Sommelier: Curating DNN Models for the Masses

Peizhen Guo Bo Hu Wenjun Hu
Yale University Yale University Yale University
peizhen.guo@yale.edu b.hu@yale.edu wenjun.hu@yale.edu
Abstract 1 Introduction

Deep learning model repositories are indispensable in machine
learning ecosystems today to facilitate model reuse. However, ex-
isting model repositories provide a bare-bone interface for model
retrieval. The onus is on the user to profile and select from poten-
tially hundreds of choices, barely relieving an average user of the
expertise required to design the model in the first place.

In this paper, we present Sommelier, an indexing and query sys-
tem above typical DNN model repositories to interface directly with
inference serving or other use cases. Given a desirable accuracy
target and resource budget for an inference task category, Som-
melier automatically searches through the repository for the most
suitable model, without requiring manual profiling from the user.
Motivated by manual iterative model search processes and typical
model design strategies that generate model variants or models
with common segments, Sommelier organizes DNN models based
on their semantic correlation, defined as the probability of models
producing the same results. This is further combined with a re-
source index based on relative resource consumption. Sommelier is
implemented as a standalone query engine that can interface with
an existing repository such as TF-Hub. A case study of 163 models
in TF-Hub highlights the extent of model correlation across differ-
ent model series, suggesting the best candidate model can easily
evade manual profiling. Extensive evaluation shows that Sommelier
returns the ideal model for over 95% of the queries; When interfaced
with an inference server, Sommelier can reduce the 90th percentile
tail latency of inference tasks by a factor of 6 via automatic model
switching, far more than typical scale-out system optimizations.

CCS Concepts

« Information systems — Data model extensions; Query lan-
guages for non-relational engines; - Computing methodolo-
gies — Neural networks.

Keywords

Deep neural network query engine, deep learning model reposito-
ries, semantic indexing

ACM Reference Format:

Peizhen Guo, Bo Hu, and Wenjun Hu. 2022. Sommelier: Curating DNN
Models for the Masses. In Proceedings of the 2022 International Conference on
Management of Data (SIGMOD °22), June 12-17, 2022, Philadelphia, PA, USA.
ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3514221.3526173

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9249-5/22/06...$15.00
https://doi.org/10.1145/3514221.3526173

Deep learning (DL) inference accounts for the explosive growth
of analytics workload volume everywhere, in the cloud and on edge
devices. Computer vision (CV) and natural language processing
(NLP) tasks are the dominant deep learning workloads currently
deployed. Meta (then Facebook) reported [55] that the volume of
their workloads tripled within two years. These workloads are
resource intensive but also increasingly user facing, hence subject
to stringent latency requirements.

As it requires significant expertise and computation resources
to design deep neural network (DNN) models, it is increasingly
common to use a pre-trained model (e.g., ResNet [34] for image
recognition), either verbatim or as the basis to transfer the model
to the target application (e.g., object detection and semantic seg-
mentation). Typical inference serving frameworks provide an API
to load an existing model from a given repository. Model designers
often start with an existing model and then adapt or retrain it to
generate new models. Model testers use similar models to identify
adversarial inputs that lie at the decision boundaries. (Section 2) As
a result, DNN model repositories have become essential players in
existing deep learning ecosystems, e.g., TF-Hub [6] for TensorFlow,
PyTorch Hub [4] for PyTorch [56] and Model Zoo for MXNet [14].
These are even more helpful for the general public.

However, existing model repositories provide a bare-bone in-
terface for the user to retrieve a specific model. The onus is on
the user to profile and identify precisely which model to use from
potentially hundreds of DNNs, including the specific version for
a particular DNN design. This level of repository support barely
relieves an average user of the expertise required to design the
model in the first place. It is especially cumbersome for an applica-
tion developer who simply wishes to deploy an existing model [75].
Empirical manual profiling is neither scalable or robust, also due
to the risk of overfitting to test datasets. Manual model search fur-
ther inhibits effective run-time adaptation to fluctuating resource
availability during prediction serving. A suboptimal model could
miss the achievable accuracy target by 10% or waste 20X more
resources [4, 30, 70]. Section 2.1 discusses these issues further.

The problem is poised to worsen as new model variants are
derived. Partly driven by the growing interest in on-device inference
for edge devices and recent work generating a large suite of models
customized to heterogeneous settings [12, 30, 72], it is increasingly
unscalable to manually select the best fit model.

In this paper, we propose Sommelier, an indexing and query
system over typical DNN model repositories to automate model se-
lection based on a desirable inference accuracy target and resource
budget. Recognizing the difficulty to quantify the exact semantics
of each DNN model, Sommelier defines a notion of generalized func-
tional equivalence between models (Section 3). Strictly speaking,
this metric describes an approximation to capture the semantic
similarity between two models. We use the term "equivalence" to

https://doi.org/10.1145/3514221.3526173
https://doi.org/10.1145/3514221.3526173

highlight the interchangeability between models in practice. We
then formulate the query goal as finding a model most interchange-
able with a well-known reference model (e.g., ResNet). This query
formulation is motivated by anecdotal evidence of current prac-
tice. For example, at Meta (Facebook) and elsewhere, if an engineer
wants to add some DL functionality to a product, they would con-
sult a machine learning (ML) expert based on the functionality and
performance requirements; The expert will inform the engineer
which existing tools or models to try first, and how to iteratively
refine the model selection. Sommelier is designed to automatically
meet such real-world model selection requirements. It also matches
common model design strategies such as transfer learning and neu-
ral architecture search, which generate models that may be variants
of one another or share common substructures. Indeed, our empir-
ical analysis of 120 popular models in existing repositories show
over 50 models are derived from the same base model (Section 3.2).
For the resource specification in the query, the user simply specifies
the budget as using a desirable fraction of the resource footprint
of the reference model (Section 5.1). This is motivated by common
search criteria for lightweight models [12, 18, 70].

To achieve low-latency query performance, Sommelier measures
and organizes DNN models with a semantic index based on their
semantic similarity, defined as the interchangeability of the models
producing the same results (Section 4). Rather than quantifying the
equivalence between two models intensionally, i.e., by requiring
that two models produce the same result on every input empiri-
cally, Sommelier quantifies the functional equivalence extensionally,
by measuring model performance on a single validation dataset
and accounting for the behavior on other validation datasets by
including a term for the generalization error bound [8]. The se-
mantic index is further combined with a resource profile index to
meet resource constraint preferences (Section 5). Given the query
format, we mainly need to determine the relative resource consump-
tion between models. Therefore, the resource profiles are defined
by hardware-independent metrics, memory usage and TFLOPS;
hardware-dependent metrics, such as latency, can be added and
estimated with additional information like device specification.
The resource profiles are actually computational complexity pro-
files. TFLOPS captures the time complexity whereas memory usage
measures space complexity.

Sommelier acts as an explanation database for DNNs. We believe
that Sommelier can fundamentally change DL framework designs.
It completes the code automation for inference serving run-time
adaptation, DNN test case generation, and training new models
that are currently hard to achieve with manual model selection.
Sommelier is implemented as a standalone query engine (Section 6),
not tied to any specific deep learning repository or ecosystem. It
can interface with diverse model repositories as an intermediary
(Figure 1) between the repository and the applications.

As a case study, analysis of 163 models in TF-Hub shows that
Sommelier uncovers hidden correlation between models across
distinct collections, beyond what can be expected from manual
documentation and the most intuitive manual profiling strategies.
Extensive experiments over around 200 models show that when the
model differences are distributed uniformly between 0 and 10% (i.e.,
percentage inference result difference for the same test dataset),
Sommelier returns the ideal model for over 95% of the queries; When

Sommelier is interfaced with an inference server, it can reduce the
90th percentile tail latency of inference tasks by a factor of 6 via
automatic model switching. This improvement can be far more
significant than applying typical scale-out approaches. It hints at a
new use scenario for model architecture adaptation. While model
compression is normally intended for resource-constrained edge
devices, it can produce compact models suitable for cluster settings
at heavy loads. Sommelier also significantly lowers the expertise
requirements, reducing the time needed to select a model manually
by up to a factor of 30 and replacing hundreds of lines of script
code with less than 10 lines of Sommelier queries. (Section 7)

In summary, this paper makes the following contributions: First,
we propose a scalable query formulation for DNN models using
quantifiable constraints around relative resource usage and func-
tional equivalence between DNN models. Second, we design an
algorithmic primitive and code library to automatically extract func-
tional equivalence across DNN models, especially between model
segments. Specifically, we generalize testing-based approaches to
be benchmark independent, and then generalize the model simi-
larity analysis to model segments. To our knowledge, no previous
work automatically infers DNN sub-structures. Third, we build a
query system, Sommelier, that interposes an indexing layer between
the filesystem storing the models and the inference applications; it
abstracts away the filesystem and exposes a query interface instead.
This way, we can change the way DL frameworks are designed
today by enabling a range of automated adaptation and shifting the
system bottleneck away from resource scheduling. Finally, evalua-
tion results highlight the potential of automated model switching
thus enabled in delivering significant performance improvements
without using extra resources.

2 The Need and Gap for DNN repositories

Building DNN from scratch is too expensive. The efficacy of
deep learning rests on the quality of the DNN model, but training a
sophisticated DNN from scratch is an immense undertaking. This
demands comprehensive understanding of optimization theory and
neural network internals, enormous amounts of training data, and
computation resources. For example, training a ResNet50 network
involves carefully choosing optimizers and hyper-parameters, and
writing hundreds to thousands of lines of code spanning Python,
C++, and specialized libraries (e.g., CUDA, MKL [1]) to deploy the
whole training pipeline; the entire training run could take 14 GPU-
days, processing nearly 1 TB of training data [34].

Given the colossal cost and steep learning curve of training
new models, repositories of DNN models are increasingly adopted
in DL ecosystems, to store pre-trained models for diverse model
reuse possibilities. For instance, we analyzed around 150 active DL
projects on GitHub. Over 94% of them involve building and training
upon existing models loaded from some repository. Further, a small
set of six common neural network models is chosen by over 60
projects. This confirms the importance of model repositories.

Usage of model repository. Model users can directly choose a
pre-trained model from the repository with the required function-
ality (e.g., object detection) or certain model segments (e.g., visual
feature extractors) to build their learning based applications with-
out domain knowledge of DNNs [3, 33].

(i) Inference serving. Various deep learning inference serving
frameworks (e.g., TensorFlow-serving [54] and Clipper [16]) have
been developed to provide run-time support for low-latency, ac-
curate, and robust DNN-based prediction tasks. These systems
interpose between end-user applications and the deep learning
engines, hiding the complexity of deploying end-to-end DL logic.
Applications simply specify the model and provide input data. The
inference serving system, integrated with a model repository, will
load the specified model, and execute inference tasks with various
optimizations (e.g., model freezing [45], multi-tenant sharing [37],
multi-model collaboration [78], layer-wise caching [46]).

(ii) Model design. The emergence of training techniques such
as transfer learning [77] and knowledge distillation [35] facilitates
incremental new model design by copying (a segment of) an existing
well-trained network as the basis and adapting that towards new
use cases with substantially less effort (in model designing time
and training data size). For instance, popular well-trained neural
networks (e.g., ResNet [34] and BERT [21]) are widely utilized for
diverse downstream CV and NLP tasks [62, 81], accelerating the
training time from days to minutes [21, 55].

