

706 Yajie Bao et al. / IFAC PapersOnLine 54-20 (2021) 705–710

knowledge via feature engineering and architecture design
of LINNs.

Moreover, the accuracy of physics-guided neural network
models are subject to the data representativeness. Adapt-
ing the learned model online is useful to increase the accu-
racy of the model at current operating points and improve
the performance of the model-based control (Bao et al.,
2020). Considering the form of models derived from the
Euler-Lagrange equations, adaptive sliding mode control
(SMC), which is a well-studied technique and guarantees
stability with bounded plant-model mismatch, can be used
for online learning. In particular, we give the updating law
of LINNs weights based on the Lyapunov stability analysis
to refine the LINN model online. The objective of SMC
here is not only to achieve low tracking errors but also to
enhance the accuracy of the learned model.

Contribution of this paper is to propose a computationally
efficient Lagrangian-informed neural networks approach
for physics-guided data-driven system identification and
a Lyapunov-based online learning approach to refine the
model in real time.

2. PROBLEM STATEMENT AND RELATED
PRELIMINARIES

Suppose that the mathematical model of a system can be
expressed in the form of

H(q)q̈ + C(q, q̇)q̇ +G(q) = τ, (1)

where q ∈ R
nq are generalized coordinates and τ ∈ R

nτ

are generalized forces. The families of functions that H,
C, and G belong to are unknown but coarse-grained
knowledge exists. The coarse-grained knowledge includes,
but is not limited to, the basis functions of H, C, and G.
For instance, whenH(q) is a function of cos(q), then cos(q)
can be used as a feature function and the input to ANNs,
which improves learning efficiency by saving the cost for
ANNs to approximate the feature function from data.

The problem considered in this paper is to learn from data
a forward ODE model that should be equivalent to (1) but
in the form of

ẋ =

[

q̇
h(q, q̇, τ)

]

(2)

where x = [qT, q̇T]T using Lagrangian-informed neural
networks (LINNs) and refine the model online using closed-
loop data from a sliding mode controller (SMC). The
robust element of SMC depends on the accuracy of the
LINNs model and the updating law of LINNs weights is
derived based on the Lyapunov stability analysis of SMC.

2.1 Preliminaries on Lagrangian Mechanics

Lagrangian mechanics is widely used to solve mechanical
problems in physics. The central quantity of Lagrangian
mechanics is the Lagrangian L, which is a function of q, q̇,
and time t. An L is valid if it generates correct dynamics
of the entire system and follows physical laws. There is
no unified expression of L for all physical systems. The
L = T − V in Lutter et al. (2019) can be used for non-
relativistic Lagrangian mechanics but does not hold in
relativistic Lagrangian mechanics.

Using the calculus of variations, we have the Euler-
Lagrange equations as

d

dt

(

∂L

∂q̇i

)

=
∂L

∂qi
. (3)

The equations of motion of the system can be derived by
substituting L into (3) and add the generalized forces to
the right-hand side, which results in (1). These equations
bypass constraint forces and are ODEs in spite of the
partial derivatives.

2.2 Sliding Mode Control

Sliding model control (SMC) is a variable structure control
method that has been widely used for a broad class of
nonlinear systems (Bartoszewicz and Żuk (2010)). We
consider the second-order system analyzed in (Liu and
Wang, 2011), as an example, in the form of

θ̈ = f(θ, θ̇) + g(θ, θ̇)u+ d(t), (4)

where θ, u, and d(t) are the output, control input, and
bounded external disturbance, respectively, and |d(t)| ≤
D. It is noted that (1) can be transformed into (4) with
f = −H−1(C + G) and g = H−1. Using the Lyapunov
function candidate Ly = 1

2
s2, SMC applies discontinuous

control signal

u = g−1(−f + θ̈d + kė+ η0sgn(s)), (5)

where k > 0 is a design parameter of the selected surface
s = ė + ke, e = θ − θd denotes the tracking error with
respect to the desired output θd, and η0 ≥ D are feedback
gains dominating d(t) such that system trajectories reach
the sliding surface s in finite time and then slide on
this surface to the origin. The advantage of SMC lies in
its robustness to the parameter variations of f and g.
The inexact knowledge of f and g (i.e., the plant-model
mismatch from data-driven system identification) can be
compensated for by η(θ) + η0, which motivates us to use
SMC to collect closed-loop data.

