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Abstract: This paper presents a physics-guided neural network learning fused with a sliding
mode control design approach for closed-loop model identification of nonlinear systems. In
particular, physical knowledge of Lagrangian for mechanical systems is incorporated into neural
networks to facilitate the learning of equations of motion from data. A sliding mode controller
design is considered that uses the identified model and further refines the model online by
an updating law determined from the Lyapunov analysis. The proposed approach is shown
to be more efficient and targeted for identification than existing Lagrangian-based neural
network approaches. Simulation results on a two-joint manipulator and a three-joint manipulator
demonstrate that the proposed learning-based approach can achieve better performance of model
identification and improved tracking control with less computational cost compared to learning-

based control without online fine-tuning.
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1. INTRODUCTION

Machine learning methods have been increasingly em-
ployed to capture/model unknown system dynamics. How-
ever, directly applying black-box learning-based methods
suffers from the challenges of model selection, data de-
pendence, interpretability, and generalization ability (Jia
et al., 2020). Leveraging existing knowledge to improve
the effectiveness of data-driven modeling is gaining promi-
nence in modeling (Karpatne et al., 2017).

Artificial neural networks (ANN) can represent a variety of
functions by universal approximation theorems (e.g., Krat-
sios (2021)) and are widely used for modeling. However,
the theorems typically do not provide a construction for
the structure and weights of neural networks. Informing
the design of ANN architecture by physical knowledge
can assist in obtaining generalizable and scientifically in-
terpretable results (Karpatne et al., 2017). The questions
relevant to physics-informed design are what knowledge to
incorporate and how to embed knowledge. The manner to
embedding knowledge in the architecture affects the gener-
alization ability and computational efficiency of modeling
given a sufficient data set, which further determines the
performance of the downstream work.

Lagrangian mechanics is a prominent formalism to de-
rive the equations of motion for mechanical systems by
applying calculus of variations to the Lagrangian which
is a function of generalized coordinates ¢, capable of
describing the complete dynamics of a system. Cranmer
et al. (2020) proposed to use ANN to represent black-box
Lagrangians (LNNs), derive numerical expressions of the
Euler-Lagrange equations. LNNs embed Euler-Lagrange
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equations in the ANN architecture and produce energy-
conserving models. However, the embedded equation is
completely dependent on the Lagrangian and cannot en-
code the information that the inertia matrix H(gq) should
be symmetric and positive definite. From the perspective
of computational efficiency, LNNs require computing the
inverse Hessian which scales O(d®) where d is the number
of coordinates. Moreover, pseudoinverse is used to avoid
singularity, which can cause instability of LNNs training.
Additionally, the learned ordinary differential equations
(ODEs) are not guaranteed to have solutions, as the con-
ditions for the existence of solutions to ODEs are not con-
sidered. Instead, Lutter et al. (2019) assume the kinetic en-
ergy T = ¢* H(q)q and directly impose the Euler-Lagrange
equations of rigid-body systems upon the ANNs structure
named deep Lagrangian neural networks (DeLaN). DeLaN
ensures the positive semi-definiteness of H(g) and avoids
the inverse of H(q) by learning an inverse model. How-
ever, DeL.aN cannot be directly applied to systems with
other forms of Lagrangians. Additionally, Roehrl et al.
(2020) use ANN to represent the unknown part in the
Euler-Lagrange equations to learn a forward ODE model
from data and use the reverse-mode automatic differenti-
ation to obtain the derivatives of the loss. Furthermore,
Raissi et al. (2017) proposed physics-informed deep learn-
ing to discover nonlinear partial differential equations in
a given form. Generally, introducing the domain-specific
knowledge can increase the generalization ability in the
given domain but limits the applicability of the model in
similar/related domains where such knowledge does not
hold /exist. This paper focuses on the learning of forward
models that can be used for model-based control and pro-
poses a Lagrangian-informed neural network (LINN) using
coarse-grained knowledge of Lagrangians without specify-
ing the exact Lagrangian forms. Specifically, we encode the
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knowledge via feature engineering and architecture design
of LINNs.

