Journal of Statistical Planning and Inference 200 (2019) 87-101

Contents lists available at ScienceDirect

-

Journal of Statistical Planning and Inference E

stansllcal planning
and inference

journal homepage: www.elsevier.com/locate/jspi

L))

Check for
updates

On multiple-objective optimal designs
Qianshun Cheng, Min Yang *

University of Illinois at Chicago, United States

ARTICLE INFO ABSTRACT

Article history: Experiments with multiple objectives form a staple diet of modern scientific research.
Received 21 February 2018 Deriving optimal designs with multiple objectives is a long-standing challenging problem
Received in revised form 30 August 2018 with few tools available. The few existing approaches cannot provide a satisfied solution in

Accepted 5 September 2018

eneral: either the computation is very expensive or a satisfied solution is not guaranteed.
Available online 22 September 2018 & P Iy €xp &

A novel algorithm is proposed to address this literature gap. We prove convergence of
; this algorithm, and show in various examples that the new algorithm can derive the true

Keywords: luti ith hieh d

Constrained designs solutions with high speed. . .

Compound designs © 2018 Elsevier B.V. All rights reserved.

Algorithm

1. Introduction

Experiments with multiple objectives form a staple diet of modern scientific research. For example, in a neurological
stimulus-response experiment (Rosenberger and Grill, 1997), the main interests were in estimation of LD,s (the lethal dose
that causes death for 25% of a study population), LDsg, and LD7s. A design that is efficient for the estimation of one of these
dose levels is unlikely to be efficient for the others. In an example with four objectives, Clyde and Chaloner (1996) showed
that an optimal design for one of the objectives reached efficiencies of only 7%, 10%, and 39% for the others.

There are several approaches for finding efficient designs when multiple objective functions are considered. One
approach, which is popular in the optimization literature, is to establish a Pareto front or boundary. Pareto front approach
aims to account for all criteria simultaneously by developing a set of Pareto optimal designs and investigate the trade-offs
between different designs. For example, Kao et al. (2012) used a modified non-dominated sorting genetic algorithm to obtain
a Pareto boundary in the context of event-related fMRI experiments; Cao et al. (2015) proposed a framework for comparing
algorithm-generated Pareto fronts based on a refined hypervolume indicator. The graphical presentations they used are
effective for two or three criteria, but may not for larger number of criteria. In this paper, we will not pursue this approach
any further.

A second approach would use a compound optimality criterion that is a weighted sum of the individual objective
functions. An attractive feature is that, for given weights, the compound criterion maintains the concavity property if
the separate objective functions possess this property. This property is critically important for applying the celebrated
equivalence theorem, which enables verification whether a given design is indeed optimal. With this approach, the weight
assigned to each objective function is pre-specified. Then the design found is optimal according to the newly constructed
weighted objective function. However, the choice of weights is the main difficulty with this approach; it does in general not
have a meaningful interpretation.

The third approach is the constrained optimization approach. It formulates the optimality problem as maximizing
one objective function subject to all other objective functions satisfying certain efficiencies. The constrained optimization
approach provides a clear and intuitive interpretation to the multiple objective design problem, making it become one of
the popular approaches for finding multiple objective optimal design.
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On the flip side, in contrast to the compound optimality approach, with the constrained approach there is no “equivalence
theorem” that allows a user to verify whether a solution is indeed optimal. Fortunately, there is a relationship between the
two approaches. Based on the Lagrange multiplier theorem, Clyde and Chaloner (1996) generalized a result of Cook and
Wong (1994) and showed the equivalence of the constrained optimization approach and the compound optimality approach.
A numerical solution for the constrained design problem can be derived by using an appropriate compound optimality
criterion. In fact, almost all numerical solutions for constrained design problems use this strategy. But the major challenge
is how to find the corresponding weights for a given constrained optimality problem.

There are two approaches in the literature using this relation: the grid search approach and the sequential approach. For
the grid search approach, the number of grid points increases exponentially with the number of objectives, and can be huge
even for a moderate number of objectives. For example, with four objectives and a grid size of 0.01 for each dimension of
weights, the total number of grid points is well beyond 170 000. Since the best design must be found for each of these, the grid
search will become very quickly computationally infeasible as the accuracy increases. And with three objectives, Huang and
Wong (1998) proposed a sequential approach for finding the weights. The basic idea is to consider the objective functions
in pairs and sequentially add more constraints. While this seems to have given reasonable answers in their examples, there
lacks theoretical justification. Consequently this approach will generally not yield satisfactory solution even for the three-
objective optimal design problems.

Other approaches are also available. Mikulecka (1983) proposed the idea of hybrid design and algorithm to numerically
find the optimal design based on hybrid design settings, which can be regarded as trying to optimize the compound optimal
design problem while meeting one constraint criteria. Vandenberghe et al. (1998) proposed an interior-point method to
solve determinant maximization problem with linear matrix inequality constraints, which can be used to solve some of the
constrained optimal design problem. Harmon and Benkova (2017) proposed the Barycentric algorithm specific for computing
D-optimal size- and cost-constrained designs of experiments. Mandal et al. (2005) considered constructing constrained
optimal designs with equality constraints and Sagnol and Harman (2015) focused on finding optimal designs with system
of linear constraints on weight vectors of design points. The approach proposed by Sagnol and Harman (2015) theoretically
can solve the proposed problem if the primary and secondary criteria meet certain requirements. However, technically it is
very challenging to derive a practical algorithm based on that. Thus they are not discussed here.

The goal of this paper is to propose a novel algorithm of deriving the optimal design of a given constrained optimality
problem through finding the weights in the corresponding compound design. Consistency of the algorithm is proved.
The performance of the new algorithm is demonstrated by comparing with the grid search approaches and sequential
approaches. In 2016, a short version of this work (Cheng et al., 2016) is presented and published in the 11th International
Workshop in Model-Oriented Design and Analysis. In that version, we skipped all the proofs and a few examples. And this
paper includes all the proof details and more examples.

This paper is organized as follows. In Section 2, we introduce the set up and necessary notation. Characterization and
convergence properties are presented in Section 3. The implementation of the algorithm, as well as the computational cost
discussion is in Section 4. Applications to three examples with different number of constraints, and comparisons with grid
search and sequential approach are shown in Section 5. Section 6 provides a brief discussion. For the space limit, we put all
the proofs and some of the examples in the Appendix.

