
Exploiting Playbacks in Unsupervised Domain Adaptation

for 3D Object Detection in Self-Driving Cars

Yurong You∗†, Carlos Andres Diaz-Ruiz∗‡, Yan Wang†, Wei-Lun Chao§,

Bharath Hariharan†, Mark Campbell‡, Kilian Q Weinberger†

Abstract— Self-driving cars must detect other traffic partici-
pants like vehicles and pedestrians in 3D in order to plan safe
routes and avoid collisions. State-of-the-art 3D object detectors,
based on deep learning, have shown promising accuracy but
are prone to over-fit domain idiosyncrasies, making them fail
in new environments—a serious problem for the robustness of
self-driving cars. In this paper, we propose a novel learning
approach that reduces this gap by fine-tuning the detector
on high-quality pseudo-labels in the target domain – pseudo-
labels that are automatically generated after driving based
on replays of previously recorded driving sequences. In these
replays, object tracks are smoothed forward and backward
in time, and detections are interpolated and extrapolated—
crucially, leveraging future information to catch hard cases
such as missed detections due to occlusions or far ranges. We
show, across five autonomous driving datasets, that fine-tuning
the object detector on these pseudo-labels substantially reduces
the domain gap to new driving environments, yielding strong
improvements detection reliability and accuracy.

Index Terms— Object Detection, Segmentation and Catego-
rization; Computer Vision for Automation; Transfer Learning;
Deep Learning for Visual Perception

I. INTRODUCTION

Detecting traffic participants such as cars, cyclists, and

pedestrians in 3D is a fundamental learning problem for self-

driving cars. Typically, inputs consists of LiDAR point clouds

and/or images; outputs are sets of tight 3D bounding boxes

that envelop detected objects. The problem is challenging,

because the detection must be highly accurate and reliable.

The current state of the art in 3D object detection is based on

deep learning approaches [1], [2], [3], [4], trained on short

driving segments with labeled bounding boxes [5], [6], which

yield up to 80% average precision on held-out segments [4].

However, as with all machine learning approaches, these

techniques succeed when the training and test data distri-

butions match. One way to ensure this is to constrain self-

driving cars to a small geo-fenced area, such as with a fleet

of similar self-driving taxis collecting and sharing training

data about the same area. This approach, however, is not

generalizable to consumer self-driving cars which should be

able to drive freely anywhere, similar to a human-driven car.

This unconstrained scenario introduces an inherent adaptation

problem: the car producer cannot foresee where the owner

∗ Equal contributions
† Computer Science Department, Cornell University {yy785, yw763,

bh497, kqw4}@cornell.edu
‡ Mechanical and Aerospace Engineering Department, Cornell University

{cad297, mc288}@cornell.edu
§ Department of Computer Science and Engineering, the Ohio State

University chao.209@osu.edu

will ultimately operate the car. For example, the perception

system might be trained on urban roads in Germany [5], [6],

but the car may be driven in the mountain roads in the USA,

where cars are larger and fewer, roads may be snowier, and

the environment (trees, roads, etc.) may look different. Past

work has shown that such differences can cause >35% drop

in detection accuracy [7]. Closing this adaptation gap is one

of the biggest challenges for consumer self-driving vehicles.

Formally, this challenge is a problem in unsupervised

domain adaptation (UDA) [8]: the detector, having been

previously trained on labeled data from a source domain,

must now adapt to a target domain where only unlabeled

data are available. While the UDA problem is easily cast with

training and testing datasets in different locations (Germany

vs USA, urban vs rural, etc.), similar problems exist in many

self-driving car scenarios. For example, consider the common

case of car owners who drive many of the same routes (e.g.,

commuting), and leave their cars parked (e.g., at night) for

extended periods of time. This raises an intriguing possibility:

the car can collect sensor data on these trips, and then retrain

itself autonomously offline to adapt to this new environment,

to improve subsequent online driving.

In this paper, we present a novel approach for UDA of

3D detectors for self-driving cars. Our approach uniquely

uses two key insights. First, data collected over time via a

video is not simply a bag of independent frames. Second,

the dynamics of our objects of interest (i.e., cars) can be

modeled effectively. We propose to use time correlations

between frames and object physics to enable more accurate

and efficient solutions to the UDA problem offline. More

specifically, our approach takes the ‘confident’ detections

of nearby objects, estimates their states (e.g., locations,

sizes and speeds), and then extrapolates the tracks forward

and backward in time, discovering challenging cases when

the detector made mistakes (e.g. missed detections due to

occlusions, detections at far ranges, etc.) The playback of the

data allows us to go back in time and annotate labels in frames

which were previously missed. Although this process cannot

be performed in real time (since it uses future information),

we can use it offline to generate a new training set with

pseudo-labels for the target environment. We can then adapt

the detector to the target domain using this newly created

dataset, thus allowing the detector to generalize to more

scenarios. We call our approach dreaming, as the car learns

by replaying past driving sequences backwards and forwards,

potentially while it is parked overnight.

We evaluate our approach on the most challenging of

2022 IEEE International Conference on Robotics and Automation (ICRA)
May 23-27, 2022. Philadelphia, PA, USA

978-1-7281-9680-0/22/$31.00 ©2022 IEEE 5070

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 R

ob
ot

ics
 a

nd
 A

ut
om

at
io

n
(IC

RA
) |

 9
78

-1
-7

28
1-

96
81

-7
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
OI

: 1
0.

11
09

/IC
RA

46
63

9.
20

22
.9

81
17

22

Authorized licensed use limited to: The Ohio State University. Downloaded on September 12,2022 at 03:43:20 UTC from IEEE Xplore. Restrictions apply.

UDA problems, that of 3D object detection across multiple

autonomous driving datasets, including KITTI [5], [6], Ar-

goverse [9], Lyft [10], Waymo [11], and nuScenes [12]. We

show across all dataset combinations that discovering detector

mistakes and retraining the detector with our dreaming car

procedure strongly reduces the source/target domain gap

with high consistency. In fact, the resulting detector after

“dreaming” substantially exceeds the accuracy of the offline

system used to generate the pseudo-labels, which—although

able to look into the future—is limited to the extrapolation of

confident detections before adaption. Our dreaming procedure

can easily be implemented on-device and we believe that

it constitutes a significant step towards safely operating

autonomous vehicles without geo-restrictions.