Moreover, the accuracy of physics-guided neural network
models are subject to the data representativeness. Adapt-
ing the learned model online is useful to increase the accu-
racy of the model at current operating points and improve
the performance of the model-based control (Bao et al.,
2020). Considering the form of models derived from the
Euler-Lagrange equations, adaptive sliding mode control
(SMC), which is a well-studied technique and guarantees
stability with bounded plant-model mismatch, can be used
for online learning. In particular, we give the updating law
of LINNs weights based on the Lyapunov stability analysis
to refine the LINN model online. The objective of SMC
here is not only to achieve low tracking errors but also to
enhance the accuracy of the learned model.

Contribution of this paper is to propose a computationally
efficient Lagrangian-informed neural networks approach
for physics-guided data-driven system identification and
a Lyapunov-based online learning approach to refine the
model in real time.

2. PROBLEM STATEMENT AND RELATED
PRELIMINARIES

Suppose that the mathematical model of a system can be
expressed in the form of

H(q)i+C(q,9)q+ Gla) =, (1)
where ¢ € R™e are generalized coordinates and 7 € R""
are generalized forces. The families of functions that H,
C, and G belong to are unknown but coarse-grained
knowledge exists. The coarse-grained knowledge includes,
but is not limited to, the basis functions of H, C, and G.
For instance, when H(q) is a function of cos(q), then cos(q)
can be used as a feature function and the input to ANNS,
which improves learning efficiency by saving the cost for
ANNSs to approximate the feature function from data.

The problem considered in this paper is to learn from data
a forward ODE model that should be equivalent to (1) but

in the form of _
. q
= . 2
! {h(%q,f)] @)
where * = [¢T,¢"]T using Lagrangian-informed neural
networks (LINNs) and refine the model online using closed-
loop data from a sliding mode controller (SMC). The
robust element of SMC depends on the accuracy of the
LINNs model and the updating law of LINNs weights is
derived based on the Lyapunov stability analysis of SMC.

2.1 Preliminaries on Lagrangian Mechanics

Lagrangian mechanics is widely used to solve mechanical
problems in physics. The central quantity of Lagrangian
mechanics is the Lagrangian L, which is a function of ¢, ¢,
and time ¢. An L is valid if it generates correct dynamics
of the entire system and follows physical laws. There is
no unified expression of L for all physical systems. The
L =T —V in Lutter et al. (2019) can be used for non-
relativistic Lagrangian mechanics but does not hold in
relativistic Lagrangian mechanics.

Using the calculus of variations, we have the Euler-
Lagrange equations as

d /0L oL
dt (aqz) - g ®)

The equations of motion of the system can be derived by
substituting L into (3) and add the generalized forces to
the right-hand side, which results in (1). These equations
bypass constraint forces and are ODEs in spite of the
partial derivatives.

2.2 Sliding Mode Control

Sliding model control (SMC) is a variable structure control
method that has been widely used for a broad class of
nonlinear systems (Bartoszewicz and Zuk (2010)). We
consider the second-order system analyzed in (Liu and
Wang, 2011), as an example, in the form of

0 =f(0,0)+g(0,0)u+d(t), (4)
where 6, u, and d(t) are the output, control input, and
bounded external disturbance, respectively, and |d(t)| <
D. Tt is noted that (1) can be transformed into (4) with
f=-HYC+G) and g = H~'. Using the Lyapunov
function candidate Ly = 5s%, SMC applies discontinuous
control signal

u =g (—f +ba + ké + nosgn(s)), (5)
where k > 0 is a design parameter of the selected surface
s = é+ ke, e = 0 — 04 denotes the tracking error with
respect to the desired output 84, and 19 > D are feedback
gains dominating d(t) such that system trajectories reach
the sliding surface s in finite time and then slide on
this surface to the origin. The advantage of SMC lies in
its robustness to the parameter variations of f and g.
The inexact knowledge of f and ¢ (i.e., the plant-model
mismatch from data-driven system identification) can be
compensated for by 7(0) + 1, which motivates us to use
SMC to collect closed-loop data.

1
2

However, the delays in switching result in “chattering”
around the sliding surface in practice (Utkin and Hoon
Lee, 2006). The degree of chattering depends on the
magnitude of |1(0) + no|, which provides the information
of the accuracy of the learned physics-guided model.
Adaptive SMC adapts the estimation of f online to achieve
better control performance. Instead, we use adaptive SMC
for online learning of LINNs in Section 3.2.

3. LAGRANGIAN-INFORMED NEURAL NETWORKS
AND LYAPUNOV-BASED ONLINE LEARNING

This section introduces the techniques employed by LINNs
for knowledge incorporation and online adaptation.

