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ABSTRACT

Contrastive self-supervised learning has been successfully used in
many domains, such as images, texts, graphs, etc., to learn features
without requiring label information. In this paper, we propose a new
local contrastive feature learning (LoCL) framework, and our theme
is to learn local patterns/features from tabular data. In order to cre-
ate a niche for local learning, we use feature correlations to create
a maximum-spanning tree, and break the tree into feature subsets,
with strongly correlated features being assigned next to each other.
Convolutional learning of the features is used to learn latent feature
space, regulated by contrastive and reconstruction losses. Exper-
iments on public tabular datasets show the effectiveness of the
proposed method versus state-of-the-art baseline methods.
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1 INTRODUCTION

Tabular data, using rows (instances) and columns (features) to rep-
resent objects, are ubiquitous in nearly all applications [3, 7, 17].
Feature engineering is a traditional method to analyze the data
and produce informative features for predictive modeling. Recently,
self-supervised learning combined with deep learning methods to
learn feature representations from unlabeled data has shown con-
siderable success in different domains, especially for images, graphs
and texts [4, 19, 22-24]. Some studies have conducted to extend
this success to tabular data where data samples are represented by
vectors with different value types [18, 21]. In practice, decision tree-
based models like XGBoost are still known as strong non-gradient
based models with a comparable or even superior performance
[10, 15]. However, some advantages with deep learning methods
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like attention mechanism, pre-training parameters and providing
an end-to-end data processing paradigm for training make them
appealing for learning efficient feature representations [1, 16].

Lack of clear feature relationships in tabular data, fully connected
dense neural networks are typically used as a parametric method for
training to consider the impact of all features on the target values
in supervised setting [8, 12]. Some methods have been proposed to
enable deep feature learning in contrastive learning paradigm for
tabular data, however, they all use dense layer network [2, 5, 14, 21].
The main drawback of dense layer is that they learn global patterns
using all features. In many datasets (or learning tasks), patterns only
involve a small number of features (not all features are useful). On
the other hand, in real-world datasets, features are often subject to
some correlations, which naturally results in local interactions [11].
That motivates us to explore local pattern learning for tabular data.
Here local learning is referring to that only a few number of features
are involved in the pattern learning via the convolutional neural
network (CNN) kernels. CNN networks have known as effective
network design with parameter sharing to reduce model complexity
to capture spatial connections between neighboring features with
contiguous values. To address this problem in tabular data, we will
create a niche of feature correlation by exploring a meaningful
reordering of input features to apply convolutional kernels.

To leverage convolutional feature learning, we develop a novel
algorithm to use pairwise Pearson correlation coefficients between
features as the metric to create a maximum spanning tree to connect
all features followed by a depth-first-search traverse. It generates
the new order of features being spatially correlated. In addition,
we convert the definition of feature learning from a holistic for-
mat containing the whole feature values to multiple subsets of
features created by feature splitting. We propose a self-supervised
learning framework which leverages a 1-D convolutional denois-
ing autoencoder [13] as a building block to capture correlations
within a subset of the reordered input features and to maximize
mutual information using contrastive comparisons between pair
of subset embedding vectors. We hypothesize that a deep neural
network with convolutional operation on a local set of features,
combined with contrastive and reconstruction optimizations in
a self-supervised manner, can provide effective performance in
classification downstream tasks.

2 PROBLEM DEFINITION

A tabular dataset D = {xi}llv consists of N instances and m features
as m-dimensional vector x; C X € R™ among which a small subset
of data samples is labeled, i.e. D; = {x;, y,—}{\f where D; C D,
D] > |Dr| and y; € Y € R is a discrete label set containing
two or more categorical values. In a supervised setting, learning
a predictive model f : X — Y is optimized by using a supervised
loss function (e.g. cross-entropy loss function). But when a small set
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Figure 1: a)(Unsupervised pre-training): workflow of the proposed method for self-supervised local contrastive learning: From left to right,
the m features of a tabular detest are partitioned into two subsets (with or without overlapping). A convolutional auto-encoder is trained from
each subset, respectively. A contrastive loss is added to ensure latent features learned from feature partitions of the same instance are close to
each other and to be distant if they are from two different instances; b)(Supervised learning) Representation at the time for a prediction task

consisting of training a linear classifier on top of frozen representations.

