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ABSTRACT

Research in machine learning fairness has historically considered
a single binary demographic attribute; however, the reality is of
course far more complicated. In this work, we grapple with ques-
tions that arise along three stages of the machine learning pipeline
when incorporating intersectionality as multiple demographic at-
tributes: (1) which demographic attributes to include as dataset
labels, (2) how to handle the progressively smaller size of sub-
groups during model training, and (3) how to move beyond existing
evaluation metrics when benchmarking model fairness for more
subgroups. For each question, we provide thorough empirical eval-
uation on tabular datasets derived from the US Census, and present
constructive recommendations for the machine learning commu-
nity. First, we advocate for supplementing domain knowledge with
empirical validation when choosing which demographic attribute
labels to train on, while always evaluating on the full set of demo-
graphic attributes. Second, we warn against using data imbalance
techniques without considering their normative implications and
suggest an alternative using the structure in the data. Third, we
introduce new evaluation metrics which are more appropriate for
the intersectional setting. Overall, we provide substantive sugges-
tions on three necessary (albeit not sufficient!) considerations when
incorporating intersectionality into machine learning.

CCS CONCEPTS

• Social andprofessional topics→User characteristics; •Com-

puting methodologies →Machine learning approaches.
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1 INTRODUCTION

Asmachine learning is being adopted in an increasing number of ap-
plications, there is a growing awareness and concern that people of
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different demographic groups may be treated unfairly [65]. Measur-
ing and mitigating these effects often require assigning individuals
to demographic groups, and this is frequently done along one axis of
identity at a time, e.g., gender or race [42]. However, when drawing
boundaries and selecting demographic groups, it is important to rec-
ognize the intersectional harms that result from interacting systems
of oppression. Crenshaw [26] first coined the term “intersectional-
ity” by showing that Black women experience discrimination be-
yond being either Black or women. Intersectionality broadly refers
to how different identities along different axes interact to produce
unique forms of discrimination and societal effects [16, 24, 26].1

There is a long history of considering intersectional harms in fields
outside of computer science [9, 22–24, 52, 80, 90, 92, 98, 112, 115],
and an urgent need to do so in machine learning fairness as well.
For example, Kearns et al. [76] perform experiments that show the
algorithmic harms intersectional subgroups may experience due to
heterogeneity within a particular demographic group, e.g., Female.
In other words, although a classifier may be fair with respect to
gender, as well as race, it can be unfair with respect to the inter-
section of the groups, missing that, for example, Black Female and
White Female may differ in substantial and meaningful ways [75].

In this work, we focus on the algorithmic effects of discrimi-
nation against demographic subgroups (rather than individuals).
Specifically, we conduct empirical studies of five fairness algo-
rithms [2, 40, 69, 77, 121] across a suite of five tabular datasets
derived from the US Census with target variables like income and
travel time to work [31]. We do so under the framework of the
canonical machine learning fairness setting: supervised binary clas-
sification of a target label of social importance, which balances
accuracy and one mathematical notion of fairness among a finite
set of discretely defined demographic groups, which may result
from a conjunction of identities.2

We echo the calls of prior work to consider multiple axes of
identities [40, 76], but in this work, focus on the next steps after
someone has decided to consider intersectionality in their machine
learning pipeline. In doing so, three core challenges emerge. First,
in the dataset stage, we need to select which identity labels to
consider. This is difficult because considering too many would be
computationally intractable but considering too few may miss in-
tersectional harms. Second, in the model training stage, we need
to consider how to technically handle the progressively smaller
number of individuals in each group that will result from adding
additional identities and axes. Finally, in the evaluation stage, we

1There are complex nuances to this conceptualization that are out of scope of this
work [98].
2We acknowledge that the group identity delineations themselves are unstable and
fraught with problems of operationalization [61, 92].
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need to decide how we will perform fairness evaluation as the
number of groups increases. There are seemingly straightforward
ways to address each of these three questions. For example, one
might consider as many axes of identity as they have access to in
the data; handle smaller groups by drawing from machine learn-
ing techniques for imbalanced data such as generating synthetic
examples of underrepresented groups [102, 105, 111]; and evaluate
on more subgroups by generalizing existing fairness definitions,
such as equal opportunity or demographic parity, through extrap-
olation [40, 77]. However, by treating intersectionality as simply
an extension of the binary group setting to a multi-group one,
these straightforward approaches fail to critically engage with the
substantive differences that intersectionality brings.

Our contributions in this work are in meaningfully engaging
with these three problems that arise along different stages of the
machine learning pipeline: dataset selection, model training, and
model evaluation. These come after the decision to consider inter-
sectionality, and our concrete suggestions are as follows:

(1) Selecting which identities to include (Sec. 4): due to the
tenuous nature of operationalizing demographic categories
we will need to supplement domain knowledge with empiri-
cal results in order to understand which identities to include
in model training. This applies not only to multiple axes,
but also individual axes. For example, when considering the
racial group Asian Pacific Islander, there are many po-
tential granularities of identities to include, such as breaking
the group up into its constituent ones of Hmong, Cambodian,
etc. We show that, in a way that is hard to know a priori,
different algorithms benefit from training on different lev-
els of granularity. However, evaluation should generally be
performed on as many demographic groups as are known.3

(2) Handling progressively smaller groups (Sec. 5): the
more identities we consider, the smaller each group is likely
to be. Normative concerns unrelated to the technical efficacy
of data imbalance techniques can be enough to constrain
or even disqualify their use; for example, harmful historical
parallels connected to generating synthetic facial images
can raise concerns. We suggest a new path, hypothesizing
that structure within intersectional data can be carefully
exploited in very specific circumstances, such as by learn-
ing about statistical patterns in an underrepresented Black
Female group from groups it might share characteristics
with, like Black Male.

(3) Evaluating a large number of groups (Sec. 6): commonly
used pairwise comparisons for fairness evaluation can ob-
scure important information when extrapolated and applied
to a greater number of subgroups. This precipitates a call
for additional kinds of evaluation that measure considera-
tions such as the reification of existing hierarchies amongst
subgroups. For the algorithms and datasets we consider, we
demonstrate that the ranking amongst subgroups for posi-
tive label base rates of the dataset is highly correlated with
the rankings of true positive rates of the model predictions,
even when training with fairness constraints.

3There are concerns regarding noisy measurements of small groups that are out of
scope for our work; we refer the reader to Foulds et al. [39].