II. RELATED WORK

3D object detection can be categorized based on the input:

using 3D sensors like LiDAR or 2D images from cameras [13],

[14], [15], [16]. We focus on the former due to its higher

accuracy. Examples of LiDAR-based detectors include F-

PointNet [1], PointRCNN [2], PIXOR [3] and VoxelNet [17].

While these methods have consistently improved the detection

accuracy, it has been recently revealed in [7] that they cannot

generalize well when trained and tested on different datasets,

especially on distant objects with sparse LiDAR points.

Unsupervised domain adaptation (UDA) has been

widely studied in machine learning and computer vision,

especially on image classification [8], [18], [19]. The common

setup is to adapt a model trained from one labeled source

domain (e.g., synthetic images) to another unlabeled target

domain (e.g., real images). Recent work has extended UDA to

driving scenes, but mainly for 2D object detection [20], [21],

[22], [23], [24] and semantic segmentation [25], [26], [27],

[28], [29]. The mainstream approach is to match the feature

distributions or image appearances between domains, e.g., via

adversarial learning [18], [25] or image translation [30]. The

approaches more similar to ours are [31], [32], [33], [34], [29],

[35], [36], [37], [38], which iteratively assign pseudo-labels to

(some of) the unlabeled data in the target domain and retrain

the models. This procedure, usually named self-training, is

proven to be effective in learning with unlabeled data, such

as semi-supervised and weakly-supervised learning [39], [40],

[41], [42]. For UDA, self-training enables the model to adapt

its features to the target domain in a supervised fashion.

UDA in 3D tackles the domain discrepancy in point clouds.

Qin et al. [43] were the first to match point cloud distributions

between domains, via adversarial learning. However, they

considered point clouds of isolated objects, which are very

different from the ones captured in driving scenes. Other

approaches project 3D points to the frontal or bird’s-eye view

and apply UDA methods in the resulting 2D images [44],

[45], [46], which can be sub-optimal in models’ accuracy.

Instead, we follow the self-training paradigm and show that

UDA in 3D object detection can be drastically improved by

our high-quality pseudo-labels. Concurrent work ST3D [47]

also tackles UDA in 3D via self-training, but it focuses on

addressing the object size discrepancy across domains [7].

It pre-trains a 3D detector with random object scaling and

uses pseudo-labels to train student detectors in a curriculum-

learning way. In contrast, our work makes use of consecutive

LiDAR scans in the target domain to improve pseudo-label

quality, especially for faraway or previously missed objects.

Our work is thus orthogonal and complementary to theirs.

Leveraging videos for object detection has been explored

in [48], [49], [50], [51] to ease the labeling efforts by mining

extra 2D bounding boxes from videos. The main idea is to

leverage the temporal information to extend weakly-labeled

instances or potential object proposals across frames, which

are then used as pseudo-labels to retrain the detectors. In the

context of UDA, [52], [31], [53] also incorporate object tracks

to discover high quality 2D pseudo-labels for self-training.

Our approach is different in two aspects. First, we not only

interpolate but also extrapolate tracks to infer object locations

when they are too far away to be detected accurately. Second,

we operate in 3D. We apply a physical-based motion model

and exploit the fact that objects in 3D are scale-invariant to

correct the detection along tracks. In contrast, the methods

above operate in 2D and may disregard faraway objects (that

appear too small in images) due to unreliable 2D tracks [53].

Auto-labeling. Our work is also related to concurrent work

in 3D auto-labeling [54], [55], which improves the initial

detections of a 3D object detector in an offline manner by

aggregating them across the whole sequence with a standard

tracker [56]. Our work is different from theirs in two aspects.

First, our approach not only aggregates detections in a track,

but extrapolates them with a motion model, which is crucial

to recover the missing detections faraway (Table V). Second,

our end-goal is to improve the 3D object detector by fine-

tuning it with the improved pseudo-labels, while auto-labeling

solely focuses on improving pseudo-labels.

III. EXPLOITING PLAYBACKS FOR UDA

Similar to most published work on 3D object detection

for autonomous driving [1], [2], [3], [4], [57], we focus on

frame-wise 3D detectors. A detector is first trained on a source

domain and then applied to a target domain (e.g., a new city).

[7] revealed a drastic accuracy drop in such a scenario: many

of the target objects are either misdetected or mislocalized,

especially if they are far away. To aid adaptation, we assume

access to an unlabeled dataset of video sequences in the target

domain, which could simply be recordings of the vehicle’s

sensors while it was in operation. Our approach is to generate

pseudo-labels for these recordings that can be used to adapt

the detector to the new environment during periods when the

car is not in use. We assume no access to the source data

when performing adaptation—it is unlikely that car producers

share data with the customers after the detector is deployed.

A. Tracking for improved detection

One way to improve the test accuracy based on the frame-

wise detection outputs is online tracking by detection [58],

[59], [60]. Here, detected objects are associated across current

and past frames to derive trajectories, which are used to filter

5071

Authorized licensed use limited to: The Ohio State University. Downloaded on September 12,2022 at 03:43:20 UTC from IEEE Xplore. Restrictions apply.

out false positives, correct false negatives, and adjust the

initial detection boxes in the current frame.

Online 3D object tracking. We investigate this idea with a

Kalman filter based tracker [61], [62], [56], which has shown

promising results in benchmark tracking leader boards [12].

We opt to not use a learning-based tracker [63] since it

would also require adaptation before it can be applied in the

target domain. Specifically, we apply the tracker in [61]. The

algorithm estimates the joint probability p(ak,xk|zk) at time

k, where xk is the set of tracked object states (e.g., cars speeds

and locations), zk is the set of observed sensor measurements

(here each measurement is a frame-wise detection), and

ak is the assignment of measurements to tracks. The joint

probability can be decomposed into continuous estimation

p(xk|ak, zk) and discrete data assignment p(ak|zk). The

former is solved recursively via an Extended Kalman Filter

(EKF); the latter is solved via Global Nearest-Neighbor

(GNN), where the cost to be minimized is the negative BEV

IoU between the predicted box and the measurement. The

EKF parameterizes the state x of a single (ith) object as a

vehicle (position, velocity, shape) relative to the ego-vehicle

x
i

k
=

[

x y θ s l w
]T

, (1)

where x, y are the location of the tracked vehicle’s back axle

relative to a fixed point on the ego-vehicle, θ is the vehicle

orientation relative to the ego-vehicle, s is the absolute ground

speed, and l, w are the length and width. The EKF uses a

dynamics model of the evolution of the state over time. Here

we assume that the tracked vehicle is moving at a constant

speed and heading in the global coordinate frame, with added

noise to represent the uncertainty associated with vehicle

maneuvers. This tracker has been shown to work well on

tracking moving objects from a self-driving car [61], [64].

