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Abstract

For future climate projections to be useful they must be actionable at the

local level. In this study, we develop daily temperature and precipitation cli-

mate scenarios suitable for use in projections of drought, energy use, water

use, and crop production. We investigate the magnitude of future changes

to air temperature and precipitation in the Midwest United States in

response to three future climate change scenarios. Results are used to assess

changes to incidence of precipitation extremes and human comfort (using

heat index) associated with the anticipated climate changes in the region.

We use self-organizing maps and random forest based techniques to gener-

ate daily realizations of temperature and precipitation for 279 weather sta-

tions in a region centred on Illinois. We determine that the random forest

model performs best for maximum and minimum temperatures, while the

self-organizing map performs best for precipitation. Using nine models

from the Coupled Model Inter-Comparison Project Phase 5, downscaled

daily temperature and precipitation values are generated for low, moderate,

and high greenhouse gas emissions scenarios for historical and future

periods. Based on recent trends, we focus our results on the high emissions

scenario, and show an average increase of 4.3�C in maximum daily air tem-

perature across the region for the 2071–2100 period. Precipitation decreases

by up to 15% in the southern half of the study region, with a similar per-

centage increase in the northern half of the region. The regional environ-

mental changes result in an increase of 5.8� in average summer heat index,

and increase of 48% in the number of days likely to produce extreme heat,

and a decrease in the average value of the standardized precipitation and

evapotranspiration index of 1.9 (indicating increased drought) across the

region by 2100.
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1 | INTRODUCTION

Climate is experienced locally as weather, and as accumu-
lated weather anomalies that result in droughts, heat
waves, and cold spells. Climate change will cause disrup-
tions in the patterns of these events, through modifications
in the synoptic dynamic and thermodynamic conditions
that govern them. Projections of local weather events are
important for estimating the costs of climate change, and
for communicating the impacts of climate change to local
communities.

In the Midwest United States, changes in local
weather and climate will be consequential for public, pri-
vate, and commercial concerns. In particular, agriculture,
an approximately $110 billion industry in the region
(USDA, 2017), is vulnerable to shifts in temperature and
precipitation. The majority of agriculture in the Midwest
is rain-fed, leaving it vulnerable to changes in the
amount and timing of precipitation and increased evapo-
ration from increased temperature. As a result, much of
the variability in historical crop production can be attrib-
uted to weather (Liang et al., 2017). Thus, being able to
predict changes in the frequency, amount, and seasonal-
ity of precipitation in the Midwest and similar climate
regimes is important for projecting changes to crop
yields, and for guiding adaptation decisions.

Agriculture in the Midwest is dominated by corn and
soybean production, which occupy 75% of the land under
cultivation (Hatfield et al., 2018). Climate change will
alter the yield and viability of these crops in

unpredictable ways: increasing the length of the growing
season may increase yields, while decreases in precipita-
tion and increases in heat stress may decrease yields
(Angel et al., 2018). Studies of the effects of increased
temperatures on soy and corn crop yields have found that
at average daily temperatures above a threshold of 29�C
for corn and 30�C for soy, yields begin to decline rapidly
(Schlenker and Roberts, 2009; Hatfield et al., 2011). These
temperatures currently only occur a few times per year in
most of the region, but the frequency will likely increase
with increasing temperatures projected for the coming
decades (Vose et al., 2017). Effective adaptation and long-
term planning for a viable agricultural sector is therefore
dependent on reliable and localized projections of climate
change.

Past events, notably the Dust Bowl of the 1930s, dem-
onstrate the vulnerability of the region to climatic
change. The period of the 1930s was significantly warmer
and somewhat drier than more recent decades leading to
severe droughts in the region (Rosenberg et al., 1993).
The Dust Bowl climate is well within the range suggested
by the global climate models under the most likely sce-
narios (Hayhoe et al., 2017), and would cause a signifi-
cant reduction in agricultural yields in the region
(Glotter and Elliott, 2016).

General circulation models (GCMs), running on grid
scales on the order of 100 km, do not capture many of
the sub-grid scale processes that drive local weather
(Raäisaänen, 2007; Maraun et al., 2010; Radi�c and
Clarke, 2011; Taylor et al., 2012). This is especially true

FIGURE 1 Log–log plot of the
historical distribution of daily

precipitation for an example station

located at 42.6� N, 87.8� W; station

observations are plotted in blue. Data

from the Canadian Centre for Modelling

and Analysis (CanESM2) climate model

are chosen to illustrate the impact of

downscaling (cross hatch) compared to

gridpoint (diagonal hatch) fields.

Downscaling results for other climate

models are consistent with this example.

The bins are chosen to match the

standard categories used in model

output statistics (MOS) for operational

forecasts. The CanESM2 climate model

produces too few days with heavy

precipitation (>5 mm�day−1) and too

few ‘no precipitation’ days, while over-
representing days with intermediate

precipitation [Colour figure can be

viewed at wileyonlinelibrary.com]
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for precipitation, where GCMs tend to produce too few
examples of extreme precipitation and too few days with
no precipitation, while overproducing moderate precipi-
tation days (Stephens et al., 2010; Koutroulis et al., 2016).
Downscaling from the climate model gridded values can
correct for this bias, creating a more accurate distribution
of values (Figure 1). Accurate representation of the distri-
bution of precipitation events is critical for predicting
incidence of the high impact weather experienced at indi-
vidual locations [such as flooding (Xiao et al., 2013), con-
vective initiation (Gerken et al., 2018), and drought
(Lobell et al., 2014)] in a changing climate. Statistical
downscaling techniques provide one solution to the
shortcomings of low-resolution climate models by exploi-
ting the relationships between coarse resolution
reanalyses and local observations in the historical climate
record. Several downscaling techniques have been used
in the past (Wilby et al., 2004), ranging from simple
regression analyses (e.g., Murphy, 1999) to stochastic
weather generators (e.g., Wilks, 1999; Kilsby et al., 2007).
Statistical downscaling provides a computationally effi-
cient bridge between the synoptic and local scales.