These considerations are not unique to intersectionality, as they
are liable to arise in any multi-attribute setting, but considering
intersectionality sharply precipitates their importance. We also
note that despite the language we employ, we do not suggest that
fairness can be treated as a purely algorithmic problem that neglects
the sociotechnical frame [12, 50, 51, 109]. Like the limitation noted
by recent work [31], our contributions are limited to the realm of
intersectional algorithmic fairness, and not data-driven insights into
societal intersectionality. Intersectionality is frequently considered
through qualitative rather than quantitative approaches [7] because
of the flattening effect the latter has in treating groups as a monolith,
so to an extent, quantitative studies will always be limited in this
aspect.

2 RELATEDWORK

The canonical machine learning fairness paradigm frequently as-
sumes binary attributes along a single axis [42]. For example, for the
many algorithms that only work in this contrived setup, IBM’s AI
Fairness 360 tool [10] formulates the binary attribute as White and
Non-White, a trend sometimes shared by the social sciences that
may conceptualize of social categories as dichotomous, e.g., class
as middle-class and poor, gender as men and women, and sexuality
as heterosexual and homosexual [29]. To get a high-level look at
how prevalent the problem of not considering intersectionality is,
we look at a set of 26 popular machine learning fairness algorithm
papers.4 Of these 26, only 16 can operate in a setting beyond binary
attributes, and of those, only 7 report empirical results on multiple
axes of identity.

Algorithmic fairness methods have begun to consider intersec-
tional attributes beyond just one axis of identity [81, 117, 118, 124].
Kearns et al. [77] and Yang et al. [121] offer learning methods for
intersectional fairness, but weigh the fairness of each group by their
frequency and thus downweigh underrepresented groups, which
arguably should be the focus of intersectional fairness. Hebert-
Johnson et al. [59] learn a predictor for numerous overlapping
demographic subgroups with a focus on calibration, and Foulds
et al. [40] propose an intersectional fairness regularizer that targets
statistical parity. Morina et al. [96] propose a post-processing ap-
proach that generalizes that of Hardt et al. [58], and Kim et al. [79]
similarly propose a post-processing approach as well as auditing
procedure. Friedler et al. [42] compare existing fairness methods,
and consider intersectional sensitive attributes by encoding one
axis of identity as race-sex.5

Perhaps the most well-known of these works [59, 77] never use
the word “intersectionality”, instead opting for the terms “fairness
gerrymandering” and “computationally-identifiable masses.” Both
works make important and impressive technical progress in gener-
alizing algorithms for the intersectional setting, but by not explicitly
naming “intersectionality”, do not invoke the history, context, and
literature that it brings.

4We use Semantic Scholar to keyword search for “fair”, “fairness”, and “bias” from
9 conferences: NeurIPS, ICML, ICLR, FAccT, CVPR, ECCV, ICCV, ACL, EMNLP. We
retained all papers with 75 or more citations, and of these 58 papers, further narrowed
down to the 26 that proposed fairness algorithms.
5One way of incorporating intersectional identities is by encoding them as, e.g., race-
sex, such that {Black, White}× {Female, Male} can be considered as a single axis of
identity with four values of {Black Female, Black Male, White Female, White Male}.
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3 SETUP

Throughout our work, we provide experiments and empirical re-
sults to substantiate the claims we make. In this section, we give an
overview of the datasets, training objective, and algorithms that we
perform such studies on. When faced with a choice to make about
our experimental setup, e.g., which fairness metric to optimize for,
we simplistically opt for the most straightforward choice that is
most aligned with prior work in the space. This is because the goal
of our work is not for exhaustivity in showing these issues will
arise in every fairness setting, but rather, that they do manifest
in a generically adapted fairness setting with common algorithms
trained on actual datasets.6

Datasets:We use the newly proposed tabular datasets derived from
US Census data by Ding et al. [31]. We do this because of both the
reasons delineated by Ding et al. [31], such as the community’s
over-reliance on the Adult Income dataset [32], and also the richer
data features available to us. For each dataset, we are able to query
for additional demographic features for each individual, such as
marital status and granular race labels, as needed.

We use the five datasets offered by the paper: ACSIncome, AC-
SPublicCoverage, ACSMobility, ACSEmployment, and ACSTravel-
Time. We pick the California 2018 slice of these datasets to strike a
balance between a computationally feasible size, and also having
sufficient data points. This choice is somewhat arbitrary because,
as we noted, we are not trying to make any data-driven societal
insights, but merely demonstrate that particular phenomena may
manifest in algorithms trained on actual datasets. We assume the
positive label of each dataset is the desirable one, even though this
is not always clear, e.g., the positive label in ACSTravelTime corre-
sponds to an individual traveling more than 20 minutes to get to
work. However, we could conceive of a perhaps contrived setting
in which getting predicted to have a longer travel time entails re-
ceiving some kind of travel stipend. Again, for the same reason as
our selection of data slice, we do not place much weight into what
would, in an application-based design, typically be very value-laden
choices.

For all of our experiments, we perform five trials of each run,
using random seeds and different training/validation/test splits for
each, as recommended by Friedler et al. [42], to give 95% confidence
intervals.

Training Objective: We train all algorithms to achieve a balance
between measures of accuracy and group fairness.

Our measure of accuracy is soft accuracy. Prior works have
shown fairness metrics to be extremely sensitive to the classifi-
cation threshold used [19]; hence we do not binarize the outputs,
acknowledging that binarization may need to be done at appli-
cation time to make direct predictions. For all n individuals, let
yi ∈ {0, 1} be the label for individual i , and pi ∈ [0, 1] be the prob-
abilistic prediction for individual i . Soft accuracy is defined to be
1
n

∑n
i=1 yi · pi + (1 − yi ) · (1 − pi ).

Picking a fairness metric is highly non-trivial, as context about
the downstream effects of the algorithm is needed. However, for the
scope of our work since we consider the positive labels to be more
desirable, we choose a metric analogous to equal opportunity [58],

6Code is located at https://github.com/princetonvisualai/intersectionality

i.e., equalizing the true positive rate (TPR).7 Our measure of fair-
ness is thusmax TPR difference. To generalize the equal opportunity
measure to more than two groups, we adopt a method similar to
prior work [40, 77, 121]. If we define TPR(д) to be the average pi
for all individuals of group д with label y = 1, then our measure is
the maximum pairwise difference between any two groups. Most
proposed fairness algorithms are able to optimize for this metric,
and we are trying to capture the canonical way the community has
been targeting intersectionality. We will go on to investigate the
sufficiency of metrics like this in Sec. 6, and propose constructive
suggestions there.

For hyperparameter tuning we optimize for the geometric mean
of soft accuracy and (1 - max TPR difference) to account for values
with different scales.