We initialize a new track when cmin−hits measurements of

the same tracked object are realized. We end a track when

it does not obtain any measurement updates over cmax−age

frames, or the tracked object exits the field of view (FOV).

As will be seen in subsection IV-B, applying this tracker can

indeed improve the detection accuracy online, via inputting

missed detections, correcting mislocalized detections, and

rejecting wrong detections in zk at current time k by xk.

Offline 3D object tracking. Online trackers only use past

information to improve current detections. By relaxing this

for offline tracking (e.g., to be able to look into the future

and come back to the current time), we can obtain more

accurate estimates of vehicle states. While such a relaxation

is not applicable during test time, higher accuracy tracking on

unlabeled driving sequences will be very valuable for adapting

the source detector to the target domain in a self-supervised

fashion, as we will explain in the following section.

B. Self-training for UDA

Self-training is a simple yet fairly effective way to improve

a model with unlabeled data [39], [40], [41], [65]. The basic

idea is to apply an existing model to an unlabeled dataset and

use the high confidence predictions (here detections), which

are likely to be correct, as “pseudo-labels” for fine-tuning.

One key to success for self-training is the quality of the

pseudo-labels. In particular, we desire two qualities out of

the detections we use as pseudo-labels. First, they should be

correct, i.e., they should not include false positives. Second,

they should have high coverage, i.e., they should cover all

cases of objects. Choosing high confidence detections as

pseudo-labels satisfies the first criterion but not the second.

For 3D object detection, we find that most of the high

confidence examples are easy cases: unoccluded objects near

the self-driving car. This is where offline tracking becomes a

crucial component to include the more challenging cases (far

away, or partially occluded objects) in the pseudo-label pool.

C. High quality pseudo-labels via 3D offline tracking

How do we obtain pseudo-labels for far-away, hard-to-

detect objects that the detector cannot reliably detect? We

propose to exploit tracking by leveraging two facts in the

autonomous driving scenario. First, the available unlabeled

data is in the form of sequences (akin to videos) of point

clouds over time. Second, the objects of interest and the self-

driving car move in fairly constrained ways. We will run the

object detector on logged data, so that we can easily analyze

both forwards and backwards in time. The object detector will

detect objects accurately only when they are close to the self-

driving car. Once detected over a few frames, we can estimate

the object’s motion either towards the self-driving car or away

from it, and then both interpolate the object’s positions in

frames where it was missed, or extrapolate the object into

frames where it is too far away for accurate detection. We

show an example of this procedure in Figure 1. Through

dynamic modeling, tracking, and smoothing over time we

can correct noisy detections. Further with extrapolation and

interpolation, we can recover far away and missed detections.

Concretely, we proposed to augment the following func-

tionalities that utilize the future information into the online

tracker introduced in subsection III-A, turning it into an

offline tracker specifically designed to improve detection, i.e.,

generating higher quality pseudo-labels for self-training.

State smoothing. Frame-wise 3D object detectors can

generate inconsistent, noisy detection across time (e.g., frame

4, 7 and 9 in Figure 1). The model-based tracking approach

in subsection III-A reduces this noise, but we can go further

by smoothing tracks back and forth over time, since our data is

offline. In this work, we use a fixed-point Rauch-Tung-Striebel

(RTS) smoother [66] to smooth the tracked state estimates.

Smoothing requires a backward iteration (k = N,N − 1, ...1)
that is performed after the forward filtering, where the a-

posteriori state and state error covariance estimates (x̄k|k

and Pk|k) and the a-priori state and state error covariance

estimates (x̄k+1|k and Pk+1|k) have been calculated. The

smoothed gain, Ck, is obtained from

Ck = Pk|kF
T

k
P−1
k+1|k, (2)

where Fk is the Jacobian of the dynamics model evaluated

at x̄k|k. The smoothed state is then evaluated as

x̄k|N = x̄k|k + Ck[x̄k+1|N − x̄k|k] (3)

5072

Authorized licensed use limited to: The Ohio State University. Downloaded on September 12,2022 at 03:43:20 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: An example tracked vehicle moves towards ego-vehicle (at the bottom), where pseudo-labels are recovered through extrapolation,
interpolation, and smoothing. The improvements of pseudo-labels via offline tracking are instances where estimated bounding boxes (blue)
are observed, while the frame-wise detections (orange) are missing or poorly aligned with ground truths (green). Better viewed in color.

while the covariance of the smoothed state is evaluated as

Pk|N = Pk|k + Ck[Pk+1|N − Pk+1|k]C
T

k
. (4)

Adjusting object sizes. As shown in [7], the distribution

of car sizes in different domains (e.g. different cities) can

be different. As such, when tested on a novel domain,

detectors often predict incorrect object sizes. This is especially

true when the LiDAR signal is too sparse for correct size

information. We can also use our tracking to correct such

systematic error. Assuming that the most confident detections

are more likely to be accurate, we estimate the size of the

object by averaging the size of the three highest confidence

detections. We use this size for all objects in this track.

Interpolation and extrapolation. We use estimation (for-

ward in time) and smoothing (backward in time) to recover

missed detections, and in turn, to increase the recall rate

of pseudo-labels (e.g., frame 1–3 and 6 in Figure 1). If a

detection is missed in the middle of a track, we restore it by

taking the estimated state from smoothing. We also extrapolate

the tracks both backward and forward in time, so that tracks

that were prematurely terminated due to missing detections,

can be recovered. More concretely, we are able to recover

detections of vehicles that were lost as they moved away from

the ego-vehicle because the sensor signals became sparser

(or in turn, the vehicles started far away and were then only

detected when they got close enough). Extrapolations are

performed by first using dynamics model predictions of the

EKF to predict potential bounding boxes; measurements are

obtained by performing a search and detection in the vicinity

of the prediction. We apply the detector in a 3 m2 area around

the extrapolated prediction, yielding several 3D bounding box

candidates. After filtering out candidates with confidences

lower than some threshold, we select the candidate with the

highest BEV IoU with the prediction as the measurement.

If a track loses such a measurement for three consecutive

frames, extrapolations are stopped. With this targeted search,

we are able to recover objects that were missed due to low

confidence. After extrapolating and interpolating detections

for all tracks, we perform Non Maximum Suppression

(NMS) over bounding boxes in BEV, where more recent

extrapolations/interpolations are prioritized.