(iii) DNN testing. DNN models deployed in safety-critical ap-
plications such as autonomous driving need to be robust against
adversarial input data, namely specific input values that could trig-
ger abnormal inference results and dangerous behavior, e.g., mis-
classifying a stop sign. Key to the model verification process is to
identify corner case input data. These are typically found by loading
a few similar DNN models from the model repositories [41, 57] and
exploring the intersection of their decision boundaries.

2.1 Limitations of existing model repositories
Existing model repositories act as a remote filesystem only, with
primitive APIs to publish and load a model. To retrieve a model, a
user has to specify the precise URL to the model file. This requires
significant user sophistication regarding the right model choice.

Inference serving. The next generation of DL inference serving
systems are expected to hide complexity; Developer interactions
with the associated model repository should only include high-level
specifications of DNN models (e.g., accuracy, inference latency, and
resource usage) as the inputs, rather than the exact model name
and version [75]. This is even more so for anyone not familiar
with detailed DNN model profiles. From the perspective of a DL
inference serving system, the runtime execution environment (e.g.,
queue length, caching strategy) and application performance goals
(e.g., critical vs. non-critical period) fluctuate [13, 39], making man-
ual and static model selection a poor match for myriad runtime
optimization needs and necessitating automatic suggestions.

Model design. Even for domain experts, appreciating the accuracy
and resource usage of all models in advance is impossible. For
instance, ResNeXt101 [74] and MobileNet [36], two models trained
with the same ImageNet [20] dataset for classification, differ by
10% in accuracy and 20X in memory footprint [4, 70]. Further, such
numbers are measured under a specific setting only, and could vary
with the datasets and hardware platforms. Enumerating models by
name and exhaustively profiling each until the best fit is extremely
unscalable and not robust against overfitting to the test data.

Inference

Training

[Data lngestion}[DNN Design]
! T

DL Apps

Inference Engine
T TF-Lite

(rrLic)co

Distributed Training Engine

F 0 ® &
I

{ Monitoring and Analysis

e.g. TensorBoard

<_>

J Model Repository

e.g., TFHub, TorchHub

Figure 1: Sommelier fills in a gap in the existing DL eco-
system by masking the complexity in DNN model selection.

DNN testing. Since an important model testing step is to find
"tricky" input data using similar but not identical models, the qual-
ity of model selection dictates the coverage and soundness of the
testing process [50, 79]. Ideally, the repository should automatically
identify models that exhibit sufficient local differences to explore
adversarial examples. Instead, this is currently done manually, po-
tentially testing the same model multiple times unnecessarily.

Summary. All three use scenarios point to the same fundamental
limitation of existing model repositories: There is no query sup-
port for the model repository, only a bare-bone filesystem. This
then leaves model selection to manual and empirical operations,
which is time-consuming and often results in suboptimal decisions.
Manual selection effectively precludes run-time model switching
when serving inference tasks. Only DL experts with substantial
knowledge of DNNs can take full advantage of such model reposi-
tories when facing numerous models with diverse profiles [11, 61].

2.2 Requirements for DNN query support

To address the shortcomings of existing model repositories, we
build Sommelier to provide model query support (Figure 1) to bridge
the currently separated phases of DNN model training and inference
serving. We next discuss the requirements and challenges.

Canonical model lookup requirements. Fundamentally, Som-
melier supports a query operation, query(), where the method
signature captures the user requirements. An example query might
take the format of "find a model for vision on embedded devices that
uses 80% less memory but only allows within 5% accuracy loss from
ResNet" [30, 36]. For a DNN, its inference accuracy and resource
usage profile are the key factors forming the multi-dimensional
decision space that concerns a user [11, 30, 61]. Note that both
are often expressed in relative terms against a well-known refer-
ence, since it is generally desirable to find the most lightweight
model. Therefore, a DNN model query should essentially specify
two lookup conditions, ideally in relative terms: (i) model semantics
(e.g., "within 5% accuracy loss to ResNet" or "object recognition
with over 95% accuracy over 1000-class ImageNet syntax"), and (ii)
resource consumption (e.g., "20% of ResNet memory consumption”
or "less than 1 GB memory and 0.5 TFLOP"). To fulfill such query
requests over neural network models, we need to organize and
search for models efficiently, which poses several challenges.

Challenge 1: Characterizing general DNN model semantics.
While organizing the DNN models along the resource consumption
axis is intuitive, it is not straightforward along the model semantics
axis (e.g., by an accuracy target for a specific functionality). The lat-
ter relies on a measurable definition of DNN semantics and the right
primitive to compare and rank DNNs, neither of which is obvious.

weight [3%

-—-¢—[nput @’ *@D ’ 02 («,L{
0.9 M:untain

in_channel=3

> 0.1 Plane
Rermel eizem(3,3) g 0.1 Cat
_size=(3, (1o 1 Ce
padding=(1,1) out_unit=100
Attribute Parameter O Layer

Figure 2: Anatomy of a DNN based inference task.

DNN models are described by directed graphs of mathematical oper-
ators, and hence have unique mathematical expressions. However,
we observe that using these expressions to define and "compare”
DNN semantics does not suit practical scenarios. Instead, given the
nature of DNNs and their interaction with existing repositories,
we find that assessing and exposing pair-wise semantic correlation
between models is more insightful than attempting to quantify the
model semantics in absolute terms.

Challenge 2: Quantifying semantic relations between DNNss.
Given the primitive to characterize DNN semantics, the next chal-
lenge is designing algorithms to measure the semantic similarity be-
tween models. First, the nature of such similarity differs depending
on whether it is between two DNN models holistically or between
model segments. Second, DNN models employ diverse structures
and operators, which generic and scalable techniques for model
traversal. Third, DNN structures are increasingly complex, hence
requiring extensible algorithmic designs. Section 4 describes our
approach to these issues. In particular, we build on the theory of
generalization bounds to guard against the risk of overfitting test
data in empirical assessment. Although it might appear pair-wise
correlation could be captured by model designer annotations, in
practice, documentation only works for internal repositories, lacks
standardization, and limits its understanding to the same family of
models (further discussed in Section 7.3).

Challenge 3: Query specification and processing. From a sys-
tem perspective, the challenge is two-fold: (i) how to design an
expressive query interface and specification to cover all user re-
quirements; and (ii) how to design index structures and process the
query accurately and efficiently. These are explained in Section 5.

3 Characterizing DNN Semantics

Figure 2 shows an example recognition task using a DNN. A DNN
is typically expressed as a directed acyclic graph (DAG), following a
dataflow model. Each node in the DAG is a base layer in a network,
considered as an atomic unit carrying out a certain operation (e.g.,
2D convolution) on its input. Each DNN layer is characterized by
attributes and parameters. Attributes (the grey boxes in Figure 2)
describe the types and shapes of the input/output tensors and their
dependency. Parameters (the blue boxes) capture the internal states
of a layer (e.g., the weight and bias tensor of a Dense layer).

3.1 The futility of the conventional view

A DNN is simply a sequence of primitive mathematical opera-
tors. Therefore, it is intuitive, and a common practice, to use the
mathematical expression of a DNN to denote its task semantics;
The difference between model semantics would then appear to be
captured by that between their mathematical expressions. However,
this common practice is problematic.

Reason 1: Lack of a unique formal representation of the DNN
or the DL task. Training a DNN is theoretically understood as a

e RON#10.910.910.85 0.9 0.92
0.88

(Y8 0.910f50.920.86 0.93
0.84

0.910.92[W10.87 0.91
Mobi 0.850.860.87@0.82 0,76
Rxt101 NUEHOREDLEER 0 :710.79 -0.72

NcepRessg/061810b 1 Rxt g,

Figure 3: Extent of equivalence between DNN models.
function approximation process, where the exact "functionality”

is unknown, but is gradually approximated through a finite set
of input data and output labels. The training process may impart
inherent bias to the training data. The function thus derived is eval-
uated by how well it generalizes, i.e., how accurately it performs the
inference task when fed with unseen test inputs. This implies that
the same "function semantics" can be "described" via totally differ-
ent mathematical representations. In formal verification terms, the
strongest postcondition for a DL task is not unique because multiple
outcomes can be acceptable given the same input [26, 42, 68]. This
departs substantially from the traditional sense of deterministic
program semantics.

Reason 2: The correctness of a DNN is tunable. Traditional
program correctness is a binary property ("yes" or "no"), but it is
statistical for DNNs. It is common to revise the DNN structure to ad-
just the tradeoffs between accuracy and other performance metrics,
but this does not change the functional semantics of the task. For
instance, neural architecture search algorithms (e.g., OFA [12] and
MnasNet [69]) adjust the neural network structural complexity fac-
tor, between 0.1X to 10X in exchange for the right accuracy targets
that vary by almost 10%, in order to balance between acceptable
performance and resource footprint on edge devices. Minerva [60]
prunes computation on the hardware to achieve 3Xx processing
speedup on edge devices, at the expense of 2 to 10% accuracy drop.
3.2 Empirical analysis

Where distinct models agree. We next empirically show the
discrepancy between the mathematical difference and functional
equivalence between various DNNs. We select 5 widely used DNN
models (Resnet50, Inception, ResNext101, VGG19 and MobileNet),
all pre-trained with ImageNet for image classification, and feed the
same test input to all of them. In Figure 3, the off-diagonal entries
show the fraction of results (corresponding to the top-1 accuracy)
that agree completely, while the diagonal entries show the inherent
top-1 accuracy for each model. Interestingly, the output agreement
ratio between models is significantly higher than their inherent
accuracy values. This implies that these models are functionally
equivalent and highly interchangeable in practice, yet none of the
models is the definitive one for the image classification task.

This hints at the futility of attempting to characterize the absolute
semantics of individual models with mathematical expressions.
Indeed, recent DNN verification efforts [26, 42, 68] demonstrate
that it is impractical to generate specifications to describe holistic
(rather than local) properties of a DNN model.

Model correlation in common repositories. We next examine
120 popular DNN models, each present in all three common reposito-
ries, for TensorFlow, PyTorch, and GluonCV. Each model is trained

with one of only 4 distinct datasets. Further, a common neural
network structure (e.g., ResNet block) can be transferred from its
original model (ResNet) to over 50 different DNN models spanning
over tens of different domain-specific tasks [6, 17, 62, 81]. Since a
DNN extracts features from the input data to make inference deci-
sions, the common training data and network structures generate
implicit correlation between feature extraction in distinct DNNS.

Observations. The first experiment confirms mathematical differ-
ence is inadequate to describe similar DNN functional semantics,
whereas the second analysis suggests that such model correlation
is widespread due to the typical training processes today. There-
fore, any model selection strategy needs to explicitly take both into
consideration. Meanwhile, the inherent correlation between the
features identified by different models is more deterministic than
the individual feature extraction processes (i.e., distinct DNNs),
which sheds light on an alternate view of DNN model semantics.