Algorithms: Our experiments are performed on one baseline and
five fairness algorithms. Our baseline is a 3 layer fully connected
neural network with 30 neurons in each hidden layer and a sigmoid
activation trained to predict yi from an individual’s features and de-
mographic attributes. The first two fairness algorithms are general
ones we extend to the intersectional setting by coding attributes
as, e.g., race-sex: RWT [69] is a reweighting schema and RDC [2]
reduces to a sequence of cost-sensitive classifications. The latter
three are intersectional methods: LOS [40] has an extra intersec-
tional fairness loss term, GRP [121] is a probabilistic combination
of models, and GRY [76, 77] produces cost-sensitive classifications
from a 2-player zero-sum game. Details and hyperparameter search
spaces are in Appendix A.

4 SELECTINGWHICH IDENTITIES TO
INCLUDE

The first of three core challenges in incorporating intersectional-
ity that we address in this work is considering which identities to
include [95].8 The foundation of this problem is that categorizing
people into discrete, socially constructed groups, while tenuous,
is often necessary for machine learning systems to make sense of
socially relevant distinctions [35, 56, 67]. However, this flattening
of individuals is often at the expense of ignoring different amounts
of heterogeneity within each group. Homogeneity here would en-
tail that each member of a group is best treated identically to all
other members of that group by a machine learning model; hetero-
geneity involves a break from this assumption.9 In other words,
one conception of a heterogeneous group is when, within that
group, “statistical patterns that apply to the majority might be in-
valid within a minority [sub]group” [57]. While heterogeneity will
exist in any categorization of people, our focus is on the differing
amounts of within-group heterogeneity that exists across groups.
A variety of machine learning approaches overlook this fact by as-
suming a version of constant within-group heterogeneity, whether
that be through known variances across groups for a variational

7We focus on equal opportunity, but our flavor of analysis applies to other algorithmic
fairness notions, such as demographic parity, equalized odds, etc.
8We take as a given that identities should be included during training, i.e., fairness
through awareness [33, 34].
9Because we have scoped our work to be on algorithmic harms, our investigation
will be focused on heterogeneity’s role in the context of model predictions. Thus,
we will not perform what might be considered a more model-agnostic approach of
unsupervised learning on the dataset itself.
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Bayesian approach to one-shot learning [37], or the homoscedas-
ticity assumption (i.e., that all groups have the same variance) for
methods like linear regression and linear discriminant analysis.
Violations of the homoscedasticity assumption are well-studied
by statistical tests [47, 88], but less understood in the context of
training machine learning models.10

The solution is not as trivial as simply adding in as many axes
and granular identities as we have access to, which is also what
often leads to outcries of how intersectionality might take us to the
extreme of sub-dividing until each group is an individual person.
To demonstrate how we should consider which identities to in-
clude, we perform representative case studies on two racial groups.
In Sec. 4.1 we investigate the granularity of constituent identities
within Asian Pacific Islander to include as labels (e.g., Hmong,
Japanese, Cambodian, Asian Indian) in order to empirically ex-
plore the tension between adding more identities and reaching a
point of intractability because there are too many groups. In Sec. 4.2
we look into another heterogeneous racial group, Other, because
how we go about including this category remains an important
and relevant consideration so long as we are utilizing discrete cate-
gories.

One might ask why our case studies look into multiple groups
within the same axis, rather than along different ones. Different
levels of heterogeneity within groups often come about due to
additional axes of identity that are unaccounted for, e.g., gender
differences within a racial group. However, we argue that hetero-
geneity along the same axis is also relevant, and an investigation of
this will help us understand how to handle the intersectional case.
We note that while socially the concepts of heterogeneity either
due to additional axes or along the same axis are very different,
technically they may warrant similar approaches. When along the
same axis, the groups with higher heterogeneity are sometimes
those that have been unified not because they share a particular
trait, but rather because they share a hardship that has motivated
them to pursue change as a more unified group, e.g., coalitional
identities like Disability [1, 120]. Another group likely to have
high heterogeneity is Other, the residual group that comes with dis-
crete categories. For example, if gender categories are Male, Female,
and Other, this latter group may encompass people who identify
as non-binary, intersex, and other gender identities that may differ
greatly from each other.

4.1 Case study: heterogeneity within Asian
Pacific Islander

To investigate the granularity of identities to include, we consider
“Asian Pacific Islander”, or API. This racial grouping came about
in the late 1960s, inspired by the Black Civil Rights Movement,
as part of an initiative to unify disparate groups [99]. This aggre-
gate category was on the US Census in 1990 and 2000, though
a 1997 mandate separated it into “Asian” and “Native Hawaiian
and Other Pacific Islander.” However, these two groups are fre-
quently still clustered together, despite the very different forms of
discrimination and stereotyping that each faces.

10Differing heterogeneity is related to “second moment” statistical discrimination
in economics: marginalized groups, for structural reasons like not being given
sufficient opportunity to demonstrate ability, have a higher perceived variance and
are discriminated against by risk-averse employers [3, 30, 36].

To understand the difference that label granularity of APImakes,
we perform a series of experiments where each algorithm is pro-
vided the same set of data, but with demographic features, д, along
three different sets of granularity: “Asian” and “Native Hawaiian
and Other Pacific Islander” are considered one aggregate group
(1 group), “Asian” and “Native Hawaiian and Other Pacific Islander”
are separated (2 groups), each group is further broken down into
evenmore granular labels, such as Hmong, Cambodian, Asian Indian,
etc (> 10 groups). We preprocess the datasets to only include indi-
viduals with racial groups White, Black, and the granular groups
within API with at least 300 individuals, 30 negative labels, and 30
positive labels. This is so as to not add too many variables for this
particular case study.

On the two datasets of ACSIncome and ACSTravelTime, we
train and perform inference for each of our algorithms under the
three granularity scenarios. We use as our evaluation metric the
max TPR difference, and always measure this between the most
granular constituent groups we have, i.e., the scenario with > 10
groups. In other words, an algorithm considering API to be one
aggregate group would be trained with these labels, and perform
predictions with them. However, when evaluating in this setting,
the more granular labels of > 10 groups are used.

