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a b s t r a c t

Experiments with multiple objectives form a staple diet of modern scientific research.
Deriving optimal designs with multiple objectives is a long-standing challenging problem
with few tools available. The few existing approaches cannot provide a satisfied solution in
general: either the computation is very expensive or a satisfied solution is not guaranteed.
A novel algorithm is proposed to address this literature gap. We prove convergence of
this algorithm, and show in various examples that the new algorithm can derive the true
solutions with high speed.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Experiments with multiple objectives form a staple diet of modern scientific research. For example, in a neurological
stimulus–response experiment (Rosenberger and Grill, 1997), the main interests were in estimation of LD25 (the lethal dose
that causes death for 25% of a study population), LD50, and LD75. A design that is efficient for the estimation of one of these
dose levels is unlikely to be efficient for the others. In an example with four objectives, Clyde and Chaloner (1996) showed
that an optimal design for one of the objectives reached efficiencies of only 7%, 10%, and 39% for the others.

There are several approaches for finding efficient designs when multiple objective functions are considered. One
approach, which is popular in the optimization literature, is to establish a Pareto front or boundary. Pareto front approach
aims to account for all criteria simultaneously by developing a set of Pareto optimal designs and investigate the trade-offs
between different designs. For example, Kao et al. (2012) used amodified non-dominated sorting genetic algorithm to obtain
a Pareto boundary in the context of event-related fMRI experiments; Cao et al. (2015) proposed a framework for comparing
algorithm-generated Pareto fronts based on a refined hypervolume indicator. The graphical presentations they used are
effective for two or three criteria, but may not for larger number of criteria. In this paper, we will not pursue this approach
any further.

A second approach would use a compound optimality criterion that is a weighted sum of the individual objective
functions. An attractive feature is that, for given weights, the compound criterion maintains the concavity property if
the separate objective functions possess this property. This property is critically important for applying the celebrated
equivalence theorem, which enables verification whether a given design is indeed optimal. With this approach, the weight
assigned to each objective function is pre-specified. Then the design found is optimal according to the newly constructed
weighted objective function. However, the choice of weights is the main difficulty with this approach; it does in general not
have a meaningful interpretation.

The third approach is the constrained optimization approach. It formulates the optimality problem as maximizing
one objective function subject to all other objective functions satisfying certain efficiencies. The constrained optimization
approach provides a clear and intuitive interpretation to the multiple objective design problem, making it become one of
the popular approaches for finding multiple objective optimal design.
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On the flip side, in contrast to the compound optimality approach, with the constrained approach there is no ‘‘equivalence
theorem’’ that allows a user to verify whether a solution is indeed optimal. Fortunately, there is a relationship between the
two approaches. Based on the Lagrange multiplier theorem, Clyde and Chaloner (1996) generalized a result of Cook and
Wong (1994) and showed the equivalence of the constrained optimization approach and the compound optimality approach.
A numerical solution for the constrained design problem can be derived by using an appropriate compound optimality
criterion. In fact, almost all numerical solutions for constrained design problems use this strategy. But the major challenge
is how to find the corresponding weights for a given constrained optimality problem.

There are two approaches in the literature using this relation: the grid search approach and the sequential approach. For
the grid search approach, the number of grid points increases exponentially with the number of objectives, and can be huge
even for a moderate number of objectives. For example, with four objectives and a grid size of 0.01 for each dimension of
weights, the total number of grid points iswell beyond 170000. Since the best designmust be found for each of these, the grid
search will become very quickly computationally infeasible as the accuracy increases. And with three objectives, Huang and
Wong (1998) proposed a sequential approach for finding the weights. The basic idea is to consider the objective functions
in pairs and sequentially add more constraints. While this seems to have given reasonable answers in their examples, there
lacks theoretical justification. Consequently this approach will generally not yield satisfactory solution even for the three-
objective optimal design problems.

Other approaches are also available. Mikulecka (1983) proposed the idea of hybrid design and algorithm to numerically
find the optimal design based on hybrid design settings, which can be regarded as trying to optimize the compound optimal
design problem while meeting one constraint criteria. Vandenberghe et al. (1998) proposed an interior-point method to
solve determinant maximization problem with linear matrix inequality constraints, which can be used to solve some of the
constrained optimal design problem.Harmon andBenkova (2017) proposed the Barycentric algorithmspecific for computing
D-optimal size- and cost-constrained designs of experiments. Mandal et al. (2005) considered constructing constrained
optimal designs with equality constraints and Sagnol and Harman (2015) focused on finding optimal designs with system
of linear constraints on weight vectors of design points. The approach proposed by Sagnol and Harman (2015) theoretically
can solve the proposed problem if the primary and secondary criteria meet certain requirements. However, technically it is
very challenging to derive a practical algorithm based on that. Thus they are not discussed here.

The goal of this paper is to propose a novel algorithm of deriving the optimal design of a given constrained optimality
problem through finding the weights in the corresponding compound design. Consistency of the algorithm is proved.
The performance of the new algorithm is demonstrated by comparing with the grid search approaches and sequential
approaches. In 2016, a short version of this work (Cheng et al., 2016) is presented and published in the 11th International
Workshop in Model-Oriented Design and Analysis. In that version, we skipped all the proofs and a few examples. And this
paper includes all the proof details and more examples.

This paper is organized as follows. In Section 2, we introduce the set up and necessary notation. Characterization and
convergence properties are presented in Section 3. The implementation of the algorithm, as well as the computational cost
discussion is in Section 4. Applications to three examples with different number of constraints, and comparisons with grid
search and sequential approach are shown in Section 5. Section 6 provides a brief discussion. For the space limit, we put all
the proofs and some of the examples in the Appendix.

2. Set up and notation

We adapt the same notation as those of Yang et al. (2013). Suppose we have a nonlinear regression model for which
at each point x the experimenter observes a response Y . Here x could be a vector, and we assume that the responses are
independent and follow some distribution from the exponential family with mean η(x,θ ), where θ is a (k × 1) vector of
unknown parameters. Typically, approximate designs are studied, i.e. designs of the form ξ = {(xi, ωi), i = 1, . . . ,m} with
support points xi ∈ X andweightsωi > 0, and

∑m
i=1ωi = 1. Denote the original design space asX . The set of all approximate

designs on the design region X is denoted by Ξ .
Denote the information matrix of ξ as Iξ . Let Φ0(ξ ), . . . , Φn(ξ ) be the values of n + 1 smooth objective functions for

design ξ . These objective functions are some real-valued functions of Iξ which are formulated such that larger values are
desirable. These objectives dependon the optimality criteria and the parameters of interest anddifferent objectivesmayhave
different parameters of interest. For example, Φ0(ξ ) can be the negative number of the trace of inverse of the information
matrix; Φ1(ξ ) can be the negative number of the determinant of the inverse of the corresponding information matrix when
the parameter of interest is restricted to the first two parameters (assuming there are more than two parameters).

Ideally, we hope we can find a ξ ∗ which can maximize Φ0(ξ ), . . . , Φn(ξ ) simultaneously among all possible designs.
However, such solution does not exist in general. Constrained optimization approach specifies one objective as the primary
criteria and maximizes this objective subject to the constraints defined based on the remaining objectives (Cook andWong,
1994; Clyde and Chaloner, 1996). Formally, this approach can be written as

Maximize
ξ∈Ξ

Φ0(ξ ) subject to Φi(ξ ) ≥ ci, i = 1, . . . , n, (2.1)

where c = (c1, . . . , cn) are user-specified constantswhich reflectminimally desired levels of performance relative to optimal
designs for these n objective functions. To make this problemmeaningful, throughout this paper, we assume there is at least
one design satisfying all the constraints, which means an optimal solution exists.