2. Set up and notation

We adapt the same notation as those of Yang et al. (2013). Suppose we have a nonlinear regression model for which
at each point x the experimenter observes a response Y. Here x could be a vector, and we assume that the responses are
independent and follow some distribution from the exponential family with mean 5(x,0), where 0 is a (k x 1) vector of
unknown parameters. Typically, approximate designs are studied, i.e. designs of the form & = {(x;, w;),i = 1, ..., m} with
support points X; € X and weights w; > 0, and Z}i]a)i = 1. Denote the original design space as x. The set of all approximate
designs on the design region X is denoted by &'

Denote the information matrix of £ as I;. Let @(&), ..., ®@,(&) be the values of n + 1 smooth objective functions for
design &. These objective functions are some real-valued functions of I¢ which are formulated such that larger values are
desirable. These objectives depend on the optimality criteria and the parameters of interest and different objectives may have
different parameters of interest. For example, @¢(&) can be the negative number of the trace of inverse of the information
matrix; (&) can be the negative number of the determinant of the inverse of the corresponding information matrix when
the parameter of interest is restricted to the first two parameters (assuming there are more than two parameters).

Ideally, we hope we can find a £* which can maximize ®y(§), ..., @,(&) simultaneously among all possible designs.
However, such solution does not exist in general. Constrained optimization approach specifies one objective as the primary
criteria and maximizes this objective subject to the constraints defined based on the remaining objectives (Cook and Wong,
1994; Clyde and Chaloner, 1996). Formally, this approach can be written as

Maéirgize @o(&) subjectto @;(§) >¢, i=1,...,n, (2.1)
€z

wherec = (cy, ..., cy)are user-specified constants which reflect minimally desired levels of performance relative to optimal
designs for these n objective functions. To make this problem meaningful, throughout this paper, we assume there is at least
one design satisfying all the constraints, which means an optimal solution exists.
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Unfortunately, with the restricted optimality set up, there is a lack of direct and computational feasible way to generally
solve the constrained optimization problem, especially when we have many constraint criteria. (2.1) can be solved typically
through the corresponding compound optimal design. Let

n
(£, U) = Do(8) + Y ui(®i(&) — ci), (22)
i=1
where u; > 0,i = 1,...,n. Let U = (uy, ..., uy,). For a given U, L(£, U) maintains the concavity property without any

restriction. This property is critically important for applying the celebrated equivalence theorem, which enables verification
whether a given design is indeed optimal. Once a U is given, deriving a design maximizing L(¢, U) can be based on some
existing algorithms, such as PSO (Mandal et al., 2015); Cocktail algorithm (Yu, 2011); and OWEA (Yang et al., 2013), among
others. As we mentioned before, it is not recommended to use compound optimal design strategy directly due to lack of a
meaningful interpretation.

To establish the relationship between constrained optimal design and compound optimal design, we need the following
assumptions, which are adapted from Clyde and Chaloner (1996). Assume that

1) &i(&),i=0,...,n,areconcaveon =Z.

2) @i(&),i=0,...,n,are differentiable and the directional derivatives are continuous on X.
3) If &, converges to &, then @;(&,) converges to @;(£),i =0, ...,n.

4) There is at least one design £ in Z such that the constraints in (2.1) are satisfied.

Clyde and Chaloner (1996) generalized a result of Cook and Wong (1994) and showed the equivalence of the constrained
optimization approach and the compound optimality approach.

Theorem 2.1 (Clyde and Chaloner, 1996). Under assumptions Al to A4, £* is optimal for constrained optimal design (2.1) if and

only if there exists a non-negative vector U* = (uj, ..., u}) € ®", such that
£* = argmax L(&§,U*), ®y(§*) > ¢ fori=1,...,n
telr

n (23)
and Y " ui(@i(£%) — ¢) = 0.
i=1

Theorem 2.1 provides necessary and sufficient condition for constrained optimal designs (2.1). It demonstrates that a
numerical solution for the constrained design problem (2.1) can be derived by using an appropriate compound optimality
criterion. The big challenge is how to find the desired U* for a given constrained design problem (2.1). Since the explicit
forms of the derivatives are not available, direct use of derivative based algorithms to find this U* may not be accurate and
may lead to some undesired local roots. Thus they are not discussed here. There are two approaches to handle this: the grid
search approach and the sequential approach. Both approaches consider the weighted optimal design, which is equivalent
to compound optimal design. Let

B(E) =Y Mdi(£), (2.4)
i=0

where A = (Ap,...,An) A0 > 0,0 < X; < 1,i = 1,...,n with Z?:OA; = 1. Clearly &; (&) is just a normalized form of
L(&, U). For given A, @, (&) also enjoys the concave property as L(¢, U) does. So deriving a weighted optimal design can be
based on the some standard algorithm or the newly developed algorithm OWEA.

As we discuss in the introduction section, both grid search and the sequential approach (we shall give detailed description
later) have their own problems. Consequently they cannot serve as a general solution for the constrained optimal design
problem (2.1). How can we develop a general and efficient algorithm for the important but largely unsolved problem? The
first step is to characterize U* in Theorem 1.

3. Characterization

For deriving theoretical results purpose, we need to have one assumption. Let £* be the optimal design for a constrained
optimal design problem (2.1). By Theorem 1, £* is also an optimality solution of a compound optimal design problem (2.2).
Let U* = (uj, ..., u;) be the Lagrange multiplier of the compound optimal design problem.

In such a compound optimal design problem (2.2), each u; > 0 without upper bound. However, for an algorithm searching
for U*, it is challenging to establish the convergence property of the algorithm when the search space is infinite. Thus our
assumption is

ui € [0, N;) where N; is pre-specified,i=1,...,n. (3.1)
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This assumption is equivalent to the grid size in a weighted optimal design problem (2.4). Both grid search approach and
sequential approach need to choose a grid size. Let the grid size be ¢, then it means 0 < u; < 16;5 < % for the equivalent
compound optimal design (2.2). We can always choose some reasonable large numbers N;’s such that Assumption (3.1) is
satisfied.

A constraint @; is called active if uf > 0; otherwise the constraint will be regarded as inactive. For easy presentation, we
denote &y as a design which maximizes the Lagrange function L(&¢, U) for a given weight vector U = (uq, ..., u,)and 35,»(5) as
®;(§)—c;,i=1,...,n. Before we characterize U in Theorem 1, we first give an overview of the new algorithm. The detailed
description will be given in Section 4.

3.1. Overview of the new algorithm

The new algorithm is designed to search for a satisfied U* from the easiest case to the most complex case. It will go
through all the possible cases following a complexity order until the right combination of active constraints is found:

All constraints are inactive —> One constraint is active
—> ... —> All constraints are active.