Intuitively, one might posit that it is always best to use the most
granular labels of > 10 groups when training, since these are the
labels for which evaluation will be performed. However, that in-
tuition breaks down when we consider empirical results in Fig. 1.
Across both datasets for each algorithm, it is not always the case
that training with the most granular labels results in the lowest
max TPR difference for these very same groups. In fact, in the
ACSTravelTime dataset, we actually see that GRY outperforms all
other algorithms with a max TPR difference of 0.03 ± 0.01 when
it considers API at the granularity of 2 groups. Possible reasons
include that models may overfit when groups are small, or that for
some datasets, certain groups are sufficiently homogeneous that
they benefit from being treated as the same. It is not always clear
a priori which grouping is best for training, and this will require
a combination of contextual understanding of the historical and
societal reason behind the groupings in a particular domain as well
as empirical validation to understand what works best in a partic-
ular setting. While in this case study our experimental scenarios
were different granularities along a singular axis of identity, similar
experiments can be performed where each scenario is the inclusion
of a different combination of axes of identity.

4.2 Case study: heterogeneity within Other
Considering how to handle the individuals that fall outside the
delineated identities is an important consequence that comes with
expanding beyond binary attributes or single axes of identity. For
example, multi-racial and non-binary individuals are often forced
to pick a category that does not apply to them, or simply choose
the catch-all Other, both of which have associated harms [4, 13, 54,
93, 107, 108]. The Other racial category appeared in the US Census
in 1910, and in 2010 was the third-largest racial category [6]. Given
that this group is defined by not belonging to any of the named
racial groups, we might wonder if there is a larger amount of hetero-
geneity amongst the people who check this box. However, for race

339



Towards Intersectionality in Machine Learning FAccT ’22, June 21–24, 2022, Seoul, Republic of Korea

Figure 1: Each algorithm is trained under three scenarios, where the API group is broken up into 1, 2, or > 10 granular groups.

All algorithms are evaluated on the most granular setting of > 10 groups, where max TPR difference is only between these

particular subgroups (excluding the Black and White racial groups). While on some dataset and algorithm combinations it is

best to give the algorithm the most granular set of racial labels, in others it can actually benefit to use a more coarse set of

labels.

specifically, prior work has found that Other is not simply a leftover
residual group, but rather a “socially real phenomenon” [15]. For
example, Brown et al. [15] found that in the 2000 United States
census, the Other racial group became a proxy for Hispanic people,
where 97% of people who checked “Other” for race also checked
“Hispanic” for origin. Drawing from this, one might imagine that
when training a model on a dataset exhibiting this characteristic, it
could make sense to treat Other as its own group, or split up Other
into those that are Hispanic or not.

In the quantitative social sciences, there are three common ways
in which racial groups like Other and Multiracial are approached:
treating it as its own group (Separate), redistributing each individual
to another group they are similar to [87] (Redistribute), or simply
ignoring this group [43] (Ignore). We empirically test these three
approaches to understand the different accuracies they result in for
the Other group. To implement Redistribute, we simplistically pick
a strategy of re-assigning each individual in Other to the racial
group of its nearest L2 distance neighbor in the feature space. While
results from this method of redistribution may not generalize to
other methods, we show this as one demonstrative example. The
reason we might believe this strategy could be helpful is if individ-
uals in the Other group have distributions such that being grouped
with another group would lead to more accurate predictions.

Similar to the case study on API, we train our model across
three different scenarios while keeping the evaluation consistent.
In Fig. 2 we see that for ACSEmployment, the Separate scenario of
treating Other as its own distinct group does frequently perform
best—not necessarily unexpected given our prior domain knowl-
edge. However, in Fig. 2 for ACSIncome it is no longer always the
case that treating Other as its own group performs better, e.g., Re-
distribute outperforms Separate for the RWT and RDC algorithms.
This furthers our finding that contextual knowledge, e.g., about
Other sometimes being a racial group in its own right, is not entirely
sufficient in helping us know a priori how best to handle a group.

4.3 Constructive Suggestions

Overall, our case studies show it is rarely clear a priori which iden-
tities should be included due to differences in performance on even
the same task across algorithms. Ultimately, it will take a combi-

nation of contextual understanding of the application and

empirical experiments to make the decision on what works best
for a particular application. When Crenshaw [26] first introduced
intersectionality, she was considering it in the context of how race
discrimination law and sex discrimination law failed to capture
the discrimination experienced by Black women. Thus, the rele-
vant axes for her to consider were race (Black and White) and
sex (Female and Male). Guided by this kind of contextual knowl-
edge, practitioners can incorporate empirical findings to select the
relevant set of identities to include.

When training predictive models, including all available

identity labelsmaynot always be best.Computational tractabil-
ity comes into play, as do similarities and differences between
groups. For example, if group A and B have similar distributions,
but group B has a small number of labels, it may benefit this group
to join with group A, lest there not be sufficient samples to train a
predictive model. The exception is for post-processing approaches,
where it may be more likely to be beneficial to include more iden-
tities. This is because these approaches generally involve learn-
ing only one or two group-specific parameters, e.g., classification
threshold or probability of flipping a binary prediction [58, 73, 101],
and are thus less susceptible to overfitting.

Another suggestion regarding which identities to include is on
how to handle the individuals that fall outside the delineated iden-
tities. Experiments guided by contextual knowledge show us how
to proceed. However, we advise extreme caution when consider-
ing any kind of recategorization due to serious normative impli-
cations. Benthall and Haynes [11] proposed using unsupervised
clustering to discover “race-like” categories, and Hanna et al. [56]
levied a critique against such a mechanism. Use of unsupervised
recategorization without human oversight can lead to inherently
harmful actions, such as recategorizing someone who identifies as
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Figure 2: Three methods of incorporating the Other racial group: Separate - treating Other as its own group, Redistribute -

redistributing each member of Other to the racial group of its nearest neighbor, and Ignore - ignoring this group at train time.

GRP and GRY are unable to perform inference on groups unseen at training time, so those results could not be generated. For

ACSEmployment, Separate is often the best condition. However, for ACSIncome, no condition is best for all scenarios.

Non-Binary to a gendered grouping they do not belong to. How-
ever, supplementing recategorization with domain expertise, such
as with the Other racial group, may be considered more permissible.
As another option, Hancock [55] has proposed fuzzy set theory to
better capture the categorization of people into socially constructed
categories, and Mary et al. [91] provides technical guidance on this.

In contrast, for evaluation, one should generally perform

analyses at the most fine-grained level possible. In fact, in
many cases if a dataset does not contain sufficient axes or identi-
ties according to a domain expert’s understanding of the kinds of
intersectional power dynamics that may be at play, one should con-
sider collecting more demographic labels, keeping privacy concerns
in mind [71]. For smaller groups where one might argue evalua-
tions would be noisy [39], error bars could convey uncertainty, and
evaluations on the larger group could also be included.