Algorithm 1 LoCL: Local Contrastive Feature Learning

Inputs: Augmentation 7', encoder feg, encoder fe z, decoder faq, decoder faz,
Batch size: n, encoder layer size: d, input feature indices: F=[fi, f2, ..., fin]
1: > Reordering input features
2: M € R"™™ « Pearson (X, F) > Calculate a pairwise feature correlation matrix
3: MST « Maximum Spanning Tree( M) > Create a feature correlation
maximum spanning tree considering input features fi, f3, ..., fin as nodes and top
m — 1 pearson correlations as the edges.
4: F «— DFS(MST) v Generate feature orders using the order of visited nodes by
using a DFS traverse starting from a feature with the highest pairwise correlation.
5: [F',F?] « split(F) v Divide the features into 2 subsets split uniformly from F
6: for sampled batch B : {X|{x}}_, } do
7: for all k=1 ton do
8: > Apply augmentations and get network outputs
9 x!',x* = x[k,F'], x[k,F?]

10: 2,2 = fo (T1(xY), fo, (T2 (x2))
11: £,%% = fu, (2Y), fa, (29)
12: ) > reconstruction and contrastive loss
13: Ly [K], Ly [K] = 1% = %212, %" = x"||?
1
14: Lr[k] = 5 X3 (Lr, [K])
15: Le[k] =1(z,2") [K]
16: Lk] = Lc[k]+a L, [k]
17: end for
18: VoL > Calculate gradients and update all trainable parameters

19: end for
Output: encoder fe g.fe s

of labeled data is available it may lead to overfitting. Therefore, we
develop an unsupervised representation learning to use unlabeled
data to handle this problem to learn a feature mapping function
f(.) : X — Z where z = f(x) is a feature representation of input
sample. In self-supervised learning, in absence of the label infor-
mation, the representation z is optimized using a self-supervised
loss function according to pre-defined pseudo labels. It is based
on a pre-defined notion of similarity (positive labels) between em-
bedding vectors of two pairs of data points versus the pre-defined
dis-similarity(negative labels) between other pairs of data points.
For a given dataset, we use a self-supervised learning framework
(as shown in Figure 1a) to learn latent feature representations. Dur-
ing this state, no label information is available for model learning

(i.e. a pure self-supervised learning fashion). In order to validate
the quality of the latent features for a classification task, during the
fine-tuning stage, as shown in Figure 1b, we use a small number
of labeled instances to train a classification model and validate the
performance of the classifier trained using representations made
from the concatenation of embedding vectors of feature subsets.
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Figure 2: A conceptual view of feature ordering using maximum
spanning tree. Left: A toy tabular dataset containing four instances
and seven features; Middle: Correlation between features (Lighter
color denotes stronger correlation); Right: maximum spanning tree
constructed using feature correlation.

3 PROPOSED FRAMEWORK

Self-supervised learning is typically defined through pretext tasks
after applying data augmentation on data. Rather than doing regu-
lar contrastive learning on the entire feature set, in the proposed
method, we consider a localized version of representation learning
when the input features are split into different subsets. This method
is developed based on the idea that in regular holistic unsupervised
feature learning methods like Denoising Autoencoders[20], treat-
ing all input features equally may not be effective since it assumes
that either they are independent or they contribute with almost
similar levels to represent data. Pixel values in images have spatial
or sequential correlations, making image cropping as one of the
common operations for in data augmentation tasks [9, 18]. This
motivates us to propose a method for tabular domain to divide
the single neural network encoder into multiple modules being
responsible to learn representation for the subsets of input features
in the representation learning process.
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Figure 1a illustrates the model using two subsets of features.
The model contains two main components: (a) feature reorder-
ing and partitioning, which reorganizes features into subsets with
reordered adjacency relationships. It is assumed that the model
typically has non-overlapping feature subsets but some level of
overlaps between feature subsets are also allowed; and (b) local
contrastive learning which learns representations by combining
convolutional autoencoder and contrastive optimization.