3.3 Alternate view: Model equivalence

Inspired by the observations above, we define DNN semantics by
instead exploring the correlation between models. Users typically
know the accuracy and resource profiles of some well-published
models, e.g., ResNet for computer vision and BERT for NLP. There-
fore, we can assess the semantics of a model with respect to a
well-known reference, supplied by the user or defined by default.

Functional equivalence between DNNs. We formally define the
functional equivalence between DNNs as the interchangeability
of the models to achieve the inference task. Given a model M;
and an arbitrary dataset D; containing input data and the ground-
truth results of the inference task. A second model M; is (approxi-
mately) functionally equivalent to M; iff feeding D; to My achieves
a quality of result (e.g., 95% classification accuracy) comparable to
M;’s, up to a user-specified difference threshold € (e.g., 5%).

The rationale is that (i) the equivalence measurement between
DNN:ss is decoupled from their concrete mathematical representa-
tions; and (ii) the threshold is a control knob for users to customize
the level of relaxation acceptable to suit their unique needs. Note
that, in machine learning theory, while many terms can be used to
express the similarity between two functions, these do not trans-
late to the interchangeability between (sub-)models. Therefore, the
above definition is needed for our particular consideration. This no-
tion of functional equivalence can be applied beyond deep learning,
but we restrict our discussion to DNNs in this paper.

4 Identifying DNN Equivalence

Having transformed the problem of unambiguously specifying
the semantics of a DNN to assessing the functional equivalence
between models, we next develop algorithms for this equivalence
assessment. Given the type of model variants commonly seen today,
there are two cases to consider. First, two DNNs might be designed
differently but trained with similar data to achieve the same task
(e.g., recognizing animals). In particular, one model could be a struc-
turally more compact version of the other. The two models thus
exhibit functional equivalence holistically. Second, model variants
are frequently derived from a common model base, but transferred
and fine-tuned to different downstream tasks (e.g., emotion de-
tection and question answering), then the functional equivalence
relation exists between the common base segments of two models.

Therefore, we describe how to quantify the equivalence exten-
sionally (i) between holistic DNNs, and more importantly (ii) be-
tween common segments of DNN models, in both cases leveraging
the generalization theory of DNNs to lower-bound the equivalence
measure in a dataset-independent fashion.

4.1 Equivalence between whole models

We can simply treat each DNN as a black box and compare
models as a whole in three steps. We first check the "structures”
of the input and the output, i.e., the data types and shapes of the
tensors, to quickly filter out completely different models (e.g., for
tasks that are not comparable), and then use a validation dataset to
derive an empirical quality of result (QoR, e.g., accuracy, mAP, mIoU,
etc.) difference between models. These two steps resemble a static
analysis of type-check then value-check in a compiler optimiza-
tion process. This dataset-dependent empirical difference is refined
with a generalization error bound analysis (details in [8]) to
become a dataset-independent QoR difference bound, then compared
against the acceptable difference threshold € to determine model
equivalence. This generalization analysis is essential to make our
approach extensional instead of intensional (Figure 11).

Input and output layer check. We check the input tensor shapes
of the candidate models to determine if they possibly capture the
same semantics. However, this can be misleading because resiz-
ing and other preprocessing can be applied to the same raw input
source to manifest in different shapes. To cope with this, the model
designers can specify in the configuration how to preprocess inputs,
as well as register custom preprocessors. The strict comparison be-
tween input shapes is invoked only in the absence of preprocessing.

The model outputs are typically derived in three ways based on
the task category, classification (semantics defined by the highest-
valued dimension of the output vector), regression (semantics de-
fined by the whole output vector), or a combination of the two when
there are multiple outputs. For regression-style outputs (e.g., for
object detection, word embedding), we simply observe the output
shapes. If the shapes are identical, we pass the two models to the
next checking phase. For classification-style outputs (e.g., for object
recognition), a finer-grained check can be additionally conducted
if the output syntax is specified, namely the syntax label of each
output dimension (e.g., dimension i maps to dog, dimension j to cat,
...)- Such an analysis can eliminate models with the same output
shape but carrying different syntax.

Assessing functional equivalence. We next feed the validation
dataset to two candidate models and measure the average QoR
difference. Typically, the QoR goal is just the optimization objective
for model training. Otherwise, we compute the I, distance between
the outputs from the two models on the same input, then average
this distance over the dataset as the default QoR difference.

So far, we have an empirically measured QoR difference which
might be specific only to this validation dataset. In order to gen-
eralize the empirical assessment without exhaustively testing all
datasets, we leverage the generalization theory of DNNs [10, 53] to
upper-bound the QoR difference (or equivalently, to lower-bound
the semantic similarity between models) independent of the valida-
tion dataset selection. In brief, we add to the empirical QoR difference
a generalization error bound derived from the architecture of the

DAG of model 1: G1 Sequences: S1, S2, and S3

) ®——>®——->® :
| S . ,. .

@@@0

DAG of model 2: G2

9ouanbas uourod SeH

Figure 4: Extracting model segments recursively.

DNN. The generalization bound is expressed as:

O{(hdmax|lf ()2 By 7)),

where y is determined by the accuracy metric definition of the
inference task, n is the size of the validation dataset, d denotes the
total number of layers of the DNN, || f(x)||2 denotes the output
vector’s I norm, and y; and y;—, are inter-layer factors calculated
from the weight matrices of the adjacent layers (details in [8]).

Finally, we determine the two models to be functionally equiva-
lent if the upper-bound QoR difference is smaller than a pre-defined
default or user-specified threshold e.

4.2 Equivalence between model segments

For DNNss generated via transfer learning or model adaptation,
two DNNs may not be equivalent in their entirety, but share func-
tionally equivalent segments (e.g., a stack of layers). Therefore, we
revise the equivalence definition and analysis for DNN model in-
ternals. There are two main challenges: (i) extracting structurally
identical model segments, and (ii) assessing the functional equiv-
alence of them. Our detection algorithm proceeds in two steps
accordingly. For (i), we adopt a lightweight approach based on
common DNN structures. For (ii), our key insight is to estimate
layer-wise output difference inductively between model segments
based on the nature of error propagation over a DNN.

Revised equivalence definition. For model segments, we first
need to quantify their roles in the whole model, since the model-
wide validation datasets and quality of result (QoR) metrics are
not directly applicable to intermediate segments. Suppose we have
a segment S from model M, and another segment S’ structurally
identical to S. We can derive a twin model M” from M by replacing
the segment S with S”. Now, we can translate the functional equiv-
alence between S’ and S to the equivalence between M’ and M, as
defined previously (Section 3.3).

Extracting model segments. Unlike the whole model scenario,
only checking the first and last layers around intermediate model
segments is far less informative for filtering out unrelated mod-
els. Instead, we view the DNNs as DAGs and extract the common
sub-graphs as the candidates that are possibly equivalent. However,
optimally detecting common sub-graphs between two graphs is
well known as an NP-hard problem and is simply not tractable.
Fortunately, unlike general graphs with arbitrary node connectiv-
ity, DNNs tend to connect layers sequentially, and only involve a
small set of parallel branches locally (e.g., residual connections in
ResNet [34]). Therefore, our algorithm instead finds the longest
common operational sequence as the candidate segments, which
reduces the complexity to O(N?), where N is the number of layers.

We first recursively find the longest operator sequence from
each DAG. For example (Figure 4), the sequence S1 is extracted
first; then, zooming into the "operator” Y, another two sequences

of operators, S2 and S3, are further extracted from the graph G1.
Now, given a set of sequences (i.e., S1 to S3) from each DAG, we
find the longest common sequences (green shaded) between the
two sets as the candidate model segments for further assessment.

Layer-wise output difference estimate. We estimate the upper-
bound output difference between two model segments layer-wise
from the input layer to the output layer inductively. For the base case,
we can show how the input difference (at layer 0) is transformed by
any operator in the first layer of the segment to the first-layer output
difference (i.e., also the input difference to the next layer, effectively
an error term). For the inductive step, the output difference bound
for layer i is calculated from the theoretic upper bounds for layer
i — 1 following the per-layer input and operator constraints. At
layer i, any linear operator adds to or multiplies the errors from
layer i — 1 by a scalar, and non-linear operators upperbound the
errors following the operator definitions. Then, by induction, the
difference vector between the output values captures the deviation
between the two model segments over all common layers. We next
analyze the per-operator effect on error propagation.

We classify DNN layers (operators) into three categories: lin-
ear operators, non-linear operators, and multi-source combinations.
Linear operators essentially cover all kinds of layers invoking ma-
trix multiplication (FullyConnected, Convolution, Embedding,
etc.). Non-linear operators include activation (ReLU, tanh, sigmoid,
etc.), pooling (maxpooling, meanpooling, etc.), and normalization.
Multi-source combination refers to merging multiple input sources
into a single output (add, multiply, concat, etc.). Note that even
though recurrent operators (RNN, GRU, LSTM, etc.) are typically
viewed as distinct operators, their essential computing logic is no
different than a combination of the aforementioned basic operators.
Therefore, each recurrent operator itself can be treated as a model
segment for error analysis.

For the linear operators (the computation kernel of almost all
DNN layers), the output difference of the current layers (e.g., B13 in
Figure 4) between segments comes from two sources: (i) the output
difference of the previous layers (B12 and earlier) propagated to the
current layers; and (ii) the additional output difference incurred by
the weight parameter differences between the current layers (B13).
Suppose W and W’ are the weight matrices (with identical sizes) of
two counterpart layers in segments S and S’, and AX is the upper
bound of the difference vector. At layer i, we denote the input and
output difference vectors with respect to S by AX; and AX;“, and
the weight matrix difference by AWs = W’ — W. Clearly, we have
AX;Jr1 =W - AX! + (AW) - X’. Now, we can derive the per-layer
upper bound max]|| - || as
max||AXE| < Amax (W) - max|| AXE| + Amax (AWs) - max|| X",

where A;pmax (W) denotes the largest singular value of matrix W,
and max|| X || = Amax (W) - max||X*||. The largest singular value
of a matrix indicates the largest scaling effect among the dimen-
sions acted on by the matrix. Each A5 - max|| - || term thus maxi-
mally scales the previous error bound, and the final addition com-
bines both bounds. Note that, for Convolution layers, the kernels
are always internally reshaped into a single 2D matrix before cal-
culating output. Therefore, they are treated in the same way as
FullyConnected layers even though the latter often involve multi-
ple kernels on multi-dimensional inputs.

Next, we derive the output difference bounds for non-linear op-
erators. Consider activation layers (RELU, tanh, and sigmoid) first.
All these activation layers and their variants (e.g., LeakyReLU) fol-
low |activation(x)| < |x|, which means the input difference bound
itself could serve as the upper bound of the output difference. Then,
for pooling layers, it is easily proved that the I difference of the out-
puts is always smaller than or equal to that of the input difference.
For normalization layers, the output difference is scaled by a factor
determined by the length of the original output vectors. Thus, we
can simply derive the upper bound as AX**! = ||AX?||/|IX?]|.

Finally, we analyze multi-source combination operators. Intu-
itively, we treat the difference vectors of each input source as an
independent random variable. Applying the relevant mathematical
expressions to each, as outlined above, then generates the statistics
of each field in the output difference vector.