5 HANDLING PROGRESSIVELY SMALLER
GROUPS

Now that we have discussed which identities to include, we con-
sider the next inevitable challenge that comes with incorporating
more identities: the presence of ever smaller numbers of individ-
uals in each group. Machine learning has long tackled such long
tail problems, but there are a few critical distinctions. One notable
technical one is the long tail that machine learning concerns itself
with is typically in the label, whereas in intersectionality it is within
the label. In other words, it is not that there are too few examples
of chairs, but rather a small set of the many chairs are wooden and
look different from the others. Although this difference is important
to keep in mind, it is rather the normative distinctions we will dis-
cuss that may impact the transferrability of existing data imbalance
techniques to tasks with intersectionality concerns. However, this
also gives rise to a possible new, underexplored approach that lever-
ages the structure of intersectional data. We first walk through a
set of traditional dataset imbalance techniques in machine learning
in Sec. 5.1, and then present the kind of structure that may provide
such a new avenue in Sec. 5.2.

5.1 Dataset imbalance techniques in machine
learning

A commonmachine learning technique for dealing with imbalanced
classes is simply reweighting or resampling [68, 84]. These entail
simply increasing the attention paid to individuals of a particular
group. Reweighting can also be done in an adaptive and learned
way [69, 104]. This might pose a normative problem because now
we leave up to the model’s learning parameters which individuals
will be over- or under-valued.

Further techniques to tackle class imbalance move from chang-
ing the importance of existing training samples to generating new
synthetic examples. Techniques like SMOTE [18] generate synthetic
examples in the feature space, and there is no immediately clear
intuition on the normative concern of injecting this kind of directed
noise to an abstract space of features. There is also a vast literature
discussing counterfactuals, a type of synthetic example steeped in
causality, and which have long been used to detect forms of discrim-
ination [20, 86]. Their permissibility of use, however, for addressing
class imbalance has been contested because of the infeasibility of
manipulating demographic categories [62, 74, 110] and inaccurate
conceptualizations of causality of demographic categories [64, 83].

When we move from the data space of abstract features to one
like images of faces, manipulations often feel viscerally wrong, e.g.,
Figure 1 of [122]. Recent work has proposed leveraging Generative
Adversarial Networks (GANs) to create synthetic examples to help
train models, especially for facial datasets [102, 105, 111],11 but
some of these visual results can feel akin to the harmful perfor-
mance of blackface. This poses a set of questions, such as if such
generations were to actually help train a model, and at the cost of
less privacy concerns that might result from seeking to explicitly,
and perhaps exploitatively, collect more data of underrepresented
groups, is there anything to be gained from it? If we consider the
normative concern to be the harmful visibility of these images be-
cause of their historical context, might we consider the generation
of these images permissible, so long as they are only to be consumed
by a machine learning model? These remain open questions.

11We leave out of scope the concerns with facial recognition itself, pointing to works
like [49, 100, 116]
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One field in which synthetic examples are being widely adopted,
and where results are relatively accepted as indicative of real-world
gains largely due to work on transfer learning (e.g., Sim2Real [66]),
is reinforcement learning for robotics [82]. Simulation can often
provide a safer alternative to training in the real world, and serve
as a source for more data. However, because the data needs of cer-
tain fairness applications, like in tabular domains, are lower than
that of reinforcement learning applications, which may use image
data, the use of simulation for fairness applications may better
serve a different purpose. For example, modeled after OpenAI’s
Gym [14] (a simulation testbed for reinforcement learning), Fair-
Gym has been proposed to explore long-term impacts of fairness
problems [27]. Thus, like Schelling [106] did to study segregation,
the purpose of simulations for problems with intersectional con-
cerns may be more akin to that of simulations as testbeds and
tools for understanding sociotechical systems such as in modeling
recommender systems [17, 21, 45, 70, 89] and online information
diffusion [44, 48, 119], rather than as a source for more data.

5.2 Structure in data

One avenue that exists in intersectionality for handling progres-
sively smaller subgroups is leveraging the structure of the dataset.
Drawing on our previous notion of homo- and heterogeneity, we
consider that when two different groups are similar, there may be
predictive patterns we can learn about one from the other. We devi-
ate slightly from our previous notion by ignoring changes in base
rate to focus only on changes in the mapping of the input distribu-
tion to output distribution.12 Thus, in this section, we use ROCAUC
as our evaluation metric because it is base rate agnostic, allowing
us to focus on what we call “predictivity” differences. One major
concern that the methods in the previous Sec. 5.1 aimed to address
is that underrepresentation can be a problem if the minority group
is differently predictive from the majority group [85], but does not
contain sufficient samples to train a robust model on. Structure in
the data has the potential to help us alleviate this concern if we
can learn something about the predictivity of an underrepresented
group, e.g., Black Female, from groups with more representation
in the dataset and a shared identity, e.g., Black Male who share
the attribute of Black. It remains important of course to consider
how the context might impact the structure available to draw from.
For example, Gay Female and Gay Male may not share predictivity,
despite sharing the attribute of Gay [28, 60].

Two kinds of predictivity difference are of relevance to us: be-
tween subgroups (i.e., each subgroup is differently predictive from
each other) and an additional intersectional effect (i.e., the predictiv-
ity of one group cannot be learned from groups with which it shares
identities). The presence of subgroup predictivity differences tells us
we should be concerned with underrepresentation, and a lack of in-
tersectional predictivity differences tells us we may be able to lever-
age structure in the data to alleviate this.Wewill perform two exper-
iments, each aiming to discover one type of predictivity difference.

We study three datasets: ACSIncome, ACSMobility, andACSTrav-
elTime to understand the types of predictivity difference present
in each. We consider the demographic attributes {Black, White}×

12We ignore base rate differences because these are easier to account for using post-
processing approaches that learn a minimal number of parameters.

{Female, Male}. We focus on the group Black Female to center their
experience, and because this group is the most underrepresented
across these datasets and thus more likely to face underrepresenta-
tion. We perform these experiments using the Baseline model.

We first investigate subgroup predictivity differences. To do so,
we train only on individuals from one of the four groups at a time,
controlling for the number of training samples to be constant, and
test on Black Female. For example, by comparing theAUC of Black
Female when trained on n samples of White Female as compared
to when trained on n samples of Black Female, we can understand
whether there is a predictivity difference between the two. Our
results across the three datasets are in Tbl. 1, where we can see that
while for ACSIncome the model is able to achieve roughly the same
AUC on Black Female no matter the group it was trained on, for
ACSPublicCoverage and ACSTravelTime, Black Female has the
highest AUC when a model is trained on members from the same
group, rather than a different group. This indicates that in these
two datasets, Black Female is differently predictive from other
groups such that any model without sufficient samples of Black
Female may not perform as well, and thus an underrepresentation
of Black Female training samples may be of concern. This is not
true in ACSIncome, since an underrepresented group like Black
Female shares predictivity with other groups for which there are
sufficient training samples.