8.1 Lagrangian-informed Neural Networks

Feature engineering for knowledge embedding: In ma-
chine learning, a feature is an individual measurable prop-
erty or characteristic of a phenomenon being observed
(Bishop, 2006), and choosing features is crucial for effective
algorithms. Deep learning reduces the efforts involved in
extracting features (aka feature engineering) from raw
data by designing efficient architecture and training on
large amounts of data, which decreases the interpretability
but increases the complexity of ANNs. A neural network
with one 20-unit hidden layer was used to approximate
the sine function. Using domain knowledge to extract
features can facilitate learning efficiency. A typical coarse-
grained knowledge is that sine and cosine functions of the
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generalized coordinates exist in the Lagrangians and the
arguments of H, C' and G. We can augment ¢, with
cos(q),sin(q) and designate the inputs to ANNs.

Architecture design:  The information that H is symmet-
ric and positive definite can be encoded into the architec-
ture of ANNSs. In particular, H can be modeled as Lutter
et al. (2019) by H= Ly LY, where Ly is a lower triangu-
lar matrix with positive diagonal entries and represented
by a neural network. However, the representation of the
vectorized H R .

H = (¢gWu)" (6)
where ¢g is the basis function and Wy is the weight
matrix, is more suitable for online learning as discussed
in Section 3.2. To have (6) and ensure H = HT = 0, we
propose to use a convex combination of positive definite
matrices ﬁv = LM,UL&U to represent ﬁ, ie.,

1% 14
g = Z OKU}AI»U = ZaULM,vL’}J7va (7)
v=1 v=1
\%4
avZO7ZaU:1a (8)
v=1

as the convex combination of positive definite matrices
is still positive definite. Furthermore, the expression of
C(q,q) in Lutter et al. (2019) is derived from the specific
kinetic energy, which decreases the accuracy of learned
model when T is not in the specified form. To enable
LINNS to be applicable to arbitrary forms of Lagrangians,
we directly use networks with physics-guided features as
inputs to represent C' and G, which also simplifies the
complexity of the computation graph of LINNs.

q
—| cos(q)
sin(q)
q gsin(q) \

cos(g) P
sin(q) e
cos(q) cos(q) o
sin(g) sin(q)

Feature

H(q)

7‘.7
Clq.4)|H(q)G+ Clq,q)q + G(q)

~ |Glq)

Fig. 1. The architecture of LINNs.

The architecture of LINNs is shown in Fig. 1. This archi-
tecture significantly improves the computational efficiency,
compared with Cranmer et al. (2020) where explicit in-
verse of the H derived from parameterized Lagrangians
is implemented. The loss function of LINNs is the mean
squared error (MSE)

1 & e

MSE = N ;(T —7) (9)
where N is the number of data points. This formulation
views the data as i.i.d. sampled without considering the
error dynamics, which explains the large errors of multi-
step predictions and necessitates the online learning using
closed-loop data. The forward ODE model (2) can be
estimated using

Solutions to The ODE model: By the Picard-Lindelof
theorem, if A is uniformly Lipschitz continuous in (g, ¢, 7)
and continuous in t, then for some value € > 0, there
exists a unique solution ¢(t) to the initial value problem
on the interval [tg — €,to + €]. Most activation functions
have a Lipschitz constant that is one (1) such as Leaky
ReLU, SoftPlus, and Tanh. Additionally, the Lipschitz
constants of deep neural networks can be estimated us-
ing SeqLip algorithm proposed in Scaman and Virmaux
(2018). Therefore, h is uniformly Lipschitz continuous on
the admissible set of (g, ¢, 7).

Generalization of LINNs:  The accuracy of LINNs is eval-
uated by the generalization, i.e., that the population (or
testing) error is close to the training error by minimizing
the training error (Neyshabur et al., 2017). However, the
training error is defined as (9) instead of the best fit ratio

for model accuracy BFR = 100% - max (1 — ==z 0)

le—zll2°

where & is the solution to (2) and Z is the mean of the
real trajectory x, which suggests LINNs with small testing
errors are not necessarily a good ODE model while a good
ODE model must have a small testing error with respect
to 7. Therefore, fine-tuning LINNs is necessary. However,
using the reverse-mode differentiation of an ODE solution
Chen et al. (2018) to directly tune the ODE model suffers
from the low computational efficiency. Instead, we propose
the following approach to fine-tune LINNs online while
achieving superb tracking control performance.

