec)

0.44 1.03 2.35 1.31

 Table 2: Linear and Angular Velocity comparison

Considering the tuning of the reward function, the goal of
the RL agent is to strike a balance between speed and jerk in
form of angular velocity while traversing the tracks. This is
evident from the average longitudinal velocity of 2.84m/s.
Using interpolation via 2nd order fitting function for PID
controller response at different velocities, we can compare the
performance from our hybrid controller.

The hybrid PID+RL controller trained on Round-track
experiences 51.1% reduction in average angular velocity
compared to the response from PID controller sampled at
constant velocity of 2.85 m/s. Similarly, the hybrid controller
on Berlin and Torino track show 43% and 15% reduction
compared to response of PID sampled at 2.83m/s, 2.86m/s
respectively.

C. Generalization to unknown tracks
Adaptability and generalizability are potential challenges

for deployment of Reinforcement Learning based applications
which make a huge impact in providing safety guarantees [4].
Using a baseline lateral controller (PID) with DRL based
longitudinal agent provides boundedness and generalizability.
This can be measured through the performance of an RL agent
in a different environment it was initially trained on. Fig. 15
highlights generalization of the trained agents across all three
tracks. The 3 RL agents are the ones trained on Round-track,
Berlin track and Torino track respectively. We use them in
conjunction with the PID lateral controller and test performance
across different tracks. The maximum fluctuation for average
linear velocity (3.5%) and average angular velocity (16%)
across all tracks supporting our case for performance
generalization of our hybrid PID+RL based controllers on
different tracks.

Figure 15: Average Linear and Angular Velocity comparisons

VI. DISCUSSION AND FUTURE SCOPE
In this study we examined fusing Reinforcement Learning

agent with a baseline controller enables us to design a bounded
and adaptable controller capable of constructing an optimal
policy for the given controller gains. Consequently, the
generalizability of this approach has been tested and is
presented here in the form of SIL deployment.

We plan to test the validity of this SIL deployment on the
real F1/10th vehicle and additional metrics based on ground
truth using an indoor localization platform can be used to
further improve performance. Challenges include the Sim2Real
transition for RL based controllers and noisy data from the
onboard sensors.

REFERENCES
[1] M. Siegel, "The sense-think-act paradigm revisited," 1st International

Workshop on Robotic Sensing, 2003. ROSE' 03., 2003, pp. 5 pp.-, doi:
10.1109/ROSE.2003.1218700. (references)

[2] Kramer, J., Scheutz, M. Development environments for autonomous
mobile robots: A survey. Auton Robot 22, 101–132 (2007).
https://doi.org/10.1007/s10514-006-9013-8I. S. Jacobs and C. P. Bean,
"Fine particles, thin films and exchange anisotropy," Magnetism, vol. III,
G. T. Rado and H. Suhl, Eds. New York: Academic, 1963, pp. 271–350.

[3] Victerpaul, P., Saravanan, D., Janakiraman, S., & Pradeep, J. (2017). Path
planning of autonomous mobile robots: A survey and comparison. Journal
of Advanced Research in Dynamic and Control Systems, 9(12), 1535-65.

[4] B. R. Kiran et al., "Deep Reinforcement Learning for Autonomous
Driving: A Survey," in IEEE Transactions on Intelligent Transportation
Systems, doi: 10.1109/TITS.2021.3054625.

[5] Calzolari, Davide & Schurmann, Bastian & Althoff, Matthias. (2017).
Comparison of trajectory tracking controllers for autonomous vehicles. 1-
8. 10.1109/ITSC.2017.8317800.

[6] G. Tagne, R. Talj, and A. Charara, "Higher-order sliding mode control for
lateral dynamics of autonomous vehicles, with experimental validation,"
in Intelligent Vehicles Symposium (IV). IEEE, 2013, pp. 678–683.

[7] M. Werling, L. Groll, and G. Bretthauer, "Invariant trajectory tracking
with a full-size autonomous road vehicle," IEEE Transactions on
Robotics, vol. 26, no. 4, pp. 758–765, 2010.

[8] Heß, Daniel, Matthias Althoff, and Thomas Sattel. "Comparison of
trajectory tracking controllers for emergency situations." 2013 IEEE
Intelligent Vehicles Symposium (IV). IEEE, 2013.

[9] Y. Ma, Z. Wang, H. Yang and L. Yang, "Artificial intelligence
applications in the development of autonomous vehicles: a survey," in
IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 2, pp. 315-329,
March 2020, doi: 10.1109/JAS.2020.1003021.

[10] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger,
"Deep reinforcement learning that matters," in Thirty-Second AAAI
Conference on Artificial Intelligence, 2018. 10

[11] Y. Abeysirigoonawardena, F. Shkurti, and G. Dudek, "Generating
adversarial driving scenarios in high-fidelity simulators," in 2019 IEEE
International Conference on Robotics and Automation. ICRA,2019

[12] Raman, AT, Krovi, VN, & Schmid, MJA. "Empowering Graduate
Engineering Students With Proficiency in Autonomy." Proceedings of the
ASME 2018 International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference. Volume 5A:
42nd Mechanisms and Robotics Conference. Quebec City, Quebec,
Canada. August 26–29, 2018.

[13] Matthew O'Kelly, Hongrui Zheng, Achin Jain, Joseph Auckley, Kim
Luong, and Rahul Mangharam, "Tech Report: TUNERCAR: A
Superoptimization Toolchain for Autonomous Racing", . January 2020.

[14] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D.
Silver, and K. Kavukcuoglu, "Asynchronous methods for deep
reinforcement learning," in Proc. Int. Conf. Mach. Learn., 2016, pp.
1928–1937.

[15] Dankwa, Stephen & Zheng, Wenfeng. (2019). Twin-Delayed DDPG: A
Deep Reinforcement Learning Technique to Model a Continuous
Movement of an Intelligent Robot Agent. 1-5.
10.1145/3387168.3387199.

[16] George Ellis, Control System Design Guide (Fourth Edition), 2012.
[17] M. Grzes and D. Kudenko, "Theoretical and Empirical Analysis of

Reward Shaping in Reinforcement Learning," 2009 International
Conference on Machine Learning and Applications, 2009, pp. 337-344,
doi: 10.1109/ICMLA.2009.33.

[18] M. Santos Pessoa de Melo, J. Gomes da Silva Neto, P. Jorge Lima da
Silva, J. M. X. Natario Teixeira and V. Teichrieb, "Analysis and
Comparison of Robotics 3D Simulators," 2019 21st Symposium on
Virtual and Augmented Reality (SVR), 2019, pp. 242-251, doi:
10.1109/SVR.2019.00049.

	I. Introduction
	II. scaled experimental testbed
	A. F1/10th scaled vehicle platform
	B. F1/10th simulator

	III. METHODOLOGY
	A. Lateral Bounded PID controller
	B. Twin Delay Deep Deterministic Policy Gradient (DDPG) based Longitudinal Controller

	IV. IMPLEMENTATION
	A. Workflow
	B. Trajectories with constant linear velocity and lateral PID controller
	C. Training DRL agent

	V. Results
	A. Comparing trajectories from DRL agent v/s PID controller
	B. Comparative Analyses (linear and angular velcity)
	C. Generalization to unknown tracks

	VI. discussion and future scope
	References