Q. Cheng, M. Yang / Journal of Statistical Planning and Inference 200 (2019) 87–101 89

Unfortunately, with the restricted optimality set up, there is a lack of direct and computational feasible way to generally
solve the constrained optimization problem, especially when we have many constraint criteria. (2.1) can be solved typically
through the corresponding compound optimal design. Let

L(ξ,U) = Φ0(ξ )+
n∑

i=1

ui(Φi(ξ )− ci), (2.2)

where ui ≥ 0, i = 1, . . . , n. Let U = (u1, . . . , un). For a given U, L(ξ,U) maintains the concavity property without any
restriction. This property is critically important for applying the celebrated equivalence theorem, which enables verification
whether a given design is indeed optimal. Once a U is given, deriving a design maximizing L(ξ,U) can be based on some
existing algorithms, such as PSO (Mandal et al., 2015); Cocktail algorithm (Yu, 2011); and OWEA (Yang et al., 2013), among
others. As we mentioned before, it is not recommended to use compound optimal design strategy directly due to lack of a
meaningful interpretation.

To establish the relationship between constrained optimal design and compound optimal design, we need the following
assumptions, which are adapted from Clyde and Chaloner (1996). Assume that

(A1) Φi(ξ ), i = 0, . . . , n, are concave on Ξ .
(A2) Φi(ξ ), i = 0, . . . , n, are differentiable and the directional derivatives are continuous on x.
(A3) If ξn converges to ξ , then Φi(ξn) converges to Φi(ξ ), i = 0, . . . , n.
(A4) There is at least one design ξ in Ξ such that the constraints in (2.1) are satisfied.

Clyde and Chaloner (1996) generalized a result of Cook andWong (1994) and showed the equivalence of the constrained
optimization approach and the compound optimality approach.

Theorem 2.1 (Clyde and Chaloner, 1996). Under assumptions A1 to A4, ξ ∗ is optimal for constrained optimal design (2.1) if and
only if there exists a non-negative vector U∗

= (u∗1, . . . , u
∗
n) ∈ ℜ

n, such that

ξ ∗
= argmax

ξ∈Ξ

L(ξ,U∗), Φi(ξ ∗) ≥ ci for i = 1, . . . , n

and
n∑

i=1

u∗i (Φi(ξ ∗)− ci) = 0.
(2.3)

Theorem 2.1 provides necessary and sufficient condition for constrained optimal designs (2.1). It demonstrates that a
numerical solution for the constrained design problem (2.1) can be derived by using an appropriate compound optimality
criterion. The big challenge is how to find the desired U∗ for a given constrained design problem (2.1). Since the explicit
forms of the derivatives are not available, direct use of derivative based algorithms to find this U∗ may not be accurate and
may lead to some undesired local roots. Thus they are not discussed here. There are two approaches to handle this: the grid
search approach and the sequential approach. Both approaches consider the weighted optimal design, which is equivalent
to compound optimal design. Let

Φλ(ξ ) =
n∑

i=0

λiΦi(ξ ), (2.4)

where λ = (λ0, . . . , λn), λ0 > 0, 0 ≤ λi < 1, i = 1, . . . , n with
∑n

i=0λi = 1. Clearly Φλ(ξ ) is just a normalized form of
L(ξ,U). For given λ, Φλ(ξ ) also enjoys the concave property as L(ξ,U) does. So deriving a weighted optimal design can be
based on the some standard algorithm or the newly developed algorithm OWEA.

Aswe discuss in the introduction section, both grid search and the sequential approach (we shall give detailed description
later) have their own problems. Consequently they cannot serve as a general solution for the constrained optimal design
problem (2.1). How can we develop a general and efficient algorithm for the important but largely unsolved problem? The
first step is to characterize U∗ in Theorem 1.

3. Characterization

For deriving theoretical results purpose, we need to have one assumption. Let ξ ∗ be the optimal design for a constrained
optimal design problem (2.1). By Theorem 1, ξ ∗ is also an optimality solution of a compound optimal design problem (2.2).
Let U∗

= (u∗1, . . . , u
∗
n) be the Lagrange multiplier of the compound optimal design problem.

In such a compound optimal design problem (2.2), each ui > 0without upper bound. However, for an algorithm searching
for U∗, it is challenging to establish the convergence property of the algorithm when the search space is infinite. Thus our
assumption is

u∗i ∈ [0,Ni) where Ni is pre-specified, i = 1, . . . , n. (3.1)
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This assumption is equivalent to the grid size in a weighted optimal design problem (2.4). Both grid search approach and
sequential approach need to choose a grid size. Let the grid size be ϵ, then it means 0 ≤ ui ≤

1−ϵ
ϵ

< 1
ϵ
for the equivalent

compound optimal design (2.2). We can always choose some reasonable large numbers Ni’s such that Assumption (3.1) is
satisfied.

A constraint Φi is called active if u∗i > 0; otherwise the constraint will be regarded as inactive. For easy presentation, we
denote ξU as a designwhichmaximizes the Lagrange function L(ξ,U) for a givenweight vectorU = (u1, . . . , un) and Φ̂i(ξ ) as
Φi(ξ )− ci, i = 1, . . . , n. Before we characterize U in Theorem 1, we first give an overview of the new algorithm. The detailed
description will be given in Section 4.

3.1. Overview of the new algorithm

The new algorithm is designed to search for a satisfied U∗ from the easiest case to the most complex case. It will go
through all the possible cases following a complexity order until the right combination of active constraints is found:

All constraints are inactive −→ One constraint is active
−→ · · · −→ All constraints are active.

Now consider that the constrained optimal design problem has a active constraints. Without losing generality, sup-
pose these active constraints are Φ1, . . . , Φa. In other words, our efforts now are on finding a weight vector U =

(u1, . . . , ua, ua+1, . . . , un) where u1, . . . , ua are positive and ua+1, . . . , un are zero and hopefully ξU will satisfy the sufficient
condition.

To search for satisfied values for u1, . . . , ua, the algorithmwill use bisection process for all elements u1, . . . , ua through an
iterative procedure. The rest element ua+1, . . . , un in weight vector Uwill be fixed at 0 during the bisection process. Denote
the final weight function parameter U obtained from this bisection procedure by U∗

= (u∗1, . . . , u
∗
a, 0, . . . , 0). Then for any

i ∈ {1, . . . , a}, u∗i will satisfy the following property:

if Φ̂i(ξU∗ ) > 0, then u∗i = 0;

if Φ̂i(ξU∗ ) < 0, then u∗i = Ni;

if Φ̂i(ξU∗ ) = 0, then u∗i ∈ [0,Ni].