8.2 Lyapunov-based Online Learning
We first show the Lyapunov stability analysis of SMC. The
sliding variable considered is s = é+Ae where A = AT > 0

and e = ¢q(t) —q(t) is the tracking error and the Lyapunov
function is Ly = %STHS. Then

Ly =sTHs+ %STHS.
H(é+ Aé) = H(ja+ Aé) — Hi
=H(Ga+A)+C4+G—7
= H(Ga+Aé) +C(da—s+Ae) + G — 7
=—-Cs—7T+p
where p = H(Gq+Aé)+C(da+Ae)+G. Using the controller
T = p+ K, s and the skew symmetry property H —2C = 0,

we have

] 1 )
Ly =—s"K,s+ §ST(H —2C)s = —sTKys <0,

(11)

Hs
(12)

(13)

where K is a symmetric positive definite constant matrix.
However, calculation of p involves H, C' and G that are
learned from data. The mismatch ¢ = p — p between the
ideal p and the estimated p changes (13) to

Ly =—sTK,s+s"e (14)
using 7 = p+ K s, which can cause the violation of Ly <0.

To compensate for the mismatch, a robust term v is added
to the control input and the control inputs are given by

T=p+ K,s—v. (15)

Using the control law (15), we obtain
Ly =—s"K,s+5T(e+v) <0 (16)
if v = —ensgn(s) and |e| < eny. Additionally, a continuous

function
sat(s) = 1-e/1520
T -1 —e¥),s<0
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where v > 0 is a small design parameter can be used to
replace sgn(s), which reduces chattering.

Moreover, when p is approximated by p = WT¢<X) and W

are tuned by W = Fyy¢sT where
T
x=[e" ¢ g 6f dq)
#(x) is a suitable basis, and Fyy = Fy}, = 0 is a constant
matrix, then the control law (15) achieves uniformly ulti-
mately bounded (UUB) filtered tracking error s(t) and W
is bounded by Theorem 3.5 in (Lewis et al., 1995) under
the conditions that the desired trajectories qq, Gq,dq are
bounded and en(x) = ao(qa, §a,da) + p(s) where ap and
p are continuous polynomial functions. Furthermore, the
tracking error can be made as small as possible by choosing
large control gain K.

When using ANNs to represent H ,C’,G’, fine-tuning
weights WH, WC,WG in the last layer of ANNs can in-
crease the computational efficiency of online learning.
Furthermore, with a small testing error, it is reason-
able to assume the hidden layers provide suitable basis
T € R ¢l € Ric ¢t € RI1 and the vector-
ized matrices are calculated by H = (¢HWH)T,C =
(6cWe)T, G = (pcWa)T. By reshaping W € R
into W, € R”qu Xnq ¢ =H,C and W = WT € Raxde
then

o a(t) ® oy . [®m
pe) =Wy We We| |at)@ ol | =WT [@c| (17)
oa e’

where ® denotes the Kronecker product, ¢;(t) = dq + Aé,
G2(t) = da + Ae and the weight update law is

WH = FH(I)HST — HHFH”SHWH
Wc = FC(I’(;'ST — IichHSHVAVC
WG = FG(I)(;ST — Iich;HSHWG

where —r; Fy||s|W; (aka e-modification in (Narendra and
Annaswamy, 1987)) are used to relax the persistence of
excitation conditions on ¢;, and F;,k; = 0,1 = H,C,G,
are design parameters in the form of ng x ng block diagonal
matrices. Moreover, when using (6) to represent H, the
number of weights that need fine-tuning after fixing H,’s
is reduced from n2 x dj, in (18) to the number V of H’s,
which further improves the online fine-tuning efficiency at
the expense of increasing the offline learning complexity of
LINNs. Additionally, the updating law is simplified to

Wy =Fpla(t) Hys, - i (t)  Hys]"—

K Frls|Wg (19)
where Fy, kg > 0 are V x V diagonal matrices. Moreover,
we apply softmax transformation to the updated W such
that the combination of ﬁl remains convex. The schematic
of online fine-tuning LINNs is shown in Fig. 2. At each

time step, the control input (15) is estimated using the
parameters updated by (18).