However, the delays in switching result in “chattering”
around the sliding surface in practice (Utkin and Hoon
Lee, 2006). The degree of chattering depends on the
magnitude of |η(θ) + η0|, which provides the information
of the accuracy of the learned physics-guided model.
Adaptive SMC adapts the estimation of f online to achieve
better control performance. Instead, we use adaptive SMC
for online learning of LINNs in Section 3.2.

3. LAGRANGIAN-INFORMED NEURAL NETWORKS
AND LYAPUNOV-BASED ONLINE LEARNING

This section introduces the techniques employed by LINNs
for knowledge incorporation and online adaptation.

3.1 Lagrangian-informed Neural Networks

Feature engineering for knowledge embedding: In ma-
chine learning, a feature is an individual measurable prop-
erty or characteristic of a phenomenon being observed
(Bishop, 2006), and choosing features is crucial for effective
algorithms. Deep learning reduces the efforts involved in
extracting features (aka feature engineering) from raw
data by designing efficient architecture and training on
large amounts of data, which decreases the interpretability
but increases the complexity of ANNs. A neural network
with one 20-unit hidden layer was used to approximate
the sine function. Using domain knowledge to extract
features can facilitate learning efficiency. A typical coarse-
grained knowledge is that sine and cosine functions of the

 Yajie Bao et al. / IFAC PapersOnLine 54-20 (2021) 705–710 707

generalized coordinates exist in the Lagrangians and the
arguments of H, C and G. We can augment q, q̇ with
cos(q), sin(q) and designate the inputs to ANNs.

Architecture design: The information that H is symmet-
ric and positive definite can be encoded into the architec-
ture of ANNs. In particular, Ĥ can be modeled as Lutter
et al. (2019) by Ĥ = LMLT

M , where LM is a lower triangu-
lar matrix with positive diagonal entries and represented
by a neural network. However, the representation of the
vectorized Ĥ

Ĥ = (φHŴH)T (6)

where φH is the basis function and ŴH is the weight
matrix, is more suitable for online learning as discussed
in Section 3.2. To have (6) and ensure Ĥ = ĤT ≻ 0, we
propose to use a convex combination of positive definite
matrices Ĥv = LM,vL

T
M,v to represent Ĥ, i.e.,

Ĥ =

V
∑

v=1

αvĤv =

V
∑

v=1

αvLM,vL
T
M,v, (7)

αv ≥ 0,

V
∑

v=1

αv = 1, (8)

as the convex combination of positive definite matrices
is still positive definite. Furthermore, the expression of
C(q, q̇) in Lutter et al. (2019) is derived from the specific
kinetic energy, which decreases the accuracy of learned
model when T is not in the specified form. To enable
LINNs to be applicable to arbitrary forms of Lagrangians,
we directly use networks with physics-guided features as
inputs to represent C and G, which also simplifies the
complexity of the computation graph of LINNs.

Fig. 1. The architecture of LINNs.
The architecture of LINNs is shown in Fig. 1. This archi-
tecture significantly improves the computational efficiency,
compared with Cranmer et al. (2020) where explicit in-
verse of the H derived from parameterized Lagrangians
is implemented. The loss function of LINNs is the mean
squared error (MSE)

MSE =
1

N

N
∑

i=1

(τ − τ̂)2 (9)

where N is the number of data points. This formulation
views the data as i.i.d. sampled without considering the
error dynamics, which explains the large errors of multi-
step predictions and necessitates the online learning using
closed-loop data. The forward ODE model (2) can be
estimated using

ĥ(q, q̇, τ) = Ĥ−1(q)(τ − Ĉ(q, q̇)− Ĝ(q)). (10)

Solutions to The ODE model: By the Picard–Lindelöf

theorem, if ĥ is uniformly Lipschitz continuous in (q, q̇, τ)
and continuous in t, then for some value ǫ > 0, there
exists a unique solution q(t) to the initial value problem
on the interval [t0 − ǫ, t0 + ǫ]. Most activation functions
have a Lipschitz constant that is one (1) such as Leaky
ReLU, SoftPlus, and Tanh. Additionally, the Lipschitz
constants of deep neural networks can be estimated us-
ing SeqLip algorithm proposed in Scaman and Virmaux

(2018). Therefore, ĥ is uniformly Lipschitz continuous on
the admissible set of (q, q̇, τ).