Discussion. The tracker we apply is standard and simple.

We opt it to show the power of our dreaming approach for

UDA—exploiting offline, forward and backward information

to derive high-quality pseudo-labels for adapting detectors.

More sophisticated trackers will likely improve the results

further. While we focus on frame-wise 3D detectors, our

algorithm can be applied to adapt video-based 3D object

detectors [67] as well. One particular advantage of fine-tuning

on the pseudo-labeled target data is to allow the detector

adapting not only its predictions (e.g., the box regression)

but also its features (e.g., early layers in the neural networks)

to the target domain. The resulting detector thus can usually

lead to more accurate detections than the pseudo-labels it has

been trained on.

IV. EXPERIMENTS

Datasets. We experiment with five autonomous driving

data sets: KITTI [5], [6], Argoverse [9], nuScenes [12], Lyft

[10] and Waymo [11]. All datasets provide LiDAR data in

sequences and ground-truth bounding box labels for either all

or part of the data. We briefly summarize these five datasets in

the supplementary. We follow a setup similar to [7], but with

different splits on Lyft, nuScenes, and Waymo in order to

keep the training and test sets non-overlapping with sequences.

For nuScenes and Waymo, we only use data from a single

location (Boston for nuScenes and San Francisco for Waymo).

UDA settings. We train models in the source domain using

labeled frames. We split each dataset into two non-overlapping

parts, a training set and a test set. We use the train set (and

5073

Authorized licensed use limited to: The Ohio State University. Downloaded on September 12,2022 at 03:43:20 UTC from IEEE Xplore. Restrictions apply.

its pseudo-labels) of the target domain to adapt the source

detector, and evaluate the adapted detector on the test set.

Metric. We follow KITTI to evaluate object detection in

3D and BEV metrics. We focus on the Car category as it is

the main focus of existing work. We report average precision

(AP) with the intersection over union (IoU) thresholds at 0.5

or 0.7, i.e., a car is correctly detected if the IoU between it

and the detected box is larger than 0.5 or 0.7. We denote AP

in 3D and BEV by AP3D and APBEV, respectively. Because

on the other datasets there is no official separation on the

difficulty levels like in KITTI, we split AP by depth ranges.

3D object detection models. We use two LiDAR-based

models POINTRCNN [2] and PIXOR [3] to detect objects

in 3D. They represent two different but popular ways of pro-

cessing point cloud data. POINTRCNN uses PointNet++ [68]

to extract point-wise features, while PIXOR applies 2D

convolutions in BEV of voxelized point clouds. Neither

relies on images. We mainly report and discuss results of

POINTRCNN except for the last study in subsection IV-B.

Hyper-parameters. To train detectors on source domain,

we use the hyper-parameters provided by [2] for POINTR-

CNN. For PIXOR, we follow [7] to train it using RMSProp

with momentum 0.9 and learning rate 5× 10−5 (decreased

by a factor of 10 after 50 and 80 epochs) for 90 epochs.

For self-training on the target domain, we initialize from the

pre-trained model on the source domain. For POINTRCNN,

we fine-tune it with learning rate 2× 10−4 and 40 epochs in

RPN and 10 epochs in RCNN. For PIXOR, we use RMSProp

with momentum 0.9 and learning rate 5× 106 (decreased by

a factor of 10 after 10 and 20 epochs) for 30 epochs.

We developed and tuned our dreaming method with

Argoverse as the source domain and KITTI as the target

domain (in the target domain, we only use the training set). We

then fixed all hyper-parameters for all subsequent experiments.

A. Baselines

We compare against two baselines under the UDA setting.

Self-Training (ST). We apply a self-training scheme

similar to that typically used in the 2D problems [40]. When

adapting the model from the source to the target, we apply

the source model to the target training set. We then keep the

detected cars of confidence scores > 0.8 (label-sharpening)

and use them as pseudo-labels to fine-tune the model. We

select the threshold following our hyper-parameter selection

procedure and apply it to all the experiments.

Statistical Normalization (SN). [7] showed that car sizes

vary between domains: popular cars at different areas can

be different. When the mean bounding box size in the target

domain is accessible, either from limited amount of labeled

data or statistical data, we can apply statistical normalization

(SN) [7] to mitigate such a systematic difference in car sizes.

SN adjusts the bounding box sizes and corresponding point

clouds in the source domain to match those in the target

domain, and fine-tunes the model on such “normalized” source

data, with no need to access target sensor data. We follow

the exact setting in [7] to apply SN.

TABLE I: Pseudo-label quality. We compare the quality of the
pseudo-labels on KITTI train set generated by a detector trained on
Argoverse (PL) and those after smoothing, resizing, interpolation,
and extrapolation (PL (AFTER)). We show the APBEV/ AP3D of the
car category at IoU = 0.7 and 0.5 across different depth range.

IoU 0.5 IoU 0.7
Method

0-30 30-50 50-80 0-30 30-50 50-80

PL 80.5 / 80.0 63.7 / 60.7 23.9 / 18.6 63.9 / 36.6 33.0 / 12.1 10.0 / 0.9

PL (AFTER) 80.5 / 80.2 68.0 / 61.1 29.5 / 22.6 64.9 / 38.0 38.4 / 15.1 12.1 / 0.9

B. Empirical Results

Pseudo-label quality. In Table I we evaluate the quality

of pure pseudo-labels and pseudo-labels after smoothing,

resizing, interpolation, and extrapolation under the Argoverse

to KITTI setting. It can be seen that the dreaming process

significantly improves the pseudo-label quality across all

ranges, which leads to further improvement after self-training.

Adaptation from Argoverse to KITTI. We compare the

UDA methods under Argoverse to KITTI in Table III and

observe several trends: 1) models experience a smaller domain

gap when objects are closer (0-30 m vs 30-80 m); 2) though

directly applying online tracking can improve the detection

performance, models improve more after just self-training;

3) the offline tracking is used to provide extra pseudo-labels

for fine-tuning, and interestingly, models fine-tuned from

pseudo-labels can outperform pseudo-labels themselves; 4)

DREAMING improves over ST and SN by a large margin,

especially on IoU at 0.5; 5) DREAMING has a large gain in

AP for faraway objects, e.g., on range 50-80 m, compared to

ST, it boosts the APBEV on IoU at 0.5 from 28.2 to 30.1.

Adaptation among five datasets. We further applied

our methods to adaptation tasks among the five datasets.