3.1 Tabular Feature Reordering

Since the order of features in tabular data does not necessarily
follow spatial correlation like neighboring pixels in images or sub-
sequential frames of videos, it is preceded by our own feature re-
ordering step. This step leverages mutual correlation between input
features to reorder them and let a specific deep learning structure
like a convolutional neural layer in the encoder and decoder com-
ponents be applied to learn effective local feature representations.
Without this, although applying convolutional deep learning mod-
els is doable, but they do not come with any intuition. We propose
to use mutual feature correlations to determine the new order of in-
put features. In Fig. 2, we use Pearson correlation coefficients as the
metric and create a feature-feature correlation matrix M € R™*™
from all mutual Pearson correlation values. Assuming all features as
nodes of a fully-connected graph in which the weights of the edges
between nodes are presented by the absolute value of correlations,
we create a maximum spanning tree where the sum of all weights
of connecting edges is the maximum value as possible. The order of
features is determined by a depth-first search starting from nodes
that the edge with the highest value connects in the tree.

3.2 Local Contrastive Learning

After calculating the order of input features, we convert each in-
stance into a data sample with the new order of features where
feature values in the adjacent one-dimensional window of features
contain Pearson correlations being similar to spatial correlation in
images. So we use 1-D CNN in the deep learning network to learn
new feature representations. Each sample in input data is divided
by two feature subsets. For self-supervised learning, we apply a
stochastic data augmentation on sample subsets through masking
which randomly generates a binary matrix with a batch of data
related to input feature subsets. Each vector in the binary mask is
randomly sampled from a Bernoulli distribution with a pre-defined
probability parameter. The corrupted version of each sample in
either batch of feature subsets is calculated as follows:

Xi=x;0(1-m)+%Om (1)

It is then fed to a designated encoder to transform the input data
into a representation with respect to the selected subset, then the
corresponding decoder is responsible to recover the original in-
put data. Given the introduced data augmentation procedure, the
optimization is done by using the linear combination of two loss
functions with respect to the input feature value reconstruction
task and the contrastive representation estimation task as follows:

argg)r?m Le+a L, @)
where 6 and & refer to trainable weights in encoder and decoder
networks according to a pair of feature subsets. £ is our contrastive
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loss function and L, is the reconstruction loss function. We use the
following loss function for a de-noising task to predict the original
feature values from corrupted data vectors:

2

. RSB ; ;
Lr(X,X)=5;;Z(fdj(Z’)—XJ)Z )
The reconstruction loss value is calculated as the average of
minimum squared error between the reconstructed vectors and
the original input over two feature subsets. The contrastive loss
function between pair of representations of feature subsets are
calculated via Barlow-twins contrastive loss function [22] by calcu-

€ R¥%d where

lating a cross-multiplication matrix C = 7\ z2t
d is the the dimension of hidden layer in the model. It is computed
through the dot-product of the batch of normalized embedding vec-
tors. The matrix is going to be optimized to be equal to the identity

matrix I, in the following contrastive loss function:

Lo(ZL 7)) =|C-L, = Y (1-Clii)?+A ). Y (Cl5j1)?  (4)
i Y

The contrastive loss function encourages the similarity of the
pair of input feature subsets that are split from the same batch of
data. The model learns from the level of inconsistency between
a pair of corrupted data and also from the correlation between
the non-mask area in pair of feature subsets. We expect that the
aggregated representations learned by the encoder components
can be employed in the fine-tuning step to be used in classification
tasks. Algorithm 1 shows the pseudo-code of the proposed method.