(18)

4. EXPERIMENTAL RESULTS AND VALIDATION

This section validates the proposed learning methods.
1 We use d; to denote the dimension of ¢;, i = H,C, G.

i
LINNs

qq q.4q

Fig. 2. Schematic of online learning of LINNS.
4.1 Validation on A 2-joint Manipulator

The kinetic equation of the 2-joint manipulator adapted
from (Liu and Wang, 2011) is in the form of (1) and

Hiq) = a1 + ag + 2a3 cos(qa) @z + as cos(ga)
q ag + az cos(qz) Qo ’
—a3qasin(ga) —as(d1 + ¢2) sin(qz)
asqi sin(gz) 0

Glq) — [ageos(a) + asgeos(an + g

asgcos(qi + qz2) ’

T =1, — F(q) = 7, — 0.028gn(q),
where [o;]?_; = [2.9 0.76 0.87 3.04 0.87], 7, is the control
input, and F'(¢) is the friction force.

] © (20

Experimental setup: A pseudo-random binary sequence
(PRBS) is used to excite the model with the amplitude
71 = {30,50}, 2 = {5,15} and frequency in the range of
[0.1,10]. A sampling time of 0.01 sec is chosen and 5,000
data points were collected. We used the first 4,000 points
for training and the remainder for testing.

Based on the properties of the dynamics of two-joint
manipulator, the feature functions are selected as

o = [q" cos(q)" sin(g)'],

¢c = [[geos(q)]" [gsin(q)]"], (1)
¢G = [cos(q)" sin(q)" cos®(q)" sin*(g)"],

or = [q" sgn(9)"].

Then, the features are respectively fed into the input layers
of the subnetworks in LINNs to represent H, C, G and
F'. In particular, considering the model complexity of ma-
nipulators, the input layers are directly connected to the
output layers without activation functions for all the sub-
networks. The output vectors of subnetworks are reshaped
into matrices which are used to represent (10). The trained
LINNs are fine-tuned in real time using the approach in

Section 3.2. The initial state zo = [0.09 0 —0.09 O]T and
the reference signal gq = 0.1sin(¢) for both joints were
considered. The controller parameters were assumed to be
A = diag{5,5} K, = diag{20,20}. Moreover, the robust
term in (15) is not used when online learning is active
to avoid chattering. Finally, F; = I;, i = H,C,G, F and
ki = 0.11; are used for (18) where I;’s are identity matrices
with suitable dimensions.

Results and discussion:  The upper bound of the mis-
match is determined to be €pax = p — p = [40.41 5.82].
€N = €max can result in significant chattering while smaller
en leads to larger tracking errors. The MSE on the training
data set is 1187.87. Moreover, the learned ODE model
cannot be solved at some states and inputs using the solver
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that works for the plant model. Fig. 3 shows the tracking
results and control inputs and Fig. 4(a) shows one-step
predictions of the fine-tuned LINNs. As observed, both
the tracking and prediction errors converge to 0 after a
few steps of online learning.
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(a) Position tracking. (b) Velocity tracking.
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Fig. 3. SMC results for the 2-joint manipulator.
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Fig. 4. Simulated ¢ of the fine-tuned LINNs model and ¢
of the original system.

It is noted that the LINNs architecture in the experimental
setup cannot represent the family of models to which
(20) belongs, as (21) does not contain such terms as
cos(q1 + ¢g2) which is not known a priori. Therefore, we
used multilayer ANNs to compensate for insufficiency of
features. Specifically, we used 4 hidden layers with 64
units and tanh activation. The tuning parameters of using
multilayer ANNs are A = diag{15, 15}, K, = diag{5,5},
enx = [0.001;0.001], F; = 2I;,i = H,C,G, F and k; = le —
41; and the results are shown in Fig. 4(b). Additionally,
we augmented ¢ with ¢ ® cos(q), ¢ ® sin(q) and ¢g with
cos(q) ® cos(q),sin(q) ® sin(qg) in (21) such that linear
combination of the augmented features can represent (20).
The tuning parameters of using the augmented features are
the same as the experimental setup except that F; = 10I;
and k; = 0.11;, and the results are shown in Fig. 4(c).
The BFRs are not 100% even though the LINNs with
augmented features contain the families of functions where

H,C.G, F belong, which demonstrates the effects of data
and optimization on the model accuracy. Moreover, LINNs
using 6-layer ANNs achieve similar accuracy to LINNs
using the augmented features, which shows the ANNs
can be used to learn a good model with coarse-grained
knowledge.