To sum up, for each type of popular neural network layer (op-
erator), we propose an approach to derive the output difference
upper bound from its input difference and the weight matrix of its
possibly equivalent counterpart. This completes the inductive step.

Completing equivalence assessment. Say we have identified
equivalent segments between models M and N and calculated the
output difference bound per segment pair, the equivalence assess-
ment between the original M and a maximally replaced M proceeds
as follows. The same can be done for N vs. a partially replaced N.

(i) Denote the set of all replaceable segments of M (in common
with N) by Sp;. We feed random inputs to M and get the outputs
from each segment in Sy and for the entire M.

(ii) Next we estimate the output of M if all segments in Sys are
replaced. Each segment-specific intermediate output is perturbed
with Gaussian noise scaled to the corresponding per-segment out-
put difference bound, and fed to the rest of M (after the segment
just ran). Adding random noise emulates replacing a segment and
incurring maximal result quality degradation. This way, we can
calculate the difference between each pair of the segment-replaced
and unperturbed outputs of M; Across all inputs, we then obtain
the QoR difference.

(iii) If the QoR difference exceeds the threshold €, we gradually
remove segments from Sy in the order of increasing computational
complexity, and recalculate the new QoR difference via steps (i) and
(ii), until it falls within the threshold.

Two points to note. First, since this output difference analysis
takes as input the initial test input difference, it intrinsically unifies
the equivalence notions between pairs of inputs [22, 31, 32], inter-
mediate results [47], and models. Second, adding Gaussian noise (i.e.,
completely random error) in step (ii) captures the worst case for the
equivalence analysis, whose result then serves as a safe bound for
arbitrary scenarios. Since the noise and test data distributions vary
by model and are usually unknown, assuming less random error
inherently biases the results towards certain scenarios (Section 3.1).

4.3 Discussion

Asymmetry of model comparison. Our “functional equivalence”
metric is non-symmetric, i.e., the equivalence scores between two
models differ based on which model is the reference model. This
asymmetry is by design and we believe it better captures real-world
scenarios. For example, when a tiny model and a huge model share

\Sommelier System

Functional
equivalence checking

Resource ption
profiling

lookup Query | text
conditions | PArsing

Index
structure

Sommelier API

Sommelier query interface|

Figure 5: Sommelier system architecture.

repository that is over 95% functionally equivalent to
ResNet and consumes 20% less memory.

memory: 80%

(Model designers search the closest DNN model from the!
Example:

Model: ResNet

. X max (semant equiv)
semantic equiv: 95% =4

Semantic constraint resource constraint Final selection criteria

Figure 6: Specifying a concrete use case as a DNN query
a "functionally equivalent" operator sequence, intuitively, replacing
the sequence for the tiny model might incur more accuracy degra-
dation than the huge model, because the sequence plays a more
impactful role in the final output for the tiny model.

Limitations. There are two main limitations to the above algo-
rithms. First, Sommelier’s applicability heavily depends on suffi-
ciently capturing functional equivalence between DNN models
and segments, which in turn depends on the theoretical results on
generalization bound analysis. They currently work well for most
common types of DNN operators, and we expect relevant theory to
evolve as new operators emerge. Second, for now our algorithms
only capture the models with identical topology. We hope to extend
our algorithms to capture broader scenarios in future.

5 DNN Model Query with Sommelier

Building on the above analysis of DNN models, we design Som-
melier (Figure 5) to support DNN model queries. The core system is
built on a pair of index structures, a semantic index and a resource
profile index, to "rank"” DNNs and support range queries.

5.1 Formulating DNN model queries

Recall the model lookup requirements in Section 2.2. Due to the
prevalence of DNN tailoring and on-device inference [12, 18, 70],
the model search targets are typically described in terms relative to
a well-known reference model. We define a query specification to
express desirable model performance and resource usage (Figure 7).
Such queries are not about exact matches, but like multi-attribute
range queries that jointly consider multiple lookup conditions.

A user query specifies the semantic constraint, the resource budget,
and the final selection criteria. The semantic constraint is defined by
a reference model and the functional equivalence threshold with
respect to this reference. Resource constraints include (relative)
computational complexity and memory consumption. These are
meant to indicate the user’s preference for resource usage. A user
does not need to know the exact resource footprint of any model.
Final selection criteria outline any additional method(s) to select the
final output among the retrieved candidate models (e.g., the model
with the “most similar” function, or select with user-defined utility
functions). If the user has no prior knowledge of a suitable reference
model, they can specify the inference task category instead and
Sommelier supplies a default reference model.

Figure 6 shows a query example, where a model designer wishes
to find a DNN that is most interchangeable with the latest version
of ResNet (i.e., equivalent to ResNet 95% of the time) but consumes
20% less memory and takes 40% less computation time. We use
TFLOPS and memory footprint as the two most representative
resource metrics to explain the Sommelier design, but Sommelier is
not restricted to these two metrics. Custom metrics (e.g., latency)
can be plugged in easily (shown later in Figure 7).

5.2 Semantic index

Sommelier leverages an index structure to track the functional
equivalence relations between stored DNNs, so as to process queries
efficiently without having to compare the semantics between each
pair of DNNs per query. The top-level structure of the index is a
hashtable. For each entry in the table, the key is the hash fingerprint
of a DNN, and the value is a list of candidate records, each of which
consists of a candidate DNN and its functional equivalence score
(i.e., the dataset-independent QoR difference bound) to the keyed
model. The records within each candidate model list are maintained

in a descending order according to the functional equivalence score.

This way, the hashtable maintains the mapping between a model
to all its functional equivalents.

Insertion to the index. When a new DNN model (M,,) is added,
Sommelier randomly selects 5 existing models in the repository
and conducts a pairwise semantic analysis between M, and the
selected models. The differences between (M,,) and the other models
in the repository can be derived transitively: suppose models X
and Y differ by A, Y and Z by B, then the semantic difference
between X and Z is bounded by |A — B| and |A + B|. Empirically,
this sampling approach dramatically improves scalability without
degrading query quality much. Currently, there is one index for
the entire repository, since the majority of existing models are for
either CV or NLP tasks. This can be easily extended to one index
per inference task category. We assess the functional equivalence
between two models regardless of their intended inference tasks.

A new entry (Rn) is created in the index table representing M,,.

(i) For whole models, suppose an existing model M; has functional
equivalence level L, to the new model Mj,. Then, the model M;
along with L1, is added to the candidate list of the entry Rn. (ii)
For model segments, suppose a segment S; of an existing model
M has equivalence level Ls, .5 to a segment Sy, of the new model
Mp, (e.g., interchangeable from S to S, for M,). Then, a model
M, synthesized from M, by replacing S, with Sj is added to the

candidate list of entry Rn along with the equivalence level Lg, s, .

Separately, for each entry of the existing models, the new model
M, is also added to their candidate list following (i) and (ii).

Lookup with the index. When a query is submitted with the
reference model M, and the functional equivalence threshold as
the arguments, Sommelier will first locate the key by calculating
the fingerprint of the reference model, and then, from the candidate
list, collect as the output all the models whose equivalence level
exceeds the threshold. An output model M; can be a real model that
is holistically equivalent to the input model M,,. Alternately, M; can
be synthesized by replacing a segment S, (from input model M,)

with S; (from a real model M;) such that S, and S; are equivalent.

5.3 Resource profile index

Sommelier builds another index structure to record the resource
profile of each DNN model, separately handling relative and ab-
solute resource profiles in a hardware-independent fashion. Each
entry of the resource index is a (key, value) pair, where the key is
a vector whose fields correspond to the usage numbers of certain
resource types (e.g., (memory, TFLOPS)), and the value is the DNN.
Sommelier uses Locality Sensitive Hashing (LSH) with a cosine hash
family [19] to organize the entries for fast distance-based range
search over resource vectors. The optimal LSH parameters vary by
scenario but can be empirically set with a few sample entries.

Insertion to the index. The essential step for inserting a new DNN
model into the resource index is to generate the resource profile
vector. For relative resource constraints, the profile vectors corre-
sponding to all models are normalized (e.g., to a default reference
model and hardware platform) to achieve hardware independence.
When the reference model is not defined, we leverage static estima-
tion and run-time measurements to generate the resource vectors.
For computation complexity and memory footprint, we sum up the
TFLOPS and intermediate data sizes of all computation-intensive
operators in the model. The latency estimation additionally involves
preparing the model runtime, as the execution configurations could
affect the numbers [18]. To handle this, Sommelier follows the typi-
cal practice of separately maintaining a per-operator latency table,
which includes the run-time latency of each type of basic neural net-
work operators [58]. Given a new DNN model, its estimated latency
is essentially the sum of the individual latency of all operators along
the longest sequence between the input and the output. Specifically,
for a sequence of operators that cannot be parallelized, its latency
is calculated by adding up the per-operator latency from the table;
For a set of parallel(izable) operators (or operator sequences), the
latency is estimated based on the path (among all concurrent ones)
that takes the longest time to complete.

Lookup with the index. When a query is submitted with the
resource constraints, Sommelier first converts the resource spec-
ification into the constraint vector as mentioned, and then uses
the vector to query the LSH-based index. Finally, among the re-
turned models with closest resource profile, those that satisfy the
constraints in all dimensions will be the outputs.

5.4 Query processing

A query submitted to Sommelier is first parsed into an abstract
syntax tree (AST), from which the user-specified query conditions
are extracted to formulate three query processing steps. Each step
is determined by a filtering constraint, the semantic constraint, the
resource consumption constraint, or the final selection criteria.

Based on the two indices, DNN queries submitted to Sommelier
are handled as pipelines of filtering operations. Each query stage
takes the information from the corresponding part of the query
to configure the filter, executes the filtering logic on the index
structure, and then intersects the output models from the current
stage with the models from the previous stages. Noticeably, for
the resource consumption filter, the filtering condition is further
represented as a multi-dimensional vector. For instance, memory
less than 200 MB, computation complexity less than 50 GFLOPS, and
latency less than 30 ms is simply represented as a vector (200, 50, 30).

5.5 Discussion

Configuration knobs. Sommelier provides configurable knobs
for different scenarios. The generalization bound analysis can be
in the on, off, or custom mode. Namely, the user can choose to
run analysis on a default dataset, disable the analysis, or specify a
custom dataset to run the analysis for specialized scenarios. Further,
the semantic and resource indices are configurable, e.g., via the
LSH data structure configurations, to balance the computation
complexity and indexing accuracy.

Supporting developer annotations. The above description for
the index generation assumes no metadata available for any model.
If any annotation is available, for example, noting down the model
accuracy and resource footprint in a particular setting, Sommelier
can incorporate and "translate" this information to our standard
indexing metrics, in place of the corresponding analysis. How-
ever, such annotations are unlikely to replace the built-in analysis
provided by Sommelier unless they can exhaustively cover all in-
formation about the model in any run-time settings.