4 EXPERIMENTS
4.1 Experimental Settings

Datasets. We evaluate the performance of the proposed method
on six benchmark datasets publicly available on the UCI repository
[6]. Table 1 describes the statistics of the datasets.

Table 1: Basic statistics of benchmark datasets used in the experiments

Dataset | #of features | # of Samples | # of Classes
MNIST 784 70,000 10

Income 14 48,842 2
BlogFeedback 280 60,021 2

Diabetic Retinopathy | 20 1151 2
Wall-following 55 5456 4

Gas sensor array drift | 128 13,910 4

Implementation details. In all experiments, we first use data
pre-processing techniques to transform raw data into well-formed
data formats. For the image dataset like MNIST, the pixel values
follow approximately a Gaussian distribution. To normalize data
before running experiments, we apply a simple min-max normal-
ization to put input values in the range of [0,1]. For the other
datasets, we apply standardization to get z-normalized data. The
categorical features in the datasets like the adult income dataset
are one-hot-encoded. Furthermore, we also assume that all features
have non-zero standard deviation. Otherwise, we discard them for
training procedures. We evaluate the performance of all studied
models through 5-fold stratified cross-validation in which 90% of
samples in the training data are randomly used as un-labeled data
for the pre-training step. In the experiments setup, we use three
1-D CNN layers followed by max-pooling and up-sampling layers
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Table 2: Target prediction results; Comparison between LoCL and the baseline methods. The evaluation metrics are mean + std. of accuracy
scores over 5-fold cross validation for the classification task. The number of latent dimension is shown within parentheses

Model/Dataset | MNIST(256) INCOME(512) | BLOG(1024) Diabetes(64) Wall-follow.(64) | Gas sensor(512) |  Average
LR 0.9221 £ 0.001 | 0.8243 + 0.003 | 0.7728 + 0.003 | 0.7280 £+ 0.025 | 0.7008 £ 0.020 0.9902 + 0.002 0.823 £ 0.01
Supervised | MLP 0.9743 £ 0.001 | 0.8501 + 0.003 | 0.7885 + 0.004 | 0.6977 £ 0.019 |0.9129 £ 0.007 | 0.9891 £ 0.006 0.869 + 0.01
Learning RF 0.9664 + 0.002 | 0.8571 + 0.003 | 0.8272 £+ 0.003 | 0.6681 £+ 0.035 | 0.9940 + 0.003 0.9942 + 0.002 0.885 + 0.01
XGBoost 0.9041 + 0.002 | 0.8555 + 0.004 |0.8249 + 0.003 | 0.6951 £ 0.042 | 0.9962 + 0.002 | 0.9729 + 0.002 0.875 + 0.01
DAE [20] 0.8982 + 0.006 |0.8222 + 0.003 |0.7201 + 0.002 | 0.6273 £+ 0.031 | 0.6642 + 0.025 | 0.9448 + 0.009 0.779 £ 0.01
Self- Conv-DAE 0.9518 £+ 0.003 | 0.8324 + 0.005 |0.7406 + 0.006 | 0.5777 £+ 0.061 | 0.6557 + 0.021 0.9692 + 0.003 0.788 + 0.02
supervised | Barlow-twins [22] | 0.9431 + 0.001 | 0.8378 + 0.004 | 0.7507 = 0.003 | 0.6386 + 0.032 |0.7269 + 0.027 | 0.9807 + 0.003 0.813 + 0.01
Learning SimCLR [4] 0.9432 + 0.003 | 0.8434 + 0.005 |0.7569 + 0.003 | 0.6238 £ 0.055 | 0.6946 + 0.022 | 0.9724 + 0.006 0.806 + 0.02
VIME [21] 0.9377 £ 0.002 | 0.8458 + 0.004 | 0.7406 + 0.004 | 0.6186 + 0.057 |0.7382 £ 0.029 | 0.9628 + 0.006 0.807 + 0.02
LoCL 0.9540 + 0.002 | 0.8461 + 0.005 | 0.7783 + 0.004 | 0.6438 + 0.037 | 0.7479 + 0.011 | 0.9825 + 0.004 | 0.825 + 0.01