Now consider that the constrained optimal design problem has a active constraints. Without losing generality, sup-
pose these active constraints are &1, ..., @,. In other words, our efforts now are on finding a weight vector U =
(uq, ..., Uqg, Ugt1, - - ., Uy) Whereuq, ..., uq are positive and g1, . . ., U, are zero and hopefully &y will satisfy the sufficient
condition.

To search for satisfied values for uy, . . ., ug,, the algorithm will use bisection process for all elements uy, .. ., u, through an
iterative procedure. The rest element 441, . . ., U, in weight vector U will be fixed at 0 during the bisection process. Denote
the final weight function parameter U obtained from this bisection procedure by U* = (uj, ..., u;, 0, ..., 0). Then for any
ie{l,...,a},uf will satisfy the following property:

if ®i(£g+) > 0, thenu! = 0;
if di(&y+) < 0, thenu = N;; (3.2)
if ®i(£y+) = 0, thenu’ € [0, Ny].

This property will be quoted frequently in the later theorems.

For example, take a = 2, which means only u; and u, are supposed to be nonzero. In this case, the algorithm first
fixes u, as u‘z’ = °+2N2. Then the value for u; will be updated to u(l’ using bisection and u? will satisfy Property (3.2) with
Ul = (uf, ug, 0,...,0). Now check ®,(&y0). If D,(&y0) # 0, adjust the value for u, through one time bisection to get uJ
such that qﬁz(ém ) is closer to 0. For the new fixed u, = uz, again update u; to u] using bisection to make u] satisfy Property
(3.2)withU'! = (u], uz, 0,...,0). Check ¢2($U1 ) and update u, to u2 if ¢2(§U1) # 0. Continue this process until a satisfied
U* = (uj,u3,0,...,0)is found which guarantees that u} and 1 both satisfy Property (3.2).

For a general a active constraints case, similar to a = 2 case, we first fix u, as ug = (’Eﬂ. Similar to the recursive
procedure mentioned for 2 active constraints case, derive the corresponding values ul, e , for the element u; to g4
using bisections approach such that they satisfy Property (3.2) with U° = {u?, ..ul0,. 0} Check whether @,(&y0) = 0
and update u, to u;. Continue this process until adesired U* = (u7j, ..., 0,. 0)is found withalluj, ..., u} that satisfied
Property (3.2).

To guarantee the bisection technique is valid and the desired Property (3.2) can be achieved for uy, . .., u, through the
bisection process, we need to characterize the monotone property of the multiplier U. The characterizations in this section
allow us to propose a new algorithm which guarantees the convergence and speed.

*
a?

3.2. Theorems

Theorem 3.1. Foranya € {1,...,n},S ¢ {1,....,n}\{a}and S’ = {1,...,n} \ (SU{a}), define Us = {u|i € S} and
Uy = {u|li € S'}. Then @,(&y) is a non- decreasmgfunction of uq if Uy is pre-fixed and Us satisfies one of the following two
conditions:

di(&y) > 0and u;di(&y) = 0 fori € Sy, or
u; = N;yand ®;(&y) < Ofori e S,,

where S; US, = S and S; NS, = ¢ and U is the combination of Us, u,, and Us by their corresponding indexes.

(3.3)

The main purpose of Theorem 3.1 is to guarantee that the recursive bisection technique can be properly implemented.
Condition (3.3) implies that u;, i € S satisfy Property (3.2). Suppose there are a active constraints and they are @4, ..., @,.
When we search for the proper value of u; (i < a — 1), tujy1, ..., Ug and the zero-element i, 1, . . ., U, can be regarded as
fixed, which corresponds to Uy in theorem. And since it is a recursive procedure, for uq, ..., u;_1, the value will be updated
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first according to the value assigned to u; on each bisection iteration and fixed uj 1, ..., tn. Thus (us, . .., ui—1) is Us in this
case. Afteruy, ..., u;_1 being updated for the given u;, ®@;(&y) should be a monotone increasing function of u; by Theorem 3.1.
Due to the monotone property, three cases may occur when we search for u;:

Case 1 d},-(“g‘u) =0anduy; € [0, N;];
Case2 @i(§y) <Oandu; = N;;
Case3 @i(&y) > 0anduy; = 0.

The three possible cases are equivalent to Property (3.2). Under all these possible cases that may occur when the bisection
technique is applied to the former elements, Theorem 3.1 makes it clear that the monotone increasing property holds for
the next element to which the bisection technique is applied.

Now suppose the active constraints are s with S C {1, ..., n}. A weight vector U for active constraints can be found
through the bisection technique. One can always construct a complete weight vector U* = (u7, ..., u;;) as follows:
Foranyi e {1,...,n}

o Ifi € S, take uf as the corresponding value in Ug;
o IfigS, uf =0.

For simplicity, we denote such constructed full weight vector U as {Us, 0}.

Theorem 3.2. Forany S C {1, ..., n}, suppose that U° = {Ug, 0} satisfies the following two conditions
(i) Bikyo) = 0fori € Syand Y " widi(Ey) = 0.
i€y (3.4)

(ii) Pi(Eyo) < 0 and u; = N; for i € S,.

where S; US, = S and S NS, = (. If there exists at least one element in S, say i, such that é,’(fuo) < 0, then there does not exist
a non-negative value set UY = {u; € [0, N;)|i € S}, such that u;®;(£y+) = 0 and @;(&y+) > 0 for i € S, where Ut = {U{, 0}.

This theorem will help us prove the convergence of the new algorithm.
4. Algorithm

For a given constrained optimal design problem (2.1), the new algorithm is to find the desired U*. In each step, we need to
derive an optimal design for a compound optimal design problem (2.2) with U being given. We first introduce such algorithm.

4.1. Deriving compound optimal design with given U

Yang et al. (2013) proposed the optimal weight exchange algorithm (OWEA), which can be applied to commonly used
optimality criteria regardless of the parameters of interest and also enjoys high speed. This algorithm was originally designed
for one objective optimal design problems. Fortunately, OWEA can be extended for deriving &y = argmax; L(§, U) where U
is given. A detail description about OWEA algorithm can be found in the Appendix.

Now we are ready to present the main algorithm which is to search the satisfied U*.