(3.2)

This property will be quoted frequently in the later theorems.
For example, take a = 2, which means only u1 and u2 are supposed to be nonzero. In this case, the algorithm first

fixes u2 as u0
2 =

0+N2
2 . Then the value for u1 will be updated to u0

1 using bisection and u0
1 will satisfy Property (3.2) with

U0
= (u0

1, u
0
2, 0, . . . , 0). Now check Φ̂2(ξU0 ). If Φ̂2(ξU0 ) ̸= 0, adjust the value for u2 through one time bisection to get u1

2
such that Φ̂2(ξU1 ) is closer to 0. For the new fixed u2 = u1

2, again update u1 to u1
1 using bisection to make u1

1 satisfy Property
(3.2) with U1

= (u1
1, u

1
2, 0, . . . , 0). Check Φ̂2(ξU1 ) and update u2 to u2

2 if Φ̂2(ξU1 ) ̸= 0. Continue this process until a satisfied
U∗

= (u∗1, u
∗

2, 0, . . . , 0) is found which guarantees that u∗1 and u∗2 both satisfy Property (3.2).
For a general a active constraints case, similar to a = 2 case, we first fix ua as u0

a =
0+Na

2 . Similar to the recursive
procedure mentioned for 2 active constraints case, derive the corresponding values u0

1, . . . , u
0
a−1 for the element u1 to ua−1

using bisections approach such that they satisfy Property (3.2) withU0
= {u0

1, . . . , u
0
a, 0, . . . , 0}. Checkwhether Φ̂a(ξU0 ) = 0

andupdate ua to u1
a . Continue this process until a desiredU∗

= (u∗1, . . . , u
∗
a, 0, . . . , 0) is foundwith all u∗1, . . . , u

∗
a that satisfied

Property (3.2).
To guarantee the bisection technique is valid and the desired Property (3.2) can be achieved for u1, . . . , ua through the

bisection process, we need to characterize the monotone property of the multiplier U. The characterizations in this section
allow us to propose a new algorithm which guarantees the convergence and speed.

3.2. Theorems

Theorem 3.1. For any a ∈ {1, . . . , n}, S ⊊ {1, . . . , n} \ {a} and S ′ = {1, . . . , n} \ (S
⋃
{a}), define US = {ui|i ∈ S} and

US′ = {ui|i ∈ S ′}. Then Φ̂a(ξU) is a non-decreasing function of ua if US′ is pre-fixed and US satisfies one of the following two
conditions:

Φ̂i(ξU) ≥ 0 and uiΦ̂i(ξU) = 0 for i ∈ S1, or

ui = Ni and Φi(ξU) < 0 for i ∈ S2,
(3.3)

where S1 ∪ S2 = S and S1 ∩ S2 = ∅ and U is the combination of US , ua, and US′ by their corresponding indexes.

The main purpose of Theorem 3.1 is to guarantee that the recursive bisection technique can be properly implemented.
Condition (3.3) implies that ui, i ∈ S satisfy Property (3.2). Suppose there are a active constraints and they are Φ1, . . . , Φa.
When we search for the proper value of ui (i ≤ a − 1), ui+1, . . . , ua and the zero-element ua+1, . . . , un can be regarded as
fixed, which corresponds to US′ in theorem. And since it is a recursive procedure, for u1, . . . , ui−1, the value will be updated
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first according to the value assigned to ui on each bisection iteration and fixed ui+1, . . . , un. Thus (u1, . . . , ui−1) is US in this
case. After u1, . . . , ui−1 being updated for the given ui, Φ̂i(ξU) should be amonotone increasing function of ui by Theorem 3.1.
Due to the monotone property, three cases may occur when we search for ui:

Case 1 Φ̂i(ξU) = 0 and ui ∈ [0,Ni];
Case 2 Φ̂i(ξU) < 0 and ui = Ni;
Case 3 Φ̂i(ξU) > 0 and ui = 0.

The three possible cases are equivalent to Property (3.2). Under all these possible cases thatmay occurwhen the bisection
technique is applied to the former elements, Theorem 3.1 makes it clear that the monotone increasing property holds for
the next element to which the bisection technique is applied.

Now suppose the active constraints are ΦS with S ⊆ {1, . . . , n}. A weight vector U∗

S for active constraints can be found
through the bisection technique. One can always construct a complete weight vector U∗

= (u∗1, . . . , u
∗
n) as follows:

For any i ∈ {1, . . . , n}

• If i ∈ S, take u∗i as the corresponding value in U∗

S ;
• If i ̸∈ S, u∗i = 0.

For simplicity, we denote such constructed full weight vector U as {US, 0}.

Theorem 3.2. For any S ⊂ {1, . . . , n}, suppose that U0
= {U0

S , 0} satisfies the following two conditions

(i) Φ̂i(ξU0 ) ≥ 0 for i ∈ S1 and
∑
i∈S1

uiΦ̂i(ξU0 ) = 0.

(ii) Φ̂i(ξU0 ) < 0 and ui = Ni for i ∈ S2.

(3.4)

where S1 ∪ S2 = S and S1 ∩ S2 = ∅. If there exists at least one element in S, say i, such that Φ̂i(ξU0 ) < 0, then there does not exist
a non-negative value set U+

S = {ui ∈ [0,Ni)|i ∈ S}, such that uiΦ̂i(ξU+ ) = 0 and Φ̂i(ξU+ ) ≥ 0 for i ∈ S, where U+
= {U+

S , 0}.

This theorem will help us prove the convergence of the new algorithm.

4. Algorithm

For a given constrained optimal design problem (2.1), the new algorithm is to find the desiredU∗. In each step, we need to
derive an optimal design for a compound optimal design problem (2.2)withU being given.We first introduce such algorithm.

4.1. Deriving compound optimal design with given U

Yang et al. (2013) proposed the optimal weight exchange algorithm (OWEA), which can be applied to commonly used
optimality criteria regardless of the parameters of interest and also enjoys high speed. This algorithmwas originally designed
for one objective optimal design problems. Fortunately, OWEA can be extended for deriving ξU = argmaxξ L(ξ,U) where U
is given. A detail description about OWEA algorithm can be found in the Appendix.

Now we are ready to present the main algorithm which is to search the satisfied U∗.

4.2. The main algorithm

The strategy of the algorithm is to search from the simplest case (no constraint is active) to the most complicated case
(all constraints are active). For each case, the algorithm will implement a recursive bisection procedure. The algorithm can
be described as following:

Step 1 Set a = 0, derive ξ ∗
= argmaxξ Φ0(ξ ) and check whether Φi(ξ ∗) ≥ ci for i = 1, . . . , n. If all constraints are satisfied,

stop and ξ ∗ is the desired design. Otherwise set a = 1 and go to Step 2.
Step 2 Set i = 1, consider ξ ∗

= argmaxξ Φ0(ξ )+ uiΦi(ξ ). Adjust the value of ui using the bisection technique on [0,Ni] to
obtain u∗i such that Φ̂i(ξ ∗) = 0. During the bisection process, the upper bound, instead of the median, of the final
bisection interval will be picked as the right value for u∗i . If Φ̂i(ξ ∗) > 0 when ui = 0, set u∗i = 0. If Φ̂i(ξ ∗) < 0 when
ui = Ni, set u∗i = Ni. For ξ ∗

= argmaxξ Φ0(ξ )+u∗i Φi(ξ ), check whether Φ̂j(ξ ∗) ≥ 0 for j = 1, . . . , n. If all constraints
are satisfied, stop and ξ ∗ is the desired design; otherwise change i to i + 1 and repeat this process. After i = n is
tested and no desired ξ ∗ is found, then set a = 2 and proceed to Step 3.

Step 3 Find all subsets of {1, . . . , n} of size a, choose one out of these subsets. Denote it as S.
Step 4 Let (s1, . . . , sa) be the indexes of the elements inUS . To find the right valueU∗

S forUS , we followa recursive procedure.
For each time a given value of usa , first use bisection technique to find the corresponding us1 , . . . , usa−1 . The full
weight vector U can be constructed with us1 , . . . , usa by setting all the other weight elements in U as 0’s, which we
later denote by U = {US, 0}. Then adapt the value of usa as follows:
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– If Φ̂sa (ξU) > 0 when usa is assigned as 0, set u∗sa = 0.
– If Φ̂sa (ξU) < 0 when usk is assigned as Na, set u∗sa = Na.
– Otherwise use the bisection technique to find u∗sa such that Φ̂sa (ξU) = 0.