Due to limited space, we show the results of APBEV and

AP3D on range 50-80 m and 0-80 m at IoU = 0.5 in

Table II. Our method consistently improves the adaptation

performance on faraway ranges, while having mostly equal

or better performance over the full range. We include detailed

evaluation results across all ranges, at IoU = 0.7, and with

SN in the supplementary material. We observe a consistent

and clear trend as in Table II.

Adaptation between different locations inside the same

dataset. Different datasets not only come from different loca-

tions but also use different sensor configurations. To isolate

the effects of the former (which is our motivating application),

in Table IV we evaluate our method’s performance for domain

adaptation within the KITTI dataset. In this case, the source

and target domain are all scenes from KITTI, while the

source is composed of city and campus scenes (38 sequences,

9,556 frames, 3,420 labeled frames) and the target consists

of residential and road scenes (23 sequences, 10,448 frames,

3619 labeled frames). Our method consistently outperforms

no fine-tuning and ST, especially on 30-80 m range.

Ablation Study. We show ablation results in Table V.

Here we fine-tune models using ST and adding smoothing

(S), resizing (R), interpolation (I) and extrapolation (E) to

the pseudo-label generation. It can be observed that ST alone

already boosts performance considerably. Through selecting

high confidence detections, smoothing and adjusting the object

size we ensure that the pseudo-labels provided are mostly

5074

Authorized licensed use limited to: The Ohio State University. Downloaded on September 12,2022 at 03:43:20 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Dreaming results on UDA among five auto-driving datasets. We report APBEV and AP3D of the Car category on far-away
range (50-80m) and full range (0-80m) at IoU= 0.5. On each entry (row, column), we report AP of UDA from row to column in the order
of No Re-training / Self-Training / Dreaming. At the diagonal entries is the AP of in-domain model. Our method is marked in blue.

(a) 50 – 80 m

APBEV KITTI Argoverse Lyft nuScenes Waymo

KITTI 40.4 20.1/26.9/28.4 49.6/56.3/56.4 1.4/ 9.1 / 4.5 42.8/48.5/50.2

Argoverse 18.0/28.2/30.1 37.8 46.3/48.8/54.5 0.6/ 9.1 / 3.0 50.4/50.9/56.0

Lyft 26.1/30.8/33.9 29.3/30.7/35.2 67.2 4.5/ 9.1 / 6.0 51.6/51.9/56.9

nuScenes 9.6/16.4/21.7 3.0/12.4/17.7 22.9/39.1/46.4 3.5 24.9/42.5/50.1

Waymo 14.3/25.6/27.8 24.7/23.4/28.3 45.3/54.0/55.5 0.2/ 3.0/ 9.1 58.2

AP3D KITTI Argoverse Lyft nuScenes Waymo

KITTI 36.3 15.4/19.5/20.8 40.0/46.3/47.7 0.9 / 0.4/ 0.4 33.4/39.3/41.0

Argoverse 13.9/22.5/25.6 30.0 42.9/46.0/47.6 0.1/ 0.2/ 3.0 47.8/48.2/49.1

Lyft 20.4/24.0/26.4 25.3/26.7/27.3 65.5 0.4/ 9.1 / 1.1 49.6/50.6/50.8

nuScenes 5.5/ 8.7/13.4 3.0/ 9.1/13.0 15.1/30.2/37.8 2.8 22.5/39.6/45.5

Waymo 8.5/18.1/19.7 19.6/21.3/22.3 43.0/48.1/49.6 0.0/ 0.3/ 9.1 50.8

(b) 0 – 80 m

APBEV KITTI Argoverse Lyft nuScenes Waymo

KITTI 87.1 56.8/58.8/59.4 68.2/68.3/68.6 27.7/27.8/28.9 62.5/68.8/69.0

Argoverse 82.3/83.2/83.3 68.5 66.7/67.0/67.6 26.9 /25.2/25.4 69.8/69.6/70.0

Lyft 82.6/84.9/85.3 60.2/65.7/66.0 79.2 28.8/28.2/29.1 70.6/70.9/71.1

nuScenes 61.7/76.5/79.5 22.4/38.0/46.6 41.1/59.0/65.5 37.7 51.5/62.2/68.7

Waymo 81.2/82.2/83.1 56.9/58.3/59.2 67.3/68.9/69.4 23.1/27.2/29.1 71.9

AP3D KITTI Argoverse Lyft nuScenes Waymo

KITTI 86.7 49.0/55.0/55.9 60.7/65.2/66.4 20.9/22.3/23.1 59.4/60.5/61.4

Argoverse 77.4/81.1 /81.1 65.9 64.9/65.5/66.4 22.8 /22.1/21.7 62.1/62.4/67.7

Lyft 77.5/82.2/82.3 56.7/58.6/58.9 78.3 24.1/23.6/26.3 63.0/69.1 /68.7

nuScenes 45.5/67.5/70.3 19.5/36.1/42.7 32.4/56.7/58.6 36.8 42.6/60.2/61.1

Waymo 74.1/76.6/77.3 54.1/55.9/56.2 66.0/68.1/68.7 21.6/23.5/24.3 71.3

TABLE III: UDA from Argoverse to KITTI. We report APBEV/
AP3D of the car category at IoU = 0.7 and IoU = 0.5 across
different depth range on the test set. NR stands for No-Retrain
baseline, ST stands for Self-Training [40], SN stands for Statistical
Normalization [7]. Our method Dream is marked in blue. We show
the performance of in-domain model, i.e., the model trained and
evaluated on KITTI, at the first row in gray. We also show results
by directly applying online and offline (not feasible in real-time)
tracking. Best viewed in color.