4.2. The main algorithm

The strategy of the algorithm is to search from the simplest case (no constraint is active) to the most complicated case
(all constraints are active). For each case, the algorithm will implement a recursive bisection procedure. The algorithm can
be described as following:

Step 1 Seta = 0, derive £* = argmax, ®o(¢) and check whether ®;(§*) > ¢;fori = 1,..., n.If all constraints are satisfied,
stop and £* is the desired design. Otherwise set a = 1 and go to Step 2.

Step 2 Seti = 1, consider £* = argmax; ®o(§) + u;®;(§). Adjust the value of u; using the bisection technique on [0, N;] to
obtain ujf such that (13,-(5*) = 0. During the bisection process, the upper bound, instead of the median, of the final
bisection interval will be picked as the right value for u*. If &;(£*) > 0 when u; = 0, set u* = 0.If &;(£*) < 0 when
u; = Nj, setuf = N;. For §* = argmax; @o(§) + uj @i(§), check whether qu(fg’*) > 0forj=1,...,n.Ifall constraints
are satisfied, stop and £* is the desired design; otherwise change i to i + 1 and repeat this process. After i = n is
tested and no desired £* is found, then set a = 2 and proceed to Step 3.

Step 3 Find all subsets of {1, ..., n} of size a, choose one out of these subsets. Denote it as S.

Step 4 Let(sq, ..., Sq)betheindexes of the elements in Us. To find the right value U§ for Us, we follow a recursive procedure.
For each time a given value of us,, first use bisection technique to find the corresponding us,, ..., us, ,. The full
weight vector U can be constructed with ug, , . .., ug, by setting all the other weight elements in U as 0’s, which we
later denote by U = {Us, 0}. Then adapt the value of us, as follows:
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- If é’sa(éu) > 0 when uy, is assigned as 0, set u;"a =0.
- If @sa(EU) < 0 when uy, is assigned as Ny, set uy = Nq.
- Otherwise use the bisection technique to find ug, such that ‘f’su(fu) =0

Record u and the corresponding values for {ug,, ..., ug }Yas U¢. For the bisection process in each dimension,
the upper bound of the final bisection interval will be picked as the right value for the corresponding element in
weight vector UZ. Then the full weight vector U* can be constructed using U* = {Ug, 0}.

Step 5 For the U and &y« derived in Step 4, check @,»(SU* ),i =1,...,n. If all constraints are satisfied, stop and &g+ is the
desired design. Otherwise, pick another a-element subset in Step 3, and go through Step 4 to Step 5 again. If all
a-element subsets are tested, go to Step 6.

Step 6 Change ato a + 1, go through Step 3 to Step 5, until a = n. If no suitable design &y~ is found, the implication is that
there is no solution for the constrained optimal design (2.1).

We demonstrate this algorithm through an optimal design problem with two constraints. Denote the target objective
function by @, and two constrained objective functions by @ and &,. The algorithm will search for a desired weight vector
U* = (uj, u3) and desired design &y« according to the following process:

Step 1 Suppose there is no active constraint, then U* in this case will be (0, 0) and &y« is also an optimal design for &. If
&y~ satisfies all the constraints, then &g+ is the desired design. Otherwise go to Step 2.

Step 2 Suppose there is one active constraint. First suppose @1 is active. Derive u] through bisection technique such that
5)1(5,_.*) = 0, where U* = (u7, 0). If &y satisfies all the constraints, &y« is the desired design. Otherwise suppose
@, is active and repeat this process. If both fail to find the desired &y+, that means there are more than one active
constraint. Go to Step 3. A

Step 3 Now suppose all constraints are active. Derive U* = (u7, u3) through bisection technique such that @;(&y«) = 0 for
i = 1, 2. If such U* can be derived, then &y+ is the desired design. If it fails to produce a satisfied U*, there are two
possible reasons:

Case 1 The predefined upper bound vectors N; and N, are not proper. The true u; fall out of the interval [0, N;) for at
least one of i's,i = 1,2,
Case 2 There is no solution for the constrained optimal design problem.

4.3. Convergence and computational cost

Whether an algorithm is successful mainly depends on two properties: convergence and computational cost. We first
establish the convergence of the proposed algorithm.

Theorem 4.1. For the constrained optimal design problem (2.1), under Assumption (3.1), the proposed algorithm converges to
.

Next we shall compare the computational cost of the new algorithm with those of the grid search and the sequential
approach. Both the grid search and the sequential approach are based on weighted optimal design problem (2.4), which is
equivalent to a compound optimal design problem with u; = #£,i = 1, ..., n. All three approaches are based on identifying
a satisfied multiplier of a compounded optimal design problem ‘and the computatlonal cost of each approach is proportional
to the number of multiplier the approach tests.

The grid search approach considers all possible combinations of Aq, ..., A, on [0, 1]" with given mesh grid size. The
combination must satisfy that Z?Zlki < land Agissetas 1 — Z;’:lki. Suppose the grid size is € in a grid search. Let T; be
the number of all possible combinations. Direct computation shows that

S oony (LR -1 n+ 1] —1
Tczg(k)( k ):( n ) (4.1)

where |.| refers to floor function.

For the new algorithm, since u; = ;—’ the upper bound of the corresponding u; is 1/€. To guarantee the new algorithm
has at least the same accuracy (€) on interval [0, 1/¢] as that of grid search, one needs [—2log,e + 27 times bisection
technique. Here [.] refers to the ceiling function. Let T; be the number of times compound optimal designs calculated during
the searching process, then

n
n
T, = ; <I<) [—2logoe + 21% = [—2logye + 37" (4.2)

As for the sequential approach, the computational cost is significantly less than those of the grid search and the new
algorithm. However, as we will demonstrate in the next section, the sequential approach in general cannot find a desired
solution.
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Table 1
Comparison of computational cost.
Mesh grid size Three objectives Four objectives
0.01 0.001 0.01 0.001
Grid search 5050 500500 171700 167 167 000
New algorithm 289 529 4913 12167

Note: Numbers in the table are counts of weighted optimal designs calculated
to solve the multiple-objective design problem for each technique.

Table 1 shows the comparison of computational cost between new algorithm and grid search under different grid sizes
and different numbers of constraints.

5. Numerical examples

In this section, we will compare the performance (accuracy and the computing time) of the new algorithm, the grid
search and the sequential approach. The sequential approach was introduced in Huang and Wong (1998). This approach
first reorders @y, ..., @y as D5, ..., D5, ., according to a robustness technique. In this paper, we test all possible orders

and pick up the best design. Certainly it includes the special pick in Huang and Wong (1998). Since we do not have a real
constraint number ¢, for target optimality @g, here we can regard the constraint number ¢, for optimality &g as 0 and then
combine ¢y with the original constraints vector ¢ = (cy, ..., ¢y). For newly constructed c¢* = (co, ..., cy), reorder it as
(Csys -+ -5 G5, 1 )- Details of this approach can be found in the Appendix.