Record u∗sa and the corresponding values for {u∗s1 , . . . , u
∗
sa−1

} as U∗

S . For the bisection process in each dimension,
the upper bound of the final bisection interval will be picked as the right value for the corresponding element in
weight vector U∗

S . Then the full weight vector U∗ can be constructed using U∗
= {U∗

S , 0}.
Step 5 For the U∗

S and ξU∗ derived in Step 4, check Φ̂i(ξU∗ ), i = 1, . . . , n. If all constraints are satisfied, stop and ξU∗ is the
desired design. Otherwise, pick another a-element subset in Step 3, and go through Step 4 to Step 5 again. If all
a-element subsets are tested, go to Step 6.

Step 6 Change a to a+ 1, go through Step 3 to Step 5, until a = n. If no suitable design ξU∗ is found, the implication is that
there is no solution for the constrained optimal design (2.1).

We demonstrate this algorithm through an optimal design problem with two constraints. Denote the target objective
function by Φ0 and two constrained objective functions by Φ1 and Φ2. The algorithmwill search for a desired weight vector
U∗

= (u∗1, u
∗

2) and desired design ξU∗ according to the following process:

Step 1 Suppose there is no active constraint, then U∗ in this case will be (0, 0) and ξU∗ is also an optimal design for Φ0. If
ξU∗ satisfies all the constraints, then ξU∗ is the desired design. Otherwise go to Step 2.

Step 2 Suppose there is one active constraint. First suppose Φ1 is active. Derive u∗1 through bisection technique such that
Φ̂1(ξU∗ ) = 0, where U∗

= (u∗1, 0). If ξU∗ satisfies all the constraints, ξU∗ is the desired design. Otherwise suppose
Φ2 is active and repeat this process. If both fail to find the desired ξU∗ , that means there are more than one active
constraint. Go to Step 3.

Step 3 Now suppose all constraints are active. Derive U∗
= (u∗1, u

∗

2) through bisection technique such that Φ̂i(ξU∗ ) = 0 for
i = 1, 2. If such U∗ can be derived, then ξU∗ is the desired design. If it fails to produce a satisfied U∗, there are two
possible reasons:

Case 1 The predefined upper bound vectors N1 and N2 are not proper. The true u∗i fall out of the interval [0,Ni) for at
least one of i’s, i = 1,2,

Case 2 There is no solution for the constrained optimal design problem.

4.3. Convergence and computational cost

Whether an algorithm is successful mainly depends on two properties: convergence and computational cost. We first
establish the convergence of the proposed algorithm.

Theorem 4.1. For the constrained optimal design problem (2.1), under Assumption (3.1), the proposed algorithm converges to
ξ ∗.

Next we shall compare the computational cost of the new algorithm with those of the grid search and the sequential
approach. Both the grid search and the sequential approach are based on weighted optimal design problem (2.4), which is
equivalent to a compound optimal design problemwith ui =

λi
λ0
, i = 1, . . . , n. All three approaches are based on identifying

a satisfied multiplier of a compounded optimal design problem and the computational cost of each approach is proportional
to the number of multiplier the approach tests.

The grid search approach considers all possible combinations of λ1, . . . , λn on [0, 1]n with given mesh grid size. The
combination must satisfy that

∑n
i=1λi < 1 and λ0 is set as 1 −

∑n
i=1λi. Suppose the grid size is ϵ in a grid search. Let TG be

the number of all possible combinations. Direct computation shows that

TG =

n∑
k=0

(n
k

)(
⌊
1
ϵ
⌋ − 1
k

)
=

(
n+ ⌊

1
ϵ
⌋ − 1

n

)
, (4.1)

where ⌊.⌋ refers to floor function.
For the new algorithm, since ui =

λi
λ0
, the upper bound of the corresponding ui is 1/ϵ. To guarantee the new algorithm

has at least the same accuracy (ϵ) on interval [0, 1/ϵ] as that of grid search, one needs ⌈−2log2ϵ + 2⌉ times bisection
technique. Here ⌈.⌉ refers to the ceiling function. Let TL be the number of times compound optimal designs calculated during
the searching process, then

TL =
n∑

k=0

(n
k

)
⌈−2log2ϵ + 2⌉k = ⌈−2log2ϵ + 3⌉n. (4.2)

As for the sequential approach, the computational cost is significantly less than those of the grid search and the new
algorithm. However, as we will demonstrate in the next section, the sequential approach in general cannot find a desired
solution.
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Table 1
Comparison of computational cost.

Mesh grid size Three objectives Four objectives

0.01 0.001 0.01 0.001

Grid search 5050 500500 171700 167167000
New algorithm 289 529 4913 12167

Note: Numbers in the table are counts ofweighted optimal designs calculated
to solve the multiple-objective design problem for each technique.

Table 1 shows the comparison of computational cost between new algorithm and grid search under different grid sizes
and different numbers of constraints.

5. Numerical examples

In this section, we will compare the performance (accuracy and the computing time) of the new algorithm, the grid
search and the sequential approach. The sequential approach was introduced in Huang and Wong (1998). This approach
first reorders Φ0, . . . , Φn as Φs1 , . . . , Φsn+1 according to a robustness technique. In this paper, we test all possible orders
and pick up the best design. Certainly it includes the special pick in Huang and Wong (1998). Since we do not have a real
constraint number c0 for target optimality Φ0, here we can regard the constraint number c0 for optimality Φ0 as 0 and then
combine c0 with the original constraints vector c = (c1, . . . , cn). For newly constructed c∗ = (c0, . . . , cn), reorder it as
(cs1 , . . . , csn+1 ). Details of this approach can be found in the Appendix.

For the grid search, weighted optimal design ξΛ = argmaxξ

∑n
i=0λiΦi(ξ ) will be considered. All combinations of

Λ = (λ0, . . . , λn)T will be checked using multi-dimensional grid search on [0, 1] with constraint
∑n

i=0λi = 1. Among
all weighted optimal designs ξΛ, ξ ∗, which maximize Φ0 while guaranteeing that Φi ≥ ci for i = 1, . . . , n, is selected. Then
ξ ∗ is regarded as an optimal design for the multiple-objective optimal design problem.

All three approaches utilize the OWEA algorithm to derive optimal designs for given weighted optimal design problems.
For all examples, the design space has been discretized uniformly into 1000 design points. The cut-off value for checking
optimality in L(ξ,U) for given U was chosen to be ∆ = 10−6. All other set ups of OWEA are the same as those of Yang et al.
(2013). For new algorithm and grid search, we require the algorithms to produce the best possible designwhile guaranteeing
that the constraints are exactly satisfied. For sequential approach, since it does not guarantee to produce a proper design
and may fail during the searching process, a tolerance value ϵ = 0.01 is set up. That means during the sequential approach
process, if a design ξ0 has Φi(ξ0) ≥ ci − ϵ for some i, the design ξ0 will still be regarded as a proper design which satisfies the
constraint for objective function Φi. The grid size is 0.01 for all the examples in this section. The pre-specified upperbound
N in the new algorithm is 100. All the algorithms are implemented in SAS software on a Lenovo laptop with Intel Core 2 duo
CPU 2.27 Hz.

Example I. Consider the nonlinear model given by

y = β1e−θ1x + β2e−θ2x + ϵ. (5.1)

This model is commonly used to compare the progression of a drug between different compartments. Here y denotes the
concentration level of the drug in compartments, x denotes the sampling time, and ϵ is assumed to follownormal distribution
withmean zero and variance σ 2. In a PK/PD study, Notari (1980) usedModel (5.1) tomodel the concentration of a drug taken
at different time. The estimates of the parameters are θ0 = (θ1, θ2, β1, β2) = (1.34, 0.13, 5.25, 1.75). Under these parameter
estimations, Huang and Wong (1998) studied three-objective optimal design with design space x ∈ [0, 15].