IoU 0.5 IoU 0.7
Method

0-30 30-50 50-80 0-30 30-50 50-80

in-domain 90.0 / 89.9 81.0 / 79.9 40.4 / 36.3 89.0 / 78.0 70.3 / 51.5 26.6 / 9.8

NR 89.4 / 88.8 71.0 / 65.2 18.0 / 13.9 72.6 / 47.8 35.8 / 14.6 4.9 / 3.0

NR + online 89.3 / 88.5 71.9 / 66.1 18.3 / 14.0 72.3 / 47.5 38.2 / 14.9 5.5 / 1.2

NR + offline 89.3 / 88.8 72.7 / 67.7 18.9 / 15.0 74.5 / 49.6 43.5 / 18.1 7.3 / 1.8

ST 89.5 / 89.2 73.2 / 68.5 28.2 / 22.5 76.8 / 52.9 44.2 / 20.6 13.1 / 2.1

Dream 89.3 / 89.2 74.6 / 72.4 30.1 / 25.6 77.6 / 54.7 49.9 / 24.3 14.5 / 3.4

SN 89.3 / 88.2 69.6 / 65.4 14.6 / 13.3 83.8 / 59.1 53.5 / 27.2 9.3 / 3.6

SN + online 89.4 / 88.2 68.8 / 65.4 19.4 / 16.2 83.5 / 60.1 50.7 / 27.0 13.4 / 9.5

SN + offline 89.4 / 88.2 68.9 / 66.1 21.8 / 19.3 83.3 / 59.2 50.9 / 26.9 13.8 / 9.8

SN + ST 89.8 / 89.3 74.4 / 72.8 22.3 / 21.3 87.0 / 70.4 62.2 / 37.7 16.4 / 7.1

SN + Dream 89.8 / 89.4 75.4 / 73.8 29.4 / 25.4 87.0 / 73.5 62.8 / 41.9 17.2 / 10.3

TABLE IV: UDA from KITTI (city, campus) to KITTI (road,
residential). Naming is as in Table III.

IoU 0.5 IoU 0.7
Method

0-30 30-50 50-80 0-30 30-50 50-80

NR 89.4 / 89.4 79.7 / 77.9 36.2 / 30.9 88.3 / 77.9 66.0 / 47.5 19.2 / 6.2

ST 89.4 / 89.4 78.0 / 76.7 35.9 / 31.2 88.2 / 77.8 66.3 / 48.3 19.0 / 7.7

Dream 89.6 / 89.6 80.1 / 78.9 41.4 / 35.3 88.5 / 78.2 68.0 / 49.6 23.2 / 12.7

TABLE V: Ablation study of UDA from Argoverse to KITTI.
We report APBEV/ AP3D of the car category at IoU = 0.5 and
IoU = 0.7 across different depth range, using POINTRCNN model.
Naming is as in Table III. S stands for smoothing, R for resizing, I
for interpolation and E for extrapolation.

IoU 0.5 IoU 0.7
Method

0-30 30-50 50-80 0-30 30-50 50-80

NR 89.4 / 88.8 71.0 / 65.2 18.0 / 13.9 72.6 / 47.8 35.8 / 14.6 4.9 / 3.0

ST 89.5 / 89.2 73.2 / 68.5 28.2 / 22.5 76.8 / 52.9 44.2 / 20.6 13.1 / 2.1

ST + S 89.5 / 89.3 73.7 / 68.7 28.3 / 22.3 76.8 / 53.4 45.2 / 21.5 12.9 / 4.7

ST + S + R 89.5 / 89.3 74.0 / 71.6 28.3 / 23.9 78.0 / 55.2 50.8 / 23.9 10.3 / 2.7

ST + S + R + I 89.3 / 89.1 73.9 / 71.6 28.1 / 23.3 77.6 / 54.5 50.4 / 24.0 11.2 / 3.4

ST + S + R + I + E 89.4 / 89.2 74.9 / 72.5 31.0 / 25.7 77.8 / 55.1 50.4 / 24.1 14.3 / 3.3

correct. But just these do not address the second criteria for

desired pseudo-labels: high coverage. We observe noticeable

boosts when interpolation and extrapolations are added,

specially for far away objects. This is due to extrapolations

and interpolations recovering pseudo-labels for low confidence

or missed detections for distant vehicles.

Adaptation results using PIXOR. To show the generality

of our approach, we further apply it to another detector

PIXOR [3] from Argoverse to KITTI in Table VI. Dreaming

improves the accuracy at farther ranges (30-80 m) while

maintaining the accuracy at close range (0-30 m). Interestingly,

TABLE VI: UDA from Argoverse to KITTI using PIXOR. We
report APBEV of the car category at IoU = 0.5 and 0.7. Naming is
as in Table III.

IoU 0.5 IoU 0.7
Method

0-30 30-50 50-80 0-30 30-50 50-80

in-domain 88.7 62.6 21.4 79.6 49.9 10.0

NR 85.7 57.2 12.9 54.2 23.6 4.7

ST 86.0 56.3 12.2 55.3 24.6 2.5

Dream 87.1 61.1 20.2 58.0 28.1 4.8

SN 86.7 58.7 15.1 76.2 38.7 5.1

SN + ST 87.4 58.9 12.4 78.0 42.4 3.8

SN + Dream 87.4 64.2 22.2 77.9 42.5 4.5

at IoU 0.5 in the 30-80 m ranges, we are able to surpass the

in-domain performance, which uses models trained only in

the target domain with the ground-truth labels. This results

showcases the power of unsupervised domain adaptation

(UDA): with a suitably designed algorithm, UDA that

leverages both the source and target domain could outperform

models trained only in a single domain.

Others. We show more results and qualitative visualiza-

tions in the supplementary material.

V. CONCLUSION AND DISCUSSION

In this paper, we have introduced a novel method towards

closing the gap between source and target in unsupervised

domain adaptation for LiDAR-based 3D object detection.

Our approach is based on self-training, while leveraging

vehicle dynamics and offline analysis to generate pseudo-

labels. Importantly, we can generate high quality pseudo-

labels even for difficult cases (i.e. far-away objects), which the

detector tends to miss before adaptation. Fine-tuning on these

pseudo-labels improves detection performance drastically in

the target domain. It is hard to conceive an autonomous

vehicle manufacturer that could collect, label, and update data

for every consumer environment, meeting the requirements

to allow self-driving cars to operate everywhere freely and

safely. By significantly reducing the adaptation gap between

domains, our approach takes a significant step towards making

this vision a reality nevertheless.

ACKNOWLEDGMENT

This research is supported by grants from the National

Science Foundation NSF (III-1618134, III-1526012, IIS-

1149882, IIS-1724282, TRIPODS-1740822, IIS-2107077,

OAC-2118240, OAC-2112606), the Office of Naval Research

DOD (N00014-17-1-2175), the Bill and Melinda Gates Foun-

dation, and the Cornell Center for Materials Research with

funding from the NSF MRSEC program (DMR-1719875).

5075

Authorized licensed use limited to: The Ohio State University. Downloaded on September 12,2022 at 03:43:20 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas, “Frustum pointnets
for 3d object detection from rgb-d data,” in CVPR, 2018.