Resource metrics. To some extent, our resource profiles are actu-
ally computational complexity profiles. TFLOPS captures the time
complexity whereas memory usage captures the space complexity.
TFLOPS is widely adopted by most platform-aware DNN adaptation
work [15, 27, 72] and independent of the specific types of hardware
and frameworks, but with the drawback that it is not always ac-
curate when further translated into platform-specific metrics such
as latency. To overcome this limitation, Sommelier prepares the
inference engine runtime for each new incoming model on locally
available hardware platforms (e.g., CPU, GPU, and TPU) and col-
lects the actual performance numbers of the additional metrics (e.g.,
latency). According to publicly available statistics [33, 38], a small
set of common types of platforms could support over 95% of all
types of workloads in a large company. This confirms the feasibil-
ity of using a small set of hardware in the Sommelier runtime to
support platform-aware metrics [18].

Persistence. Sommelier keeps only the two index structures in
memory. All the models are stored in the storage system, and only
the storage locations are kept in the indices. As the two indices use
vanilla data structures such as hashtables and LSH, both indices are
lightweight and can be populated to disk when they grow large.

Framework agnosticism. It is sometimes inevitable to interact
with the DL framework runtime to accurately measure the resource
consumption and analyze the model semantics. However, neither
the model semantics analysis nor the resource profiling differs sig-
nificantly between TensorFlow, PyTorch, MxNet, and others. Hence,
Sommelier is not tied to or limited by any specific DL framework.

6 Implementation and Case Studies

We implement Sommelier as a standalone query engine taking
existing model repositories as its data connectors. The implementa-
tion consists of around 6000 lines of C++ and CUDA code for neural
network graph and operator definitions, functional equivalence
assessment, and query processing, plus around 1000 lines of Python
code to import and export DNNs between Sommelier and the ONNX
format [2], a universal neural network model representation com-
patible with all mainstream frameworks such as TensorFlow and

<query> ::= 'CORR' ref-model
'ON' { <attr> ('s>=' | '<=' | '<' | '>') threshold }+
'ORDER BY' { <metrics>(<attr>) }x
'"WITH' { exec-spec }x;

<attr> ::= 'SEMANTIC' | 'MEM' | 'CPU"' | 'LATENCY';

<metrics> ::= 'MAX' | 'MIN' | UDF;

Figure 7: Sommelier query syntax.

/% 0ffline: DNN query %/
// Without Sommelier - exhaustively profile
// specify model performance targets
targets = {...};
/ prepare and load dataset
dataset = data.load("Cifar1@", "test");
/ Exhaustive trying
for(model : repo.models()) {
accuracy_score = model.validate(dataset);
// check resource usage
res_usage = check_resource_usage();
if (satisfy(accuracy_score, res_usage,
targets))
return model;

/* Online: inference serving */
while (input_buf.has_next()) {
// check certain conditions
ctx = check_execution_environment();
// Without Sommelier
// reselect models by fixed conditions
if (ctx.memory >= 10G && /*...%/)
model = repo.load("ResNet152");
else if (ctx.memory >= 5G && /*...%/)
model = repo. load("ResNet50");
else if (ctx.memory >= 1G && /*...%/)
model = repo.load("ResNet18");
// ... else if ...
else model = repo.load("MobileNet");
// With Sommelier - - - -
model = sommelier.query(ref='ResNet50', |// With Sommelier - submit a query string
mem=ctx.memquota, flops=ctx.compquota); [CORR ResNet50
data = input_buf.next(); ION memory < 80% AND flops <= 50%
res = model.predict(data); IORDER BY MAX(SEMANTIC_CORR)
i WITH (device = gpu-rtx2080)

Figure 8: Pseudo-code for two case studies.

PyTorch. In particular, the module to assess functional equivalence
can be separated out as a standalone tool or common library for
model analysis. The source code is available at [5].

APIs. Sommelier connects with a user-specified DNN model repos-
itory during initialization. Sommelier further exposes a query()
API in place of the original interfaces between users and the model
repository. It takes a query command (syntax shown in Figure 7)
as the input and returns a list of selected DNN models, or null
if none satisfies all the query predicates. The emphasized terms
are supplied by users or other DL framework components (e.g.,
inference serving systems). ref-model is the name (or ID) of a ref-
erence model (if left empty, a default model is chosen based on
the type of inference task), threshold is the functional equivalence
threshold, and, optionally, exec-spec specifies additional execution
settings (e.g., hardware information, running mode, and batch size)
in key-value pairs to help build DNN resource profiles.

Porting to other DL frameworks. Sommelier can easily inter-
face with different DL frameworks. DNN representations are inter-
changeable between frameworks via ONNX [2]. Further, existing
repository APIs are mostly equivalent. For instance, loading models
from TF-Hub needs a call of tfhub.KerasLayer (model_url), and
from PyTorch Hub, torch.hub.load(path, name, pretrained).
Hence, only 3 lines of configuration change is needed to migrate
Sommelier across model repositories.

Online case study: Inference serving. Sommelier supports se-
lecting DNN models with high-level performance goals and re-
source budgets. This then easily enables automated model switching
for DL inference serving (Figure 8, left). Specifically, on receiving
an inference task, the inference server first collects the current
machine conditions (e.g., task queuing length, allocated GPU mem-
ory/shares), and then just queries Sommelier (green shaded block).
Sommelier returns a (set of) DNN model(s) that best fits the current
server conditions and allocated resources. These are done auto-
matically by the inference server during the run time. Without
Sommelier, the developers have to hardcode all the model variants
and switching conditions, and update the code to incorporate each
new scenario and model (gray shaded block).

;\3 100 T e O 1
=
S %)
g % K
8 =
a
= 80 g
§ 4 —3¥— Design _20'2
= 70 Serving ©
© Testing 0.1
Q 14
2 60

5 10 15 20 0 [i

DNNs distributed within #% semantic diff

(a) Query quality (Sommelier vs ideal).

D-T S-T T-T D-LoCS-LoCT-LoC

(b) Saving in time and manual effort.

o —
-
o~

I Avg. users
[ML experts System opt. + Sommelier
[1Sommelier | | @ | f§ | Sommelier

| ! | 02 k System opt.
| — — Baseline
| 0
o il & 0 20 40 60 80

Processing latency (ms)

CDF over task instances

(c) Run-time inference latency.

Figure 9: End-to-end performance.

Offline case studies: DNN design and testing. Sommelier could
fundamentally change the offline usage of the model reposito-
ries.The right half of Figure 8 compares the processes needed and
the complexity of optimal DNN model selection with and with-
out Sommelier. For DNN design, using Sommelier will accelerate
the iteration speed to designing new models by orders of magni-
tude. Suboptimal model bases are directly skipped by Sommelier,
without triggering time-consuming training processes. For DNN
testing, Sommelier fills in the last piece of fully automated testing
process [41, 57, 71]. When a DNN arrives for robustness testing,
the pipeline automatically takes the model as the reference and
queries Sommelier for N functionally equivalent variants. These
N variants then form the adversarial input detector for the tested
model. Without Sommelier, the adversarial input detector is manu-
ally constructed by the developer for every single tested model.

7 Evaluation

The key to Sommelier’s performance is to build the semantic
and resource indices effectively and efficiently. Therefore, our goals
here are to (i) show how the query system can be used for the
use cases outlined in Section 2; (ii) evaluate the semantic analysis
algorithms in Section 4; (iii) use TF-Hub as a case study to evaluate
the index structures and analyze what they reveal about the models;
and (iv) evaluate the overhead of various operations.

DNN model benchmarks. Sommelier is oblivious to where the
model is eventually run. Therefore, we use models of different sizes
designed or tailored for diverse execution settings. We prepare
two sets of DNN models: (i) a synthetic repository of over 200
models we generate ourselves, transferred from six widely used
pre-trained models: three for vision (image recognition [34], object
detection [62], and semantic segmentation [81]), and the other three
for NLP (sentiment analysis, question and answering (Q & A), and
named entity recognition) [21]. This gives us fine-grained control
in terms of different functional equivalence levels to extensively
evaluate the algorithms; (ii) We also use over 160 most widely used
TF-Hub models from the top 30 most recommended collections
(covering CV, NLP, and other tasks) to show how Sommelier indices
perform in realistic settings (Section 7.3).

Datasets. We use a few widely-used datasets to tune, validate,
and assess functional equivalence between models: ImageNet [20],
Caltech256 [28], and SUN397 [73] for object and scene recognition;
PascalVOC [24] and MSCOCO [49] are used to fine-tune object
detection; Ade20k [82] to fine-tune segmentation; SQuAD1.1 [59],
IMDB [51], and CoNLLO03 [66] to fine-tune Q & A, sentiment analysis,
and named entity recognition workloads respectively.

Hardware. Unless otherwise noted, we use a single Linux server
with a quad-core 2.3 GHz Intel Xeon CPU, 64 GB memory, and an
NVIDIA RTX2070 GPU. This covers inference scenarios broadly,
since they are run on a single server whether at the edge or in the
cloud. Sommelier applies to both.

7.1 End-to-end performance

Settings. Following the setups above, we evaluate Sommelier in an
end-to-end fashion in the context of the three motivating examples
and case studies (Sections 2 and 6), i.e., model design, model testing,
and inference serving. All experiments use the real-world datasets
and models mentioned above. These cover both whole model simi-
larity and model segment similarity. Model testing also borrows the
model settings specified in DeepXplore [57].

Performance metrics. We evaluate Sommelier in terms of query
quality, time and manual effort, and inference tail latency. The first
two capture how well Sommelier selects DNN models (measured
as the portion of DNN models selected by Sommelier being ideal)
and how it simplifies interacting with the DNN model repositories
(measured in the time and lines of code needed), respectively. For
online use scenarios such as inference serving, we further evaluate
the tail latency of the inference tasks with and without Sommelier
to examine the usefulness of automated DNN selection.

Query quality. Figure 9(a) shows the portion of query output
models matching the ideal model. When model differences are
distributed evenly between 0% to 10% (i.e., returning different infer-
ence results for up to 10% of test input), Sommelier returns the ideal
model for over 95% of the cases. Even when all models are function-
ally different from one other by at most 4% (the most extreme case
where all models are "usable"), Sommelier still consistently returns
the ideal one for over 60% of the cases. In such cases, the candidate
models are already nearly identical. Without additional constraints,
the choice between them is essentially random. We do not observe
any significant inference quality drop from suboptimal choices.

Time and manual effort. We conduct the experiment with 10 ML
experts (e.g., PhD students focusing on DL) and average users (e.g.,
sophomores without extensive experience with DL). We explain to
them the goals of the three tasks and where to find the available
models to achieve the tasks. Figure 9(b) shows the relative time and
lines of code needed for manually profiling and selecting models,
compared to using Sommelier. The prefixes "D-", "T-", "S-" stand
for "design", "test" and "inference serving" respectively, while the
suffixes "-T" (the leftmost three groups of bars) and "-LoC" (the
rightmost three groups of bars) indicate respectively the profiling
time and lines of code needed. Sommelier reduces the profiling time

100 @z

100 —p= 100 %=
-~ -~ ~
o 80 S 80
s s
~ 60 ~ 60
> >
8 8
;5, 40 — — Bound ;5, 40 = = Bound
£ 20 e \ £ 20| —+— Noisy
~ Fine-tuned
0 0
0 5 10 15 0 5

Number of fine-tuned layers

(a) Object/Scene recognition.