Statistical downscaling relies on the assumptions that
the variability in the local values of the downscaled vari-
able is explainable by the synoptic-scale features, and
that the relationships between those synoptic features
and downscaled variable will be maintained over the
range of climates being considered (Wilby et al., 2004).
Without the first assumption, downscaling will not pro-
duce any useful outputs, but will, at best, recreate the vari-
ability of the historical observations. If the second
assumption is not valid, the downscaling method will fail
to capture the full effects of the changes to the local cli-
mate in the downscaled values. Statistical downscaling can
also struggle to predict rare and extreme events, especially
when the underlying statistics change. These concerns can
be mitigated by careful testing of the downscaling results
over time periods independent to those used in training
the models. We discuss in Section 2.5 the methods used to
test and verify the downscaling results. Despite these chal-
lenges, statistical downscaling methods can be used to
bridge the gap between the information provided by the
GCMs and the local changes that will impact a range of
applications, from agriculture to household energy use
(e.g., Salathé et al., 2007; Sinha et al., 2018).

Using self-organizing maps (SOM) (Kohonen, 1990;
Hewitson and Crane, 2006) and random forest
(RF) (Breiman, 2001) based statistical downscaling tech-
niques, we examine the projected impacts of climate
change on the Midwest. With these downscaling
methods, we produce downscaled projections of multiple
climate scenarios suitable for use in impact studies,
including messaging to residents of the region about

climate change, and crop yield modelling of agricultural
productivity in future climates (Watkins et al., 2019). This
research is done as part of broader project studying
changes and impacts of household consumption in the
Midwest (Watkins et al., 2019) including a household
level intervention study and a role-playing game for edu-
cating on climate change impacts (Agusdinata and
Lukosch, 2019). The results from this work will be used
to craft messages to households in this region, focusing

FIGURE 2 Locations of the stations used for the downscaling

analysis. In total, 279 stations are used, spread across eight states.

Stations with observations missing for more than 10% of the days

between 1948 and 2005 were excluded. In addition to the main set

of GHCN stations (dots), GSOD stations with dew point

temperatures are used for calculating heat index (crosses). Chicago,

the largest city in the region, is marked with a black ‘X’ [Colour
figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Average daily precipitation for observing stations

across the region for the model training period (HIST). The

southern and eastern portions of the region receive close to twice

the average annual rainfall of the northern portion [Colour figure

can be viewed at wileyonlinelibrary.com]
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on the specific impacts to the region. These messages will
be given to homeowners in the study, to give them
insights on the impacts of climate change on their local
area. By providing localized projections of climate change
impact, the work presented here will help to focus mes-
saging in these studies to impacts most relatable to the
participants, with a broader goal of determining what
types of messages are most useful for shifting consump-
tion patterns of energy, water, and food.

Our study area (Figure 2) is centred on Illinois and
includes portions of Indiana, Iowa, Kentucky, Missouri,
Michigan Minnesota, and Wisconsin. This region is pre-
dominantly plains and small, rolling hills, with some
areas of greater topographical variety, especially in south-
ern Indiana and Illinois, and the Driftless Area of
northwestern Illinois, southwestern Wisconsin, and
northeastern Iowa.

The climate in this region is typically continental with
cold winters, warm summers, and frequent rapid fluctua-
tions in temperature, humidity, cloudiness, and wind
direction (Changnon et al., 2004). Lake Michigan lies
northeast of Illinois and tends to increase cloudiness and
suppress summer precipitation in northeastern Illinois
(Changnon et al., 2004). Average precipitation generally
increases moving south across the region, with close to
150% as much precipitation at the southern edge than at
the northern (Figure 3). Buildings, parking lots, roads
and industrial activities in major cities render the urban
climate noticeably different than that of the surrounding
rural areas. Urban areas may also enhance summertime
precipitation downwind of the city (Shepherd et al., 2002)
leading to changes in humidity, cloudiness, wind speeds
and directions (Changnon et al., 2004).

Except in summer, the polar jet stream is typically
located near or over the region. The polar jet is responsi-
ble for the generation and steering of mid-latitude
cyclones that move across the region. These cyclone sys-
tems account for a significant portion of the cool season
precipitation in the region (Changnon et al., 2004). In the
summer months, an estimated 30–70% of precipitation is
driven by mesoscale convective systems (Fritsch
et al., 1986).

Climate change will impact the Midwest under a
range of global climate scenarios. In this study, we use
statistical downscaling methods to explore the changes in
temperature and precipitation in the Midwest, and the
changes in drought and heat index (HI) resulting from
those changes. Quantifying these changes will allow
greater understanding of the impacts and costs of climate
change on the Midwest, and support future research into
the downstream impacts of climate change, especially on
human health and crop yields.

The specific objectives of this research are:

• Develop machine learning-based downscaling models
to determine impacts of atmospheric warming on
regional weather and climatic conditions;

• Estimate uncertainties associated with climate change
scenarios on downscaled climate projections using cli-
mate models and three greenhouse gas (GHG) emis-
sions scenarios; and

• Use metrics such as human comfort and changes to
the growing season to deduce the impacts of future cli-
mate projections on local populations.