Generalization of LINNs: The accuracy of LINNs is eval-
uated by the generalization, i.e., that the population (or
testing) error is close to the training error by minimizing
the training error (Neyshabur et al., 2017). However, the
training error is defined as (9) instead of the best fit ratio

for model accuracy BFR = 100% · max
(

1− ‖x−x̂‖2

‖x−x̄‖2

, 0
)

where x̂ is the solution to (2) and x̄ is the mean of the
real trajectory x, which suggests LINNs with small testing
errors are not necessarily a good ODE model while a good
ODE model must have a small testing error with respect
to τ . Therefore, fine-tuning LINNs is necessary. However,
using the reverse-mode differentiation of an ODE solution
Chen et al. (2018) to directly tune the ODE model suffers
from the low computational efficiency. Instead, we propose
the following approach to fine-tune LINNs online while
achieving superb tracking control performance.

3.2 Lyapunov-based Online Learning

We first show the Lyapunov stability analysis of SMC. The
sliding variable considered is s = ė+Λe where Λ = ΛT > 0
and e = qd(t)−q(t) is the tracking error and the Lyapunov
function is Ly = 1

2
sTHs. Then

L̇y = sTHṡ+
1

2
sTḢs. (11)

Hṡ = H(ë+ Λė) = H(q̈d + Λė)−Hq̈

= H(q̈d + Λė) + Cq̇ +G− τ

= H(q̈d + Λė) + C(q̇d − s+ Λe) +G− τ

= −Cs− τ + p

(12)

where p = H(q̈d+Λė)+C(q̇d+Λe)+G. Using the controller

τ = p+Kvs and the skew symmetry property Ḣ−2C = 0,
we have

L̇y = −sTKvs+
1

2
sT(Ḣ − 2C)s = −sTKvs ≤ 0, (13)

where Kv is a symmetric positive definite constant matrix.
However, calculation of p involves H, C and G that are
learned from data. The mismatch ǫ = p − p̂ between the
ideal p and the estimated p̂ changes (13) to

L̇y = −sTKvs+ sTǫ (14)

using τ = p̂+Kvs, which can cause the violation of L̇y ≤ 0.
To compensate for the mismatch, a robust term v is added
to the control input and the control inputs are given by

τ = p̂+Kvs− v. (15)

Using the control law (15), we obtain

L̇y = −sTKvs+ sT(ǫ+ v) ≤ 0 (16)

if v = −ǫN sgn(s) and |ǫ| < ǫN . Additionally, a continuous
function

sat(s) =

{

1− e−s/γ , s ≥ 0

−(1− es/γ), s < 0

708 Yajie Bao et al. / IFAC PapersOnLine 54-20 (2021) 705–710

where γ > 0 is a small design parameter can be used to
replace sgn(s), which reduces chattering.

Moreover, when p is approximated by p̂ = ŴTφ(x) and Ŵ

are tuned by
˙̂
W = FWφsT where

x =
[

eT ėT qTd q̇Td q̈Td
]T

,

φ(x) is a suitable basis, and FW = FT

W ≻ 0 is a constant
matrix, then the control law (15) achieves uniformly ulti-

mately bounded (UUB) filtered tracking error s(t) and Ŵ
is bounded by Theorem 3.5 in (Lewis et al., 1995) under
the conditions that the desired trajectories qd, q̇d, q̈d are
bounded and ǫN (x) = α0(qd, q̇d, q̈d) + ρ(s) where α0 and
ρ are continuous polynomial functions. Furthermore, the
tracking error can be made as small as possible by choosing
large control gain Kv.