Number of fine-tuned layers

(b) Object detection.

o 80
s
~ 60
>
;5) 40 [["— — Bound
o —+— Noisy CRESYs

\ < 20 Fine-tuned =< —_

\ ;
= 0
10 15 0 5 10 15

Number of fine-tuned layers

(c) Image segmentation.

Figure 10: QoR difference bound and actual accuracy loss given varying fine-tuning levels and datasets for three vision tasks.

needed by up to 30X, and replaces hundreds of lines of script code
with 10 lines of queries.

Inference accuracy and tail latency. Finally, we highlight how
Sommelier can help with reducing the tail latency of inference
serving via automated model switching. Our baseline is an inference
model server interfacing with a vanilla model repository, where the
application developer manually specifies a fixed model throughout
the inference run. We compare that to inference with automated
model switching per input enabled by Sommelier.

With Sommelier identifying tens of functionally equivalent mod-
els (pre-registered to the repository) with different resource profiles,
the inference server can switch to more compact models when ex-
periencing heavy loads and the highest quality models when the
resource is abundant. Specifically, the automated model switching
module of the inference serving engine first formulates a query
(e.g., the one shown in Figure 6) combining the current and ex-
pected run-time conditions (e.g., memory availability, CPU shares,
desirable accuracy), and the DNN model currently being served.
Then, Sommelier executes this query to return a "similar" model
that achieves the same expected accuracy as the original one but
better matches the resource availability of the machine.

Model switching is orthogonal to and combinable with system
optimizations like replication, parallelization, and batching. There-
fore, we also emulate an ideal scenario of tail-latency reduction
via system optimizations [16, 29, 63], by enlisting a standby infer-
ence server with identical resource setups. Under light loads, the
inference tasks are submitted to both servers and the earlier comple-
tion is counted; Under heavy loads, the inference tasks are evenly
distributed on both servers to fully utilize all available resource.

Figure 9(c) shows the inference latency distributions for the base-
line, ideal system optimizations only, automated model switching
with Sommelier, and combining Sommelier with system optimiza-
tions. Compared to the baseline, Sommelier could reduce the tail
latency of inference tasks by a factor of 6 without using additional
resources by switching models automatically, which is not possible
for current model repositories and inference serving platforms. This
compares to about 33% reduction with system optimizations alone.
Moreover, Sommelier can work in tandem with existing system op-
timizations to further cut down tail latency by over 15%. Note that
while the specific latency numbers and improvement ratios depend
on the hardware used, the general trends hold, i.e., the benefit from
model switching can be far more significant than common system
optimizations. This is not surprising, since the execution time of
DNN inference is inherently predictable [29]. Therefore, reducing
the size of a DNN can predictably reduce the inference latency.

As more model variants are generated to match diverse resource
consumption profiles orders of magnitude apart [30], there is signif-
icant untapped opportunity in leveraging model switching without
scaling out. Models initially intended for resource-constrained edge
devices can be useful in cluster settings at heavy loads!.

Across the 200 models and all types of CV and NLP inference
tasks, on average, there is only negligible difference in the inference
accuracy due to automated model switching with Sommelier. We
first calculate the replacement model’s accuracy relative to the
original model, and then consider the variation of that relative
accuracy change. Across the inference task categories, the 90th
percentile of the relative inference accuracy increase or drop is all
between 1.7% and 2.4%.

7.2 Assessing functional equivalence

Between model segments. To evaluate how well Sommelier cap-
tures the equivalence between model segments used in transfer
learning, we use the three CV tasks mentioned earlier, whose mod-
els are all transferred from the pre-trained ResNet50. We fine-tune
each original model by freezing different numbers of base layers
(mimicking different transfer attempts). Then, we replace the newly
tuned model segment (i.e., layers) with the counterpart in the orig-
inal one, and evaluate the new quality of result (QoR) relative to
the pre-replacement original result quality (normalized to 100%).
Separately, we add noise to the parameters of each fine-tuned model
to mimic worst-case fine-tuning and generate the corresponding
reference model. We then derive the theoretical quality lower bound
from the reference and the segment-replaced models.

Figures 10(a) to 10(c) each plots three lines. The y-axis shows the
QoR (i.e., accuracy) of the "partially replaced” model relative to the
original model. The dashed line corresponds to the estimated lower-
bound accuracy from our algorithm, whereas the two solid lines
("fine-tuned" and "noisy") capture the relative accuracy in normal
and worst-case fine-tuning scenarios. The shaded region (accuracy
loss within 10%) marks acceptable model replacement usage, and
our algorithm generates reliable lower bounds that closely track
the actual accuracy in this region.

Whole model equivalence. With respect to ResNet50 as the ref-
erence model, we calculate the bounds given different validation
dataset sizes for Inception-V3, VGG19, and MobileNet, all three
achieving the same image recognition functionality. The actual
accuracy while interchanging these models for their tasks is empir-
ically measured 20 times with the same validation dataset size and

I The overhead in GPU memory swap can be mitigated by switching models in the
background [30].

o

o

I Sommelier-lowerbound
[sommelier-test
[ModelDiff

ResNet
DNN Model

Normalized similarity
o o o o
o N S o o -
Memory consumption (GB)

3

o

MobileNet VGG R50

DNN Models

(a) Resource variation.

Figure 11: DNN similarity score

comparison. Figure 12: Effectiveness of

Table 1: Lower bound vs actual accuracy (%). A cell (X/Y/Z)
reports the “bound/min/average” of the actual accuracy.

Dataset Size | InceptionV3 VGG19 MobileNet
100 54/64/72 54/66/75 | 50/57/69
1k 62/68/72 62/70/75 | 58/66/69
10k 67/70/72 70/72/75 | 62/66/69

we compare the accuracy lower bound with the lowest and average
actual accuracy values. Table 1 confirms the accuracy bound is
safe and gradually approaches the actual accuracy when a larger
validation dataset is used. When over 1000 records are used for
validation, the bound is within 10% of the actual accuracy.

Comparison to ModelDiff. To the best of our knowledge, no ex-
isting work detects and exploits functional equivalence between
DNN segments or builds a query engine based on whole model
equivalence. The closest to Sommelier is a recent work, ModelD-
iff [48], which proposes a metric to quantify the similarity between
whole DNN models, based on the cosine similarity between the de-
cision distance vectors from two models; the metric is empirically
obtained using a testing based approach trained on a benchmark
set of DNN models and datasets, which is precisely what Sommelier
tries to avoid. Thus, we compare the generalization bound approach
in Sommelier and ModelDiff, to highlight the unique benefits of ex-
tensional measurements leveraging a generalization bound over an
intensional testing-based approach. We follow the same settings as
in the ModelDiff paper. We use three DNNs (i.e., MobileNet, ResNet,
and VGG), fine-tune them to certain levels, select the testing dataset
from ImageNet using the algorithm proposed in ModelDiff, and
feed the same dataset to both Sommelier and ModelDiff to measure
the functional equivalence (i.e., the level of similarity) between the
original model and their fine-tuned variant. Each experiment is
repeated 20 times with different datasets, and the error bars show
the minimal and maximal values among these runs.

Figure 11 shows that both the "testing-only" Sommelier and
ModelDiff can successfully detect the similarity between models,
and there is no statistically significant difference in their average
performance. However, Sommelier can further leverage the general-
ization bound analysis to lower-bound the model similarity scores.
Without such a bound, the similarity scores given by ModelDiff
can vary by around 30%, depending on the exact dataset used for
the measurement process. This makes ModelDiff less useful than
Sommelier for scenarios where predictability and safety are critical.

ModelDiff considers whole models only, even for a model pair
transferred from the same base. In that case, how much these models
deviate from each other would depend on the additional layers
added to the common base, often trained specifically to "specialize"
to the specific task. Functionally it is more appropriate to replace

resource and semantic indices.

g £100 by
8 I ntra model family 2
S [Inter model family 5 80
2 3
g &
El T 60 —+— Top1
3 ‘@ —&— Top5
T 2 t
] |] 3
ksl @
! - . g & ot
R101 R50x3 R101x3 R152x4 * 34 112 114 118 ° Ty 10 15 20 25 2

FLOPs proportion

Number of different model series in TF-Hub

(b) Functional equivalence.

Figure 13: Cross-series DNN
similarity.

only the common base, not the additional layers. The problem with
replacing the entire model instead will mainly manifest in certain
inference results being widely wrong (i.e., the "corner cases"), and
this is not always captured by the overall inference accuracy over
some generic validation dataset.

7.3 Tensorflow Hub case study

We conduct a case study of 163 DNN models from 30 series
in TensorFlow Hub [6]. Each series is a family of models derived
from a common basis. Consider two widely used series, BiT [43] (5
models) and EfficientNet [70] (8 models). Each includes a sequence
of increasingly large and accurate models, from tens to hundreds of
millions of parameters, and from 74% to 86% in accuracy. Currently,
manual model selection is done intra-series for simplicity.

First, we let Sommelier index the 13 models from BiT and Ef-
ficientNet only, shown in Figure 12. For the resource index, Fig-
ure 12(a) shows the variation in the memory consumption for the
BiT models relative to the memory usage of a target setting (e.g.,
GPU specification and batch size). When the setting changes, the
memory consumption of the model can vary by 25%, which would
necessitate exhaustive, case-by-case profiling. In contrast, Somme-
lier’s resource index efficiently organizes models and accounts for
diverse execution settings, obviating such a case-by-case search.
For the semantic index, we use the largest BiT model (the R152x4
model) as the reference model, and assess the functional equiva-
lence between the reference model and any model in the BiT and
EfficientNet collections with a similar resource profile. Figure 12(b)
surprisingly shows that, if we want a model that is one-eighth the
size of R152x4 to replace R152x4, the better one is from EfficientNet,
not from the same BiT collection. This is hard to identify manually.

Next, we incrementally index more series, eventually covering
all 163 models. For each model, we identify its top-K functional
equivalents (i.e., the models with the K highest semantic equiva-
lence scores) within and across model series. In Figure 13, the x-axis
shows how many randomly selected series are indexed, and the
y-axis shows the portion of series with models finding the top-K
semantic equivalents outside their own series (repeated 5 times).
On average, up to 40% and 80% of the 30 series find the top-1 and
top-5 functionally equivalent DNNs in another series. This confirms
the widespread nature of hidden correlation between models, high-
lighting the value of automatic semantic assessment in Sommelier.
Further considering partial model equivalence relations, the afore-
mentioned percentage exceed 50% and 90% respectively even when
only indexing up to 5 series. Regardless of the number of model
series indexed, the inference result agreement ratios between the
top-5 closest models are always well above each model’s absolute
inference accuracy, consistent with Figure 3.

Table 2: Time of functional equivalence check.

Metrics AlexNet | ResNet | VGG19 | BERT

Params (M) 62 60 143 340
Time (Segment) 1.89s 2.77s 5.46s 14.10s
Time (Whole) 1.25s 4.46s 6.18s 22.92s

Table 3: Run-time query latency (ms).