2 | DATA AND METHODS

Three sources of data are used for the downscaling analy-
sis: historical weather station observations, reanalysis
data on regular grids, and climate model simulations.
Historical station data for daily maximum temperature
(Tmax), daily minimum temperature (Tmin), daily pre-
cipitation (PRCP) provide the predictands for the down-
scaling models. The predictors are drawn from the
National Centers for Environmental Prediction (NCEP)
climate reanalyses. The set of candidate predictors are
chosen to capture the seasonal and regional drivers
governing the weather in the Midwest. To avoid redun-
dancy, dimension reduction approaches are used to
reduce a large set of candidate predictors to a smaller set
of independent predictors (Section 2.3.1). Climate model
outputs from Coupled Model Inter-Comparison Project
Phase 5 (CMIP5) are then used for projecting future cli-
mate scenarios. Combined with the SOM and RF
methods, this creates a tune-able, multivariate approach
that better captures the true distribution of outcomes
across changing underlying climate conditions. By evalu-
ating the results of the downscaling season by season, we
show that these methods respond to shifts in the underly-
ing climate, and produce realistic distributions of the sta-
tion level observations.

TABLE 1 Final set of predictors used in the downscaling

models. The variables are daily averages from the CMIP5 models.

See Section 2.3.1 for discussion of the variable selection method

Variable Pressure level (hPa)

Temperature 850

Temperature anomaly 850

Geopotential height 500

Geopotential height anomaly 500

Meridional wind 700

Zonal wind 700

Relative humidity 850

Sine of day of year N/A
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2.1 | Training data

The downscaling models are developed using station and
reanalysis data from the 1948–2005 (hereafter, TRAIN)
period. Station data is taken from the Global Historical
Climatology Network (GHCN) from the National Centers
for Environmental Information (NCEI, formerly the
National Climatic Data Center) (Menne et al., 2012). Sta-
tions with records for at least 90% of the days in TRAIN
are used, giving a set of 279 stations across Illinois and
the neighbouring states (Figure 2) for the downscaling
procedure. To ensure that days missing from the
observed data did not bias the results, the reanalysis tem-
peratures for each station on the days with observations
and the days without observations were compared. Dif-
ferences in the distributions of temperature were not
found to be statistically significant for any of the stations,
indicating that there was not a consistent bias in the
missing days of observation.

We use data from the NCEP reanalysis 2 product
(Kalnay et al., 1996), available at a 2.5� × 2.5� grids simi-
lar to the native resolution of the CMIP5 models used for
the downscaling analysis (Table 1). In preparation for use
in the downscaling, the reanalyses and the CMIP5 data
are regridded from their native resolutions, which range
from 1� to 2.5�, to a consistent spatial resolution of
2� × 2�. For each individual station, the training dataset
for downscaling is comprised of an area approximately
1,000 km on a side (5 × 5 GCM grid points), and centred
on the nearest grid point to each station. The gridded

values for each variable are then standardized as
Z-scores, using the mean and standard deviation from
the TRAIN period, and multiplied by the cosine of the
latitude to avoid distortions caused by the size of the grid
boxes across the domain. The values for each variable are
then combined into a 25-element vector. The vectors for
each predictor variable are concatenated to be passed into
the downscaling model as a single vector.

2.2 | Future climate scenarios

Representative Concentration Pathways (RCPs) scenarios
2.6, 4.5, and 8.5 for nine CMIP5 models (from a total of
seven modelling centres, Table 2) are used to explore the
potential range of local climate changes in the region. As
with the reanalysis data, the CMIP5 data is regridded to
2� × 2� for consistency, then standardized as Z-scores for
use in the downscaling models.

The RCP 2.6, 4.5, and 8.5 scenarios are temporal trajec-
tories of GHG emissions, developed to represent a range of
possible pathways for climate change outcomes (van
Vuuren et al., 2011). The labels 2.6, 4.5, and 8.5 refer to the
increase in radiative forcing in W m−2 in 2100 compared to
the pre-industrial forcing. The scenarios describe differing
levels of anthropogenic emissions to achieve these different
forcings. The RCP 2.6 scenario—an increase of 2.6 W m−2

of radiative forcing by 2100—requires rapid reductions in
GHG emissions, with uptake exceeding emissions by the
end of the century. The RCP 4.5 scenario corresponds to
reductions in GHG emissions leading to a stabilization of
atmospheric GHGs by about 2060. The RCP 8.5 scenario,
which most closely resembles the path we have been on
since 2005, has emissions continuing to increase through
2100 (van Vuuren et al., 2011).

From the CMIP5 data, we produce a set of daily down-
scaled values for each station for four time periods: 1976–
2005 (HIST), 2006–2015 (TEST), 2021–2050 (NEAR), and
2071–2100 (FAR). HIST is used to train and test the down-
scaling methods, and provide a baseline for changes in
future periods. TEST is used to validate the trained models,
and the NEAR and FAR periods are used to project the
daily air temperature and precipitation associated with dif-
ferent climate outcomes in the three RCP scenarios. This
gives a total of two historical downscaling realizations
(HIST and TEST), and six climate change projections (three
RCP scenarios for each of NEAR and FAR).

2.3 | Candidate methods

Several downscaling methods are considered, including
SOMs, RFs, multiple linear regression, and quantile

TABLE 2 The nine CMIP5 climate models used to construct

the downscaled climate projections

Model Centre

ACCESS1-0 Australian Weather and Climate Research,
Australia

CanESM2 Canadian Centre for Modelling and Analysis,
Canada

CMCC-CM Centro Euro-Mediterraneo sui Cambianmenti
Climatici (CMCC), Italy

CMCC-CMS CMCC, Italy

CNRM-CM5 National Centre for Meteorological Research,
France

GFDL-
ESM2G

Geophysical Fluid Dynamics Laboratory
(GFDL), USA

GFDL-
ESM2M

GFDL, USA

MIROC-ESM-
CHEM

University of Tokyo, Japan

MPI-ESM-LR Max Plank Institute for Meteorology,
Germany
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mapping. The downscaling procedure follows the frame-
work shown in Figure 4. NCEP reanalysis data are stan-
dardized, then used along with the observed station data
to train each of the downscaling models (Figure 4a). The
trained downscaling models are then evaluated on the
standardized CMIP5 data to generate daily time series for
the HIST, TEST, NEAR, and FAR periods (Figure 4b).
This approach provides a framework that can be adapted
to new methods, variables, and locations.