For the grid search, weighted optimal design £, = argmaxEZ?:Ok,-@i(S) will be considered. All combinations of
A = (ho, ..., ;)" will be checked using multi-dimensional grid search on [0, 1] with constraint Z?:o)‘i = 1. Among
all weighted optimal designs &4, £*, which maximize @, while guaranteeing that @; > ¢; fori = 1, ..., n, is selected. Then
&* isregarded as an optimal design for the multiple-objective optimal design problem.

All three approaches utilize the OWEA algorithm to derive optimal designs for given weighted optimal design problems.
For all examples, the design space has been discretized uniformly into 1000 design points. The cut-off value for checking
optimality in L(£, U) for given U was chosen to be A = 1078, All other set ups of OWEA are the same as those of Yang et al.
(2013). For new algorithm and grid search, we require the algorithms to produce the best possible design while guaranteeing
that the constraints are exactly satisfied. For sequential approach, since it does not guarantee to produce a proper design
and may fail during the searching process, a tolerance value ¢ = 0.01 is set up. That means during the sequential approach
process, if a design & has @;(&g) > c¢; — € for some i, the design &y will still be regarded as a proper design which satisfies the
constraint for objective function &;. The grid size is 0.01 for all the examples in this section. The pre-specified upperbound
N in the new algorithm is 100. All the algorithms are implemented in SAS software on a Lenovo laptop with Intel Core 2 duo
CPU 2.27 Hz.

Example I. Consider the nonlinear model given by

y = p1e”" + pre 2 te. (5.1)

This model is commonly used to compare the progression of a drug between different compartments. Here y denotes the
concentration level of the drug in compartments, x denotes the sampling time, and ¢ is assumed to follow normal distribution
with mean zero and variance 2. In a PK/PD study, Notari (1980) used Model (5.1) to model the concentration of a drug taken
at different time. The estimates of the parameters are 6y = (61, 65, B1, B2) = (1.34,0.13, 5.25, 1.75). Under these parameter
estimations, Huang and Wong (1998) studied three—objective optimal design with design space x € [0, 15].

Let B = diag{-% v(dx), where f(x) is the linearized function of the model function using

92’92’ﬁ2’ﬂ2 f

Taylor expansion at@T &y = argming tr(I~ 1(£)B); “g‘] = argming |I7'(§)|; and & = argmin; tr(I=1(£)W). The three objective
functions can be wrltten as follows:

tr(I”'(£)B)

<1>o(1($)) = _W,
|1 1
) = (e ](f’)”)z and
1
1
y(i(8)) = — TU_EW)

tr(I=1(E)W)
Define Effig,z) = —(7

the corresponding optimality criteria. For example, Effig,(z) refers to the D-efficiency. Such definition will be used in the
subsequent examples.

Clearly Effig,z), i = 0, 1, 2 are consistent with the definitions of efficiency of design £ under



94 Q. Cheng, M. Yang / Journal of Statistical Planning and Inference 200 (2019) 87-101

Table 2
Example I: Relative design efficiencies of &7, &7, &5, and &*.
Design type Efficiency
Py P, D,
o 1 0.7315 0.7739
T 0.6677 1 0.5576
4 0.6959 0.4166 1
£* 0.8692 0.9000 0.8001
Table 3
Example I: Relative efficiencies based on different techniques.
Techniques Efficiency Time cost (s)
¢0 d>1 ‘Dz
Grid search 0.8658 0.9009 0.8000 1834
Sequential approach 0.8917 0.8900 0.8040 52
New algorithm 0.8692 0.9000 0.8001 103

The three-objective optimal design problem considered in Huang and Wong (1998) is

Maxiémize Effig,e)

Effip, &) > 0.9,
Efﬁq)z(g) > 0.8.

Notice that the constraints Effig,;y > 0.9 and Effig,y > 0.8 are obviously equivalent to @;(I(§)) > —10/9 and
@,(I(€)) = —5/4, respectively. In the subsequent examples, we will use the similar efficiency setup without specifying
their equivalence to the corresponding objective functions.

The efficiencies of &5, &5, and &5 under each of the three objective functions are shown in Table 2. Clearly the optimal
design based on one single optimal criteria has bad performance under other optimal criteria. These efficiencies are
consistent with the corresponding efficiencies provided in Table 4 of Huang and Wong (1998). The new algorithm is applied
to the three-objective optimal design problem. With the new algorithm, the corresponding Lagrange function is

L(E,U*) = @y + 4.2053®; + 2.5085P,.

The efficiencies of the derived constrained optimal design £* are also shown in Table 2. It shows that £* has high efficiency
on @, while guaranteeing the other two efficiencies are above the acceptable level.

The grid search and the sequential approach are also applied to this optimal design problem. The sequential result is also
consistent with that of Huang and Wong (1998).

Table 3 shows the efficiencies and computational time comparisons of the constrained optimal designs derived using the
grid search, the sequential approach and the new algorithm.

It shows that the three approaches are essentially equivalent. The sequential approach gains highest efficiency on &,
by sacrificing a little bit on constrained efficiencies. New algorithm and grid search have slight drop on target efficiency to
guarantee that the two constraints are exactly satisfied. The sequential approach is faster. However, the computational time
in the table for sequential approach is just for one possible order. In many cases, one may need to check many possible orders
to produce a satisfied solution. Thus the computational time will increase significantly in that case. In the next example,
however, sequential approach fails to provide a desired design.

subject to {

Example II. Atkinson et al. (1993) derived Bayesian designs for a compartmental model which can be written as

y = 63(e7 — 7% p e = (x,0) + €. (5.2)

where ¢ is assumed to follow the normal distribution with mean zero and variance o and y represents the concentration
level of the drug at time point x. Clyde and Chaloner (1996) derived multiple-objective optimal designs under this model
with parameter values 87 = (64, 6,, 63) = (0.05884, 4.298, 21.80) and design space [0, 30]. Interests are on estimating 6
as well as the following quantities:

e Area under the curve (AUC),
03 03
hi0)= = - —=
1(6) 0. o

e Maximum concentration,
Cm = hz(@) = n(tmax» 9),
where t;q = 1.01.
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Table 4
Example II: relative efficiencies of &7, &7, &7, and &*.
Design type Efficiency
o) Dy D,
o 1.0000 0.3431 0.3634
b 0.0036 1.0000 0.0000
> 0.0042 0.0000 1.0000
£* 0.9761 0.4008 0.4046
Table 5
Example II: relative design efficiency based on different approaches.
Techniques Efficiency Time cost (s)
‘Dg ‘D] ¢2
Grid search 0.9761 0.4042 0.4009 1047
Sequential approach Fails
New algorithm 0.9761 0.4008 0.4046 59
Table 6
Example II: design efficiencies based on different orders using sequential
approach.
Designs Efficiency
Do 2] &,
& 0.5797 0.3908 0.5981
& 0.4537 0.6135 0.3904
&z Fails
&1 Fails