When using ANNs to represent Ĥ, Ĉ, Ĝ, fine-tuning
weights ŴH , ŴC , ŴG in the last layer of ANNs can in-
crease the computational efficiency of online learning.
Furthermore, with a small testing error, it is reason-
able to assume the hidden layers provide suitable basis
φT

H ∈ R
dH , φT

C ∈ R
dC , φT

G ∈ R
dG 1 and the vector-

ized matrices are calculated by Ĥ = (φHŴH)T, Ĉ =

(φCŴC)
T, Ĝ = (φGŴG)

T. By reshaping ŴT
i ∈ R

n2

q×di

into Ŵi ∈ R
nq×di×nq , i = H,C and ŴG = ŴT

G ∈ R
nq×dG ,

then

p̂(x) =
[

ŴH ŴC ŴG

]





ς1(t)⊗ φT

H

ς2(t)⊗ φT

C

φG



 := ŴT

[

ΦH

ΦC

ΦG

]

(17)

where ⊗ denotes the Kronecker product, ς1(t) = q̈d + Λė,
ς2(t) = q̇d + Λe and the weight update law is

˙̂
WH = FHΦHsT − κHFH‖s‖ŴH

˙̂
WC = FCΦCs

T − κCFC‖s‖ŴC

˙̂
WG = FGΦGs

T − κGFG‖s‖ŴG

(18)

where −κiFi‖s‖Ŵi (aka e-modification in (Narendra and
Annaswamy, 1987)) are used to relax the persistence of
excitation conditions on φi, and Fi, κi ≻ 0, i = H,C,G,
are design parameters in the form of nq×nq block diagonal
matrices. Moreover, when using (6) to represent H, the

number of weights that need fine-tuning after fixing Ĥv’s
is reduced from n2

q × dh in (18) to the number V of Ĥi’s,
which further improves the online fine-tuning efficiency at
the expense of increasing the offline learning complexity of
LINNs. Additionally, the updating law is simplified to

˙̂
WH =FH [ς1(t)

TĤ1s, · · · , ς1(t)
TĤV s]

T−

κHFH‖s‖ŴH (19)

where FH , κH ≻ 0 are V ×V diagonal matrices. Moreover,
we apply softmax transformation to the updated Ŵ such
that the combination of Ĥi remains convex. The schematic
of online fine-tuning LINNs is shown in Fig. 2. At each
time step, the control input (15) is estimated using the
parameters updated by (18).

4. EXPERIMENTAL RESULTS AND VALIDATION

This section validates the proposed learning methods.
1 We use di to denote the dimension of φi, i = H,C,G.

Fig. 2. Schematic of online learning of LINNs.

4.1 Validation on A 2-joint Manipulator

The kinetic equation of the 2-joint manipulator adapted
from (Liu and Wang, 2011) is in the form of (1) and

H(q) =

[

α1 + α2 + 2α3 cos(q2) α2 + α3 cos(q2)
α2 + α3 cos(q2) α2

]

,

C(q, q̇) =

[

−α3q̇2 sin(q2) −α3(q̇1 + q̇2) sin(q2)
α3q̇1 sin(q2) 0

]

,

G(q) =

[

α4g cos(q1) + α5g cos(q1 + q2)
α5g cos(q1 + q2)

]

,

τ = τu − F (q̇) = τu − 0.02sgn(q̇),

(20)

where [αi]
5
i=1

= [2.9 0.76 0.87 3.04 0.87], τu is the control
input, and F (q̇) is the friction force.

Experimental setup: A pseudo-random binary sequence
(PRBS) is used to excite the model with the amplitude
τ1 = {30, 50}, τ2 = {5, 15} and frequency in the range of
[0.1, 10]. A sampling time of 0.01 sec is chosen and 5, 000
data points were collected. We used the first 4, 000 points
for training and the remainder for testing.