2.3.1 | Predictor selection

A candidate set of predictors were chosen to capture the
elements of the synoptic environment related to local
temperature and precipitation variability. This test set
included temperature, humidity, wind components, and
geopotential height (to capture impacts of synoptic sys-
tems). Using dimension reduction, the final set of
predictor variables (Table 1) are selected from this
candidate set.

The final set of predictors is obtained using sliced
inverse regression (SIR), (Li, 1991) to identify the vari-
ables contributing with the largest contribution to the
variance of the input model data and the downscaling
target. This method removes redundant variables from
the set of predictors, and is able to capture nonlinear rela-
tionships between the predictors. Based on the SIR analy-
sis we select the subset of variables (and pressure levels
for each variable) that had the largest effect on the

temperature and precipitation. These are used as the pre-
dictors in the downscaling model. We also used the
dimension reduction approach to examine the impor-
tance of anomaly variables, calculated as the difference
between the individual value of the variable and the
period average for the same location, to the variance of
the downscaling targets. Based on this analysis, we
included anomaly values for two variables, 500 hPa geo-
potential height and 850 hPa temperature, to the final set
of predictor variables (Table 1).

2.3.2 | SOM based downscaling

The SOMs downscaling method introduced by Hewitson
and Crane (2006) uses the SOM clustering method
(Kohonen, 1990) to create a set of typical synoptic condi-
tions for a region. This is an objective process similar to
synoptic typing, where human observers would classify
large scale weather patterns in a region based on the
observed patterns. For each identified pattern, the station
observations for all of the days in TRAIN matching that
pattern are combined, to create a distribution of values
for similar days. To produce the downscaled projections,
days in the future climate are sampled from the CMIP5
data, and compared to the identified patterns. Once the
most similar pattern is identified, we sample from the
historical distribution for that pattern, to produce a pro-
jection of the station conditions on that day. Variations
on this method have been used to produce downscaled

FIGURE 4 Flowchart depicting

(a) the development of the downscaling

models; and (b) their application to

derive downscaled scenarios. The station

level observations (Obs) are used along

with the NCEP reanalysis data to train

models for each of the downscaling

methods (Section 2.3). These models are

then evaluated on the CMIP5 data for

the HIST period, and the outputs are

compared to the historical observations

at each station. Based on the

performance on the HIST period, the

final downscaling model is selected for

use in the future periods. This process is

repeated to develop a separate

downscaling model for each of the

variables of interest (Tmax, Tmin,

PRCP). Using these downscaling models

and the CMIP5 data for the NEAR and

FAR periods, downscaled data are

produced for future climate scenarios (b)
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estimates for climate model projections over South Africa
(Hewitson and Crane, 2006) and Florida (Sinha
et al., 2018). A more detailed explanation of the method
is provided in Appendix A.

2.3.3 | Random Forest method

Random Forests (RFs) are a widely used machine learn-
ing tool (Breiman, 2001). Using an ensemble of decision
trees, RFs provide a computationally inexpensive,
nonlinear predictor that performs well on a wide variety
of tasks with minimal tuning (Hastie et al., 2009). To
train the model, a large number of individual decision
trees are created from subsets of the data. To make pre-
dictions, the results from each of the individual trees are
averaged together, to smooth out the over-fitting and var-
iability of the individual trees. For downscaling, RFs are
trained using the standardized NCEP reanalysis data and
the station observations, with a different model being
trained for each station and variable. These models are
then used to project daily values of Tmax, Tmin, and
PRCP for future climate scenarios, using input data from
the CMIP5 GCMs. RFs have been used in downscaling
low resolution remote sensing products (Hutengs and
Vohland, 2016), precipitation on the island of Borneo
(Sa'adi et al., 2017), and temperature in the Pearl River
Basin of China (Pang et al., 2017). More information on
the RF method and its adaptation to downscaling are pro-
vided in Appendix A.

2.3.4 | Additional methods

In addition to the SOM and RF methods, we test a multi-
ple linear regression model and a simple quantile map-
ping bias corrector method for comparison. The quantile
mapping method takes the bias at each quantile between
the reanalysis data and the observations, and applies a
correction factor for that bias to the climate model values.
These methods did not perform well when compared to
the SOM and RF however, so we focus on those two
methods for the rest of the analysis. Each of these
methods train a different model for each station and each
downscaling predictand (Tmax, Tmin, PRCP), creating a
total of 837 (279 stations × three variables) models per
method.

2.4 | Derived outputs

In addition to Tmax, Tmin, and PRCP, we compute the
standardized precipitation and evapotranspiration index

(SPEI)1 and HI distributions across the region. These two
metrics provide additional information on how the
changes to temperature and precipitation will affect indi-
vidual activity and agriculture in the region. SPEI is cal-
culated using monthly average of temperature and
precipitation to create a standardized index for the rela-
tive available moisture in an area (Vicente-Serrano
et al., 2010), as a result of precipitation and evaporation.
It has been widely used in analyses of changing drought
conditions with climate change (e.g., Vicente-Serrano
et al., 2012; Cook et al., 2014; Naumann et al., 2018).

Increases in HI indicate an increased risk of heat-
related mortality, already one of the leading weather-
related risk factors in the United States (CDC, 2006;
Fechter-Leggett et al., 2016), and decreases in the avail-
able safe outdoor labour hours (Dunne et al., 2013). HI is
calculated using a combination of air temperature and
humidity (Rothfusz, 1990). To project HI in the future cli-
mate scenarios, we downscale values for dew point tem-
perature (Tdew), and calculate HI based these values.
Details on these calculations can be found in Appendix
B. Tdew is not available in the GHCN database that we
use as the primary observational data set. To downscale
Tdew, we use the Global Surface Summary of Day
(GSOD), which provides daily data for stations around
the globe (National Climatic Data Center, 2020). This
dataset has fewer stations available in the Midwest, only
62 with sufficient data available, but these stations are
well distributed across the study region, and the average
temperature across these stations is not significantly dif-
ferent than the average of the GHCN stations (Figure 2).