Let B = diag{ 1
θ21

, 1
θ22

, 1
β2
1
, 1

β2
2
}; W =

∫ 10
2 f (x)f t (x)v(dx), where f (x) is the linearized function of the model function using

Taylor expansion at θ T
0 ; ξ

∗

0 = argminξ tr(I−1(ξ )B); ξ ∗

1 = argminξ |I−1(ξ )|; and ξ ∗

2 = argminξ tr(I−1(ξ )W ). The three objective
functions can be written as follows:

Φ0(I(ξ )) = −
tr(I−1(ξ )B)
tr(I−1(ξ ∗

0 )B)
,

Φ1(I(ξ )) = −(
|I−1(ξ )|
|I−1(ξ ∗

1 )|
)
1
4 , and

Φ2(I(ξ )) = −
tr(I−1(ξ )W )
tr(I−1(ξ ∗

2 )W )
.

Define EffiΦi(ξ ) = −
1

Φi(I(ξ ))
. Clearly EffiΦi(ξ ), i = 0, 1, 2 are consistent with the definitions of efficiency of design ξ under

the corresponding optimality criteria. For example, EffiΦ1(ξ ) refers to the D-efficiency. Such definition will be used in the
subsequent examples.
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Table 2
Example I: Relative design efficiencies of ξ ∗

0 , ξ
∗

1 , ξ
∗

2 , and ξ ∗ .

Design type Efficiency

Φ0 Φ1 Φ2

ξ ∗

0 1 0.7315 0.7739
ξ ∗

1 0.6677 1 0.5576
ξ ∗

2 0.6959 0.4166 1
ξ ∗ 0.8692 0.9000 0.8001

Table 3
Example I: Relative efficiencies based on different techniques.

Techniques Efficiency Time cost (s)

Φ0 Φ1 Φ2

Grid search 0.8658 0.9009 0.8000 1834
Sequential approach 0.8917 0.8900 0.8040 52
New algorithm 0.8692 0.9000 0.8001 103

The three-objective optimal design problem considered in Huang and Wong (1998) is

Maximize
ξ

EffiΦ0(ξ )

subject to
{
EffiΦ1(ξ ) ≥ 0.9,
EffiΦ2(ξ ) ≥ 0.8.

Notice that the constraints EffiΦ1(ξ ) ≥ 0.9 and EffiΦ2(ξ ) ≥ 0.8 are obviously equivalent to Φ1(I(ξ )) ≥ −10/9 and
Φ2(I(ξ )) ≥ −5/4, respectively. In the subsequent examples, we will use the similar efficiency setup without specifying
their equivalence to the corresponding objective functions.

The efficiencies of ξ ∗

1 , ξ
∗

2 , and ξ ∗

3 under each of the three objective functions are shown in Table 2. Clearly the optimal
design based on one single optimal criteria has bad performance under other optimal criteria. These efficiencies are
consistent with the corresponding efficiencies provided in Table 4 of Huang andWong (1998). The new algorithm is applied
to the three-objective optimal design problem. With the new algorithm, the corresponding Lagrange function is

L(ξ,U∗) = Φ0 + 4.2053Φ1 + 2.5085Φ2.

The efficiencies of the derived constrained optimal design ξ ∗ are also shown in Table 2. It shows that ξ ∗ has high efficiency
on Φ0 while guaranteeing the other two efficiencies are above the acceptable level.

The grid search and the sequential approach are also applied to this optimal design problem. The sequential result is also
consistent with that of Huang and Wong (1998).

Table 3 shows the efficiencies and computational time comparisons of the constrained optimal designs derived using the
grid search, the sequential approach and the new algorithm.

It shows that the three approaches are essentially equivalent. The sequential approach gains highest efficiency on Φ0
by sacrificing a little bit on constrained efficiencies. New algorithm and grid search have slight drop on target efficiency to
guarantee that the two constraints are exactly satisfied. The sequential approach is faster. However, the computational time
in the table for sequential approach is just for one possible order. Inmany cases, onemay need to checkmany possible orders
to produce a satisfied solution. Thus the computational time will increase significantly in that case. In the next example,
however, sequential approach fails to provide a desired design.

Example II. Atkinson et al. (1993) derived Bayesian designs for a compartmental model which can be written as

y = θ3(e−θ1x − e−θ2x)+ ϵ = η(x, θ )+ ϵ. (5.2)

where ϵ is assumed to follow the normal distribution with mean zero and variance σ 2 and y represents the concentration
level of the drug at time point x. Clyde and Chaloner (1996) derived multiple-objective optimal designs under this model
with parameter values θ T

= (θ1, θ2, θ3) = (0.05884, 4.298, 21.80) and design space [0, 30]. Interests are on estimating θ
as well as the following quantities:

• Area under the curve (AUC),

h1(θ ) =
θ3

θ1
−

θ3

θ2

• Maximum concentration,

cm = h2(θ ) = η(tmax, θ ),

where tmax = 1.01.
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Table 4
Example II: relative efficiencies of ξ ∗

0 , ξ ∗

1 , ξ ∗

2 , and ξ ∗ .

Design type Efficiency

Φ0 Φ1 Φ2

ξ ∗

0 1.0000 0.3431 0.3634
ξ ∗

1 0.0036 1.0000 0.0000
ξ ∗

2 0.0042 0.0000 1.0000
ξ ∗ 0.9761 0.4008 0.4046

Table 5
Example II: relative design efficiency based on different approaches.

Techniques Efficiency Time cost (s)

Φ0 Φ1 Φ2

Grid search 0.9761 0.4042 0.4009 1047
Sequential approach Fails
New algorithm 0.9761 0.4008 0.4046 59

Table 6
Example II: design efficiencies based on different orders using sequential
approach.

Designs Efficiency

Φ0 Φ1 Φ2

ξ ∗

120 0.5797 0.3908 0.5981
ξ ∗

210 0.4537 0.6135 0.3904
ξ ∗

102 Fails
ξ ∗

201 Fails

Let ξ ∗

0 = argmin|I−1(ξ )|, ci be the gradient vector of hi(θ ) according to parameter vector θ and ξ ∗

i = argmintr(cTi I
−1(ξ )ci),

i = 1,2. The corresponding objective functions can be written as follows:

Φ0(I(ξ )) = −(
|I−1(ξ )|
|I−1(ξ ∗

0 )|
)
1
3 , and

Φi(I(ξ )) = −
tr(cTi I

−1(ξ )ci)
tr(cTi I−1(ξ ∗

i )ci)
, i = 1, 2.

Consider the following three-objective optimal design problem:

Maximize
ξ

EffiΦ0(ξ )

subject to EffiΦi(ξ ) ≥ 0.4, i = 1, 2.

Utilizing the new algorithm, we find that the corresponding Lagrange function is

L(ξ,U∗) = Φ0 + 0.0916Φ1 + 0.0854Φ2.

The efficiencies of ξ ∗

0 , ξ
∗

1 , ξ
∗

2 , and the constrained optimal design ξ ∗ under different optimality criteria are shown in Table 4.
Table 5 shows the efficiencies and computational time comparisons of the constrained optimal designs derived using the

grid search, the sequential approach and the new algorithm. The table clearly shows both new algorithm and grid search
produce a satisfied solution. But grid search takes around eighteen times the computational timeof that of the newalgorithm.
On the other hand, the sequential approach again fails to produce a satisfied solution. For sequential approach, all possible
orders are tested and results are shown in Table 6. ξ ∗

ijk is the sequential optimal design based on order Φi → Φj → Φk.
Table 6 shows sequential approach with order Φ1 → Φ0 → Φ2 and order Φ2 → Φ0 → Φ1 fails to produce a design which
satisfies all the constraints. For optimal designs derived with the other two orders, although constraints are satisfied, the
efficiency of the target objective function Φ0 is far below the results from the new algorithm and the grid search. All these
indicate that sequential approach may not be proper for finding multiple-objective optimal design problems.

