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Abstract. This study explores how the continental litho-
spheric mantle (CLM) may be heated during channelized
melt transport when there is thermal disequilibrium between
(melt-rich) channels and surrounding (melt-poor) regions.
Specifically, I explore the role of disequilibrium heat ex-
change in weakening and destabilizing the lithosphere from
beneath as melts infiltrate into the lithosphere–asthenosphere
boundary (LAB) in intraplate continental settings. During
equilibration, hotter-than-ambient melts would be expected
to heat the surrounding CLM, but we lack an understand-
ing of the expected spatiotemporal scales and how these de-
pend on channel geometries, infiltration duration, and trans-
port rates. This study assesses the role of heat exchange
between migrating material in melt-rich channels and their
surroundings in the limit where advective effects are larger
than diffusive heat transfer (Péclet numbers > 10). I uti-
lize a 1D advection–diffusion model that includes thermal
exchange between melt-rich channels and the surrounding
melt-poor region, parameterized by the volume fraction of
channels (φ), average relative velocity (vchannel) between ma-
terial inside and outside of channels, channel spacing (d), and
timescale of episodic or repeated melt infiltration (τ ). The re-
sults suggest the following: (1) during episodic infiltration of
hotter-than-ambient melt, a steady-state thermal reworking
zone (TRZ) associated with spatiotemporally varying dise-
quilibrium heat exchange forms at the LAB. (2) The TRZ
grows by the transient migration of a disequilibrium-heating
front at a material-dependent velocity, reaching a maximum
steady-state width δ proportional to

[
φvchannel(τ/d)

n
]
, where

n≈ 2 for periodic thermal perturbations and n≈ 1 for a sin-
gle finite-duration thermal pulse. For geologically reasonable
model parameters, the spatiotemporal scales associated with

establishment of the TRZ are comparable with those inferred
for the migration of the LAB based on geologic observa-
tions within continental intra-plate settings, such as the west-
ern US. The results of this study suggest that, for channel-
ized transport speeds of vchannel = 1 m yr−1, channel spac-
ings d ≈ 102 m, and timescales of episodic melt infiltration
τ ≈ 101 kyr, the steady-state width of the TRZ in the lower-
most CLM is ≈ 10 km. (3) Within the TRZ, disequilibrium
heat exchange may contribute ≈ 10−5 W m−3 to the LAB
heat budget.

1 Scientific motivation

During its long residence at Earth’s surface, continental litho-
sphere is shaped by tectonic events such as rifting (includ-
ing supercontinent break-up) and plate collision, undergoing
profound changes in its physical and chemical state. In some
cases, previously stable (undeforming) portions of the con-
tinental lithosphere may be destabilized. Based on the close
association of magma infiltration with these events there is
growing speculation that, under certain circumstances, melt–
rock interaction may somehow weaken and perturb the sta-
bility of continental lithosphere (Hopper et al., 2020; Wenker
and Beaumont, 2017; Plank and Forsyth, 2016; Roy et al.,
2016; Wang et al., 2015; Menzies et al., 2007; Carlson et al.,
2004; Gao et al., 2002; O’Reilly et al., 2001). Recent work in
subduction settings suggests that heat advection by magma
transport into the overriding lithosphere is a fundamental
process that determines the thermal structure of arcs and pos-
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sibly aids thinning of the overriding plate (England and Katz,
2010; Perrin et al., 2016; ReesJones et al., 2018).

Fundamentally, this melt-enhanced weakening of conti-
nents is intertwined with the notion of thermal and chem-
ical disequilibrium between infiltrating melts and the sur-
rounding material, and therefore with transient processes that
drive the lithosphere from one stable state to another. These
processes, however, remain elusive. This paper explores one
aspect of the problem, namely, thermal disequilibrium dur-
ing infiltration of hotter-than-ambient melts into the base of
the lithosphere, as a means of weakening and shaping the
continental lithosphere from beneath. Specifically, I explore
thermal disequilibrium between melt-rich channels and sur-
rounding (melt-poor) material as a process to heat and mod-
ify the continental lithospheric mantle (CLM). The models
explored here are a useful way to place constraints on the
melt-transport scenarios for which a significant degree of
disequilibrium heat exchange (driven by temperature differ-
ences between materials within and surrounding channels)
may be important in the CLM at or near the lithosphere–
asthenosphere boundary (LAB).

This study is inspired by evidence for the role of ther-
mal disequilibrium from detailed field-based, petrologic, and
geochemical studies in the Lherz and Ronda peridotite mas-
sifs (Bodinier et al., 2008, 1990; LeRoux et al., 2007; Lenoir
et al., 2001; Saal et al., 2001; Vauchez and Garrido, 2001;
LeRoux et al., 2008, 2007, 2008; Soustelle et al., 2009). Im-
portant conclusions from studies in the Lherz and Ronda
peridotite massifs include the following: (1) “lherzolite”
(named after its type-section in the Lherz massif), commonly
regarded as pristine, fertile sub-continental lithospheric man-
tle, may be derived from refertilization of a depleted, harzbu-
rigitic parent (e.g., LeRoux et al., 2007, 2008); (2) careful
microstructural, geochemical, and petrologic work has doc-
umented the dominant effect of a steep thermal gradient as-
sociated with the region of contact and interaction between
partial-melt-rich regions and the surrounding lithosphere.
These workers provide a quantitative estimate of a transient
thermal gradient (≈ 230 ◦C km−1, or more than an order of
magnitude larger than a typical equilibrium geothermal gra-
dient expected at the LAB). Indeed, the authors recognize
this as a transient LAB and coin the term “asthenospheriza-
tion” for disequilibrium heat exchange processes modifying
the LAB. The spatial scale over which this disequilibrium
heating is observed in Ronda (∼ 1 km) guides the mesoscale
modeling approach here.

Additionally, this work is motivated by observations from
the western US, which has undergone extensive magma-
infiltration in Cenozoic time. Pressures and temperatures of
last equilibration of Cenozoic basalts consistently point to
depths that are at or below the present LAB (Plank and
Forsyth, 2016), suggesting that melt transport from those
depths upward through the lower CLM occurs in thermal dis-
equilibrium. In the Big Pine volcanic field, for example, the
inferred depth of the LAB decreases by > 10 km in a times-

pan of < 1 Myr (Plank and Forsyth, 2016), suggesting that
the processes associated with this migration may be transient
(LAB vertical migration rates in excess of ≈ 10 km Myr−1).
More recently, Cenozoic melt- or fluid-enhanced thinning
of the CLM in the western US has also been inferred from
geochemical and isotopic data from volcanic rocks (Farmer
et al., 2020). Such processes of thermally driven erosion and
migration of the LAB are also inferred in arc settings (e.g.,
Perrin et al., 2016; ReesJones et al., 2018). Motivated by
these observations, a primary goal of this work is to quan-
tify the role of transient, disequilibrium heating by infiltrat-
ing channelized melt as a mechanism for modifying the LAB
and the lowermost CLM.