Number of records
100 1K 10K | 100K
Resource 0.22 | 0.54 | 1.63 | 432
Semantic | 0.01 | 0.03 | 0.04 | 0.06

Both 0.24 | 0.61 | 2.30 6.69

Predicate

7.4 Sommelier system overhead
Sommelier introduces several query operations during run time.
In this section, we profile them individually.

Latency of functional equivalence detection. Recall that Som-
melier assesses functional equivalence between models offline (Sec-
tion 4), which is not on the critical path of processing inference
workloads. We mainly consider whether Sommelier can handle
huge DNN models. We use four models (Table 2 column titles) as
the inputs to test run the whole model and model segment equiv-
alence detection algorithms respectively. Table 2 shows the sizes
of the models and the time needed. We can clearly see that the
algorithm scales well even when the model size is extremely large.
For BERT (i.e., one of the largest commonly used DNN models),
with over 340 million parameters and requiring over 12 GBs of
memory during the run time, our algorithm still finishes within
around 20 s, reasonable for offline index calculation.

Latency of run-time queries. The query operations are on the
online path (Section 5). The main latency overhead is from searching
the LSH-based resource index and the 2D pair-wise DNN semantic
index. This is slower than the extremely fast (ns level), hash-based
search for current, naive DNN model lookups. We prepare the
model repository with different numbers of models varying from
100 to 100K. In each case, the storage is queried 20 times, and we
time the average search latency when given either a resource or
semantic constraint alone, as well as when given both constraints.
Table 3 shows the average query time versus storage size. The
query is fast enough even considering both search predicates. In
practice, the repository size needed is mostly smaller than 100K
model records, where around 6 ms is the typical retrieval latency,
orders of magnitude faster than typical inference tasks.

Memory overhead. Since Sommelier leverages index structures to
track the semantic correlation and resource profiles of DNN models
(Section 5), additional memory consumption is therefore inevitable.
However, this should be negligible since only the metadata of the
models need to be kept in memory, whereas the models themselves
still reside on disk. Table 4 shows the added memory consumption
by randomly picking different numbers of DNN models and build-
ing the two index structures. The additional memory footprint is
mostly under 80 MB, indeed negligible compared to the memory
capacity of modern hardware. This also leaves space for caching
the most frequently used models in memory to further mask the
model loading latency from a (remote) disk.

Table 4: Memory footprint (MB) of the indices.

Models 10 100 1k 10K | 100K
Resource | 0.001 | 0.008 | 0.091 | 0.87 6.5
Semantic | 0.006 | 0.58 23 55 71

8 Related Work

Our work takes a leaf out of theoretical work on DNN semantic
analysis and explanatory queries in database literature.

Semantic analysis of DNN models. Until recently, there was lit-
tle consideration of harnessing the statistical nature of DNNs [44].
Relevant works studied the functional semantics of DNNs to en-
sure their robustness, safety, and interpretability. Reluplex [42],
PRIMA [52], and others [9, 67] explore DNN formal semantics us-
ing SMT solvers and other verification techniques. Manifold [80],
DeepTest [71] and DeepXplore [57] build systems to validate the
robustness solely via iteratively refined test datasets. However, they
all verify local properties (e.g., adding perturbation to an input) of
DNNS, hence not applicable to task-level model semantics compari-
son. We discussed ModelDiff [48] in Section 7.2 for empirical whole
model comparison. MLink [78], concurrent with our work, similarly
tests holistic model correlation to optimize for inference serving.
Recent work on interpretable Al (e.g., OMG [40] and ARG [23])
leverage continuity features of the input and human visual percep-
tion to explain why and how a given model matches the functional
semantics of a DL task. Instead, Sommelier provides the "inverse"
function, serving the optimal DNNs to users with DL tasks and
performance goals at hand.

Explanation query engines. Recent database literature has ex-
plored database functionalities to detect causality, analyze inherent
correlation within the data, and answer explanation queries for
users. Relevant efforts include theoretical analysis frameworks [25,
65], relational interfaces for explanation [7], and optimizations for
domain-specific data types (e.g., performance traces [76] and error
logs [64]). Although these techniques are agnostic to the specific
data type, they lack the capability to extract relevant information
from DNN models to effectively handle explanation queries. Som-
melier develops essential tools for this purpose.

9 Conclusion

DNN repositories are essential but currently require the user
to profile and identify precisely which model to use. Instead, We
propose Sommelier, an indexing and query system over typical
DNN repositories, using a novel primitive to quantify functional
equivalence between DNN models. Sommelier is built as a stan-
dalone query engine that can interface with an existing repository.
Extensive evaluation shows that Sommelier can identify the ideal
model for over 95% of the queries, and reduce the 90th percentile
tail latency of inference tasks by a factor of 6 when interfaced
with an inference server for automated run-time model switching.
By abstracting away the model repository altogether, Sommelier
can automate model management and fundamentally change the
existing system pipelines for DNN inference, testing, and design.

Acknowledgments

We thank the anonymous reviewers for their helpful comments
and suggestions. This work is funded by the National Science Foun-
dation under Grant Nos. CNS-1815115 and 2112562, and a Google
Faculty Research Award.

References

[11]

[12

[13]

[14

[15

[16

[17]

[18]

[19]

[20]

[21]

[22]

[23

[24

[25]

[26

2022. Intel(R) Math Kernel Library for Deep Neural Networks (Intel(R) MKL-DNN).
https://intel.github.io/mkl-dnn/

2022. ONNX: Open Neural Network Exchange Format.

2022. Open source deep learning code and pre-trained models.

2022. PyTorch Hub.

2022. Sommelier source code.

2022. TensorFlow Hub: A repository of reusable assets for machine learning with
TF.

Firas Abuzaid, Peter Kraft, Sahaana Suri, Edward Gan, Eric Xu, Atul Shenoy,
Asvin Ananthanarayan, John Sheu, Erik Meijer, Xi Wu, et al. 2018. DIFF: A
relational interface for large-scale data explanation. Proceedings of the VLDB
Endowment 12, 4 (2018), 419-432.

Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. 2018. Stronger
generalization bounds for deep nets via a compression approach. arXiv preprint
arXiv:1802.05296 (2018).

Mislav Balunovic and Martin Vechev. 2020. Adversarial training and provable de-
fenses: Bridging the gap. In International Conference on Learning Representations.
Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. 2017. Spectrally-
normalized margin bounds for neural networks. In Advances in Neural Information
Processing Systems. 6240-6249.

Simone Bianco, Remi Cadene, Luigi Celona, and Paolo Napoletano. 2018. Bench-
mark analysis of representative deep neural network architectures. IEEE Access
6 (2018), 64270-64277.

Han Cai, Chuang Gan, and Song Han. 2019. Once for all: Train one network and
specialize it for efficient deployment. arXiv preprint arXiv:1908.09791 (2019).
Christopher Canel, Thomas Kim, Giulio Zhou, Conglong Li, Hyeontaek Lim,
David G Andersen, Michael Kaminsky, and Subramanya R Dulloor. 2019. Scaling
video analytics on constrained edge nodes. SysML (2019).

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. MxNet: A flexible and
efficient machine learning library for heterogeneous distributed systems. arXiv
preprint arXiv:1512.01274 (2015).

Corinna Cortes, Xavier Gonzalvo, Vitaly Kuznetsov, Mehryar Mohri, and Scott
Yang. 2017. Adanet: Adaptive structural learning of artificial neural networks. In
Proceedings of the 34th International Conference on Machine Learning-Volume 70.
JMLR. org, 874-883.

Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael] Franklin, Joseph E Gonzalez,
and Ion Stoica. 2017. Clipper: A low-latency online prediction serving system.
In 14th USENIX Symposium on Networked Systems Design and Implementation
(NSDI). 613-627.

Bo Dai, Sanja Fidler, Raquel Urtasun, and Dahua Lin. 2017. Towards diverse and
natural image descriptions via a conditional GAN. In Proceedings of the IEEE
International Conference on Computer Vision. 2970-2979.

Xiaoliang Dai, Peizhao Zhang, Bichen Wu, Hongxu Yin, Fei Sun, Yanghan Wang,
Marat Dukhan, Yunging Hu, Yiming Wu, Yangging Jia, et al. 2019. Chamnet:
Towards efficient network design through platform-aware model adaptation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
11398-11407.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. 2004. Locality-
sensitive hashing scheme based on p-stable distributions. In Proceedings of the
twentieth annual symposium on Computational geometry. ACM, 253-262.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Im-
ageNet: A large-scale hierarchical image database. In 2009 IEEE conference on
computer vision and pattern recognition. leee, 248-255.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

Utsav Drolia, Katherine Guo, Jiaqi Tan, Rajeev Gandhi, and Priya Narasimhan.
2017. Cachier: Edge-caching for recognition applications. In 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS). IEEE, 276~
286.

Upol Ehsan, Pradyumna Tambwekar, Larry Chan, Brent Harrison, and Mark O
Riedl. 2019. Automated rationale generation: A technique for explainable AI
and its effects on human perceptions. In Proceedings of the 24th International
Conference on Intelligent User Interfaces. 263-274.

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. [n.d.].
The Pascal Visual Object Classes (VOC) Challenge. ([n.d.]).

Ronald Fagin, R Guha, Ravi Kumar, Jasmine Novak, D Sivakumar, and Andrew
Tomkins. 2005. Multi-structural databases. In Proceedings of the twenty-fourth
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems.
184-195.

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat
Chaudhuri, and Martin Vechev. 2018. Ai2: Safety and robustness certification of
neural networks with abstract interpretation. In 2018 IEEE Symposium on Security

and Privacy (S&P). IEEE, 3-18.
Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu, Tien-Ju Yang, and

Edward Choi. 2018. MorphNet: Fast & simple resource-constrained structure

[28

[29]

[30

w
—

[32

[33

[34

@
2

[36

[37

[38

[39

[40

[41]

[42

=
&

[44

[45

[46

[49

learning of deep networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 1586-1595.

Gregory Griffin, Alex Holub, and Pietro Perona. 2007. Caltech-256 object category
dataset. (2007).

Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kaufmann, Ymir
Vigfusson, and Jonathan Mace. 2020. Serving DNNs like Clockwork: Performance
Predictability from the Bottom Up. In 14th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 20). 443-462.

Peizhen Guo, Bo Hu, and Wenjun Hu. 2021. Mistify: Automating DNN Model
Porting for On-Device Inference at the Edge. In 18th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 21).

Peizhen Guo, Bo Hu, Rui Li, and Wenjun Hu. 2018. FoggyCache: Cross-Device
Approximate Computation Reuse. In Proceedings of the 24th Annual International
Conference on Mobile Computing and Networking. ACM, 19-34.

Peizhen Guo and Wenjun Hu. 2018. Potluck: Cross-Application Approximate
Deduplication for Computation-Intensive Mobile Applications. In Proceedings of
the Twenty-Third International Conference on Architectural Support for Program-
ming Languages and Operating Systems. ACM, 271-284.

Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril, Dmytro
Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, et al. 2018.
Applied machine learning at Facebook: A datacenter infrastructure perspective.
In 2018 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 620~629.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Identity mappings
in deep residual networks. In European conference on computer vision. Springer,
630-645.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. 2015. Distilling the Knowledge
in a Neural Network. In NIPS Deep Learning and Representation Learning Workshop.
http://arxiv.org/abs/1503.02531

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

Angela H Jiang, Daniel L-K Wong, Christopher Canel, Lilia Tang, Ishan Misra,
Michael Kaminsky, Michael A Kozuch, Padmanabhan Pillai, David G Andersen,
and Gregory R Ganger. 2018. Mainstream: Dynamic Stem-Sharing for Multi-
Tenant Video Processing. In 2018 USENIX Annual Technical Conference (ATC).
29-42.

Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. 2017.
In-datacenter performance analysis of a tensor processing unit. In Computer
Architecture (ISCA), 2017 ACM/IEEE 44th Annual International Symposium on.
IEEE, 1-12.

Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia. 2017.
NoScope: Optimizing Deep CNN-Based Queries over Video Streams at Scale.
PVLDB 10, 11 (2017), 1586-1597.

Daniel Kang, Deepti Raghavan, Peter Bailis, and Matei Zaharia. 2020. Model As-
sertions for Monitoring and Improving ML Model. arXiv preprint arXiv:2003.01668
(2020).

Hamid Karimi, Tyler Derr, and Jiliang Tang. 2019. Characterizing the Decision
Boundary of Deep Neural Networks. arXiv preprint arXiv:1912.11460 (2019).
Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer.
2017. Reluplex: An efficient SMT solver for verifying deep neural networks. In
International Conference on Computer Aided Verification. Springer, 97-117.
Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung,
Sylvain Gelly, and Neil Houlsby. 2019. Big Transfer (BiT): General Visual Repre-
sentation Learning. (2019). arXiv:1912.11370 [cs.CV]

Peter Kraft, Daniel Kang, Deepak Narayanan, Shoumik Palkar, Peter Bailis, and
Matei Zaharia. 2019. Willump: A Statistically-Aware End-to-end Optimizer for
Machine Learning Inference. arXiv preprint arXiv:1906.01974 (2019).

Adarsh Kumar, Arjun Balasubramanian, Shivaram Venkataraman, and Aditya
Akella. 2019. Accelerating deep learning inference via freezing. In 11th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 19).

Yun Li, Chen Zhang, Shihao Han, Li Lyna Zhang, Baoqun Yin, Yunxin Liu, and
Mengwei Xu. 2021. Boosting Mobile CNN Inference through Semantic Memory.
In Proceedings of the 29th ACM International Conference on Multimedia. 2362—
2371.

Yun Li, Chen Zhang, Shihao Han, Li Lyna Zhang, Baoqun Yin, Yunxin Liu, and
Mengwei Xu. 2021. Boosting Mobile CNN Inference through Semantic Memory.
In Proceedings of the 29th ACM International Conference on Multimedia (MM’21).
Yuanchun Li, Ziqi Zhang, Bingyan Liu, Ziyue Yang, and Yunxin Liu. 2021. Mod-
elDiff: Testing-based DNN similarity comparison for model reuse detection. In
Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing
and Analysis. 139-151.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollar, and C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In European conference on computer vision. Springer, 740-755.

https://intel.github.io/mkl-dnn/
http://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1912.11370

[50

[51]

[52]

[53

[54

[55]

[56]

[57]

[58]

[59]

=
S

[61

[62

[63

[64]

Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chun-
yang Chen, Ting Su, Li Li, Yang Liu, Jianjun Zhao, and Yadong Wang. 2018.
DeepGauge: Multi-Granularity Testing Criteria for Deep Learning Systems
(ASE 2018). Association for Computing Machinery, New York, NY, USA. https:
//doi.org/10.1145/3238147.3238202

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and
Christopher Potts. 2011. Learning Word Vectors for Sentiment Analysis. In Pro-
ceedings of the 49th Annual Meeting of the Association for Computational Linguis-
tics: Human Language Technologies. Association for Computational Linguistics,
Portland, Oregon, USA, 142-150. http://www.aclweb.org/anthology/P11-1015
Mark Niklas Miiller, Gleb Makarchuk, Gagandeep Singh, Markus Piischel, and
Martin Vechev. 2022. PRIMA: general and precise neural network certification
via scalable convex hull approximations. Proceedings of the ACM on Programming
Languages 6, POPL (2022), 1-33.

Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. 2017. A PAC-
Bayesian approach to spectrally-normalized margin bounds for neural networks.
arXiv preprint arXiv:1707.09564 (2017).

Christopher Olston, Noah Fiedel, Kiril Gorovoy, Jeremiah Harmsen, Li Lao, Fang-
wei Li, Vinu Rajashekhar, Sukriti Ramesh, and Jordan Soyke. 2017. TensorFlow-
serving: Flexible, high-performance ML serving. arXiv preprint arXiv:1712.06139
(2017).

Jongsoo Park, Maxim Naumov, Protonu Basu, Summer Deng, Aravind Kala-
iah, Daya Khudia, James Law, Parth Malani, Andrey Malevich, Satish Nadathur,
et al. 2018. Deep Learning Inference in Facebook Data Centers: Characteriza-
tion, Performance Optimizations and Hardware Implications. arXiv preprint
arXiv:1811.09886 (2018).

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
2019. PyTorch: An imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems. 8024-8035.

Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepXplore: Au-
tomated whitebox testing of deep learning systems. In proceedings of the 26th
Symposium on Operating Systems Principles. 1-18.

Hang Qi, Evan R Sparks, and Ameet Talwalkar. 2017. Paleo: A Performance
Model for Deep Neural Networks.. In ICLR (Poster).

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016.
Squad: 100,000+ questions for machine comprehension of text. arXiv preprint
arXiv:1606.05250 (2016).

Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama, Hyunkwang Lee,
Sae Kyu Lee, José Miguel Hernandez-Lobato, Gu-Yeon Wei, and David Brooks.
2016. Minerva: Enabling low-power, highly-accurate deep neural network accel-
erators. In 2016 ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA). IEEE, 267-278.

Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther
Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark
Charlebois, William Chou, et al. 2020. MLPerf inference benchmark. In 2020
ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 446-459.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster R-CNN:
Towards real-time object detection with region proposal networks. In Advances
in neural information processing systems. 91-99.

Francisco Romero, Qian Li, Neeraja J Yadwadkar, and Christos Kozyrakis. 2019.
INFaaS: A model-less inference serving system. arXiv preprint arXiv:1905.13348
(2019).

Sudip Roy, Arnd Christian Kénig, Igor Dvorkin, and Manish Kumar. 2015. Per-
faugur: Robust diagnostics for performance anomalies in cloud services. In 2015
IEEE 31st International Conference on Data Engineering. IEEE, 1167-1178.

(65

[66

[67

(68

=
0,

[70

71

[72

[73

<
=t

[75

[76

[77]

[78

=
2,

[80

(81

[82

Sudeepa Roy and Dan Suciu. 2014. A formal approach to finding explanations for
database queries. In Proceedings of the 2014 ACM SIGMOD international conference
on Management of data. 1579-1590.

Erik F Sang and Fien De Meulder. 2003. Introduction to the CONLL-2003 shared
task: Language-independent named entity recognition. arXiv preprint cs/0306050
(2003).

Gagandeep Singh, Rupanshu Ganvir, Markus Piischel, and Martin Vechev. 2019.
Beyond the Single Neuron Convex Barrier for Neural Network Certification. In
Advances in Neural Information Processing Systems. 15072-15083.

Gagandeep Singh, Timon Gehr, Markus Piischel, and Martin Vechev. 2019. An
abstract domain for certifying neural networks. Proceedings of the ACM on
Programming Languages 3, POPL (2019), 1-30.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew
Howard, and Quoc V Le. 2019. Mnasnet: Platform-aware neural architecture
search for mobile. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2820-2828.

Mingxing Tan and Quoc V Le. 2019. EfficientNet: Rethinking model scaling for
convolutional neural networks. arXiv preprint arXiv:1905.11946 (2019).

Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. DeepTest: Automated
testing of deep-neural-network-driven autonomous cars. In Proceedings of the

40th international conference on software engineering. 303-314.
Catherine Wong, Neil Houlsby, Yifeng Lu, and Andrea Gesmundo. 2018. Transfer

Learning with Neural AutoML. In Advances in Neural Information Processing
Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett (Eds.). Curran Associates, Inc., 8366-8375. http://papers.nips.cc/
paper/8056- transfer-learning- with-neural-automl.pdf

Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba.
2010. Sun database: Large-scale scene recognition from abbey to zoo. In 2010
IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
IEEE, 3485-3492.

Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, and Kaiming He. 2017.
Aggregated residual transformations for deep neural networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 1492-1500.
Neeraja J Yadwadkar, Francisco Romero, Qian Li, and Christos Kozyrakis. 2019. A
case for managed and model-less inference serving. In Proceedings of the Workshop
on Hot Topics in Operating Systems. 184-191.

Dong Young Yoon, Ning Niu, and Barzan Mozafari. 2016. DBSherlock: A per-
formance diagnostic tool for transactional databases. In Proceedings of the 2016
International Conference on Management of Data. 1599-1614.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. 2014. How transfer-
able are features in deep neural networks?. In Advances in neural information
processing systems. 3320-3328.

Mu Yuan, Lan Zhang, and Xiang-Yang Li. 2022. MLink: Linking Black-box Models
for Collaborative Multi-model Inference. In Proceedings of AAAL

Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. 2019. Adversarial examples:
Attacks and defenses for deep learning. IEEE transactions on neural networks and
learning systems 30, 9 (2019), 2805-2824.

Jiawei Zhang, Yang Wang, Piero Molino, Lezhi Li, and David S Ebert. 2018. Man-
ifold: A model-agnostic framework for interpretation and diagnosis of machine
learning models. IEEE transactions on visualization and computer graphics 25, 1
(2018), 364-373.

Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. 2017.
Pyramid scene parsing network. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 2881-2890.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio
Torralba. 2017. Scene Parsing through ADE20K Dataset. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition.

https://doi.org/10.1145/3238147.3238202
https://doi.org/10.1145/3238147.3238202
http://www.aclweb.org/anthology/P11-1015
http://papers.nips.cc/paper/8056-transfer-learning-with-neural-automl.pdf
http://papers.nips.cc/paper/8056-transfer-learning-with-neural-automl.pdf

	Abstract
	1 Introduction
	2 The Need and Gap for DNN repositories
	2.1 Limitations of existing model repositories
	2.2 Requirements for DNN query support

	3 Characterizing DNN Semantics
	3.1 The futility of the conventional view
	3.2 Empirical analysis
	3.3 Alternate view: Model equivalence

	4 Identifying DNN Equivalence
	4.1 Equivalence between whole models
	4.2 Equivalence between model segments
	4.3 Discussion

	5 DNN Model Query with Sommelier
	5.1 Formulating DNN model queries
	5.2 Semantic index
	5.3 Resource profile index
	5.4 Query processing
	5.5 Discussion

	6 Implementation and Case Studies
	7 Evaluation
	7.1 End-to-end performance
	7.2 Assessing functional equivalence
	7.3 Tensorflow Hub case study
	7.4 Sommelier system overhead

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