Based on the properties of the dynamics of two-joint
manipulator, the feature functions are selected as

φH =
[

qT cos(q)T sin(q)T
]

,

φC =
[

[q̇ cos(q)]T [q̇ sin(q)]T
]

,

φG =
[

cos(q)T sin(q)T cos2(q)T sin2(q)T
]

,

φF =
[

q̇T sgn(q̇)T
]

.

(21)

Then, the features are respectively fed into the input layers
of the subnetworks in LINNs to represent H, C, G and
F . In particular, considering the model complexity of ma-
nipulators, the input layers are directly connected to the
output layers without activation functions for all the sub-
networks. The output vectors of subnetworks are reshaped
into matrices which are used to represent (10). The trained
LINNs are fine-tuned in real time using the approach in

Section 3.2. The initial state x0 = [0.09 0 −0.09 0]
T
and

the reference signal qd = 0.1 sin(t) for both joints were
considered. The controller parameters were assumed to be
Λ = diag{5, 5} Kv = diag{20, 20}. Moreover, the robust
term in (15) is not used when online learning is active
to avoid chattering. Finally, Fi = Ii, i = H,C,G, F and
κi = 0.1Ii are used for (18) where Ii’s are identity matrices
with suitable dimensions.

Results and discussion: The upper bound of the mis-
match is determined to be ǫmax = p − p̂ = [40.41 5.82].
ǫN = ǫmax can result in significant chattering while smaller
ǫN leads to larger tracking errors. The MSE on the training
data set is 1187.87. Moreover, the learned ODE model
cannot be solved at some states and inputs using the solver

 Yajie Bao et al. / IFAC PapersOnLine 54-20 (2021) 705–710 709

that works for the plant model. Fig. 3 shows the tracking
results and control inputs and Fig. 4(a) shows one-step
predictions of the fine-tuned LINNs. As observed, both
the tracking and prediction errors converge to 0 after a
few steps of online learning.

(a) Position tracking. (b) Velocity tracking.

(c) Control inputs.

Fig. 3. SMC results for the 2-joint manipulator.

(a) BFRq̇ = [95.49% 89.27%]T

using linear combinations of fea-
tures in (21).

(b) BFRq̇ = [96.30% 97.66%]T

using 6-layer ANNs with fea-
tures in (21) as input.

(c) BFRq̇ = [98.19% 94.59%]T

using linear combination of aug-
mented features.

(d) BFRq̇ = [95.22% 88.86%]T

using LINNs architecture in (6).

Fig. 4. Simulated ˆ̇q of the fine-tuned LINNs model and q̇
of the original system.

It is noted that the LINNs architecture in the experimental
setup cannot represent the family of models to which
(20) belongs, as (21) does not contain such terms as
cos(q1 + q2) which is not known a priori. Therefore, we
used multilayer ANNs to compensate for insufficiency of
features. Specifically, we used 4 hidden layers with 64
units and tanh activation. The tuning parameters of using
multilayer ANNs are Λ = diag{15, 15}, Kv = diag{5, 5},
ǫN = [0.001; 0.001], Fi = 2Ii, i = H,C,G, F and κi = 1e−
4Ii and the results are shown in Fig. 4(b). Additionally,
we augmented φC with q̇ ⊗ cos(q), q̇ ⊗ sin(q) and φG with
cos(q) ⊗ cos(q), sin(q) ⊗ sin(q) in (21) such that linear
combination of the augmented features can represent (20).
The tuning parameters of using the augmented features are
the same as the experimental setup except that Fi = 10Ii
and κi = 0.1Ii, and the results are shown in Fig. 4(c).
The BFRs are not 100% even though the LINNs with
augmented features contain the families of functions where

H,C,G, F belong, which demonstrates the effects of data
and optimization on the model accuracy. Moreover, LINNs
using 6-layer ANNs achieve similar accuracy to LINNs
using the augmented features, which shows the ANNs
can be used to learn a good model with coarse-grained
knowledge.