It has been argued that a permeability contrast (e.g., Holtz-
man and Kendall, 2010) or a change in magma mobility
(e.g., Sakamaki et al., 2013) across the LAB is likely to
drive melts to pond and possibly drive the upward prop-
agation of dikes that may freeze and heat the CLM (e.g.,
Havlin et al., 2013; ReesJones et al., 2018). Not all infil-
trating melts would freeze, however, and some component
of hotter-than-ambient melts may be transported in thermal
and chemical disequilibrium into the CLM via established
channels or pathways (e.g., LeRoux et al., 2007; Schmel-
ing et al., 2018). Thermal disequilibrium during melt trans-
port is expected to become important within the CLM as
the degree of channelization and the relative melt–solid ve-
locity increases (e.g., Schmeling et al., 2018; Chevalier and
Schmeling, 2022). In this work, I am not concerned with
the emergence and development of these channel networks
within the lower CLM, nor the deeper processes that trans-
port melt from a sub-lithospheric melt-generation zone (e.g.,
Aharonov et al., 1995). Instead, the starting point of this
study is the observation that high-porosity, melt-rich chan-
nels are an important part of melt–rock interaction in the
CLM (e.g., Soustelle et al., 2009; LeRoux et al., 2007). An
important limitation of the models, therefore, is that channel-
ization is imposed via parameters that control a heat transfer
coefficient. The simplicity of the models, however, allows
us to focus on the implications of significant thermal gra-
dients between melt-rich channels and their surroundings.
Although others have also argued for the important role of
thermal disequilibrium in melt–rock interaction (Chevalier
and Schmeling, 2022; Keller and Suckale, 2019; Wallner and
Schmeling, 2016; Schmeling et al., 2018), this study pro-
vides a quantification of the role of thermal disequilibrium at
the LAB based on observational constraints discussed above.
This work builds on the 1D model in Roy (2020) (which did
not consider axial conduction) and includes both a thermal
contrast that drives heat exchange and axial diffusion terms
(e.g., following Chevalier and Schmeling, 2022) in order to
explore thermal equilibration over long timescales of melt in-
filtration (> 103−4 years) into the lowermost 1–10 km of the
CLM (e.g., stage 3, large Péclet numbers in Chevalier and
Schmeling, 2022).
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The 1D model abstracts the complex geometry of the
melt–rock interface and therefore differs from other descrip-
tions of disequilibrium heat exchange (Wallner and Schmel-
ing, 2016; Schmeling et al., 2018; Keller and Suckale, 2019).
Similar to chemical transport models that use a linear driving
term for chemical disequilibrium (e.g., Hauri, 1997; Kenyon,
1990; Bo et al., 2018), the models below assume a linear ther-
mal driving term (e.g., Schumann, 1929; Kuznetsov, 1994;
Spiga and Spiga, 1981). In this study, however, only the role
of thermal disequilibrium is included and I ignore important
processes such as chemical disequilibrium (e.g., Hauri, 1997;
Kenyon, 1990; Bo et al., 2018). The basic results of the 1D
model are presented below, followed by further discussion
of their limitations and implications. Although idealized, the
models provide a first-order assessment of the temporal and
spatial scales over which thermal disequilibrium can play
a role in warming and therefore weakening the lowermost
CLM. A key finding is that the lowermost portion of the CLM
may evolve into a long-term thermal reworking zone (TRZ)
driven by disequilibrium heat exchange in channelized melt
transport. The factors that determine the rate at which the
TRZ is formed and its spatial scale are estimated from the
models and are compared to geologic observations within
the western US, specifically geochemical and petrologic ev-
idence for the upward migration of the LAB during Ceno-
zoic melt–rock interaction (Plank and Forsyth, 2016; Farmer
et al., 2020).

2 Model of disequilibrium heat transport

The starting point for the models explored here is a sim-
ple, 1D theory of heat exchange in packed porous beds
by Schumann (1929), building on Roy (2020), where fluid
moves within the pores of a matrix of solid grains, and the
only variability in temperature (and temperature contrast be-
tween solid and fluid) is in the transport direction. In Schu-
mann (1929), the thermal evolution of the system is gov-
erned mainly by heat exchange across the solid–fluid inter-
facial surface. In this study, I present a re-interpretation of
Schumann’s model and of the effective heat transfer coeffi-
cient. Instead of considering fluid moving in pores between
solid grains, the system of equations from Schumann (1929)
may be used to describe thermal disequilibrium between ma-
terial within high-porosity channels and outside channels. In
other words, here “fluid” is interpreted to be in-channel ma-
terial and “solid” is material outside channels (for simplicity,
however, I retain the subscripts f (in-channel) and s (out-
side channels)). The goal here is to describe the relative im-
portance of advective transport over length scales that are
comparable to the channel spacings, so we define a trans-
port velocity, vchannel, as an average relative velocity across
channel walls. As described below, this reinterpretation also
extends to the physical meaning of the effective heat trans-
fer coefficient, where now the geometry across which the

transfer occurs must take into account the channel geome-
try and spacing. Furthermore, following Schumann (1929),
heat exchange is assumed to be linearly proportional to the
local temperature difference between solid and fluid (see also
Roy, 2020). Unlike Schumann (1929) and Roy (2020), how-
ever, this study includes thermal diffusive effects to account
for (axial) conduction within channels and within the mate-
rial outside of the channels. These arguments lead to cou-
pled equations for the temperature outside channels, Ts , and
within channels, Tf :

∂Tf

∂t
+ vchannel

∂Tf

∂x
=−

K

φcf
(Tf − Ts)+

λf

cf

∂2Tf

∂x2

≡−Kf (Tf − Ts)+
λf

cf

∂2Tf

∂x2 , (1)

∂Ts

∂t
=

K

(1−φ)cs
(Tf − Ts)+

λs

cs

∂2Ts

∂x2 ≡Ks(Tf − Ts)

+
λs

cs

∂2Ts

∂x2 , (2)

where vchannel is the average transport velocity of material
within melt-rich channels relative to the melt-poor surround-
ing material, φ is a fluid volume fraction, λf and λs are ther-
mal conductivities, cf and cs are the heat capacities per unit
volume (heat capacitances) at constant pressure (cf = cpf ρf
and cs = cpsρs), and x is the position coordinate in the trans-
port direction. Note that the geometry of the solid–fluid in-
terface is not treated in detail but is idealized in the channel
volume fraction, φ, the channel spacing, d, both of which
control an effective (across-channel-wall) heat transfer coef-
ficient, K , discussed below.

One advantage of “coarse-graining” in the Schumann
(1929) model (from the pore scale to macroscopic chan-
nels) is its simplicity and that it has been investigated in nu-
merous previous studies. There exist analytic solutions for
Eqs. (1) and (2) in limiting cases, particularly for large Péclet
numbers with axial diffusion terms ignored (without the last
terms in Eqs. 1 and 2) (Spiga and Spiga, 1981; Kuznetsov,
1994, 1995a, b, 1996). This re-interpretation of the model
must also be accompanied by an appropriate reinterpretation
of the heat transfer coefficient, K , made possible because in
the framework above the geometry of the interfacial surface
is not explicitly specified. The reinterpreted model is applied
to a semi-infinite domain where fluid transport occurs in
high-porosity channels aligned in one direction (Fig. 1). The
high-porosity channels are assumed to occupy a constant vol-
ume fraction, φ, within which material moves with a constant
(average) velocity vchannel relative to the surrounding station-
ary material outside the channel (volume fraction 1−φ). The
model domain may be thought of as co-moving with the ref-
erence frame of material outside the channels. Because of
the assumptions built into the 1D approach, the results be-
low are applicable to physical situations where transport is
dominantly in the along-channel direction and any motion of
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Figure 1. Illustration of the 1D model specified by (1) material pa-
rameters within and outside of channels (heat capacities cpf and
cps , thermal conductivities λf and λs , and densities ρf and ρs ), (2)
average in-channel velocity vchannel, and (3) geometric parameters
such as channel volume fraction φ and channel spacing d. The ef-
fective heat transfer coefficient K is a function of heat capacitances
(cpf /ρf , cps/ρs ) φ and d, scaling as d−2 (see Sect. 2.1); large K
corresponds to large channel wall area per unit volume (e.g., small
d) and vice versa. The input in-channel temperature vs. time func-
tions considered in this study are shown in the three graphs below:
(I) step function, (II) sinusoid, (III) finite-duration pulse.

material outside channels is steady. The model assumes that
the average channel geometry is unchanging within the do-
main and that the material outside the channels is initially
at a uniform temperature. The models and their interpreta-
tions, therefore, are used here to assess the role of thermal
disequilibrium as melts are transported (≈ 10–20 km or so)
within the lowermost CLM above the LAB within intraplate
settings.