For the next example and the examples in the Appendix, the sequential approach is dropped due to its unstable
performance and the grid search is not considered either due to its lengthy computational time.

Example III. Consider Model (5.1) in Example I. Suppose that we want to maximize the efficiency of D-optimal while
guaranteeing that the efficiency of C-optimal for each parameter is above 0.7. All other settings are as the same as those
of Example I.

Let ξ ∗

0 = argmin|I−1(ξ )| and ξ ∗

i = argmintr(eTi I
−1(ξ )ei), i = 1, 2, 3, 4, where ei is the unit vector with ith element equal

to 1.
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Table 7
Example III: the relative efficiencies of ξ ∗

0 , ξ ∗

1 , ξ ∗

2 , ξ ∗

3 , ξ ∗

4 , and ξ ∗ .

Design type Efficiency

Φ0 Φ1 Φ2 Φ3 Φ4

ξ ∗

0 1.0000 0.8323 0.4461 0.6326 0.5967
ξ ∗

1 0.9141 1.0000 0.3294 0.6234 0.6136
ξ ∗

2 0.3849 0.1964 1.0000 0.3353 0.6422
ξ ∗

3 0.1471 0.0006 0.0232 1.0000 0.0051
ξ ∗

4 0.6044 0.4260 0.6867 0.6230 1.0000
ξ ∗ 0.9259 0.7009 0.7007 0.7212 0.7027

The corresponding objective functions can be written as following:

Φ0(I(ξ )) = −(
|I−1(ξ )|
|I−1(ξ ∗

0 )|
)
1
3 , and

Φi(I(ξ )) = −
tr(eTi I

−1(ξ )ei)
tr(eTi I−1(ξ ∗

i )ei)
, i = 1, 2, 3, 4.

Consider the following five-objective optimal design problem

Maximize
ξ

EffiΦ0(ξ )

subject to EffiΦi(ξ ) ≥ 0.7, i = 1, 2, 3, 4.

Results from the new algorithm show that the corresponding Lagrange function is

L(ξ,U∗) = Φ0 + 0.0183Φ1 + 0.3540Φ2 + 0.0305Φ4.

Only objective function Φ3 is inactive in this case. The efficiencies of ξ ∗

0 , ξ
∗

1 , ξ
∗

2 , ξ
∗

3 , ξ
∗

4 and the constrained optimal design
ξ ∗ under different optimal criteria are shown in Table 7. It takes about 37 min on a laptop.

6. Discussion

While the importance of multiple-objective optimal designs is well recognized in scientific studies, applications to solve
this type of problems are still undeveloped due to a lack of a general and efficient algorithm. The combination of OWEA
algorithm for compound optimal design problem and the new algorithm provides an efficient and stable framework for
finding the general multiple-objective optimal designs. Examples show remarkable improvement on computational cost
compare with the grid search approach.

For optimal designs with no more than four objective functions, the new algorithm can derive the desired solution
efficiently. When there are five or more objective functions, it is unlikely all constraints are active. If only less than four
constraints are active, the new algorithm can still solve the optimal design efficiently. However, in a rare situation where
there are four or more active constraints, the computation time can become lengthy. More research works are needed to
deal with these cases.

The new algorithm is implemented under locally optimal designs context for all examples. It is possible to extend the
results to other settings, like to the cases discussed in Cook and Fedorov (1995). Penalty approaches are another strategy
for finding multiple-objective optimal design. When implementing penalty approach, each constraint will be transferred to
a penalty term. Thus the constrained optimal design problem can be transferred to a compounded optimal design problem
with these penalty terms as the new optimal criteria. However, it is out of the scope of this paper. More future research
works are certainly needed to realize the idea of penalty approach.

Although the computer codes of this new algorithm are not straightforward, the main body of the code should work
for all multiple-objective design problems. One only needs to change the information matrix for the specific model and the
specific objective functions in amultiple-objective optimal design problem. The SAS IML codes for all examples in this article
are freely available upon request. These codes can be easily modified for different multiple-objective optimal problems.

Acknowledgments

The authors are thankful for detailed comments and suggestions by the associate editor and one referee on an earlier
version of the article, which clearly helped to improve the final version. Min Yang’s research was supported by National
Science Foundation grants DMS-1407518 and DMS-1811291.



Q. Cheng, M. Yang / Journal of Statistical Planning and Inference 200 (2019) 87–101 97

Appendix

A.1. OWEA algorithm

Since all elements inU are nonnegative, L(ξ,U) = Φ0(ξ )+
∑n

i=1ui(Φi(ξ )− ci) can be regarded as a new optimal criterion.
For a design ξ = {(x1, w1), . . . , (xm−1, wm−1), (xm, wm)}, let X = (x1, . . . , xm)T and W = (w1, . . . , wm−1)T . The following
algorithm follows the similar procedure as that of OWEA in Yang et al. (2013).

Step 1 Set t = 0, let the initial design set X0 take 2k design points uniformly from the design space and the corresponding
weight be 1/2k for each point.

Step 2 Derive the optimal weight vectorW t for a fixed sample points set X t .
Step 3 For ξ t

= (X t ,W t ), denote directional derivative of L(ξ,U) at x as dU(x, ξ t ), where x is any design point from the
design space X . The explicit expression can be found in Yang et al. (2013).

Step 4 For a small prefixed value∆ > 0, if maxx∈XdU(x, ξ t ) ≤ ∆, ξ t can be regarded as the optimal design. If dU(x, ξ t ) > ∆

for some design point x, let X t+1
= X t ⋃ x̂t where x̂t = argmaxx ∈X dU(x, ξ t ). Go through Step 2 to Step 4 again

with new X t+1.

In Step 2, the optimal weight vector Ŵ can be found by Newton’s method based on the first derivative and second
derivative of L(ξ,U) with respect to the weight vector W . These derivatives can be derived using (A.1) and the formula
in the Appendix of Yang et al. (2013).

∂Φλ(ξ )
∂W

=
∂Φ0(ξ )

∂W
+

n∑
i=1

ui
∂Φi(ξ )
∂W

;

∂2Φλ(ξ )
∂WW T =

∂2Φ0(ξ )
∂WW T +

n∑
i=1

ui
∂2Φi(ξ )
∂WW T .

(A.1)

Based on the exact same argument as Yang et al. (2013), this algorithm converges to an optimal design maximizing L(ξ,U).
We use the extended OWEA to derive ξU.

A.2. Sequential approach procedures

Then the sequential procedure for finding the corresponding compound optimal design with the specified order
{s1, . . . , sn+1} can be described as follows:

Step 1 If Φ0 ∈ {Φs1 , Φs2}, say Φ0 = Φs1 . Consider constrained optimal design problem

Maximize Φ0 while Φs2 ≥ cs2 .

If not, consider constrained optimal design problem

Maximize Φs2 while Φs1 ≥ cs1 .

Then find the weight vector in the weighted optimal design problem corresponding to the specified constrained
optimal design problem using the grid search with a prefixed grid size and denote this weight vector by (1−β2, β2).
Construct a new objective function Φ{s1,s2}(ξ ) =

(1−β2)Φs1 (ξ )+β2Φs2 (ξ )
(1−β2)Φs1 (ξs1,s2 )+β2Φs2 (ξs1,s2 )

, where ξs1,s2 is optimal design for
(1− β2)Φs1 (ξ )+ β2Φs2 (ξ ). If n ≥ 2, set k = 3.