Moreover, we tested the performance of LINNs using the
architecture (6) and updating law (19). In particular, V'=4.
A 3-layer ANN with leaky ReLU activation is used as the
base network. Then, a layer with linear activation is added
to the base network to model the off-diagonal elements
L, ., and another layer with softplus activation is added
to the base network to model the diagonal elements L%Lv
of Las,,. Moreover, 4-layer ANNs with (21) as inputs and
tanh as activation functions are used to represent C' and
G. The tuning parameters for LINNs with the architecture
(6) are the same as the experimental setup except that
K, = diag{25,25}, F; = I; and x; = I;. As shown in Fig.
4(d), using the architecture (6) improves online learning
efficiency by fine-tuning less parameters but still achieves
an accuracy comparable with LINNs using multilayer
ANNs. Additionally, increasing the number V of H,’s can
improve the accuracy of fine-tuned LINNs model.

4.2 Validation on A 3-joint Manipulator

We further validated the proposed approach on a 3-
joint manipulator. The motion equations of the 3-joint
manipulator are borrowed from (Truong et al., 2019). The
highest degree terms in H,C, G are sin?(ga 4 ¢3), sin(gs +
qs3) cos(q2 + q3)d1, sin(ga + g3 ), respectively.

Experimental setting:  First, we assume that a dictionary
of feature functions exists such that H,C,G are affine
functions of the features. Then, the LINNs share the same
architecture as 4.1.1. Additionally, there are 5 closed-loop
trajectories generated by tracking results and

55 95

Qia = - + - sin(2nt/T; — m/2),
8 85
G2a = - + - sin(@nt/T; — m/2),

G3q = 50 + A7 sin(2nt/T; — 7/2)

where {T;}2_; = {5,7,10,13,15}. The sampling time is
0.01 s. One period of data per trajectory (i.e., 5,000 data
points) are used to learn LINNs. Then, the trained LINNs
are fine-tuned in real time using the approach in Section

3.2. The initial state o = [0.0001 0.01 0.05 0 0 O]T and
the reference signal

¢14 = 30 + 30sin(27t/10 — 7/2),

g2d = 20 + 20sin(27t/10 — 7/2),

q3d = 40 + 20sin(27t/10 — 7/2).
The controller parameters are assumed A = diag{5, 15,15},
K, = diag{5,60,5}, and ey = [0.01 0.01 0.001]T. It is
noted that € is far less than the plant-model mismatch but
the controller still works, as online learning keeps reducing
the mismatch. F; = 0.011;,¢ = H,C,G, F and k; = 0.01];
are used for (18) where I;’s are identity matrices with
suitable shapes.

Results and discussion:  The tracking results and control
inputs are shown in Fig. 5. The large variations of control
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inputs result from the large K, which is related to the
reaching time required to approach the switching mani-
folds and used to dominate the plant-model mismatch. The
identification results are shown in Fig. 6. The prediction
of (51 is not accurate even after online learning. The reason
for the low BFR is the large MSE (66.83) of the ini-
tially learned LINNs model determined by the insufficient
training data. However, the adaptive SMC still achieved
acceptable control results and improved the identification
results while the initially learned model cannot be directly
used for prediction. Furthermore, using the closed-loop
data to fine-tune the LINNs offline can improve the control
and identification results.

AR

2 3

. . . .
10 20 30 40 50
t [seconds]

) 10 20 30 40 50
t[seconds]

(a) Position tracking. (b) Control inputs.

Fig. 5. SMC results of 3-joint manipulator.

" 2 l[seggnds] 4‘0 5‘0
Fig. 6. Simulated g2 3 of the fine-tuned LINNs model and
{23 of the original system. BFR; = [91.40% 89.40%] .

5. CONCLUDING REMARKS

In this paper, a physics-guided neural network learning
approach associated with online fine-tuning was proposed
to learn an accurate model from data. The proposed net-
work architecture (LINNs) is computationally efficient for
modeling systems that can be described by Euler-Lagrange
equations and compatible for SMC design, which is robust
to the mismatches between the learned model and the
plant. Moreover, the learned LINNs are fine-tuned in real
time by an updating law derived using the Lyapunov anal-
ysis of SMC. Experiments on a 2-joint manipulator and
a 3-joint manipulator models showed that the proposed
methods can learn an accurate model and achieve good
control performance with bounded plant-model mismatch
and be applied to systems of high complexities.
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