2.5 | Validation and evaluation of
methods

To evaluate the variable selection, the statistical distribu-
tion of downscaling results calculated from the reanalysis
over the HIST period is compared to the statistical distri-
bution of observations for the same period at each station.
The downscaling was carried out over the full year, in
order to capture the climate extremes and preserve the
widest range of values available to the downscaling. For
example, a spring day in 2100 could have a synoptic pat-
tern typical of a summer day in 2000. However, to produce
a better seasonal separation in the downscaled tempera-
ture and precipitation, the sine of the day of the year was
included as a predictor. This variable provides information
about the seasonal cycle to the downscaling model, with-
out prohibiting shifts in the seasons in future climates.

To test the downscaling approaches, we analyse the
differences between the distributions using the probabil-
ity distribution function (PDF) skill score introduced by
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(Perkins et al., 2007). The PDF skill score was designed to
provide an easily interpretable metric for the similarity
between two distributions, and is calculated as

Sscore=
Xn

1

min Zm,Zoð Þ, ð1Þ

where Sscore is the skill score, Zm and Zo are the fre-
quency of modelled and observed values in a given bin,
respectively, and n is the number of bins used to calculate
the PDF. With this formulation, a score of one indicates
perfect overlap between the observed and modelled dis-
tributions, with a score of zero representing no overlap.
The PDF skill score is designed to capture differences in
the distribution of the variable, rather than in the mean
or individual values, and has the advantages of being
easy to calculate and easy to compare across variables. It
has been used in a variety of studies evaluating both
GCMs and downscaling methods (e.g., Kjellström
et al., 2010; Koutroulis et al., 2016).

This test better aligns with the goals of downscaling
than some commonly used metrics such as Pearson cor-
relation or root mean squared error (RMSE), which asses
how accurately the downscaling method recreates the

conditions on a specific day in the historical record. By
focusing on distribution based metrics, we capture how
well the downscaling method performs at estimating the
range of events based on the synoptic conditions around
the station.

Comparisons of the distribution of the HIST observed
Tmax for an example station (Figure 5, black) and the
downscaled variables (blue) shows small differences over
the full year, and in the winter and summer seasons.
There are larger differences in the fall and spring distri-
butions, likely due to the increased variability of tempera-
tures in these transition seasons.

To ensure that the methods are not over-fitting to the
training data (1948–2005), we apply the downscaling
models to an independent historical test dataset of 2006–
2015. While there is not a large change in the underlying
climate conditions between the two periods, using an
independent test set allows us to ensure that the model is
not over-fitting to the training data. In the training
period, the SOM (Figure 6, left) and RF (6, right) models
closely match the observed statistical distribution. The
observed climate in 10-year TEST period (red) has a
decrease in the frequency of colder days, and a slight
increase around the peak of warmer days compared to
the HIST period used to train the downscaling models.

FIGURE 5 Kernel density

plots of the distribution of

observed (solid) and downscaled

Tmax (dashed). Downscaled data

are calculated using the RF

method applied to the NCEP

reanalysis data. In both cases, data

are for the same station as in

Figure 1. Comparisons are plotted

for the full year (top), and each

season. The RF downscaling

accurately reproduces the annual

distribution of Tmax, but struggles

to fully match the seasonal

distributions [Colour figure can be

viewed at wileyonlinelibrary.com]
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The downscaled distributions for the SOM and RF
models for the TEST period shift in the same ways, but
the decrease in colder days is much smaller in the down-
scaled values than in the observations.

In addition to reproducing the distribution of events
for the observed period, the downscaled results must be
responsive to shifts in the input data—if the synoptic
scale climate shifts, the downscaled data should shift to

FIGURE 6 Kernel density plot for Tmax of the different downscaling methods for an example station (same station as in Figure 1). Blue

lines denote the SOM (left) and RF (right) downscaled estimates of Tmax. Solid lines depict the HIST (1948–2005), with dashed lines for

TEST (2006–2015). The thick lines display the station observations (Obs) for HIST (solid) and TEST (dotted). The SOM method most

accurately recreates the HIST observations, but does not respond to the differences in TEST as well as the RF model [Colour figure can be

viewed at wileyonlinelibrary.com]

FIGURE 7 Kernel density plot of the downscaled Tmax using the SOM and RF methods for an example station (same station as in

Figure 1), compared with the historical observations (Obs). The results plotted represent a test of whether a downscaling model built on data

from one climate regime (e.g., spring, fall) can be used to effectively reproduce the statistics of the predictand in a different regime (summer,

winter). Details on this test can be found in Section 2.5. Dashed lines are for downscaling models trained and evaluated on the same season:

Spring (left) and fall (right). Solid/dotted lines represent the same downscaling models, now applied to input data from the more extreme

season: Summer/spring (left) and winter/fall (right). These results demonstrate that these downscaling models can produce a distribution

that differs from the training set [Colour figure can be viewed at wileyonlinelibrary.com]
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match. To test the ability of the downscaling models to
detect a change in the underlying climate conditions, we
train several additional models. First, models are trained
on the spring (March, April, and May) and summer
(June, July, and August) months only. Then, the spring
model is evaluated on the climate model data for the
summer months in HIST. Using this approach, we test
how the downscaling models perform at the edges of
their training distributions, and how well they cope with
a change in the underlying statistics. This provides an
estimate for how the different methods will handle cli-
mate changes in future periods, evaluating how the
model performs in a climate different from the one it was
trained on.