We are now faced with the finding that in ACSPublicCoverage
and ACSTravelTime, the group Black Female is differently pre-
dictive such that a model trained without sufficient examples of
this group will not perform as well. To address this concern, we
can consider the known structure in intersectional data that can
be leveraged. In other words, there may be something about the
predictivity of Black Female that we can learn from Black Male
or White Female. To understand the limit of this structure, and the
extent to which there is an extra intersectional effect whereby there
remains predictivity differences about Black Female that cannot
be learned from the groups of Black and Female, we consider a
different experiment. We operationalize the limit of what can be
learned from the groups that share identities with Black Female,
without training on any members from this group itself, by picking
the ratio of White Female to Black Male training samples that re-
sults in the highest AUC performance on a validation set of Black
Female. We perform this experiment for ACSPublicCoverage and
ACSTravelTime, and in Fig. 3 (left) see that for ACSPublicCover-
age, while Black Female has a unique subgroup predictivity, this
difference can largely be learned from groups with shared char-
acteristics, i.e., White Female and Black Male. On the other hand,
in Fig. 3 (right) for ACSTravelTime, training only on groups that
share characteristics with Black Female results in a AUC lower
than what can be achieved when trained on the actual group tested
upon. Although these results are somewhat noisy, they suggest that
for this dataset and model, there may be an extra intersectional
predictivity unique to Black Female.

Thus, our two experiments tell us the following: ACSIncome - no
subgroup predictivity difference, ACSPublicCoverage - subgroup
but not intersectional predictivity difference, and ACSTravelTime -
both a subgroup and intersectional predictivity difference. Based on
these results, ACSPublicCoverage appears eligible for leveraging
dataset structure to alleviate an underrepresentation of the Black
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Table 1: For the three datasets, Black Female AUC with 95% confidence interval is shown when trained on only one subgroup

at a time. By comparing AUC across different training subgroups, differing predictivities can be seen. For ACSIncome, the

predictivity of Black Female does not differ much from other groups, but this is not true for ACSPublicCoverage and ACSTrav-

elTime.

Dataset Black Female White Female Black Male White Male
ACSIncome 75 ± 2 77 ± 2 75 ± 1 76 ± 1

ACSPublicCoverage 74±1 71 ± 1 73 ± 2 72 ± 2
ACSTravelTime 67±2 63 ± 2 64 ± 2 59 ± 1

Figure 3: For two datasets that exhibit subgrouppredictivity difference,we investigate the intersectional predictivity difference.

The orange dashed “BM+WF” line represents the highest Black Female (BF) AUC achievable when only trained on a combina-

tion of Black Male (BM) and White Female (WF). The blue solid line “BM+WF+BF” represents the BF AUC when samples of

this particular group are added into the training set. Shaded region indicates 95% confidence interval. Training samples are

controlled for such that every data point has been trained on the same number of samples. The left graph shows that replacing

individuals from BM+WF with BF does not increase the AUC of BF very much, indicating there is likely no intersectional pre-

dictivity difference. The right graph shows the addition of BF individuals does increase the AUC of BF, indicating the presence

of an intersectional predictivity difference.

Female group. This means that algorithms need to incorporate
additional axes of identities in a more structured way than just
encoding the conjunction of attributes, e.g., race-sex. We emphasize
that these results on predictivity do not make any claims about the
societal causes of these effects.

5.3 Constructive Suggestions

In Sec. 5.1 we warn against transferring existing data imbalance
methods to handle the progressively smaller groups that will arise in
intersectionality without first giving careful consideration to norma-
tive concerns. In Sec. 5.2, we provide an initial exploration into a di-
rection that leverages the structure in the data to learn about

an underrepresented group fromother groups it shares iden-

tities with. We recommend performing data analysis like we have
shown to demonstrate whether this may be a suitable approach to
proceed with for a particular algorithm and task.

However, this approach comes with significant caveats. Relying
on it too much can counteract the purpose of intersectionality, and
the unique effects that multiply marginalized groups experience.
Prior work warns against treating intersectionality as a variable
to be controlled for in an additive or multiplicative way [55, 113],
and though our use of a multi-layer perceptron allows differences
in predictivity to be captured in more complex ways than as a
regression variable, we emphasize that mathematical structure in
no way implies societal structure. For example, structure in the data

does not preclude the idea that gender can only be understood in a
racialized way, and vice versa [113].

6 EVALUATING A LARGE NUMBER OF
GROUPS

Finally, we consider the problem of evaluation, and how extrapolat-
ing existing metrics is insufficient when the number of subgroups
considered increases. In the binary attribute setting, fairness evalua-
tion frequently takes the form of the difference between the groups
for some performance measure derived from the confusion matrix.
When more than two groups are considered, the evaluation met-
rics look similar in that they are generalized versions, rarely with
changes to account for the incorporation of additional groups. They
are commonly formulated in terms of the maximum difference (or
ratio) of a performance metric either between one group to that
of all [53, 77, 121], or between two groups [40, 46]. We go over
problems with both conceptualizations, and then offer suggestions
for additional metrics to measure—notably, that it is important to
consider the relative rankings of demographic groups.

6.1 Weaknesses of existing evaluation
approaches

One-vs-all metrics will farmore frequentlymeasureminority groups
to have the highest deviation, because inherently themajority group
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has the most influence over what the “all” is. In the other conceptu-
alization via pairwise comparisons, only the values of two groups,
usually the maximum and minimum, are being explicitly incorpo-
rated while the rest are ignored. The more groups there are as a
result of incorporating more axes and identities, the more values are
ignored. For example, when using max TPR difference in a setting
with three demographic groups, we might imagine two different
scenarios such that in one, the three groups’ TPRs are {.1, .2, .8},
and in another, they are {.1, .6, .8}. Both would report the same
measurement of .7, despite coming from different distributions.

We term the family of evaluation metrics that encompasses both
of these categories to be “max difference.” In line with existing
work [40, 77, 121], our max TPR difference defined in Sec. 3 is
of this variety. However, there are significant problems with this
formulation, even in the binary attribute setting. Because the math-
ematical notation for these fairness constraints is often formulated
using parity (e.g., for groups д1 and д2, TPR(д1) = TPR(д2)), an
absolute value is sometimes applied to the difference, which would
obscure whether an algorithm has over- or under-corrected.