In this model, the terms involving the thermal contrast
(Tf − Ts) in Eqs. (1) and (2) represent heat transfer across
the walls of the channels, between material within and out-
side the channels. This heat exchange depends on material
parameters that govern thermal diffusion perpendicular to
the transport direction, and on the geometry of the channels
themselves (e.g., sinuosity, spacing). The detailed geometry
of the channel walls (the relevant interfacial surface here) is
not specified in this simple 1D treatment, but is parameter-
ized by the heat transfer coefficient,K (Fig. 1). Therefore,K
is a proxy for the efficiency of conduction perpendicular to
the transport direction, and the geometry of the channel wall
interface, namely the wall area per unit volume, controlled
by the spatial scale of channelization, d (see Sect. 2.1).

As illustrated in Fig. 1, a large value of K may repre-
sent efficient heat exchange as in the case of many channels

separated by a small distance. Conversely, a low value of
K would represent inefficient exchange, as in the case of a
larger characteristic separation between the channels. In the
following sections, I consider the physical meaning ofK and
also present a non-dimensionalization of the Eqs. (1) and (2)
based on characteristic length and timescales in the prob-
lem. The coefficients of the temperature-contrast terms on
the right hand sides of Eqs. (1) and (2) specify the timescales
of heat exchange within channels, tf = 1/Kf = φcf /K , and
outside channels, ts = 1/Ks = (1−φ)cs/K . Additionally, a
characteristic length scale emerges out of the relative mo-
tion across channel walls, vchannel/Kf . These characteris-
tic length and timescales are used to non-dimensionalize
Eqs. (1) and (2) (see Sect. 2.2) and obtain the results pre-
sented below.

2.1 Heat transfer coefficient

In this section I consider the meaning of the heat transfer co-
efficient, K , and the related constants, Ks =K/(cs(1−φ))
and Kf =K/(cf φ) in Eqs. (1) and (2). Note that Kf and
Ks have dimensions of inverse time, and they both depend
on the heat transfer coefficient K . Physically, K represents
the amount of heat transferred across channel walls per unit
time, per unit volume, and per unit difference in temperature
(in Schumann, 1929, this exchange is across the solid–fluid
interface). The factors that determine K can be illustrated by
considering that the heat transfer rate across channel walls
must depend on the geometry of walls and also on the effec-
tive thermal conductivity of the channelized domain.

Although the geometry of the channels may be complex,
I consider one aspect of it, namely, the specific wall surface
area (wall area per unit volume), asf, which is a function of
the spatial scale of channelization. In the grain-scale porous
flow case considered in Schumann (1929) for example, if
the solid matrix is made of spheres with an average parti-
cle diameter p, then the specific area for a grain is S0 = 6/p,
so asf = S0(1−φ)= 6(1−φ)/p (Dullien, 1979). This sets a
limit for channels with channel spacing d , where we shall as-
sume that the specific surface area is asf ≈ A(1−φ)/d, where
A is a number that is between 2 (for planar sheet-like chan-
nels with small volume fraction φ) and 6 for transport around
spherical regions (Dixon and Cresswell, 1979; Schmeling
et al., 2018). Whereas the specific wall area is a geometric
factor, the effective conductivity of the medium depends on
the Nusselt number,Nu. Theoretical arguments in Dixon and
Cresswell (1979) show that the effective thermal conductiv-
ity may be written in terms of the individual in-channel and
out-of-channel thermal conductivities λf and λs (equivalent
to considering the channels and non-channel regions in par-
allel):

1
Ceff
=

[
1

Nuλf
+

1
βλs

]
, (3)
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where β = 10 for spherical matrix grains, 8 for cylinders,
and 6 for slabs (Dixon and Cresswell, 1979). Therefore, the
range of β = 6 to 10 represents the highly channelized vs.
porous flow end-members. For slow flows (Reynolds number
Re� 100), Handley and Heggs (1968) argue thatNu ranges
from 0.1 to 12.4 (Dixon and Cresswell, 1979) (Table 1). The
relevant quantity that determines K is an effective “conduc-
tance” Ceff/d, so that K = Ceffasf/d,

K =

[
1

Nuλf
+

1
βλs

]−1
A(1−φ)
d2 , (4)

a product of a material-dependent quantity and a geometry-
dependent quantity.

Turning now to physical properties relevant to the trans-
port of melts through the lithosphere, the channelized domain
may be thought of as consisting of a mixture of melt+grains
throughout, but with variable grain-scale porosity ϕ. Specifi-
cally, the fluid-rich channels would have a higher ϕf than the
surroundings ϕs. The thermal conductivity inside and outside
the channels would then be a volume average in each, e.g.,
inside channels, λf = ϕfλmelt+ (1−ϕf)λgrain, where λmelt
and λgrain are the values for, say, basaltic melt and peri-
dotitic grains. Similarly, outside channels the volume aver-
age would be λs = ϕsλmelt+ (1−ϕs)λgrain. Here I do not
specify reasonable ranges of ϕf and ϕs (in general, they will
both be within [0,1]), but rather I focus on determining
an upper limit to the role of disequilibrium heat exchange
across channel walls. Therefore, to explore the end-member
case, I take ϕf = 1 and ϕs = 0, so that λf = λmelt and λs =
λgrain. Using a reasonable conductivity for basaltic magma
of λmelt = 1 W m−1 K−1 (Lesher and Spera, 2015), λgrain =

2.5 W m−1 K−1) for the solid grains, and taking Nu= 0.1 to
12.4, β = 6, 8, or 10, and A= 6, we find that the effective
conductivity Ceff, asf, and K are within the ranges shown
in Fig. 2. (Note that choosing A≈ 2 would change K by
less than an order of magnitude.) As suggested by Eq. (4),
K ∼ d−2 and strongly decreases with increasing spatial scale
of channels (Fig. 2c). Although Fig. 2 theoretically explores
the full range of parameters and their effect on K , in prac-
tice these parameters are not independent and should be cho-
sen based on the geometry considered (e.g., Chevalier and
Schmeling, 2022). In the models in Sect. 3 I set β = 6 and
A= 2 as suggested for 1D channels (Dixon and Cresswell,
1979; Schmeling et al., 2018). As discussed in Schmeling
et al. (2018), the heat transfer coefficient should depend not
only on d the channel spacing, but also a length scale set
by the thickness of a microscopic thermal boundary layer
at fluid–solid interfaces, specifically, K ∼ Ceff / (a boundary
layer dimension) (Schmeling et al., 2018). This boundary
layer thickness is a function of time and only at timescales
that are long relative to a characteristic thermal response
time will the boundary layer encompass the entire region be-
tween channels Schmeling et al. (2018). Therefore, by tak-
ingK ∼ d−2, our models must be confined to timescales that

are large relative to the material-dependent thermal response
timescale (e.g., 1/Ks), a requirement that is met in all ther-
mal perturbations considered in this study.

To decide on a range ofK values appropriate to the LAB, I
turn to geologic observations of the scale of channelization in
exhumed portions of the lower CLM. Structural, petrologic,
and geochemical data from the Lherz Massif suggest that
melt–rock interaction has driven refertilization of a harzbur-
gite body into lherzolite (LeRoux et al., 2007, 2008). In the
field, the lherzolite bodies are separated from each other by
distances of several tens of meters and this is also the spa-
tial scale of isotopic disequilibrium between metasomatiz-
ing fluids and the harzburgite parent material (LeRoux et al.,
2008). With this as a proxy for the spatial separation of fluid-
rich channels, I choose a broad range for the relevant spa-
tial scale of channelization, d = 100 to 103 m (1 m to 1 km
channel spacing). The corresponding range of the heat trans-
fer coefficient in the models is therefore K ≈ 10−5 (large
d) to 101 (low d) in W m−3 K−1 (Fig. 2). In the following,
material properties, channel volume fraction, channel veloc-
ity, and heat transfer coefficient are fixed for each calcula-
tion (Table 1), but we confine d > 102 m in order to ensure
an effective Péclet number Pe > 10. Taking typical param-
eters φ = 0.1, d = 1000 m, and corresponding K values in
Fig. 2, typical timescales of response are ts = 1/Ks ≈ 9800
years and tf = 1/Kf ≈ 1200 years, short compared to the
timescales of geologic events and the timescale of sinusoidal
and pulse-like thermal perturbations considered here.