Leté; = argmin|I~1(£)|, ¢; be the gradient vector of h;(8) according to parameter vector 6 and & = argmintr(cfl‘l(é i),
i = 1,2. The corresponding objective functions can be written as follows:

RGN
Do(I(£)) = —(——>>-)3, and
o€ = =) an
Tr—1 :
o ey = - TGl ©a)

tr(c/ 115" )ci)”
Consider the following three-objective optimal design problem:

Maxigmize Effig, )

subjectto  Effigz) > 0.4,i =1, 2.
Utilizing the new algorithm, we find that the corresponding Lagrange function is
L(£,U*) = &y + 0.09169; + 0.0854P,.

The efficiencies of £F, £, &5, and the constrained optimal design £* under different optimality criteria are shown in Table 4.

Table 5 shows the efficiencies and computational time comparisons of the constrained optimal designs derived using the
grid search, the sequential approach and the new algorithm. The table clearly shows both new algorithm and grid search
produce a satisfied solution. But grid search takes around eighteen times the computational time of that of the new algorithm.
On the other hand, the sequential approach again fails to produce a satisfied solution. For sequential approach, all possible
orders are tested and results are shown in Table 6. g,.;fk is the sequential optimal design based on order ®; — @; — @y.
Table 6 shows sequential approach with order ®; — &, — &, and order &, — ®; — @ fails to produce a design which
satisfies all the constraints. For optimal designs derived with the other two orders, although constraints are satisfied, the
efficiency of the target objective function @ is far below the results from the new algorithm and the grid search. All these
indicate that sequential approach may not be proper for finding multiple-objective optimal design problems.

For the next example and the examples in the Appendix, the sequential approach is dropped due to its unstable
performance and the grid search is not considered either due to its lengthy computational time.

Example III. Consider Model (5.1) in Example I. Suppose that we want to maximize the efficiency of D-optimal while
guaranteeing that the efficiency of C-optimal for each parameter is above 0.7. All other settings are as the same as those
of Example L.

Let &) = argmin|I~1(£)| and & = argmintr(eiTI‘l(g)ef), i=1,2,3, 4, where ¢; is the unit vector with ith element equal
to 1.
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Table 7
Example III: the relative efficiencies of &7, &1, &5, §3, &5, and &*.

Design type Efficiency

by @, @, @5 by

: 1.0000 08323 04461 06326  0.5967
B 0.9141 1.0000 03294 06234 06136
x 03849 01964  1.0000 03353  0.6422
3 0.1471  0.0006  0.0232 1.0000  0.0051
* 0.6044 04260 06867  0.6230  1.0000
£ 09259 07009 07007 07212  0.7027

The corresponding objective functions can be written as following:

RGN

Do(I(£)) = —(——22-)3, and
0(I6)) = (i) an
tr(ef 1~ (§)e)

ECIRGD

Consider the following five-objective optimal design problem

Di(1(8)) = ,i=1,2,3,4.

Maxiémize Effig, (&)
subjectto  Effig,zy > 0.7,i= 1,2, 3,4.

Results from the new algorithm show that the corresponding Lagrange function is
L(&,U") = &g + 0.0183®; + 0.35409, + 0.0305%P,.

Only objective function @3 is inactive in this case. The efficiencies of &, &1, &5, £, £; and the constrained optimal design
&* under different optimal criteria are shown in Table 7. It takes about 37 min on a laptop.

6. Discussion

While the importance of multiple-objective optimal designs is well recognized in scientific studies, applications to solve
this type of problems are still undeveloped due to a lack of a general and efficient algorithm. The combination of OWEA
algorithm for compound optimal design problem and the new algorithm provides an efficient and stable framework for
finding the general multiple-objective optimal designs. Examples show remarkable improvement on computational cost
compare with the grid search approach.

For optimal designs with no more than four objective functions, the new algorithm can derive the desired solution
efficiently. When there are five or more objective functions, it is unlikely all constraints are active. If only less than four
constraints are active, the new algorithm can still solve the optimal design efficiently. However, in a rare situation where
there are four or more active constraints, the computation time can become lengthy. More research works are needed to
deal with these cases.

The new algorithm is implemented under locally optimal designs context for all examples. It is possible to extend the
results to other settings, like to the cases discussed in Cook and Fedorov (1995). Penalty approaches are another strategy
for finding multiple-objective optimal design. When implementing penalty approach, each constraint will be transferred to
a penalty term. Thus the constrained optimal design problem can be transferred to a compounded optimal design problem
with these penalty terms as the new optimal criteria. However, it is out of the scope of this paper. More future research
works are certainly needed to realize the idea of penalty approach.

Although the computer codes of this new algorithm are not straightforward, the main body of the code should work
for all multiple-objective design problems. One only needs to change the information matrix for the specific model and the
specific objective functions in a multiple-objective optimal design problem. The SAS IML codes for all examples in this article
are freely available upon request. These codes can be easily modified for different multiple-objective optimal problems.
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Appendix
A.1. OWEA algorithm

Since all elements in U are nonnegative, L(§, U) = ®o(&)+ Z?zlu,-(q§,-(.f,-‘) —¢;) can be regarded as a new optimal criterion.
For a design £ = {(Xx1, w1), ..., Xm—1, Wm—1)s Xm, wm)}, let X = (X1,...,x5) and W = (wy, ..., wpn_1)". The following
algorithm follows the similar procedure as that of OWEA in Yang et al. (2013).

Step 1 Sett = 0, let the initial design set X° take 2k design points uniformly from the design space and the corresponding
weight be 1/2k for each point.

Step 2 Derive the optimal weight vector W' for a fixed sample points set X.

Step 3 For &' = (X!, W), denote directional derivative of L(£, U) at x as dy(x, £'), where X is any design point from the
design space X. The explicit expression can be found in Yang et al. (2013).