Moreover, we tested the performance of LINNs using the
architecture (6) and updating law (19). In particular, V=4.
A 3-layer ANN with leaky ReLU activation is used as the
base network. Then, a layer with linear activation is added
to the base network to model the off-diagonal elements
Lo
M,v and another layer with softplus activation is added

to the base network to model the diagonal elements Ld
M,v

of LM,v. Moreover, 4-layer ANNs with (21) as inputs and
tanh as activation functions are used to represent C and
G. The tuning parameters for LINNs with the architecture
(6) are the same as the experimental setup except that
Kv = diag{25, 25}, Fi = Ii and κi = Ii. As shown in Fig.
4(d), using the architecture (6) improves online learning
efficiency by fine-tuning less parameters but still achieves
an accuracy comparable with LINNs using multilayer
ANNs. Additionally, increasing the number V of Ĥv’s can
improve the accuracy of fine-tuned LINNs model.

4.2 Validation on A 3-joint Manipulator

We further validated the proposed approach on a 3-
joint manipulator. The motion equations of the 3-joint
manipulator are borrowed from (Truong et al., 2019). The
highest degree terms in H,C,G are sin2(q2 + q3), sin(q2 +
q3) cos(q2 + q3)q̇1, sin(q2 + q3), respectively.

Experimental setting: First, we assume that a dictionary
of feature functions exists such that H,C,G are affine
functions of the features. Then, the LINNs share the same
architecture as 4.1.1. Additionally, there are 5 closed-loop
trajectories generated by tracking results and

q1d =
55

2
+

55

2
sin(2πt/Ti − π/2),

q2d =
85

2
+

85

2
sin(2πt/Ti − π/2),

q3d = 50 + 47 sin(2πt/Ti − π/2)

where {Ti}
5
i=1

= {5, 7, 10, 13, 15}. The sampling time is
0.01 s. One period of data per trajectory (i.e., 5, 000 data
points) are used to learn LINNs. Then, the trained LINNs
are fine-tuned in real time using the approach in Section

3.2. The initial state x0 = [0.0001 0.01 0.05 0 0 0]
T

and
the reference signal

q1d = 30 + 30 sin(2πt/10− π/2),

q2d = 20 + 20 sin(2πt/10− π/2),

q3d = 40 + 20 sin(2πt/10− π/2).

The controller parameters are assumed Λ = diag{5, 15, 15},

Kv = diag{5, 60, 5}, and ǫN = [0.01 0.01 0.001]
T
. It is

noted that ǫ is far less than the plant-model mismatch but
the controller still works, as online learning keeps reducing
the mismatch. Fi = 0.01Ii, i = H,C,G, F and κi = 0.01Ii
are used for (18) where Ii’s are identity matrices with
suitable shapes.

Results and discussion: The tracking results and control
inputs are shown in Fig. 5. The large variations of control

710 Yajie Bao et al. / IFAC PapersOnLine 54-20 (2021) 705–710

inputs result from the large Kv which is related to the
reaching time required to approach the switching mani-
folds and used to dominate the plant-model mismatch. The
identification results are shown in Fig. 6. The prediction
of ˆ̇q1 is not accurate even after online learning. The reason
for the low BFR is the large MSE (66.83) of the ini-
tially learned LINNs model determined by the insufficient
training data. However, the adaptive SMC still achieved
acceptable control results and improved the identification
results while the initially learned model cannot be directly
used for prediction. Furthermore, using the closed-loop
data to fine-tune the LINNs offline can improve the control
and identification results.

(a) Position tracking. (b) Control inputs.

Fig. 5. SMC results of 3-joint manipulator.

Fig. 6. Simulated ˆ̇q2,3 of the fine-tuned LINNs model and
q̇2,3 of the original system. BFRq̇ = [91.40% 89.40%]T.

5. CONCLUDING REMARKS

In this paper, a physics-guided neural network learning
approach associated with online fine-tuning was proposed
to learn an accurate model from data. The proposed net-
work architecture (LINNs) is computationally efficient for
modeling systems that can be described by Euler-Lagrange
equations and compatible for SMC design, which is robust
to the mismatches between the learned model and the
plant. Moreover, the learned LINNs are fine-tuned in real
time by an updating law derived using the Lyapunov anal-
ysis of SMC. Experiments on a 2-joint manipulator and
a 3-joint manipulator models showed that the proposed
methods can learn an accurate model and achieve good
control performance with bounded plant-model mismatch
and be applied to systems of high complexities.