2.2 Non-dimensional system

To non-dimensionalize the system of Eqs. (1) and (2) (fol-
lowing Spiga and Spiga, 1981), we define the normalized
relative temperature, T ′f = (Tf − T0)/1T and T ′s = (Ts −

T0)/1T , where T0 is reference temperature and1T is a tem-
perature perturbation (described below). We also introduce
the dimensionless position, x′ = xKf /vchannel, a dimension-
less time, t ′ =Ks t , and the weighted heat capacitance ratio,
ζ =Ks/Kf = φcf /(1−φ)cs (from Eq. (5), we see that 1/ζ
is a non-dimensional velocity). The non-dimensional ver-
sions of Eqs. (1) and (2) are now Eqs. (5) and (6):

ζ
∂T ′f

∂t ′
+
∂T ′f

∂x′
=−(T ′f − T

′
s )+

[
λf

cf

Kf

v2
channel

]
∂2T ′f

∂x′2

≡−(T ′f − T
′
s )+Df

∂2T ′f

∂x′2
, (5)

∂T ′s

∂t ′
= (T ′f − T

′
s )+

[
Kf

Ks

λs

cs

Kf

v2
channel

]
∂2T ′s

∂x′2

≡ (T ′f − T
′
s )+Ds

∂2T ′s

∂x′2
, (6)

Analytic solutions for this set of equations have been derived
for a number of limiting cases, particularly forDf =Ds = 0
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Table 1. Material properties and constants used in calculations

Name Symbol Value or range Source/comments

Melt, grain density ρmelt, ρgrain 2800, 3300 kg m−3 Lesher and Spera (2015)

Melt specific heat capacity cpmelt 1400 J kg−1 K−1 Lesher and Spera (2015)

Grain specific heat capacity cpgrain 1250 J kg−1 K−1 Lesher and Spera (2015)

Melt heat capacity per volume cmelt 3.920×106 J m−3 K−1 cpmelt× ρmelt

Grain heat capacity per volume cgrain 4.125×106 J m−3 K−1 cpgrain× ρgrain

Melt thermal conductivity λmelt 1 W m−1 K−1 Lesher and Spera (2015)

Grain thermal conductivity λgrain 2.5 W m−1 K−1 Lesher and Spera (2015)

In-channel, out-of-channel grain-scale
porosity

ϕf, ϕs 1, 0 end-member case maximizing material
property contrast

In-channel heat capacity per volume cf 3.920×106 J m−3 K−1 cf = ϕfcmelt+ (1−ϕf)cgrain = cmelt

Out-of-channel heat capacity per
volume

cs 4.125×106 J m−3 K−1 cs = ϕscmelt+ (1−ϕs)cgrain = cgrain

Heat transfer coefficient K 10−5 to 10−7

W m−3 K
this work (Sect. 2.1)

Channel volume fraction φ 0.01 to 0.2 e.g., Pec et al. (2017)

Channel average (linear) velocity
relative to surroundings

vchannel 1 to 100 mm yr−1 e.g., Rutherford (2008)

Weighted heat capacitance ratio ζ 0.0096 to 0.2376 calculated, ζ = φcf /(1−φ)cs

Fluid–solid Nusselt number Nu 0.1 to 12.4 for slow flows (Handley and Heggs, 1968)

Constant in Eq. (3) β 6–10; use 6 here Dixon and Cresswell (1979)

Constant in Eq. (4) A may be 2–6; use 2 for
channels here

Dullien (1979)

Separation of fluid-rich channels d 102 to 103 m LeRoux et al. (2008)

(Spiga and Spiga, 1981; Kuznetsov, 1994, 1995a, b, 1996),
and were used to test the numerical calculations in this study.

The terms in square brackets in Eqs. (5) and (6) represent
dimensionless coefficients that govern the diffusion terms,
Df and Ds . Using the definition of ζ , we can further sim-
plify the coefficient of the diffusion termDs and express it in
terms of Df as

Ds =Df

[
1−φ
φ

λs

λf

]
. (7)

It is clear that for a given temperature difference (T ′f − T
′
s )

the behavior of Eqs. (5) and (6) is governed by Df and ζ
(1/ζ is a dimensionless in-channel velocity), thermal con-
ductivities λs and λf , and the channel volume fraction, φ.
We can define an effective Péclet number for the problem as
the product of the velocity vchannel, the characteristic length
scale vchannel/Kf = vchannel(φcf )/K , divided by the thermal

diffusivity of the channel material λf /cf ,

Pe1 =
v2

channelc
2
f φ

λfK
= 1/Df , (8)

where heat exchange due to thermal disequilibrium across
channel walls (disequilibrium heating) will be important
when Pe1� 1. SinceK is a function of user-specified mate-
rial and channel geometry parameters, we may further write
Pe1 as

Pe1 = v
2
channel

c2
f

λf

[
1

Nuλf
+

1
βλs

]
d2φ

A(1−φ)
. (9)

Alternatively, one may also define an effective Péclet number
as the product of v2

channel, a characteristic timescale 1/Ks =
cs(1−φ)/K , divided by the thermal diffusivity of material
outside channels λs/cs ,
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Figure 2. (a) Effective thermal conductivity, Ceff in Eq. (3), as a function of Nusselt number; (b) geometric factor, asf, as a function of
channelization scale, d; and (c) heat transfer coefficient, K , as a function of channelization scale d . For a fixed d, the dashed lines in (c)
delineate the variation in K for the range of β values in (a) and φ values in (b), illustrating that K is mainly controlled by d, rather than the
other parameters. Gray shading indicates the range of channel spacings relevant to models with Pe > 10 presented in this study.

Pe2 = v
2
channel

c2
s

λs

[
1

Nuλf
+

1
βλs

]
d2φ

A
. (10)

These definitions are limited to consideration of channelized
flow and more complex dependence between Pe, and φ is
suggested in the case of tubes or pores (e.g., Chevalier and
Schmeling, 2022). Using values of Nu= 12, β = 6, A= 2,
with φ and material properties in Table 1, for a given vchannel,
d , Pe1 is ≈ 2 to 3 times larger than Pe2. Hereafter, I use the
definition of Pe2 when referring to Péclet number Pe.

Note that the definitions in Eqs. (9) and (10) referred to
as effective Péclet numbers, to distinguish them from the Pé-
clet number one, can define for axial transport in the chan-
nels, Pechannel = vchanneldcf /λf . By using the characteris-
tic times 1/Kf or 1/Ks , these definitions explicitly consider
timescales associated with thermal exchange perpendicular
to the transport direction, which depends on material param-
eters both inside and outside channels. In this manner, the
definitions in Eqs. (8) to (10) take into account the key role
played by heat exchange governed byK that works to reduce
the thermal contrast across the channel walls.

2.3 Numerical method

Equations (5) and (6) are solved numerically in explicit time
using a leap-frog method. The 1D domain x′ = [0,L] with
L= 102 to 103 is discretized typically with N = 1000–5000
elements, and the maximum time for each run is t ′max > Lζ

(for thermal perturbations considered below that have a char-
acteristic time τ , I use t ′max > Lζ + 2Ksτ ). For a given el-
ement size dx′ = L/N , second-order finite differences are
used for all spatial derivatives. The time step dt ′ is chosen
(empirically) to be small enough to avoid numerical disper-
sion (for Pe > 1, it is sufficient to choose dt ′ = dx′× 10−4).
The code is written in MATLAB (R2021b), and results be-
low are confirmed using different grid resolutions. Step-
function perturbation models below without axial diffusion
(Df =DS = 0) were benchmarked (using leap-frog with up-
wind differencing for the spatial derivatives) against analytic
solutions in Schumann (1929).