Step 2 For the newly constructed objective function, consider weighted design problem (1− x)Φ{s1,...,sk−1} + xΦsk . Change
the value of x by grid search on [0, 1] with given grid size. If Φ0 ∈ {Φs1 , . . . , Φsk}, choose a proper value x such
that the corresponding weight design maximizes Φ0 while guarantees Φsi ≥ ci for i = 1, . . . , k. If not, choose a
proper value x such that the corresponding weighted optimal design maximizes Φsk while guarantees Φsi ≥ ci for
i = 1, . . . , k−1. Denote this value as βk. If all the possible values for x fail to satisfy the constraints for Φs1 , . . . , Φsk ,
that indicates the sequential approach fails with the specified order. Then quit the algorithm.
Construct new objective function

Φ{s1,...,sk}(ξ ) =
(1− βk)Φs1,...,sk−1 (ξ )+ βkΦsk (ξ )

(1− βk)Φs1,...,sk−1 (ξs1,...,sk )+ βkΦsk (ξs1,...,sk )
,

where ξs1,...,sk is optimal design for (1−βk)Φs1,...,sk−1 (ξ )+βkΦsk (ξ ). Set k = k+1 and repeat Step 2, until k = n+1.
Step 3 Transfer Φ{s1,...,sn+1}(ξ ) back to

∑n
i=0λiΦi(ξ ) according to format of Eq. (2.4) using scalar change. Then

∑n
i=0λiΦi(ξ )

will be the weighted optimal design problem found for the original constrained optimal design problem (2.1) with
the sequential approach based on the specified order.
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Table 8
Example IV: the relative efficiencies of ξ ∗

0 , ξ ∗

1 , ξ ∗

2 , ξ ∗

3 , and ξ ∗ .

Design type Efficiency

Φ0 Φ1 Φ2 Φ3

ξ ∗

0 1.0000 0.3431 0.3634 0.6464
ξ ∗

1 0.0036 1.0000 0.0000 0.0000
ξ ∗

2 0.0042 0.0000 1.0000 0.0002
ξ ∗

3 0.0785 0.0001 0.0007 1.0000
ξ ∗ 0.9761 0.4008 0.4046 0.5143

A.3. Examples

Example IV. Under the same set up as that of Example II, another parameter of interest, time to maximum concentration
tm is also considered, where

tm = h3(θ ) =
log(θ2)− log(θ1)

θ2 − θ1
.

The corresponding objective function is

Φ3(I(ξ )) = −
tr(cT3 I

−1(ξ )c3)
tr(cT3 I−1(ξ ∗

3 )c3)
,

where c3 is the gradient vector of h3(θ ) according to vector θ and ξ ∗

3 = argminξ tr(cT3 I
−1(ξ )c3). Clyde and Chaloner (1996)

studied the following four-objective optimal design problem

Maximize
ξ

EffiΦ0(ξ )

subject to

{EffiΦ1(ξ ) ≥ 0.4,
EffiΦ2(ξ ) ≥ 0.4,
EffiΦ3(ξ ) ≥ 0.4.

is considered.

Utilizing the new algorithm, we find that the corresponding Lagrange function is

L(ξ,U∗) = Φ0 + 0.0916Φ1 + 0.0854Φ2.

This indicates that only twoout of the three constraints are active,which are objective functionsΦ1 andΦ2. The efficiencies of
ξ ∗

0 , ξ
∗

1 , ξ
∗

2 , ξ
∗

3 , and the constrained optimal design ξ ∗ under different optimal criteria are shown in Table 8. The computational
time is around 56 s.

Example V. Based on the same settings as Example IV, we add one more objective function:

Φ4(I(ξ )) = −
tr(I−1(ξ ))
tr(I−1(ξ ∗

4 ))
.

Here ξ ∗

4 = argmintr(I−1(ξ )). Then five-objective optimal design problem

Maximize
ξ

EffiΦ0(ξ )

subject to

{EffiΦi(ξ ) ≥ 0.4, i = 1, 2, 3

EffiΦ4(ξ ) ≥ 0.75

is considered.

Result from new algorithm indicates that the corresponding Lagrange function is

L(ξ,U∗) = Φ0 + 0.3052Φ1 + 0.8362Φ4.

Only objective functions Φ1 and Φ4 are active in this case. The efficiencies of ξ ∗

0 , ξ
∗

1 , ξ
∗

2 , ξ
∗

3 , ξ
∗

4 and the constrained optimal
design ξ ∗ under different optimal criteria are shown in Table 9. It takes 2 min and 27 s for the new algorithm to find ξ ∗.

A.4. Theory and proof

Constrained optimization approach specifies one objective as the primary criteria and maximizes this objective subject
to the constraints on the remaining objectives (Cook and Wong, 1994; Clyde and Chaloner, 1996). Formally, this approach
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Table 9
Example V: the relative efficiencies of ξ ∗

0 , ξ ∗

1 , ξ ∗

2 , ξ ∗

3 , ξ ∗

4 , and ξ ∗ .

Design type Efficiency

Φ0 Φ1 Φ2 Φ3 Φ4

ξ ∗

0 1.0000 0.3431 0.3634 0.6464 0.7044
ξ ∗

1 0.0036 1.0000 0.0000 0.0000 0.0000
ξ ∗

2 0.0042 0.0000 1.0000 0.0002 0.0005
ξ ∗

3 0.0785 0.0001 0.0007 1.0000 0.0010
ξ ∗

4 0.7904 0.1138 0.6460 0.5895 1.0000
ξ ∗ 0.9616 0.4013 0.4184 0.4945 0.7501

can be written as

Maximize
ξ∈Ξ

Φ0(ξ ) subject to Φi(ξ ) ≥ ci, i = 1, . . . , n, (A.2)

where c = (c1, . . . , cn) are user-specified constantswhich reflectminimally desired levels of performance relative to optimal
designs for these n objective functions. To make this problemmeaningful, throughout this paper, we assume there is at least
one design satisfying all the constraints, which means an optimal solution exists.

Let S ⊂ {1, . . . , n}, for easy presentation, we denoteUT
S Φ̂S(ξ ) =

∑
i∈SuiΦ̂i(ξ ).We also denote Φ̂(ξ ) = (Φ̂1(ξ ), . . . , Φ̂n(ξ )).

Proof of Theorem3.1. Let u0
a > u1

a be twononnegative values. LetU0
S andU1

S be the corresponding value sets forUS satisfying
the two conditions in the theorem when ua = u0

a and u1
a , respectively. Let U0 be the combination of U0

S , u
0
a , and US′ by their

corresponding indexes. Similarly let U1 be the counterpart of U1
S , u

1
a , and US′ .

Notice that for U0
S and U1

S , the classification of S1 and S2 could be different. That means elements in S1 for U0
S may fall

into S2 for U1
S and versus the same. We just need to check that the two disjoint subsets from S satisfy Condition (3.3) in the

theorem separately.
By the properties of ξU0 and ξU1 , we have

Φ0(ξU0 )+ (U0)T Φ̂(ξU0 ) ≥ Φ0(ξU1 )+ (U0)T Φ̂(ξU1 ), and

Φ0(ξU1 )+ (U1)T Φ̂(ξU1 ) ≥ Φ0(ξU0 )+ (U1)T Φ̂(ξU0 ).
(A.3)

Notice that

(U0)T Φ̂(ξU0 ) = (U0
S )

T Φ̂S(ξU0 )+ u0
aΦ̂a(ξU0 )+ (US′ )T Φ̂S′ (ξU0 ),

(U0)T Φ̂(ξU1 ) = (U0
S )

T Φ̂S(ξU1 )+ u0
aΦ̂a(ξU1 )+ (US′ )T Φ̂S′ (ξU1 ),

(U1)T Φ̂(ξU0 ) = (U1
S )

T Φ̂S(ξU0 )+ u1
aΦ̂a(ξU0 )+ (US′ )T Φ̂S′ (ξU0 ), and

(U1)T Φ̂(ξU1 ) = (U1
S )

T Φ̂S(ξU1 )+ u1
aΦ̂a(ξU1 )+ (US′ )T Φ̂S′ (ξU1 ).