Both the SOM and RF method succeed in capturing
the shift towards the higher summer temperatures, with
the RF model capturing more of the shift (Figure 7, left).
Table 3 shows the PDF skill score for the RF and SOM
models, comparing the observed summer distribution to

the downscaled values from each method from the model
trained on the spring, and evaluated on the summer cli-
mate model inputs. The RF model outperforms the SOM,
with substantially higher skill scores. The same test was
carried out for fall (September, October, and November)
and winter (December, January, and February) months
(Figure 7, right), with similar results. The RF model
trained for the fall input data was able to capture much
of the shift to colder temperatures when evaluated on the
winter input data, the SOM model produced lower tem-
peratures in the winter from fall test, but did not capture
as much of the shift as the RF model. The results shown
here are for Tmax, and similar tests for Tmin produced
similar results. Based on these results, the RF model per-
formed the best for the temperature downscaling, and
was used to produce the future projections of Tmax
and Tmin.

In addition to testing the accuracy of the downscaled
distributions for temperature, we analyse the results for

TABLE 3 Comparison of the PDF skill score for the distribution of values produced by the self-organizing map (SOM) and random

forest (RF) downscaling methods to the distribution of observed values over the HIST period. Higher values indicate more similarity between

the two distributions, with a value of one being perfect correspondence. Three different sets of input variables are compared, using only 850

hPa temperature, and the full set of variables with and without day of year, as described in Table 1. Based on these results, the RF

outperforms the SOM

T850 No. day of year All variables Summer/spring Winter/fall

SOM 0.951 0.944 0.948 0.561 0.628

RF 0.916 0.906 0.925 0.678 0.723

FIGURE 8 Histogram of PRCP amount comparing the SOM and RF methods. The distribution is plotted as a histogram with log axes to

capture the large number of no-precipitation days and the long tail of large precipitation events. Bars from left to right are: Obs (Spring,

Summer), SOM (Spring, Summer/Spring, Summer), RF (Spring, Summer/Spring, Summer). The SOM models generally follow the observed

spring and summer values, while the RF model underestimating the number of dry days and the number of large precipitation events. The

difference between the spring and summer distributions are much smaller than for Tmax. The SOM summer/spring model captures most of

the shift between the spring and summer precipitation, with the RF model demonstrating less skill on this test [Colour figure can be viewed

at wileyonlinelibrary.com]
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the same downscaling methods now applied to daily pre-
cipitation (Figure 8). The observed change between the
stations is much smaller than for Tmax, but the SOM
model in both seasons does a much better job of captur-
ing the observed distributions. The RFs in both seasons
underestimate the number of days with no precipitation,
and the number of large precipitation events, similar to
the pattern displayed by the PRCP values from the GCMs
(Figure 1). This bias towards middling values of precipita-
tion is likely a consequence of the RF method, which
averages the results from all the individual trees in the
model. The summer/spring RF model shows a very large
shift towards higher average precipitation that is not
shown in the observations, indicating that this method
may produce unphysical results for precipitation under a
changing climate. This error is reflected in the PDF skill
score values, with the RF model producing significantly
lower scores than the SOM model (Table 4). Based on the
results of our validation tests, the SOM method produces
the most realistic projections for precipitation across the
region, and we expect that it will continue to do so in
projections of the future climate. As a result, we use the
SOM model to produce the future projections of PRCP.

3 | RESULTS

We produce downscaled projections for each downscal-
ing method for the HIST, TEST, NEAR, and FAR periods.

We consider 30-year NEAR (2021–2050), and FAR (2071–
2100) periods for each of the three (RCP 2.6, 4.5, 8.5) cli-
mate scenarios. The Tmax and Tmin results use the RF
model, while the PRCP results use the SOM method. We
produce downscaled projections for each of the CMIP5
models, which are combined to create a single projection
for each scenario and period. This effectively creates a
larger dataset for each period, and average out individual
variations in models that may be present over a 30 year
period. A trend towards increasing temperatures,
mirroring the global changes for each scenario, is seen
across the region.

3.1 | Temperature

In the RF projections, all three RCP scenarios have a
nearly uniform increase in average Tmax and Tmin
across the region. For the 2071–2100 period, the down-
scaled daily Tmax increases by an average of 1.1 (RCP
2.6), 2.4 (RCP 4.5), and 4.3�C (RCP 8.5). The gridpoint
CMIP5 models produced an average increase in the tem-
perature in the target region of 1.3, 2.9, and 4.8�C in the
2.6, 4.5, and 8.5 scenarios, respectively compared to the
HIST period. The RF downscaling produces a slightly
weaker warming signal across all three scenarios. The
downscaling in the TEST period also (correctly) produces
a slightly weaker warming signature than the CMIP5
GCMs. In addition to the increase in average

TABLE 4 As in Table 3, but for

PRCP. Here the SOM outperforms the

RF model

T850 No. day of year All variables Summer/spring Winter/fall

SOM 0.97 0.973 0.973 0.949 0.949

RF 0.776 0.817 0.813 0.383 0.716

FIGURE 9 Change in average

summer heat index (HI, solid, left)

and average year-round SPEI

(dashed, right) between the HIST

and FAR future period under the

RCP 8.5 scenario, averaged east–
west across the domain. More

positive HI indicates higher

temperatures in the FAR period,

while more negative SPEI indicates

increased drought. HI is calculated

using downscaled dew point values

at the smaller set of GSOD stations

(see Figure 2) [Colour figure can be

viewed at wileyonlinelibrary.com]
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temperature, we calculate the change in the length of the
summer season, computed as the length of time the aver-
age Tmax is above the June 1st and August 31st tempera-
tures from the historical period. The summer length in
the FAR period increases by 10, 26, and 48 days for the
RCP 2.6, 4.5, and 8.5 scenarios, respectively.