3 Results

In the models below, I consider a 1D domain (x ≥ 0) that
is initially in equilibrium T ′s = T

′

f = 0; material outside the
channels is stationary, and only the in-channel material is
moving, at speed vchannel. At x = 0 and t = 0+, the in-
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1422 M. Roy: An idealized model of heat exchange during channelized melt transport

channel material is subjected to a thermal perturbation in
Tf . The non-dimensional Eqs. (5), (6), and (7) are used to
determine the transient thermal equilibration between ma-
terial inside and outside channels, but we limit consider-
ation to models where advective transport dominates and
Pe > 10. I consider transient thermal evolution with three
scenarios of influx of hotter-than-ambient melt or fluid, in
order of increasing complexity (Fig. 1): (I) a step-function
increase in temperature of the in-channel material; (II) a si-
nusodal temperature perturbation; and (III) a finite-duration,
constant-amplitude thermal pulse. The perturbation in Tf
disturbs the initial steady-state condition in the domain start-
ing at t = 0+ as material with a perturbed temperature en-
ters channels at x = 0 with a positive perturbation amplitude
1T (Fig. 1). The perturbation “front”, the farthest extent of
channel material that entered at x = 0 with perturbed temper-
ature, is at xpert = vchannelt (or x′pert = t

′/ζ ; where the dimen-
sionless velocity inside channels is 1/ζ ; see Sect. 2.2). (Note
that the location of maximum disequilibrium heat exchange
(T ′f − T

′
s )max) moves at a different speed, Vdiseqm, discussed

below.) In each case, the physical, user-specified quantities
that specify the model are the channel spacing d , channel vol-
ume fraction φ, the in- and out-channel thermal conductivi-
ties λf and λs , heat capacitances cf , and cs , and the speed of
the in-channel material vchannel (see values in Table 1). Since
the material properties cs and cf are held constant, there is a
unique mapping between ζ and φ, the channel volume frac-
tion (for φ = 0.01 to 0.20, ζ = 0.0096 to 0.2376; Table 1).

3.1 Response to a step function

The domain is initially at steady state in equilibrium at
temperature Ts = Tf = T0 (T ′s = T

′

f = 0), and at t = 0 the
temperature of the in-channel material entering at the in-
flow x = 0 is perturbed so that Tf (x = 0, t > 0)= T0+1T

(or T ′f = 1). As material with higher temperature enters the
channels, a transient thermal response occurs as the mate-
rial inside and outside channels begin to equilibrate (material
in channels cool, surroundings heat). A transient disequilib-
rium zone is observed to travel into the domain (Fig. 3a and
b). Ahead of this disequilibrium zone, the channels are in
equilibrium with the surroundings at the initial ambient tem-
perature, T ′s = T

′

f = 0. Behind this zone, the channels are in
equilibrium with the surroundings at the inlet temperature,
T ′s = T

′

f = 1. The models compared in Fig. 3a and b (same
φ but different channel spacing d) show that the transient
disequilibrium zone is observed to travel into the domain at
the same Vdiseqm, controlled by φ, but the observed broaden-
ing of initially steep thermal profiles during transport differs,
suggesting it is controlled primarily by the channel spacing
d , and therefore the effective heat transfer coefficient K . Al-
though diffusion plays a role in the broadening of the ther-
mal profiles downstream, it is important to note that, unlike
a simple advection–diffusion equation (where at large Pé-
clet number we might not expect as much broadening of an

initially sharp pulse), both terms on the right hand sides of
Eqs. (5) and (6) will drive broadening in this model. Even in
the absence of diffusion, therefore, thermal contrast between
the material inside and outside channels causes shallowing
of steep thermal gradients during transport (e.g., Fig. 3c and
d; see also Roy, 2020). At large Pe this disequilibrium heat
exchange dominates over axial conduction.

Following an initial lag time (when the maximum thermal
contrast is at x = 0), the disequilibrium zone (marked by the
peak in the T ′f − T

′
s function, (T ′f − T

′
s )max in Fig. 4b) mi-

grates inward migration at a steady speed Vdiseqm, a fixed
fraction of vchannel that depends on φ, the channel volume
fraction (Fig. 4a and b). The ratio Vdiseqm/vchannel varies lin-
early with φ (Fig. 4c). In the near-equilibrium limit (T ′f −
T ′s ≈ 0), Kuznetsov (1994) shows that the shape of the tem-
perature difference function (Fig. 4b) approaches a Gaussian
function with width that depends on

√
t ′ and the zone of dis-

equilibrium migrates at speed vchannelcf /(φcf + (1−φ)cs).
Our models show that, when there is significant disequilib-
rium, the zone of disequilibrium migrates with a rate given
by Eq. (11) (Fig. 4c), independent of K , the heat transfer
coefficient. Empirically, a key result is that the location(s)
of maximum disequilibrium (T ′f − T

′
s )max and therefore the

greatest heat exchange progress inward into the domain at a
rate given by material properties, the channel volume frac-
tion, φ, and the in-channel velocity, vchannel,

Vdiseqm ≈ vchannel

(
cf

cs

)(
cf φ

cf φ+ (1−φ)cs
.

)
(11)

Although Vdiseqm is independent of K , it is important to
note that the degree of disequilibrium is not. Figure 3 il-
lustrates the dependence on K for the specific case where
the in-channel velocity vchannel = 1 m yr−1, and d = 500 to
1000 m, which correspond to K = 4.7× 10−5 and 1.2×
10−5 W m−3 K−1, respectively. A second key result that
emerges is that the degree of disequilibrium decreases expo-
nentially as the zone of disequilibrium migrates inward. This
spatial decay is observed in Fig. 3b; however, it is quantified
below, considering periodic thermal perturbations.

3.2 Response to a sinusoidal thermal perturbation

Here we consider a second scenario where the fluid enter-
ing the domain is hotter than the ambient initial tempera-
ture, but the thermal contrast varies sinusoidally. Although
this is an idealized condition, it may be interpreted to rep-
resent periodic pulses of high-temperature material entering
into fluid- or melt-rich channels. Since any continuous time-
varying thermal history at the inflow may be represented as a
sum of sinusoids, this scenario also helps build intuition re-
garding the inherent length and timescales of equilibration.
Sinusoidal thermal pulses introduce a new timescale into the
problem, the period τ , and the relevant timescale to com-
pare to is 1/Ks , the longest response timescale in the domain
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Figure 3. (a) Normalized temperature profiles, T ′s (dashed lines) and T ′
f

(solid lines), for models with in-channel velocity vchannel =

1 m yr−1, at times t = 50, 125, and 200 kyr after a step-function perturbation in T ′
f

. The temperature profiles transition between the incoming
channel material normalized temperature (= 1, left) and the initial ambient temperature (= 0, right). We compare temperature profiles for
two cases with the same channel volume fraction φ = 0.12 but different channel spacing, d , and therefore heat transfer coefficient K and
Péclet number, indicated. The transition region (e.g., highlighted in gray for the d = 500 m model at t = 50 kyr), has width, w, that is larger
for smaller K (large d) and increases over time. (b) Profile of the temperature difference T ′

f
− T ′s between channels and surroundings at

times indicated, for the same calculations in (a). The degree of disequilibrium (red and blue arrows) is greater for smaller K (higher Pe) and
decreases as a function of time. Panels (c) and (d) compare the results for d = 500 m (red lines in (c) and (d) are identical to those in (a) and
(b)), but using a modified model where the axial diffusion terms in Eqs. (5) and (6) are neglected (Df =Ds = 0).