Step 4 For a small prefixed value A > 0, if maxye vdy(X, £') < A, £ can be regarded as the optimal design. If dy(x, £¢) > A
for some design point X, let X**1 = X' | JX, where X, = argmax, ., du(x, £'). Go through Step 2 to Step 4 again
with new X*1,

In Step 2, the optimal weight vector W can be found by Newton’s method based on the first derivative and second
derivative of L(&, U) with respect to the weight vector W. These derivatives can be derived using (A.1) and the formula
in the Appendix of Yang et al. (2013).

APi(E)  IPo(E) | N~ IPi(E)
W= aw Tl aw

s

i=

P Pi(E) _ 9 Po(§) Zn“u-"’z""'@)

oWWT T awwT T awwT
Based on the exact same argument as Yang et al. (2013), this algorithm converges to an optimal design maximizing L(&¢, U).
We use the extended OWEA to derive &y.

A.2. Sequential approach procedures

Then the sequential procedure for finding the corresponding compound optimal design with the specified order
{s1, ..., Snt+1} can be described as follows:

Step 1 If @ € {Ps,, Ds,}, say @y = Ps,. Consider constrained optimal design problem
Maximize @, while @, > ¢, .
If not, consider constrained optimal design problem
Maximize @, while &, > c;,.

Then find the weight vector in the weighted optimal design problem corresponding to the specified constrained
optimal design problem using the grid search with a prefixed grid size and denote this weight vector by (1— 3,, ).
(1-B2)®s, (6)+62Ps, (£)

Construct a new objective function @y, 5,1(§) = T ), 5y Bass Gor 5y

(1= B2)@s,(8) + 2D, (€).1fn > 2, setk = 3.

Step 2 For the newly constructed objective function, consider weighted design problem (1 — X)®@s, 5,1 + x®s,. Change
the value of x by grid search on [0, 1] with given grid size. If &g € {Ps,, ..., @}, choose a proper value x such
that the corresponding weight design maximizes @, while guarantees @5, > ¢; fori = 1, ..., k. If not, choose a
proper value x such that the corresponding weighted optimal design maximizes @, while guarantees &;; > ¢; for
i=1,...,k— 1. Denote this value as f. If all the possible values for x fail to satisfy the constraints for @;,, ..., @,
that indicates the sequential approach fails with the specified order. Then quit the algorithm.
Construct new objective function

(1 - ﬂk)q)s1,...,s,<,1 (S) + /3I<¢sk(‘§)
(1 - ﬂk)ésl,...,sk_l(gsl ..... sk) + ﬂk(psk(gﬁ ..... sk)7

where &, 5, is optimal design for

(D(s1,...,sk}($) =

Step 3 Transfer @, . s,,}(§) back to Z:':OAi<Di(S) according to format of Eq. (2.4) using scalar change. Then Z?:O)L,-cpi(é)

will be the weighted optimal design problem found for the original constrained optimal design problem (2.1) with
the sequential approach based on the specified order.
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Table 8
Example IV: the relative efficiencies of &5, &}, &5, &5, and £*.
Design type Efficiency
) D D, D3
o 1.0000 0.3431 0.3634 0.6464
T 0.0036 1.0000 0.0000 0.0000
5 0.0042 0.0000 1.0000 0.0002
3 0.0785 0.0001 0.0007 1.0000
£* 0.9761 0.4008 0.4046 0.5143

A.3. Examples

Example IV. Under the same set up as that of Example II, another parameter of interest, time to maximum concentration
tn, is also considered, where

log(6,) — log(6
= ha(0) = 28 ;j—elg( 1)

The corresponding objective function is

_ tr(e3 17 (E)es)
tr(c3I171(55)c)”

where c; is the gradient vector of h3(#) according to vector 6 and & = argmin; tr(cgl‘l(z})q). Clyde and Chaloner (1996)
studied the following four-objective optimal design problem

D3(1(8)) =

Maxgmize Effig,s)

Effi¢1(§) > 0.4,
subject to Effig, &) > 0.4,
Effiq;ﬂg) > 04.

is considered.
Utilizing the new algorithm, we find that the corresponding Lagrange function is
L(E,U*) = @ + 0.0916@; + 0.0854®;.

This indicates that only two out of the three constraints are active, which are objective functions @ and &,. The efficiencies of
&5,&7, &5, &5, and the constrained optimal design £ * under different optimal criteria are shown in Table 8. The computational
time is around 56 s.

Example V. Based on the same settings as Example [V, we add one more objective function:
EG)
tr(I-1(&5))

Here §; = argmintr(I~1(£)). Then five-objective optimal design problem

P4(1(8)) =

Maxigmize Effig,(e)

Efﬁq;i(g) >04,i=1,2,3
subject to
Efﬁ¢4(g) > 0.75

is considered.
Result from new algorithm indicates that the corresponding Lagrange function is
L(&,U*) = &g + 0.3052P1 + 0.83629,.
Only objective functions @; and @4 are active in this case. The efficiencies of &5, £¥, &5, £5, &5 and the constrained optimal
design £* under different optimal criteria are shown in Table 9. It takes 2 min and 27 s for the new algorithm to find &*.

A.4. Theory and proof

Constrained optimization approach specifies one objective as the primary criteria and maximizes this objective subject
to the constraints on the remaining objectives (Cook and Wong, 1994; Clyde and Chaloner, 1996). Formally, this approach
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Table 9
Example V: the relative efficiencies of &7, &1, &5, &5, &, and &*.

Design type Efficiency

Dy [ D, D3 Dy

M 1.0000 0.3431 0.3634 0.6464 0.7044

i 0.0036 1.0000 0.0000 0.0000 0.0000

3 0.0042 0.0000 1.0000 0.0002 0.0005

3 0.0785 0.0001 0.0007 1.0000 0.0010

&F 07904  0.1138 0.6460 0.5895 1.0000

£ 0.9616 0.4013 0.4184 0.4945 0.7501

can be written as
Maximize ®@y(&) subjectto ®(§) > ¢, i=1,...,n, (A.2)
Eel .

where ¢ = (cy, ..., cy)are user-specified constants which reflect minimally desired levels of performance relative to optimal

designs for these n objective functions. To make this problem meaningful, throughout this paper, we assume there is at least
one design satisfying all the constraints, which means an optimal solution exists.

LetS C {1, ..., n},for easy presentation, we denote U§tf>5(§) = Ziesu,-q%i(f;‘).We also denote 03(5) = (031(‘;‘), e @n(é)).