The Tmax changes projected by our downscaling
models agree with the general trend of consistent
warming across the region shown in other downscaling
studies (Hayhoe et al., 2010; Byun and Hamlet, 2018).
However, our results give a generally smaller increase in
temperature by the end of the century. There remains sig-
nificant uncertainty around the magnitude of the future
changes, especially on the local scale, but based on the
results of our validation tests, we conclude our results are
reasonable projections for the different RCP scenarios.

3.2 | Heat index

To calculate HI, we first downscale Tdew using the RF
method and the same set of input variables. We find that
the downscaling accurately reproduces the historical dis-
tribution of Tdew. Averaging across these stations, Tdew
increases by an average of 1.0, 2.5, and 4.3�C in the FAR
period for the RCP 2.6, 4.5, and 8.5 scenarios. Calculating
the change in HI based on the Tmax and Tdew, we find
an average increase in the summer HI of 1.6, 3.3, and
5.8�C for the three RCP scenarios (Figure 9).

US National Weather Service (NWS) defines extreme
heat stress events as a HI of 105�F (40.6�C) for 3 hr or
more (NWS, 2009). Our calculation of HI using Tmax
does not give a duration, but the average number of days
per year with a maximum HI exceeding 40.6�C increases

from an average of 1 day in the HIST period to 19 days in
the FAR period under RCP 8.5, averaged across all sta-
tions. An increase of this size will have significant health
consequences for residents of the Midwest (Wehner
et al., 2016; Matthews et al., 2017). Mukherjee
et al. (2021), calculating HI from grid scale changes in
Tmax and Tdew for future climate scenarios, found a
similar dramatic increase in the frequency and maximum
severity of heat stress events in the Midwest under the
RCP 8.5 scenario.

3.3 | Extreme heat

To examine the prevalence of extreme heat in the future
scenarios, we estimate the frequency of hot days as the
number of days in each period exceeding the 90th percen-
tile Tmax in HIST. The increase in the number of days of
extreme heat is relatively uniform across the region
(Figure 10). To produce the maps of the full region, the
individual station values were linearly interpolated to fill
the remaining space. For the NEAR period, the increase is
about 15 (RCP 2.6), 21 (RCP 4.5), and 23 (RCP 8.5) days per
year. In the FAR period the frequency of these hot days
increases further for the RCP 4.5 and RCP 8.5 scenarios, to
32 and 61 days respectively. As with the average Tmax, the
change in extreme temperature days is near uniform across
the region, indicating the shift in temperature is generally
consistent across the Midwest.

In addition to the frequency of days above the histori-
cal 90th percentile, the SOM method can be used to iden-
tify the synoptic signatures of days that have produced
extreme values of temperature. In the reanalysis data the
HIST period, the days that tend to correspond to the

FIGURE 10 Change in the

number of days with extreme heat.

Extreme heat is defined here as Tmax

above the 90th percentile in the

historical period for each station

individually. Difference between the

HIST and each of the two future

periods, NEAR (top) and FAR

(bottom) is plotted for the three RCP

scenarios. The number of extreme

heat days close to triples across the

region in the FAR period under the

RCP 8.5 scenario. In no case does

downscaling indicate a decrease in

the number of days of extreme heat

at a station [Colour figure can be

viewed at wileyonlinelibrary.com]
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highest station temperatures fall into a small number of
SOM nodes. We compare the number of days in the
CMIP5 models that fall on these nodes in the HIST and
future scenarios to estimate the frequency of potential
extreme days for each station. Taking an example station
(Kenosha, WI; 42.6� N, 87.8� W), and examining the
nodes that have at least 10% of their days in the hottest
1% of days overall (daily Tmax above 33.9�C), the number
of days falling in those nodes increases from 491 (over
the 30 years) in the historical period, to 724 in FAR under
the RCP 8.5, corresponding to experiencing these extreme
temperatures for an additional week or more per year.
This change will increase the likelihood of record setting
temperatures, as the synoptic conditions will more

frequently be in place for conditions that have histori-
cally produced the highest station Tmax. Across all sta-
tions, this number of days meeting these criteria
increases by an average of 48% in the RCP 8.5 scenario.
This value is likely to be a conservative estimate, as the
statistical downscaling does not account for various feed-
back mechanisms, notably soil-moisture, that are known
to increase the severity of Midwest heat waves (Durre
et al., 2000; Zhang et al., 2020). The increase in frequency
of extreme heat will pose a significant health risk to
populations across the region; the 2018 National Climate
Assessment projects 2,000 additional deaths per year due
to extreme heat by 2090 under this scenario (Angel
et al., 2018).

FIGURE 11 Percentage change

in precipitation across the study

region for the three RCP scenarios for

the two future periods (NEAR: top,

FAR: bottom). Stippling represents

areas with a negative change in

precipitation. In all cases, there is a

general trend of decreased

precipitation to the south, and

increased precipitation to the north.

These trends are most pronounced in

the FAR (2071–2100) period and in

the higher emissions scenarios

[Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 12 Percentage change

in summer (June, July, and August)

months precipitation from the HIST

baseline. There is a larger percentage

decrease in precipitation in the

summer months than for the annual

rainfall. This is balanced by a general

increase in precipitation in winter

(December, January, and February)

precipitation [Colour figure can be

viewed at wileyonlinelibrary.com]
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3.4 | Precipitation

Average daily precipitation exhibits a general trend of
increasing precipitation north of 40� N and decreasing
precipitation to the south (Figure 11) compared to HIST
for both the NEAR and FAR future periods across all
three RCP scenarios. For precipitation, we use the kriging
method for interpolation to create the regional maps of
average changes. Our study region currently receives an
average of between 2 and 4 mm�day−1 (70 and
150 cm�year−1, Figure 3). The most extreme changes, to
both the north and south of the study area in the FAR
future period of the RCP 8.5 scenario, represent a 10–15%
increase (decrease) in the northern (southern) average
precipitation compared to HIST. The decrease in precipi-
tation falls predominantly in the summer months
(Figure 12), with some areas of Missouri experiencing
decreases in summer precipitation of 1 mm�day−1. These
changes contrast with a general increase in winter precip-
itation across the region. Decreased precipitation in the
summer growing season is especially worrisome as most
of the agriculture in the region is rain-fed. The decrease
in precipitation, combined with increased evaporation
due to the projected increase in temperature, will signifi-
cantly reduce the soil moisture available to growing
crops.