[2] S. Shi, X. Wang, and H. Li, “Pointrcnn: 3d object proposal generation
and detection from point cloud,” in CVPR, 2019.

[3] B. Yang, W. Luo, and R. Urtasun, “Pixor: Real-time 3d object detection
from point clouds,” in CVPR, 2018.

[4] S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang, and H. Li, “Pv-rcnn:
Point-voxel feature set abstraction for 3d object detection,” in CVPR,
2020.

[5] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in CVPR, 2012.

[6] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231–1237, 2013.

[7] Y. Wang, C. Xiangyu, Y. Yurong, E. L. Li, B. Hariharan, M. Campbell,
K. Q. Weinberger, and C. Wei-Lun, “Train in germany, test in the usa:
Making 3d object detectors generalize,” in CVPR, 2020.

[8] B. Gong, Y. Shi, F. Sha, and K. Grauman, “Geodesic flow kernel for
unsupervised domain adaptation,” in CVPR, 2012.

[9] M.-F. Chang, J. W. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett,
D. Wang, P. Carr, S. Lucey, D. Ramanan, and J. Hays, “Argoverse: 3d
tracking and forecasting with rich maps,” in CVPR, 2019.

[10] R. Kesten, M. Usman, J. Houston, T. Pandya, K. Nadhamuni, A. Fer-
reira, M. Yuan, B. Low, A. Jain, P. Ondruska, S. Omari, S. Shah,
A. Kulkarni, A. Kazakova, C. Tao, L. Platinsky, W. Jiang, and V. Shet,
“Lyft level 5 av dataset 2019,” urlhttps://level5.lyft.com/dataset/, 2019.

[11] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui,
J. Guo, Y. Zhou, Y. Chai, B. Caine, V. Vasudevan, W. Han, J. Ngiam,
H. Zhao, A. Timofeev, S. Ettinger, M. Krivokon, A. Gao, A. Joshi,
Y. Zhang, J. Shlens, Z. Chen, and D. Anguelov, “Scalability in
perception for autonomous driving: Waymo open dataset,” 2019.

[12] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Kr-
ishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A multimodal
dataset for autonomous driving,” preprint, arXiv:1903.11027, 2019.

[13] Y. Wang, W.-L. Chao, D. Garg, B. Hariharan, M. Campbell, and K. Q.
Weinberger, “Pseudo-lidar from visual depth estimation: Bridging the
gap in 3d object detection for autonomous driving,” in CVPR, 2019.

[14] Y. You, Y. Wang, W.-L. Chao, D. Garg, G. Pleiss, B. Hariharan,
M. Campbell, and K. Q. Weinberger, “Pseudo-lidar++: Accurate depth
for 3d object detection in autonomous driving,” in ICLR, 2020.

[15] R. Qian, D. Garg, Y. Wang, Y. You, S. Belongie, B. Hariharan,
M. Campbell, K. Q. Weinberger, and W.-L. Chao, “End-to-end pseudo-
lidar for image-based 3d object detection,” in CVPR, 2020.

[16] P. Li, X. Chen, and S. Shen, “Stereo r-cnn based 3d object detection
for autonomous driving,” in CVPR, 2019.

[17] Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point cloud
based 3d object detection,” in CVPR, 2018.

[18] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Lavi-
olette, M. Marchand, and V. Lempitsky, “Domain-adversarial training
of neural networks,” JMLR, vol. 17, no. 1, pp. 2096–2030, 2016.

[19] K. Saito, K. Watanabe, Y. Ushiku, and T. Harada, “Maximum classifier
discrepancy for unsupervised domain adaptation,” in CVPR, 2018.

[20] Y. Chen, W. Li, C. Sakaridis, D. Dai, and L. Van Gool, “Domain
adaptive faster r-cnn for object detection in the wild,” in CVPR, 2018.

[21] Z. He and L. Zhang, “Multi-adversarial faster-rcnn for unrestricted
object detection,” in ICCV, 2019.

[22] T. Kim, M. Jeong, S. Kim, S. Choi, and C. Kim, “Diversify and
match: A domain adaptive representation learning paradigm for object
detection,” in CVPR, 2019.

[23] K. Saito, Y. Ushiku, T. Harada, and K. Saenko, “Strong-weak
distribution alignment for adaptive object detection,” in CVPR, 2019.

[24] X. Zhu, J. Pang, C. Yang, J. Shi, and D. Lin, “Adapting object detectors
via selective cross-domain alignment,” in CVPR, 2019.

[25] J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko, A. A.
Efros, and T. Darrell, “Cycada: Cycle-consistent adversarial domain
adaptation,” in ICML, 2018.

[26] F. S. Saleh, M. S. Aliakbarian, M. Salzmann, L. Petersson, and J. M.
Alvarez, “Effective use of synthetic data for urban scene semantic
segmentation,” in ECCV. Springer, 2018.

[27] Y.-H. Tsai, W.-C. Hung, S. Schulter, K. Sohn, M.-H. Yang, and
M. Chandraker, “Learning to adapt structured output space for semantic
segmentation,” in CVPR, 2018.

[28] Y. Zhang, P. David, H. Foroosh, and B. Gong, “A curriculum domain
adaptation approach to the semantic segmentation of urban scenes,”
TPAMI, vol. 42, no. 8, pp. 1823–1841, 2019.

[29] Y. Zou, Z. Yu, B. Vijaya Kumar, and J. Wang, “Unsupervised domain
adaptation for semantic segmentation via class-balanced self-training,”
in ECCV, 2018.

[30] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in ICCV, 2017.

[31] A. RoyChowdhury, P. Chakrabarty, A. Singh, S. Jin, H. Jiang, L. Cao,
and E. Learned-Miller, “Automatic adaptation of object detectors to
new domains using self-training,” in CVPR, 2019.

[32] Q. Tao, H. Yang, and J. Cai, “Zero-annotation object detection with
web knowledge transfer,” in ECCV, 2018.

[33] J. Liang, R. He, Z. Sun, and T. Tan, “Distant supervised centroid shift:
A simple and efficient approach to visual domain adaptation,” in CVPR,
2019.

[34] W. Zhang, W. Ouyang, W. Li, and D. Xu, “Collaborative and adversarial
network for unsupervised domain adaptation,” in CVPR, 2018.

[35] S. Kim, J. Choi, T. Kim, and C. Kim, “Self-training and adversarial
background regularization for unsupervised domain adaptive one-stage
object detection,” in ICCV, 2019.