Proof of Theorem 3.1. Letu® > u! be two nonnegative values. Let U2 and U! be the corresponding value sets for Us satisfying
the two conditions in the theorem when u, = u? and u! respectively. Let U° be the combination of Ug, u9, and Uy by their
corresponding indexes. Similarly let U! be the counterpart of US, o and Uy

Notice that for U0 and Ul, the classification of S; and S, could be different. That means elements in S; for Ug may fall
into S, for U; and versus the same. We just need to check that the two disjoint subsets from S satisfy Condition (3.3) in the
theorem separately.

By the properties of £y and &1, we have

Do(&yo) + (U D(Ey0) = Po(Ey1) + (U) & (£y1), and

R R (A3)
Do(Ey1) + (U D(Ey1) = PolEgo) + (U B(Eyo).
Notice that
(UO) d(Ego) = (U Ds(&yo) + u0Pa(Eyo) + (Us ) B (£yo),
(U @ (&) = (U Ps(&yy1) + ulPa(Ey1) + (Us ) D (Eg), na)
WY d(Ege) = (UL Bs(£0) + uldalEgo) + (Us ) B (£o), and
(U D (&) = (U Ps(Ey1) + ul PalEyr) + (Us) ) B (£g1).
Adding up the two inequalities in (A.3) and utilizing (A.4), we have
(U — Ul (Pa(&y0) — PalEyr)) + (US — U (Ds(Eo) — Ps(&yn)) = 0. (A5)

Suppose i € S; whenu, = ulandi € S, when u, = u}. Clearly that (u? — u!) < 0 while (&(§y0) — Pi(£y1)) > 0. The
conclusion holds for all other cases through the similar argument. Thus we have, foranyi S,(u?—u} )(cf)i(suo)—é) (&) <
Consequently, we have

(U3 — U) (Ds(8p0) — Ds(Eun)) = D (uf — u) ) Pillpo) — Bi(yr)) < 0. (A6)

ieS

which indicates

(U — u)(Pal€o) — Paly)) = O, (A7)
Thus the conclusion follows. O
Proof of Theorem 3.2. Define S1; = {ilébi(éuo) > 0,i € S1}and Sy, = {i|§>i(§uo) = 0,i € 51} . By the properties of U,

clearly we have u? = 0fori € Sy; and u? = N; fori € S,. Suppose there exists a nonnegative value set U™ = {U;r, 0} with
u;Di(Ey+) = 0 and &;(&y+) > Ofori € S. Then we have

Po(Eyo) + (U D(Eyo) > PolEy+) + ®(&y+)and

R (A8)
Do(Ey+) + (U D (Ey+) = PolEyo) + (UM D(&yo).
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Then the summation of two inequalities in (A.8) returns
(U, — UZ ) (@s,, (Eyo) — Ps,, (Eu+))

+ (U2, — U ) (D5, (Eyo) — Ds,, (Eu+)) (A9)
+ (U, — UY ) (@, (Ey0) — P, (£u+)) = 0.

By our assumption, for any i € Sy, we have éi(éuo) = 0, since éi(SU+) > 0, thus @,‘(Suo) — q3,-(§U+) < 0. For ul.*, we have 2
cases:

Case 1 u > 0, then by assumption, ®(&y+) = 0, thus (u® — u" )(Di(&y) — Pi(&y+)) = 0.

Case2 u =0, then (u? — u") > 0, thus (u® — u;" )(Di(Ey) — Pi(&y+)) < 0.

Considering these two cases, one can easily find that

(U2, — Ud ) (@s,,(Ego) — Ps,(Ey+)) < 0. (A.10)
(U2, — US V(@s,, (Eyo) — Ps;, (5y+)) < 0. (A11)

Now consider set S,, for any i € S,, we have ®i(&y0) < 0 and u? = N;. Since u;" € [0, N;), (u® — u") > 0. As i(&y+) > O,
Di(Eyo) — Pi(&y+) < 0. One can easily see that as long as S, # @, which also means we can find at least one i € S such that
Di(Eyo) < 0, we have

(U2, — UL ) (Bs, (£y0) — Ps,(y+)) < 0. (A12)
By inequality (A.10) (A.11) (A.12), we have

(U2, — UE Y (Bs,, (60) — Psy ()

+ (U3, - U{ ) (@s,,(60) — Ps,, (Eut) (A.13)

+ (U, — US) (s, (5y0) — Ps, (5u+)) < O

as long as there exists at least onei € S suc13 that @,—(éuo) <0 This conflicts inequality (A.9), thus there does not exist a
nonnegative value set Ut = {U], 0} with u;®;(&y+) = 0 and @;(&y+) > Oforie S O

Proof of Theorem 4.1. Since there exists an optimal solution for the constrained optimal design problem (2.1) in manuscript,
there exists an active constraints set (it could be empty set, which means no active constraints). The new algorithm will
search for this active constraints set and identify the Lagrange multiplier of the corresponding compound optimal design
problem. The new algorithm starts from the simplest case, i.e., there are no active constraints, to most complex case, i.e., all
constraints are active. If the algorithm stops early, by logics of the new algorithm procedure, the proposed design £* from
implementing the new algorithm will satisfy Property (2.3). Thus by Theory 2.1, the optimal design from the algorithm will
be optimal to constrained problem (2.1). The only case the new algorithm may fail is: there exists some i € {s|1,2, ..., n}
such that @;(§y) < 0 when U is the corresponding weight found by the new algorithm after the search procedure goes
through the most complex case: all constraints are assumed to be active.

Now to prove the converge of the new algorithm, one just needs to show that a feasible solution does not exist for problem
(2.1) under this case.

Now suppose if there still exists a feasible solution £* for problem (2.1) under this case. By Theorem 2.1, £* will also be
optimal to the corresponding compound design problem with weight non-negative weight vector U*. The U* and &* will
also satisfy U*T @(&y) = 0 and @(&y) > 0. As we mentioned above, if the algorithm fails, the algorithm has already gone
through the most complex case. And for the final design &y then at least one criterion ®;(§y) < 0. &y and U will meets
all the conditions stated in Theorem 3.2. Thus by Theorem 3.2, there does not exist a non-negative value set UT, such that
Uiq%i(ém) = 0and éﬁ,-(gm) > 0. This conflicts the assumption that there exists the corresponding weight U*. Thus this also
conflicts the assumption that the constrained problem (2.1) can still have feasible solution when the new algorithm fails.
Thus a feasible solution does not exist for problem (2.1) if the new algorithm fails. O
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