To demonstrate further shortcomings, we first consider the AC-
SIncome dataset and the demographic groups of {Black, White}×
{Female, Male}. To get an idea of fairness concerns we miss by only
considering a max difference metric like max TPR difference, we
also calculate an additional metric that includes a notion of group
rank. For Group A which has the lowest positive label base rate
of the four groups, and Group B which has the highest, we report
the ranking of their TPR (from 1 to 4 with 1 as the highest) relative
to the other groups. In Tbl. 2 we see that across all algorithms,
even if fairness is improved from the Baseline model, Group A’s
ranking is consistently low while Group B’s is consistently high,
and always higher than that of Group A’s. This is crucial to know
because despite a fairness criteria of max difference below some ϵ
being satisfied, the consistent ranking of one group below another
compounds in a way to further systematic discrimination [25]. That
there is a correlation between max TPR difference and group rank-
ing in this scenario does not negate the importance of one metric
or the other, as they each convey different information.

In our next experiment, we consider when there are many more
than four subgroups and look at a new metric that measures the
correlation between the rankings of a) base rates and b) TPRs after
the fairness algorithm has been applied. This ranking correlation
helps us understand to what extent the underlying social hierarchy
is upheld.13 The higher the correlation between these two sets
of rankings, the more we are reifying a particular hierarchy of
subgroups and entrenching existing disparities in the data. We use
Kendall’s Tau [78] as a measure of rank correlation, and combine
the p-values obtained across runs of random seeds using Fisher’s
combined probability test [38].

Our results are in Fig. 4, and we only display the Kendall’s Tau
value when it is statistically significant with p < .05. For the two
graphs on the left, in Fig. 4(a) we hold the dataset constant and

13We note here a difference in what we are proposing from the syntactically similar
space of fairness in rankings [114, 123] There, those being ranked are individuals, and
the goal is to more closely align to a set of ground-truth rankings. Here, those being
ranked are the aggregate evaluation metrics of demographic groups, and the goal is to
surface alignment to existing rankings as a way of providing additional understanding
about a model.

vary the axes of demographic attributes, and in Fig. 4(b) we hold
the axes of demographic attributes constant and vary the dataset.
We see that there are trends across algorithms (RWT and RDC
are less likely to reify underlying rankings compared to GRP and
GRY), demographic attributes (for ACSIncome, marital status x sex
has predictive patterns more likely to reify underlying rankings),
and dataset (for marital status x sex x disability, ACSMobility has
predictive patterns less likely to reify underlying rankings).

In Fig. 4(c) we now take the setting from the first row of Fig. 4(a)
and compare the twometrics ofmax TPR difference and our Kendall’s
Tau ranking correlation. This shows two weaknesses with existing
max difference metrics. The first, also demonstrated by Tbl. 2, is that
additional information about how closely a model’s outputs adhere
to underlying rankings provides an important and new perspective
in understanding a model, as across five of the six algorithms, there
is a statistically significant correlation in ranking. The second, is
that across-algorithm comparisons can lead to conflicting conclu-
sions, as each metric conveys a different algorithm to be more “fair.”
Under max TPR difference, GRY is best, whereas for ranking corre-
lation, it is RWT. These trade-offs need to be navigated by someone
informed of the downstream application, and not implicitly ignored
through the measuring of just one metric or another.14

The use of max difference metrics is emblematic of a larger trend
in machine learning whereby all categories are generally treated
the same. Although sometimes labels are treated differently, e.g.,
medical and self-driving car domains where FNs are more signifi-
cant than FPs, this is a difference in the label rather than subgroup.
It would make no difference to a model or evaluation metric if
the labels for Black Female and White Male were swapped — a
surprising statement when considering intersectionality and the
importance of the history of oppressed groups. As machine learn-
ing fairness begins to consider intersectionality, we need to resist
evaluation metrics that do not substantively incorporate additional
considerations, and merely extrapolate from existing metrics. This
is not to say that max difference isn’t useful, but rather that we
should also consider others.

6.2 Constructive Suggestions

We offer suggestions on being more thoughtful with pairwise com-
parisons, as well as additional types of evaluation.15

14Across both experiments from Tbl. 2 and Fig. 4, we are not comparing positive
predictive value (PPV), but rather True Positive Rate (TPR), which is anchored in
the y labels as the ground truth. In other words, we are taking a rather conservative
approach to fairness [40], because even in a scenario where TPRs are equal, PPVs
could still exactly correlate with base rates. That even under this more conservatively
fair conception the existing inequalities are reified so strongly, signifies one can only
imagine how much larger the inequalities would be when considering PPV.
15Aggregating a set of input values into one summary output is akin to the economic
framework of social choice theory. Social choice theory handles the aggregation of a
set of individual’s inputs, which typically take the form of preferences, votes, welfare,
etc. [5]. Each individual has an input utility value under each possible world state,
and an aggregation rule is chosen over the inputs in order to pick the best world
state. We could imagine leniently conceiving of each individual in the set to be a
different pair of demographic subgroups, with its corresponding utility being the
negative TPR difference between them. The different world states are then the set of
all possible model predictions. Under this conception, max TPR difference would map
to the egalitarian aggregation rule [103], which maximizes the minimum utility of
all individuals (i.e., minimizing the max pairwise TPR difference). Under a different,
utilitarian aggregation rule [94, 97], we would instead maximize the sum of the utility
values (i.e., minimize the sum of pairwise TPR differences). Ultimately we did not
further explore this perspective because our focus is to expand out beyond this flavor
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Table 2: In ACSIncome, Group A has the lowest base rate, and Group B has the highest. After training to lower max TPR

difference, all algorithms except GRP improve upon the baseline. However, all consistently rank Group B above Group A,

reifying this hierarchy.

Algorithm Max TPR Difference (%) Average Group
A Rank

Average Group
B Rank

Baseline 13.9 ± 2.9 4.0 1.0
RWT 2.8 ± 0.4 3.0 1.6
RDC 3.0 ± 1.2 3.0 1.4
LOS 4.7 ± 1.8 3.6 1.0
GRP 18.2 ± 1.2 4.0 1.0
GRY 6.7 ± 1.1 4.0 1.0

Figure 4: In (a) we hold dataset constant and vary the axes of demographic attributes, and in (b) we hold demographic attributes

constant and vary the dataset.We discern trends across algorithms (RWTandRDCare less likely to reify hierarchies compared

to GRP and GRY), demographic attributes (for ACSIncome,marital status x sex has predictive patternsmore likely to entrench

hierarchies), and dataset (for marital status x sex x disability, ACSMobility has predictive patterns least likely to entrench

hierarchies). In (c) we display the first row of (a)’s max TPR difference and Kendall’s Tau correlation values. We find that

correlations between base rates and TPRss remain high across five of the six algorithms, and that the two metrics present

different pictures of which algorithms perform best.