Figure 4. (a) Normalized temperature within channels (solid lines) and surroundings (dashed lines) at different times (indicated) following
a step-function perturbation in Tf . The models shown here have the same in-channel velocity vchannel = 1 m yr−1 and channel spacing
d = 500 and are compared at times t = 50, 125, and 200 kyr as in Fig. 3. The two cases here differ, however, in the channel volume fraction,
φ (indicated), illustrating that the migration rate of the zone of disequilibrium is a function of φ. (b) Normalized temperature difference
T ′
f
− T ′s between channels and surroundings as a function of position, shown for the same times as in (a). (c) Normalized migration rate of

the zone of disequilibrium as a function of channel volume fraction, φ. Red dot is for φ = 0.12, corresponding to bright red lines shown in
(a) and (b), and in Fig. 3.

(on the order of 103 years; see Sect. 2.1), associated with the
thermal response of the material outside channels.

Periodic thermal perturbations that might represent melt
infiltration pulses lasting 104 to 106 years are characterized
by a region of spatially varying temperatures: a thermal re-
working zone (TRZ) (Fig. 5). A key result is that thermal

pulses with periods that are long compared to 1/Ks pene-
trate farther into the domain than shorter period oscillations
(Fig. 5). The non-dimensional period, τKs = τK/(1−φ)cs ,
controls the length scale, δ, over which thermal oscillations
penetrate into the domain. The wavelength of these temper-
ature oscillations is set by the period τ , λ= vchannelτ . The
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1424 M. Roy: An idealized model of heat exchange during channelized melt transport

penetration distance of the oscillations, δ, is the maximum
width of the TRZ. At short timescales, when t � δ/Vdiseqm,
there is one zone of disequilibrium (the TRZ), bounded by
the inward-traveling edge of the region of spatially oscillat-
ing temperatures. The TRZ is initially narrow but widens
at a rate Vdiseqm, eventually reaching a maximum width, δ
(akin to a thermal “skin depth”), at time δ/Vdiseqm. When
t � δ/Vdiseqmt , there are two zones of disequilibrium: a sta-
tionary one bounded by the inlet with width δ (the TRZ, e.g.,
the wide region of gray at the left edge of the domain in
Fig. 5a and b) and a migrating zone that continues inward
at Vdiseqm (inset in Fig. 5b). The amplitude of the tempera-
ture oscillations decay with distance, but at each location in
the TRZ the amplitude is constant, once oscillations are es-
tablished (Fig. 5). This effect is identical to the exponentially
decaying degree of chemical disequilibrium obtained using a
very similar set of equations to Eqs. (2) and (1) in the analytic
solutions of Kenyon (1990).

As we might expect, the maximum width of the TRZ, δ,
is set controlled both by the non-dimensional oscillation pe-
riod, τ/ts and by the heat transfer coefficient, K . In the ab-
sence of the axial diffusion terms, previous work (Spiga and
Spiga, 1981; Kenyon, 1990) has shown that

δ =

(
cf φvchannel

K

)(
(τ/ts)

2

4π2

)
, (12)

noting thatK ∼ d−2 (2.1) and ts = 1/Ks = cs(1−φ)/K; the
expression above suggests that, for fixed vchannel, δ is pro-
portional to (τ/d)2 in the absence of axial conduction. With
axial conduction, in the limit of large d (large heat trans-
fer coefficient and Péclet number), this scaling is confirmed
by the numerical results for sinusoidal periodic perturbations
(square symbols in Fig. 7). A consequence of the inward-
decaying degree of disequilibrium between material inside
and outside of channels is that disequilibrium heat exchange
occurs only within a certain distance, δ, of the inlet (x = 0),
within the TRZ (Fig. 5).

3.3 Finite pulse, duration τp, amplitude 1T

Here we consider the fate of a finite-duration thermal pulse,
representing episodic infiltration of melts that are hotter
than the ambient CLM. This scenario introduces a timescale
into the problem, the pulse duration τp, implemented here

as a tanh-function (1/2)
(

tanh
(
(t−τp/2)

w

)
− tanh

(
(t−3τp/2)

w

))
with a characteristic growth–decay timescale w that depends
upon τp, e.g., w = 0.1τp in these models. The results for
a finite-duration pulse, exemplified in Fig. 6, are consistent
with the characteristic transient behavior already apparent in
the sine and step-function perturbations above. The thermal
perturbation T ′f in the channels at x = 0 km (the inlet) is dis-
torted as it proceeds into the domain, broadening in width
and decaying in amplitude (Fig. 6a). Similarly, the zone of
disequilibrium heat exchange (marked by (T ′f − T

′
s )max) mi-

Figure 5. (a) Normalized temperature profiles in-channel T ′
f

(solid
lines) and out-of-channel T ′s (dashes), at times indicated, for a
calculation with in-channel velocity vchannel = 1 m yr−1, channel
volume fraction φ = 0.12, channel spacing d = 500 m, and heat
transfer coefficient K and Pe as indicated. For the chosen pa-
rameters, the response timescale is 1/Ks = ts ≈ 2.6 kyr. Results
are shown for two different sinusoidal thermal variations in the
incoming in-channel material with (normalized) oscillation peri-
ods: τ/ts = 20 (red, shown at t = 350 kyr) and τ/ts = 100 (blue,
shown at t = 700 kyr). The region of sinusoidal thermal profile
(gray shading) has reached a steady-state width for the τ/ts = 20
case but not for τ/ts = 100. (b) Normalized temperature difference
T ′
f
− T ′s between channels and surroundings as a function of po-

sition, shown for the same times as in (a). The thermal reworking
zone (TRZ) (gray shaded region for τ/ts = 20) has spatial oscilla-
tions in T ′

f
−T ′s , with amplitudes that decrease over a length scale δ,

the width of the TRZ: δ is larger for longer period (blue) and shorter
for shorter period (red). The degree of disequilibrium (T ′

f
− T ′s ) is

oscillatory in the TRZ, with decaying amplitude over width δ. Inset:
Illustration of a steady-state TRZ (once it has widened to a width
δ). During the widening phase, the TRZ width increases at a rate
Vdiseqm. Once it has grown to maximum width, δ, beyond x = δ the
domain is at equilibrium (T ′s = T

′
f
= 0.5), except for a region that

continues to migrate inward at Vdiseqm (arrows).

grates into the domain at a rate given by Eq. (11) and decays
during transport (Fig. 6b).

As with the sinusoidal perturbation, these effects lead to
a TRZ that widens over time to a maximum width, δ, that
scales with the duration of the thermal pulse τ , channel spac-
ing d , and volume fraction φ. Figure 7 illustrates how, for
fixed vchannel = 1 m yr−1, independent parameters d , φ, and
τ lead to variable TRZ widths, δ. For a given channel spac-
ing d , which strongly controls the heat transfer coefficient,
K ∼ d−2 (large d , small K), I consider a range of plausible
channel volume fractions φ = 0.01 to 0.2 (Table 1). Whereas
δ is proportional to τ 2 for large d in the pure sinusoid case
(square symbols in Fig. 7), the finite-duration pulse results
point to an n value likely less than 2, closer to 1 (Fig. 7).
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Figure 6. Two views of the thermal response to a finite-duration perturbation (T ′
f
(x = 0, t) is a tanh-function) with duration τp = 25 kyr, in

a model with vchannel = 1 m yr−1, channel volume fraction φ = 0.12, and channel spacing d = 500 m. (a) Normalized temperature outside
channels (T ′s , solid lines) and within channels (T ′

f
, dashed lines) at various times as indicated. (b) The degree of disequilibrium, T ′

f
− T ′s as

a function of position, the same times as in (a). Curved dashed line illustrates an exponentially decaying envelope that is used to estimate δ,
the width of the TRZ. For clarity, intermediate temperature profiles used to estimate δ are shown in the inset. (c) Temperature–time history
for a model with for a model with in-channel velocity. Normalized temperature outside channels (T ′s , solid lines) and within channels (T ′

f
,

dashed lines) at varying locations within the domain (x, as indicated) are plotted as a function of time since contact with material that entered
channels at x = 0, t = 0. (d) The degree of disequilibrium, T ′

f
− T ′s for the same x locations as in (c), plotted as a function of time since

contact with material that entered channels at x = 0, t = 0.