REFERENCES

Bao, Y., Mohammadpour Velni, J., and Shahbakhti, M.
(2020). An online transfer learning approach for
identification and predictive control design with
application to rcci engines. In Dynamic Systems and
Control Conference, volume 84270, V001T21A003.
American Society of Mechanical Engineers.

Bartoszewicz, A. and Żuk, J. (2010). Sliding mode
control — basic concepts and current trends. In 2010
IEEE International Symposium on Industrial
Electronics, 3772–3777. doi:10.1109/ISIE.2010.5637990.

Bishop, C.M. (2006). Pattern recognition and machine
learning. springer.

Chen, R.T., Rubanova, Y., Bettencourt, J., and
Duvenaud, D. (2018). Neural ordinary differential
equations. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems,
6572–6583.

Cranmer, M., Greydanus, S., Hoyer, S., Battaglia, P.,
Spergel, D., and Ho, S. (2020). Lagrangian neural
networks. In ICLR 2020 Workshop on Integration of
Deep Neural Models and Differential Equations.

Jia, X., Willard, J., Karpatne, A., Read, J.S., Zwart,
J.A., Steinbach, M., and Kumar, V. (2020).
Physics-guided machine learning for scientific
discovery: An application in simulating lake
temperature profiles. arXiv preprint arXiv:2001.11086.

Karpatne, A., Atluri, G., Faghmous, J.H., Steinbach, M.,
Banerjee, A., Ganguly, A., Shekhar, S., Samatova, N.,
and Kumar, V. (2017). Theory-guided data science: A
new paradigm for scientific discovery from data. IEEE
Transactions on Knowledge and Data Engineering,
29(10), 2318–2331. doi:10.1109/TKDE.2017.2720168.

Kratsios, A. (2021). The universal approximation
property. Annals of Mathematics and Artificial
Intelligence, 1–35.

Lewis, F.L., Liu, K., and Yesildirek, A. (1995). Neural
net robot controller with guaranteed tracking
performance. IEEE Transactions on Neural Networks,
6(3), 703–715.

Liu, J. and Wang, X. (2011). Neural Network Sliding
Mode Control, 281–300. Springer Berlin Heidelberg,
Berlin, Heidelberg. doi:10.1007/978-3-642-20907-9 10.

Lutter, M., Ritter, C., and Peters, J. (2019). Deep
Lagrangian networks: Using physics as model prior for
deep learning. arXiv preprint arXiv:1907.04490.

Narendra, K. and Annaswamy, A. (1987). A new
adaptive law for robust adaptation without persistent
excitation. IEEE Transactions on Automatic control,
32(2), 134–145.

Neyshabur, B., Bhojanapalli, S., McAllester, D., and
Srebro, N. (2017). Exploring generalization in deep
learning. Neural Information Processing Systems
(NeurIPS).

Raissi, M., Perdikaris, P., and Karniadakis, G.E. (2017).
Physics informed deep learning (part II): data-driven
discovery of nonlinear partial differential equations.
CoRR, abs/1711.10566. URL
http://arxiv.org/abs/1711.10566.

Roehrl, M.A., Runkler, T.A., Brandtstetter, V., Tokic,
M., and Obermayer, S. (2020). Modeling system
dynamics with physics-informed neural networks based
on lagrangian mechanics. arXiv preprint
arXiv:2005.14617.

Scaman, K. and Virmaux, A. (2018). Lipschitz regularity
of deep neural networks: analysis and efficient
estimation. arXiv preprint arXiv:1805.10965.

Truong, H.V.A., Tran, D.T., Ahn, K.K., et al. (2019). A
neural network based sliding mode control for tracking
performance with parameters variation of a 3-dof
manipulator. Applied Sciences, 9(10), 2023.

Utkin, V. and Hoon Lee (2006). Chattering problem in
sliding mode control systems. In International
Workshop on Variable Structure Systems, 2006.
VSS’06., 346–350. doi:10.1109/VSS.2006.1644542.