Table 3: Ablation studies to compare to the impact different encoder
and the ordering of input features; average scores and standard devi-
ation over all datasets are reported based on 5-fold cross-validation

Model Variants ‘ Accuracy ‘ Std
LoCL 0.8254 0.01
LoCL - Dense layer 0.8123 0.02
LoCL - Random ordering | 0.8013 0.01
LoCL - Original order 0.8251 0.01
LoCL - Interleaved order | 0.8070 0.01

and LeakyReLU activations in the body of the encoder and the
decoder components respectively. We use RMSProp optimizer with
a learning rate of 0.001. We set Bernoulli probability parameter
to 0.3 in the data augmentation step. The optimal value of hyper-
parameters in the model (like trading parameter «, the kernel size
in convolutional networks, etc.) are selected via cross-validation.
All models are trained for a maximum of 200 epochs with an early
stopping mechanism. After training the model, the trained model
are used to transfer the remaining 10% of training labeled data to
the new feature space, and train classifier.

Baselines. We compare LoCL with the following baseline:

e DAE [20]: a denoising autoencoder augmented with multi-
plicative mask-out noise.

e Conv-DAE: a 1-D denoising convolutional autoencoder

e Barlow-Twins [22]: a contrastive learning model with MLP
as the encoder to do invariance optimization.

¢ SimCLR [4]: a contrastive learning model with MLP as the
encoder to maximize mutual info using InfoNCE optimiza-
tion. The projector in the model is skipped.

e VIME [21]: a model, which attachs a mask estimating de-
coder and a feature estimating decoder on top of the encoder.

4.2 Experimental Results

Table 2 demonstrates the performance of different supervised and
self-supervised methods. We assess the performance of different
baseline methods using accuracy metric on the separate testing data.
For comparison purposes, we include supervised learning results
which use label information of all training data to train classifiers
(LR, MLP, RF, & XGBoost). This demonstrates the upper bound of
self-supervised learning (which only uses 10% of label information
to train the classifier).

According to the results, we can see in holistic autoencoder
models, convolutional-based DAE models could obtain better per-
formance than simple DAEs. Comparing with previous contrastive
learning models like SimCLR and Barlow-Twins VIME models, we
see improvements in accuracy scores in some datasets. It shows the
importance of the self-supervised paradigm to learn informative
representations for the downstream task. As for LoCL, it combines
reconstruction and contrastive representation learning in one par-
adigm through local feature learning which leads to a superior
performance against the state-of-the-art self-supervised methods.

Ablation Study. We have conducted additional ablation studies
to measure separately the impacts of two main components of the
proposed method LoCL including the feature order and local feature
learning through convolutional encoding and decoding on the clas-
sification performance. We create variants of the proposed method
when we vary the structure of the model from convolutional neu-
ral network to a network with dense layers. We also investigate
the effect of different feature orders in the other variants of the
model when we use random ordering, original feature order, and
interleaved (every other) feature order. Table 3 confirms that the pro-
posed feature ordering approach, along with local self-supervised
learning empowered with convolutional networks, makes a great
improvement in the performance.

5 CONCLUSION

In this paper, we introduced a new self-supervised method for learn-
ing feature representations for tabular data. We argued that existing
methods largely rely on dense networks to learn feature represen-
tation, where dense networks aim to learn global patterns from all
features. Since not all features are useful for learning tasks, and
features often impose interactions, it is, therefore, more effective
to learn local features. Alternatively, our model proposes a new
feature reordering using feature-feature correlations and applies
local feature learning to reordered feature subsets by using con-
volutional neural network modeling, combined with contrastive
self-supervised learning. Experiments confirm the performance
gain of the proposed method versus the state-of-the-art methods.
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