This is likely due to the fact that sinusoidal perturbations
represent a higher and continuous energy input into the sys-
tem compared to a finite-duration pulse, suggesting that in
the case of multiple (episodic) pulses of melt infiltration, the
scaling exponent is likely to be between 1 and 2. To obtain a
TRZ width between 1 and 10 km, we require channel spac-
ings around d = 100 (with φ = 0.1 to 0.2), d = 500 m (with
φ < 0.16), or d = 1000 m (with φ < 0.02) and thermal pulse
durations of 101 to 102 kyr (Fig. 7).

4 Discussion

The model scenarios considered above are idealized and
therefore limited in their representation of the complexities
of deformation and fluid–rock interactions within the CLM.
In particular, the effective thermal properties and the geom-
etry of the fluid- and melt-rich channels are abstracted into
a single number, the heat transfer coefficient, K , strongly
controlled by the channel spacing, d . Sinuosity and other as-
pects of the geometry of channelization are abstracted, and
the details of processes at and below the scale of an average
channel spacing, d , are ignored. Instead, the focus here is on
the effective behavior at mesoscopic spatial scales� d . Even
at these scales, this formulation ignores spatial variations in
transport, including variability in the channel volume frac-
tion φ, in-channel velocity vchannel, and effective heat trans-
fer coefficient K . Time-dependent variability in transport is
also ignored, e.g., feedbacks due to possible phase changes

during disequilibrium heating or cooling which would affect
the geometry of the channels (Keller and Suckale, 2019). Fi-
nally, this 1D model ignores the 3D nature of relative motion
between material inside and outside channel walls even on
the mesoscale (� d).

Given these limitations, the models above are a way to
frame first-order questions and develop arguments related
to the consequences of disequilibrium heating, particularly
when the behavior is dominated by downstream effects in
the direction of transport. Taking the model domain to be
analogous to the lowermost lithosphere, where melt or fluid
transport may be channelized (Fig. 8), x < 0 corresponds
to a melt-rich sub-lithospheric region (e.g., a decompaction
layer, Holtzman and Kendall, 2010), whereas the domain
x > 0 represents an initially sub-solidus lowermost CLM,
and x = 0 is the initial LAB (Fig. 8). Melt infiltration into the
lithosphere may be episodic, controlled by timescales associ-
ated with transport from the melt-generation zone to the LAB
(e.g., Scott and Stevenson, 1984; Wiggins and Spiegelman,
1995), processes of fracturing and crystallization in a dike
boundary layer (e.g., Havlin et al., 2013) and melt supply
from a deeper region of melt production (e.g., Lamb et al.,
2017).

Three key results emerge from the models above: (1) dis-
equilibrium heating, estimated using the heat transfer coef-
ficient, may be a significant portion of the heat budget at
the LAB and the lowermost CLM; (2) there is a material-
dependent velocity associated with transient disequilibrium
heating; and (3) there is a region of spatiotemporally vary-
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Figure 7. Width of the TRZ, δ for calculations with vchannel =
1 m yr−1 transport velocity and variable channel spacing, d. Nu-
merically derived values of δ are obtained by fitting an exponen-
tial decay to the maximum degree of disequilibrium max(T ′

f
−T ′s ),

e.g., Fig. 6b. Results compiled here are for periodic thermal per-
turbations with period τp (squares) and for finite-duration thermal
perturbations with duration τp (triangles). For clarity, models with
fixed φ = 0.12 and varying d are shown for the periodic perturba-
tions. For finite-duration pulses, results shown include variable d
and φ, as indicated. For given d and τp, δ is a function of chan-
nel volume fraction φ = 0.01 to 0.2 (Table 1); the color saturation
of the symbols corresponds to φ: darkest = φmin = 0.01 and light-
est = φmin = 0.2. A few representative thin black dashed lines are
drawn to connect models that have the same channel geometry pa-
rameters d and φ, but differ only by the incoming thermal pulse
duration, τp. The slopes of the thin dashed lines therefore illustrate
how δ scales with τp. Light orange dashed lines show the slope
expected for the analytic scaling in Eq. (12) (slope = 2) and the
approximate scaling observed here (slope = 1) for finite-duration
pulses. Thick horizontal lines indicate δ = 1 and 10 km; gray shad-
ing represents δ ≤ 10 km, e.g., the lowermost 10 km of the CLM.

ing disequilibrium heat exchange, a thermal reworking zone
(TRZ). Below I discuss each of these within the context of
episodic melt infiltration into the CLM in an intra-plate set-
ting, specifically the Basin and Range province of the west-
ern US where deformation and 3D melt transport may be
simplified by neglecting plate-boundary effects. In this case,
dominantly vertical heat transport within a slowly deforming
lithosphere is a reasonable first-order assumption.

i. Disequilibrium heating and the heat budget at the LAB.
The relative importance of disequilibrium heat exchange at
the LAB may be established by considering the effective
heat transfer coefficient, K , and the parameter which most
strongly controls it, namely the average spacing of channels,
d . For the material parameters in Table 1, and channel vol-
ume fraction φ ≈ 0.1, channel spacing of d = 500 to 1000 m,
K is of order 10−5 W m−3 K−1 (Sect. 2.1), corresponding

to Péclet numbers on the order of 101. Physically, K cor-
responds to across-channel heat transfer per unit time, per
unit volume, and per unit difference in temperature (Schu-
mann, 1929). Therefore, if we assume that the average ther-
mal contrast in the TRZ is roughly 2 % to 5 % of 1T (e.g.,
(T ′f −T

′
s )max in Fig. 6), for 1T = 100 K excess temperature

of the infiltrating melt, disequilibrium heat exchange might
contribute around 10−4 to 10−5 W m−3 to the heat budget
at the LAB. This is a conservative estimate, given that the
temperature difference between magma and the surround-
ing material may be larger (e.g., in Lherz the inferred con-
trast is > 200 K, (Soustelle et al., 2009), and up to 1000 K in
crust, Lesher and Spera, 2015). Similarly, plume excess tem-
peratures are estimated to be as large as 250 K (Wang et al.,
2015).

To put this in perspective, we now compare this estimated
heat budget to the heat budget due to deposition of latent
heat during crystallization of melt transported in channels in
the lithosphere (e.g., Havlin et al., 2013; ReesJones et al.,
2018). The contribution from freezing of melt may be esti-
mated using scaling arguments made in Havlin et al. (2013).
Assuming that melt and rock are in equilibrium, Havlin
et al. (2013) estimate that the heat released by a crystal-
lization front would contribute around ρHSdike, where ρ is
the melt density, H is the latent heat of crystallization, and
Sdike is a volumetric flow rate out of a decompacting melt-
rich LAB boundary layer due to diking. For a representative
dike porosity of φ = 0.1 within the dike, Havlin et al. (2013)
estimate Sdike ≈ 0.2 mm3 s−1. Taking ρ = 3000 kg m3, and
H = 3× 105 J kg−1, the heat source due to the moving crys-
tallization front would be around 102 W per dike. If we as-
sume that this heating takes place within a volume that is
roughly the dike height × dike spacing × dike length, we
can determine the volumetric power generated due to crystal-
lization. For example, assuming dike heights of about 1 km
and dike spacing large enough for non-interacting dikes (as
estimated by Havlin et al., 2013, a porosity of 0.1 would re-
quire a dike spacing of ∼ 1 km), the heat source due to a
crystallizing dike boundary layer would be < 10−4 W m−3

(per unit length along strike). These arguments corroborate
the idea that disequilibrium heat exchange during melt–rock
interaction could be an important portion of the heat budget
at the LAB as compared to other expected processes, such
as heating due to crystallization of melt in channels (see also
ReesJones et al., 2018).