[36] G. French, M. Mackiewicz, and M. Fisher, “Self-ensembling for visual
domain adaptation,” in ICLR, 2018.

[37] N. Inoue, R. Furuta, T. Yamasaki, and K. Aizawa, “Cross-domain
weakly-supervised object detection through progressive domain adap-
tation,” in CVPR, 2018.

[38] M. Khodabandeh, A. Vahdat, M. Ranjbar, and W. G. Macready, “A
robust learning approach to domain adaptive object detection,” in ICCV,
2019.

[39] D. McClosky, E. Charniak, and M. Johnson, “Effective self-training
for parsing,” in ACL, 2006.

[40] A. Kumar, T. Ma, and P. Liang, “Understanding self-training for gradual
domain adaptation,” preprint, arXiv:2002.11361, 2020.

[41] D.-H. Lee, “Pseudo-label: The simple and efficient semi-supervised
learning method for deep neural networks,” in Workshop on challenges

in representation learning, ICML, 2013.

[42] R. G. Cinbis, J. Verbeek, and C. Schmid, “Weakly supervised object
localization with multi-fold multiple instance learning,” TPAMI, vol. 39,
no. 1, pp. 189–203, 2016.

[43] C. Qin, H. You, L. Wang, C.-C. J. Kuo, and Y. Fu, “Pointdan: A
multi-scale 3d domain adaption network for point cloud representation,”
in NeurIPS, 2019.

[44] K. Saleh, A. Abobakr, M. Attia, J. Iskander, D. Nahavandi, M. Hossny,
and S. Nahvandi, “Domain adaptation for vehicle detection from bird’s
eye view lidar point cloud data,” in ICCVW, 2019.

[45] Z. Wang, S. Ding, Y. Li, M. Zhao, S. Roychowdhury, A. Wallin,
G. Sapiro, and Q. Qiu, “Range adaptation for 3d object detection in
lidar,” in ICCVW, 2019.

[46] B. Wu, X. Zhou, S. Zhao, X. Yue, and K. Keutzer, “Squeezesegv2:
Improved model structure and unsupervised domain adaptation for
road-object segmentation from a lidar point cloud,” in ICRA, 2019.

[47] J. Yang, S. Shi, Z. Wang, H. Li, and X. Qi, “St3d: Self-training
for unsupervised domain adaptation on 3d object detection,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2021, pp. 10 368–10 378.

[48] X. Liang, S. Liu, Y. Wei, L. Liu, L. Lin, and S. Yan, “Towards
computational baby learning: A weakly-supervised approach for object
detection,” in ICCV, 2015.

[49] A. Ošep, P. Voigtlaender, J. Luiten, S. Breuers, and B. Leibe, “Large-
scale object mining for object discovery from unlabeled video,” in
ICRA, 2019.

[50] I. Misra, A. Shrivastava, and M. Hebert, “Watch and learn: Semi-
supervised learning for object detectors from video,” in CVPR, 2015.

[51] K. Kumar Singh, F. Xiao, and Y. Jae Lee, “Track and transfer: Watching
videos to simulate strong human supervision for weakly-supervised
object detection,” in CVPR, 2016.

[52] K. Tang, V. Ramanathan, L. Fei-Fei, and D. Koller, “Shifting weights:
Adapting object detectors from image to video,” in NeurIPS, 2012.

[53] A. Ošep, P. Voigtlaender, J. Luiten, S. Breuers, and B. Leibe, “Large-
scale object discovery and detector adaptation from unlabeled video,”
preprint, arXiv:1712.08832, 2017.

[54] C. R. Qi, Y. Zhou, M. Najibi, P. Sun, K. Vo, B. Deng, and
D. Anguelov, “Offboard 3d object detection from point cloud sequences,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2021, pp. 6134–6144.

5076

Authorized licensed use limited to: The Ohio State University. Downloaded on September 12,2022 at 03:43:20 UTC from IEEE Xplore. Restrictions apply.

[55] B. Yang, M. Bai, M. Liang, W. Zeng, and R. Urtasun, “Auto4d:
Learning to label 4d objects from sequential point clouds,” arXiv

preprint arXiv:2101.06586, 2021.
[56] X. Weng, J. Wang, D. Held, and K. Kitani, “3d multi-object tracking:

A baseline and new evaluation metrics,” preprint, arXiv:1907.03961,
2020.

[57] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
“Pointpillars: Fast encoders for object detection from point clouds,” in
ICCV, 2019, pp. 12 697–12 705.

[58] M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and
L. Van Gool, “Online multiperson tracking-by-detection from a single,
uncalibrated camera,” TPAMI, vol. 33, no. 9, pp. 1820–1833, 2010.

[59] ——, “Robust tracking-by-detection using a detector confidence particle
filter,” in ICCV. IEEE, 2009, pp. 1515–1522.

[60] Y. Hua, K. Alahari, and C. Schmid, “Online object tracking with
proposal selection,” in ICCV, 2015, pp. 3092–3100.

[61] C. Diaz-Ruiz, Y. Wang, W. Chao, K. Weinberger, and M. Campbell,
“Vision-only 3d tracking for self-driving cars,” in CASE, 2019, pp.
1029–1034.

[62] H.-k. Chiu, A. Prioletti, J. Li, and J. Bohg, “Probabilistic 3d multi-
object tracking for autonomous driving,” preprint, arXiv:2001.05673,
2020.

[63] T. Yin, X. Zhou, and P. Krähenbühl, “Center-based 3d object detection
and tracking,” preprint, arXiv:2006.11275, 2020.

[64] I. Miller, M. Campbell, and D. Huttenlocher, “Efficient unbiased
tracking of multiple dynamic obstacles under large viewpoint changes,”
IEEE Transactions on Robotics, vol. 27, no. 1, pp. 29–46, 2011.

[65] M. Chen, K. Q. Weinberger, and J. Blitzer, “Co-training for domain
adaptation,” in NeurIPS, 2011.

[66] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with

applications to tracking and navigation: theory algorithms and software.
John Wiley & Sons, 2001.

[67] J. Yin, J. Shen, C. Guan, D. Zhou, and R. Yang, “Lidar-based online
3d video object detection with graph-based message passing and
spatiotemporal transformer attention,” in CVPR, 2020.

[68] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical
feature learning on point sets in a metric space,” in NeurIPS, 2017.

5077

Authorized licensed use limited to: The Ohio State University. Downloaded on September 12,2022 at 03:43:20 UTC from IEEE Xplore. Restrictions apply.