(A.4)

Adding up the two inequalities in (A.3) and utilizing (A.4), we have

(u0
a − u1

a)(Φ̂a(ξU0 )− Φ̂a(ξU1 ))+ (U0
S − U1

S )
T (Φ̂S(ξU0 )− Φ̂S(ξU1 )) ≥ 0. (A.5)

Suppose i ∈ S1 when ua = u0
a and i ∈ S2 when ua = u1

a . Clearly that (u0
i − u1

i ) ≤ 0 while (Φ̂i(ξU0 ) − Φ̂i(ξU1 )) ≥ 0. The
conclusionholds for all other cases through the similar argument. Thuswehave, for any i ∈ S, (u0

i −u1
i )(Φ̂i(ξU0 )−Φ̂i(ξU1 )) ≤ 0.

Consequently, we have

(U0
S − U1

S )
T (Φ̂S(ξU0 )− Φ̂S(ξU1 )) =

∑
i∈S

(u0
i − u1

i )(Φ̂i(ξU0 )− Φ̂i(ξU1 )) ≤ 0, (A.6)

which indicates

(u0
a − u1

a)(Φ̂a(ξU0 )− Φ̂a(ξU1 )) ≥ 0. (A.7)

Thus the conclusion follows. □

Proof of Theorem 3.2. Define S11 = {i|Φ̂i(ξU0 ) > 0, i ∈ S1} and S12 = {i|Φ̂i(ξU0 ) = 0, i ∈ S1} . By the properties of U0,
clearly we have u0

i = 0 for i ∈ S11 and u0
i = Ni for i ∈ S2. Suppose there exists a nonnegative value set U+

= {U+

S , 0} with
uiΦ̂i(ξU+ ) = 0 and Φ̂i(ξU+ ) ≥ 0 for i ∈ S. Then we have

Φ0(ξU0 )+ (U0)T Φ̂(ξU0 ) ≥ Φ0(ξU+ )+ (U0)T Φ̂(ξU+ ) and

Φ0(ξU+ )+ (U+)T Φ̂(ξU+ ) ≥ Φ0(ξU0 )+ (U+)T Φ̂(ξU0 ).
(A.8)
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Then the summation of two inequalities in (A.8) returns

(U0
S12 − U+

S12
)T (Φ̂S12 (ξU0 )− Φ̂S12 (ξU+ ))

+ (U0
S11 − U+

S11
)T (Φ̂S11 (ξU0 )− Φ̂S11 (ξU+ ))

+ (U0
S2 − U+

S2
)T (Φ̂S2 (ξU0 )− Φ̂S2 (ξU+ )) ≥ 0.

(A.9)

By our assumption, for any i ∈ S12, we have Φ̂i(ξU0 ) = 0, since Φ̂i(ξU+ ) ≥ 0, thus Φ̂i(ξU0 ) − Φ̂i(ξU+ ) ≤ 0. For u+i , we have 2
cases:

Case 1 u+i > 0, then by assumption, Φ̂i(ξU+ ) = 0, thus (u0
i − u+i )(Φ̂i(ξU0 )− Φ̂i(ξU+ )) = 0.

Case 2 u+i = 0, then (u0
i − u+i ) ≥ 0, thus (u0

i − u+i )(Φ̂i(ξU0 )− Φ̂i(ξU+ )) ≤ 0.

Considering these two cases, one can easily find that

(U0
S12 − U+

S12
)T (Φ̂S12 (ξU0 )− Φ̂S12 (ξU+ )) ≤ 0. (A.10)

(U0
S11 − U+

S11
)T (Φ̂S11 (ξU0 )− Φ̂S11 (ξU+ )) ≤ 0. (A.11)

Now consider set S2, for any i ∈ S2, we have Φ̂i(ξU0 ) < 0 and u0
i = Ni. Since u+i ∈ [0,Ni), (u0

i − u+i ) > 0. As Φ̂i(ξU+ ) ≥ 0,
Φ̂i(ξU0 )− Φ̂i(ξU+ ) < 0. One can easily see that as long as S2 ̸= ∅, which also means we can find at least one i ∈ S such that
Φ̂i(ξU0 ) < 0, we have

(U0
S2 − U+

S2
)T (Φ̂S2 (ξU0 )− Φ̂S2 (ξU+ )) < 0. (A.12)

By inequality (A.10) (A.11) (A.12), we have

(U0
S12 − U+

S12
)T (Φ̂S12 (ξU0 )− Φ̂S12 (ξU+ ))

+ (U0
S11 − U+

S11
)T (Φ̂S11 (ξU0 )− Φ̂S11 (ξU+ ))

+ (U0
S2 − U+

S2
)T (Φ̂S2 (ξU0 )− Φ̂S2 (ξU+ )) < 0

(A.13)

as long as there exists at least one i ∈ S such that Φ̂i(ξU0 ) < 0. This conflicts inequality (A.9), thus there does not exist a
nonnegative value set U+

= {U+

S , 0}with uiΦ̂i(ξU+ ) = 0 and Φ̂i(ξU+ ) ≥ 0 for i ∈ S □

Proof of Theorem4.1. Since there exists an optimal solution for the constrained optimal design problem (2.1) inmanuscript,
there exists an active constraints set (it could be empty set, which means no active constraints). The new algorithm will
search for this active constraints set and identify the Lagrange multiplier of the corresponding compound optimal design
problem. The new algorithm starts from the simplest case, i.e., there are no active constraints, to most complex case, i.e., all
constraints are active. If the algorithm stops early, by logics of the new algorithm procedure, the proposed design ξ ∗ from
implementing the new algorithm will satisfy Property (2.3). Thus by Theory 2.1, the optimal design from the algorithm will
be optimal to constrained problem (2.1). The only case the new algorithm may fail is: there exists some i ∈ {s|1, 2, . . . , n}
such that Φ̂i(ξU) < 0 when U is the corresponding weight found by the new algorithm after the search procedure goes
through the most complex case: all constraints are assumed to be active.

Now to prove the converge of the new algorithm, one just needs to show that a feasible solution does not exist for problem
(2.1) under this case.

Now suppose if there still exists a feasible solution ξ ∗ for problem (2.1) under this case. By Theorem 2.1, ξ ∗ will also be
optimal to the corresponding compound design problem with weight non-negative weight vector U∗. The U∗ and ξ ∗ will
also satisfy U∗T Φ̂(ξU) = 0 and Φ̂(ξU) ≥ 0. As we mentioned above, if the algorithm fails, the algorithm has already gone
through the most complex case. And for the final design ξU then at least one criterion Φ̂i(ξU) < 0. ξU and U will meets
all the conditions stated in Theorem 3.2. Thus by Theorem 3.2, there does not exist a non-negative value set U+, such that
uiΦ̂i(ξU+ ) = 0 and Φ̂i(ξU+ ) ≥ 0. This conflicts the assumption that there exists the corresponding weight U∗. Thus this also
conflicts the assumption that the constrained problem (2.1) can still have feasible solution when the new algorithm fails.
Thus a feasible solution does not exist for problem (2.1) if the new algorithm fails. □
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