ii. Progression of a disequilibrium heating zone or front at
a rate Vdiseqm. The disequilibrium heating front is associated
with a migration rate Vdiseqm that is less than the in-channel
material velocity, vchannel (Eq. 11). Therefore, Vdiseqm lim-
its the rate at which the lowermost CLM may be modified
by thermal disequilibrium during migration of a disequilib-
rium front (e.g., Figs. 5b, 6). Although in this work I consid-
ered a fixed vchannel = 1 m yr−1, note that Vdiseqm (Eq. 11) is
independent of temperature contrast between the CLM and
infiltrating melt and, for fixed material properties and chan-
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Figure 8. Implications for a thermal re-working zone (TRZ) that forms a modified layer at the lowermost CLM as a result of disequilibrium
heating. (a) Illustration of a specific set of parameters that lead to TRZ growth to a steady-state width of δ ≈ 10 km, after 0.1 to 1 Myr:
duration of melt infiltration τ = 101 to 102 kyr, channel spacing d = 500 to 1000 , and in-channel material velocity vchannel = 1 m yr−1. The
TRZ is characterized by an upward-decreasing degree of disequilibrium (indicated by the color). Before reaching its final width, the TRZ
transiently grows at a relatively fast rate, Vdiseqm > 10 km Myr−1. (b) Illustration of an interpretation of spatially variable TRZ width, δ(x),
as due to lateral juxtaposition of multiple regions of dominantly vertical (1D) transport, but with spatially variable d , φ, vchannel, and τp . In
this case, δ1 > δ2, which could be due to d1 < d2, or φ1 > φ2 or v1 > v2, or τp1 > τp2, or some combination of these.

nel volume fraction φ, depends linearly on vchannel. However,
Eq. (11) also illustrates a tradeoff between vchannel and φ.
Assuming a channel volume fraction of φ = 0.1 at the LAB,
and material properties in Table 1, Vdiseqm would be around
10 % of the in-channel velocity (Fig. 4c). For in-channel ve-
locity in the range of 0.01 to 1 m yr−1, the disequilibrium
heating front at the LAB would migrate upward at a rate of
≈ 1 to 102 km Myr−1 (Fig. 8) This is comparable to rates of
CLM thinning predicted by heating due to the upward motion
of a dike boundary layer (1 to 6 km Myr−1 in Havlin et al.,
2013). Interestingly, an upward-moving disequilibrium heat-
ing zone with Vdiseqm ≈ 1 to 102 km Myr−1 also brackets the
10–20 km Myr−1 rate of upward migration of the LAB in-
ferred from the pressure and temperature of last equilibra-
tion of Cenozoic basalts in the Big Pine volcanic field in
the western US (Plank and Forsyth, 2016). An implication
of the models here, therefore, is that disequilibrium heating
may produce lithosphere modification at geologically rele-
vant spatial and temporal scales provided that the material
velocity in channels at the LAB is on the order of 10−1 to
1 m yr−1 (e.g., Fig. 8; Rutherford, 2008); higher transport
rates would require lower φ to drive a similar rate of CLM
modification.

iii. Thermal reworking zone (TRZ). A key result that may
be relevant to the evolution of the LAB is that episodic in-

filtration of melts that are hotter than the surrounding CLM
would lead to a finite region of disequilibrium heating within
a thermal reworking zone or TRZ. The TRZ would un-
dergo a phase of transient widening (at a rate given by
Vdiseqm), reaching a maximum width δ that is proportional to[
φvchan(τ/d)

n
]

(n≈ 1 for individual perturbations, but < 2
for multiple; Fig. 7; also Fig. 5d). Here d is a characteris-
tic scale of channelization and τ is a timescale associated
with the episodicity of melt infiltration. This scaling gives
us a way to conceptualize the modification of the lowermost
CLM as a zone that may encompass a variable thickness
TRZ, depending on variability in transport velocity and in
the timescale of melt infiltration (Fig. 8b). Regions where the
timescale of episodic melt infiltration is longer are predicted
to have a thicker zone of modification at the LAB (Fig. 7).
For example, for φ ≈ 0.12, a channel spacing of d = 500 m,
disequilibrium heating by melt pulses that last around 10 kyr
implies a maximum thickness of roughly 10 km for the zone
of modification (Fig. 7; also Fig. 5d). In this scenario, the
TRZ grows to this maximum width over a timescale gov-
erned by δ/Vdiseqm; for Vdiseqm = 10 km Myr−1, which cor-
responds to melt velocity of roughly 0.1 m yr−1 (see (ii)
above), the 10 km wide TRZ would be established within
about 1 Myr (Fig. 8), comparable to rates of CLM modifica-
tion inferred from observations in Plank and Forsyth (2016).
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These scaling arguments lead to the idea that perhaps the
TRZ represents a zone of thermal modification at the base
of the CLM that may also correspond to (or encompass) a
zone of rheologic weakening and/or in situ melting if the in-
filtrating fluids are hotter than the ambient material. The dy-
namic evolution of the LAB during episodic pulses of melt
infiltration is beyond the scope of the simple models above
(which assume a stationary, undeforming matrix). However,
assuming mantle material obeys a temperature and pressure-
dependent viscosity scaling relation such as in Hirth and
Kohlstedt (2003) at an LAB depth of about 75 km, where the
ambient mantle is cooler than the dry solidus (e.g., 1100 ◦C
+ 3.5 ◦C km−1;, Plank and Forsyth, 2016, and assuming a
wet dislocation creep mechanism), we would expect a vis-
cosity reduction by a factor ≈ 1/1.4 to 1/12 during heating
(e.g., ≈ 1/2.3 for a temperature increase of 20 K (0.21T for
a 100 K perturbation amplitude)). This effect is weaker, but
still important for a deeper LAB; e.g, at 125 km depth, the
viscosity reduction would be a factor ≈ 1/1.2 for a tempera-
ture increase of 20 K.

Geochemical evidence from Cenozoic basalts from the
western US, particularly space–time variations in volcanic
rock Ta/Th and Nd isotopic compositions, suggests that
the timescale of modification and removal of the lowermost
CLM is on the order of 101 Myr (Farmer et al., 2020). These
authors argue that the observed transition from low to inter-
mediate to high Ta/Th ratios indicates a change from arc-
or subduction-related magmatism, to magmatism associated
with in situ melting of a metasomatized CLM (the “ign-
imbrite flare-up”), to magmatism due to decompression and
upwelling after removal of the lowermost CLM. At a mini-
mum, the observed timescale of the transition in Ta/Th ra-
tios in volcanic rocks (101 Myr) in the western US should be
comparable to the timescales of degradation of the CLM. If
correct, these interpretations and observations are promising
and provide an important avenue for exploring the role of
thermal and chemical disequilibrium during melt–rock inter-
action and destabilization of the CLM in an intra-plate set-
ting.

5 Conclusions

In summary, I have presented arguments supporting the role
of disequilibrium heating in the modification of the base of
the continental lithospheric mantle (CLM) during melt infil-
tration into and across the lithosphere–asthenosphere bound-
ary (LAB). Infiltration of pulses of hotter-than-ambient mate-
rial into the LAB should establish a thermal reworking zone
(TRZ) associated with disequilibrium heat exchange. The
spatial and temporal scales associated with the establishment
of the TRZ are comparable to those for CLM modification
inferred from geochemical and petrologic observation intra-
plate settings, e.g., the western US. Disequilibrium heating
may contribute around 10−5 W m−3 to the heat budget at the

LAB and, for transport velocity of 0.1 to 1 m yr−1 in chan-
nels that are roughly 102 m apart, a 10 km wide TRZ may be
established within 1 Myr. Disequilibrium heating during melt
infiltration may therefore be an important process for modi-
fying the CLM. Further work is needed to explore its role in
the rheologic weakening that must precede mobilization (and
possibly removal) of the lowermost CLM.
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