If pairwise comparisons are to be done, machine learning prac-
titioners can learn from other disciplines. When social scientists
leverage pairwise comparisons in studying intersectionality, they
often do so with more deliberate thought put into the pairings,

i.e., with a context-first rather than numbers-first approach

(e.g., between the max and min). As noted byMcCall [92], “although
a single social group is the focus of intensive study, it is often shown
to be different and therefore of interest through an extended com-
parison with the more standard groups that have been the subject
of previous studies.” The author gives examples like comparing
“working-class women to working-class men [41]” and “Latina do-
mestic workers to an earlier generation of African American do-
mestic workers [63].” There has been work in machine learning that
used a somewhat context-first approach in intersectional evalua-
tions, but frequently default to anchoring comparisons to the most
privileged group, e.g., white men [117, 118], or the least privileged

of aggregation; however, one could imagine this to be a direction of exploration, e.g., by
conceiving of individuals to be an entity other than a pair of demographic subgroups.

group [118]. However, this can reify the norm of the privileged
as default, a complaint that has been made about certain intersec-
tionality frameworks [16]. Johfre and Freese [72] note that even if
done out of convention, comparing relative to a dominant group
can reify the notion that they are the norm. The paper puts forth
concrete guidelines on how to better choose the reference category,
and though not specific to intersectionality, can help us navigate
how to be more deliberate with any pairwise comparisons that
need to be performed. While we point to their work for details, this
includes heuristics such as if some group is defined as the negation
of another or if certain categories unfold from one singular group.

Reporting disaggregated analyses for all subgroups would of
course alleviate many of these problems, and should be done be-
fore deployment [8], but for iterating on model training can be
unwieldy. Additional “summary statistics” that involve just

adding one or two more bits of information, such as the met-
rics we show in Sec. 6.1 of the ranks of the groups with the highest
and lowest base rate or the correlation between the rankings of
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the base rates and model TPRs, would greatly supplant just the
pairwise difference. While each individual algorithm may seem fair,
if each algorithm has group A’s TPR ϵ below group B’s, this can have
significant compounding impacts on individuals from group A [25].

7 CONCLUSION

In this work, we consider the problems that machine learning fair-
ness will need to grapple with as it endeavours upon the process
of incorporating intersectionality. We provide guidance on three
practical concerns along the machine learning pipeline. For which
identities to consider, we recommend evaluating on the most gran-
ular intersecting identities available in the dataset, but combining
domain knowledge with experiments to understand which are best
to include when trainingmodels. For how to handle the increasingly
small groups, we caution against porting over existing machine
learning techniques for imbalanced data due to their additional nor-
mative concerns, and offer a suggestion about leveraging structure
that may be present between groups that share an identity. And fi-
nally for evaluation of a large number of subgroups, we both suggest
how one could more thoughtfully conduct pairwise comparisons
as well as present additional metrics to capture broader patterns
of algorithms which existing metrics may obscure. These are just a
few of the many steps that will need to be taken to incorporate inter-
sectionality into machine learning, and we encourage the machine
learning community to grapple with the complexities of intersec-
tionality beyond just conceptualizing it as multi-attribute fairness.

8 POSITIONALITY STATEMENT

All authors are computer scientists by training, and despite having
worked on ML fairness, we do not have traditional social science
backgrounds. Additionally, there are group identities we discuss
that we don’t have lived experiences for.
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A ALGORITHMS AND HYPERPARAMETERS

We describe additional details about the five algorithms we perform
experiments on. For thee algorithms that we are able to do so, we
use our baseline 3 layer neural network as the model architecture.

RWT [69]: reweighting scheme on the training samples that learns
group-specific weights between each group’s positive and negative
instances. The algorithm lowers the weight on positive examples of
a group if its TPR is higher than the overall rate, and increases the
weight on the positive examples otherwise. In the original algorithm
this is an iterative process whereby the entire classifier is retrained
with each new set of weights. In extending this method to a neural
network, we continue training the model at each iteration without
retraining the whole model from scratch.

RDC [2]: reduces optimizing for both accuracy and a fairness
constraint to a sequence of cost-sensitive classifications, which
can be solved to yield a randomized classifier. We adapted this to
yield continuous outputs, by using the probabilities output by each
classifier in the ensemble.

LOS [40]: weighted addition to loss of an extra intersectional fair-
ness regularizing term that minimizes the maximum log ratio be-
tween the rate of positive classification of all groups. In order to
modify this for our fairness criterion, we minimize the maximum
ratio between the TPR of all groups.

GRP [121]: GroupFair is probabilistic combinations of logistic
regression models that ensure fairness for overlapping groups. This
method contains two variations, weighted ERM and plugin, and
we only use the latter due to the prohibitively long computational
time required for the former. We combine the model’s continuous
outputs rather than discrete ones.

GRY [76, 77]: cost-sensitive classifications to obtain solutions to a
2-player zero-sum game between a learner (which learns the clas-
sifier) and an auditor (which ensures that the fairness criterion is
met). The method produces a sequence of classifiers, all of which
output hard outputs, and we use the average of these outputs. We
use linear regression for the individual models.

Hyperparameters are all tuned on the validation set. The first
split is 70-30 for training/validation and the test set. The train-
ing/validation is further split at 70-30 again to make the training
and validation sets.

Baseline: batch size: 64, and hyperparameter tuning across epochs:
[50, 100, 150] × learning rate: [.001, .005]
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RWT [69]: batch size: 64, learning rate: .001, hyperparameter tun-
ing across epochs: [100, 150] × reweight learning rate (algorithm-
specific hyperparameter): [.1, .2, .5, 1.]

RDC [2]: hyperparameter tuning across batch size: [256, 512, 1024,
2048] × epochs: [50, 100, 200]× number of iterations:[10, 20, 50]

LOS [40]: batch size: 1024, learning rate: .005, hyperparameter
tuning across epochs: [200, 250, 300] × λ weight on additional loss:
[.01, .5, .1]

GRP [121]: epochs: 10000, learning rate: .01, B: 50, hyperparameter
tuning across ν : [0.001, 0.003, 0.01, 0.03, 0.1]

GRY [76, 77]: hyperparameter tuning across C:[5, 10, 20]× number
of iterations: [50, 100, 200]× fairness parameter γ :[1e-3, 5e-3, 1e-2]
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