The maximum downscaled value for precipitation is
limited by the maximum observed in HIST, due to the
limitations of the SOM method. While new maximum
values will not be produced, we can examine the fre-
quency at which days with large amounts of precipitation
occur in the future periods. The downscaled values across
all stations do not show a significant increase in the

number of days with more than 12 mm (0.5 in.) of precip-
itation in a day. However, even in areas near the Illinois/
Wisconsin border that show a small increase in precipita-
tion there is an increase in the number of days with no
precipitation (Figure 13), signalling a shift towards larger
amounts of precipitation, when precipitation does occur.

Our results agree with prior studies (Hayhoe
et al., 2010; Byun and Hamlet, 2018) in showing a greater
decrease in precipitation during the summer months
compared to the annual average. However, there are
notable differences in the spatial distribution and magni-
tudes of the changes, with our results displaying a pattern
of increased precipitation in the north, decreased precipi-
tation in the south that is not seen in these other studies.
For the equivalent time period and climate scenario, our
results also show generally greater decreases in precipita-
tion in the region than these studies.

3.5 | Drought

To quantify potential changes in drought, we use the
SPEI to provide an estimate of drought conditions based
on average temperature and precipitation (Vicente-
Serrano et al., 2010). SPEI combines precipitation and
potential evapotranspiration based on temperature to
estimate water balance for a location. Using the down-
scaled projections for temperature and precipitation, we
calculate monthly values for SPEI for each station in the
region. Over HIST, SPEI values calculated from the
downscaled projections based on the NCEP reanalysis
correlate with SPEI values calculated from the observa-
tions with an r2 value of .81, indicating that the

FIGURE 13 Average change in

the number of days with daily

precipitation less than a trace

(0.1 mm�day−1) for the three RCP
scenarios and the two future periods

(NEAR: top, FAR: bottom). Many of

the areas with an increase in the

average precipitation (Figure 11)

show an increase in the number of

dry days, indicating an increase in the

precipitation amount on the days

where it is present [Colour figure can

be viewed at wileyonlinelibrary.com]
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downscaled values do a good job of recreating the histori-
cal record on the monthly time scale. For the future
periods, we calibrate the SPEI calculation using the
model values for HIST to establish the baseline for
drought at each station, and use this calibration for the
future periods.

Across the region, SPEI is likely to decrease (indicat-
ing drier conditions) in the future periods, with these
changes most pronounced in the RCP 8.5 scenario. Aver-
aging over the 30 year FAR future period, the average
change in SPEI for the region is −1.9 (Figure 9), indicat-
ing that droughts in the region have the potential to
become more severe, with important consequences for
agriculture in the region. An SPEI value of −2.0 or less is
typically defined as extreme drought (Paulo et al., 2012).
We project the frequency of values below this threshold
will increase from once every 4 years in the HIST period,
to six times per year in the FAR period under RCP 8.5, or
three times per year under RCP 4.5.

4 | CONCLUSIONS

Many of the effects of a changing climate will be realized
on scales too small to be resolved by the current genera-
tion of climate models. Statistical downscaling methods
bridge the gap between the resolution of the GCMs, and
the local scales at which information is needed for under-
standing a wide variety of climate change impacts. We
develop downscaling models using two machine learning
approaches, SOMs and RFs, and evaluate them against
historical observations. Of these methods, the RF per-
forms best for Tmax and Tmin, matching the historical
distribution and generalizing well to new climate condi-
tions, while the SOM method produces the best results
for precipitation. We evaluate the ability of these down-
scaling models to produce realistic estimates at the
extremes of the historical data used to develop them as
follows: based on observations from the spring months to
produce skilful summer temperatures and precipitation;
similarly, we evaluate the skill of downscaling models
developed on data from fall in reproducing realistic win-
ter values. While these methods have limitations, based
on their performance on these and other validation tests,
we find that these methods provide a physically realistic,
high resolution representation of the station-level
weather in future climate scenarios.

Based upon the downscaled temperature and precipi-
tation projections for the Midwest, precipitation will
increase in the northern half of the region by up to 15%
and decrease in the southern half by a similar amount.
Temperatures show a nearly uniformly increase across
the region, with very little spatial variation in the amount

of warming. The magnitude of these changes scales with
the radiative forcing applied in the three RCP scenarios.
Increases in HI and the frequency of excessive heat are
likely to lead to increases in the incidence of heat-related
illness and mortality (Basu, 2009; Matthews et al., 2017).
Increased heat stress and drought are likely to decrease
crop yields in much of the region (Schlenker and
Roberts, 2009; Angel et al., 2018), especially in the higher
emissions scenarios.

Climate change will bring significant disruption to
the Midwest, with increasing temperatures and shifting
patterns of precipitation. In the RCP 8.5 scenario, the
number of days with maximum temperatures above the
current 90th percentile will almost triple, along with an
average increase of 4.3�C across the region, and the
length of summer weather will increase by 48 days, an
increase of more than 50%. Precipitation will shift north-
ward across the region, increasing water stress, particu-
larly in the summer months and across the southern
portion of the region. Droughts will become more fre-
quent and more severe, as precipitation decreases and
evaporation increases due to increased temperature.
These changes will pose significant challenges for agri-
culture and health in the region.
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ENDNOTE
1 SPEI values were calculated using the climate indices Python
library (Adams, 2017).
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