
How to Debug Inclusivity Bugs? A Debugging Process with
Information Architecture

Mariam Guizani
Oregon State University

Corvallis, Oregon, USA

guizanim@oregonstate.edu

Igor Steinmacher
Northern Arizona University

Flagstaff, AZ, USA

igor.steinmacher@nau.edu

Jillian Emard
Oregon State University

Corvallis, Oregon, USA

emardj@oregonstate.edu

Abrar Fallatah
Oregon State University

Corvallis, Oregon, USA

fallataa@oregonstate.edu

Margaret Burnett
Oregon State University

Corvallis, Oregon, USA

burnett@engr.orst.edu

Anita Sarma
Oregon State University

Corvallis, Oregon, USA

anita.sarma@oregonstate.edu

ABSTRACT
Although some previous research has found ways to find inclusivity

bugs (biases in software that introduce inequities), little attention

has been paid to how to go about fixing such bugs. Without a pro-

cess to move from finding to fixing, acting upon such findings is an

ad-hoc activity, at the mercy of the skills of each individual devel-

oper. To address this gap, we created Why/Where/Fix, a systematic

inclusivity debugging process whose inclusivity fault localization

harnesses Information Architecture(IA)—the way user-facing infor-

mation is organized, structured and labeled. We then conducted a

multi-stage qualitative empirical evaluation of the effectiveness of

Why/Where/Fix, using an Open Source Software (OSS) project’s

infrastructure as our setting. In our study, the OSS project team used

the Why/Where/Fix process to find inclusivity bugs, localize the IA

faults behind them, and then fix the IA to remove the inclusivity

bugs they had found. Our results showed that using Why/Where/Fix

reduced the number of inclusivity bugs that OSS newcomer partici-

pants experienced by 90%.

Lay Abstract: Diverse teams have been shown to be more pro-

ductive as well as more innovative. One form of diversity, cognitive

diversity — differences in cognitive styles — helps generate diver-

sity of thoughts. However, cognitive diversity is often not supported

in software tools. This means that these tools are not inclusive of

individuals with different cognitive styles (e.g., those who like to

learn through process vs. those who learn by tinkering), which bur-

dens these individuals with a cognitive “tax” each time they use

the tool. In this work, we present an approach that enables soft-

ware developers to: (1) evaluate their tools, especially those that are

information-heavy, to find “inclusivity bugs”– cases where diverse

cognitive styles are unsupported, (2) find where in the tool these

bugs lurk, and (3) fix these bugs. Our evaluation in an open source

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE-SEIS’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9227-3/22/05. . . $15.00
https://doi.org/10.1145/3510458.3513009

project shows that by following this approach developers were able

to reduce inclusivity bugs in their projects by 90%.

KEYWORDS
Diversity, Information Architecture, Open Source, Inclusivity Bugs

ACM Reference Format:
Mariam Guizani, Igor Steinmacher, Jillian Emard, Abrar Fallatah, Margaret

Burnett, and Anita Sarma. 2022. How to Debug Inclusivity Bugs? A De-

bugging Process with Information Architecture. In Software Engineering in
Society (ICSE-SEIS’22), May 21–29, 2022, Pittsburgh, PA, USA. ACM, New

York, NY, USA, 12 pages. https://doi.org/10.1145/3510458.3513009

1 INTRODUCTION
Although in recent times diversity initiatives have become common,

sometimes we forget why diversity is important to so many organiza-

tions. Besides social justice reasons, what many organizations hope

to gain from diverse backgrounds (cultural, ethnic, education, gender,

etc.) is diversity of information and of thought [46] —i.e., cognitive
diversity. Diversity’s accompanying diversity of thought has been

shown to have many positive effects on organizations, including bet-

ter ability to innovate, better reputation as ethical corporate citizens,

and a better “bottom line” for businesses [31, 44, 46]. However,

efforts to support diversity rarely consider either cognitive diversity

or inclusivity of technology environments.

In this paper, we consider these aspects together: how to increase
support for cognitive diversity within technology environments, es-

pecially information-heavy ones. The setting for our investigation is

an information-heavy environment that is particularly challenged in

attracting diverse populations: Open Source Software (OSS) com-

munities.

This study complements the existing literature: previous work

has investigated OSS-specific challenges [20, 28, 32, 58] and the

inclusivity issues affecting OSS [5, 12, 27, 35, 39, 42, 49, 51, 63],

but has not focused on how to debug OSS projects’ technology to

support cognitive diversity.

1.1 Why/Where/Fix: An IA-based Inclusivity-
Debugging Process

A debugging perspective suggests that OSS practitioners who want

to improve inclusivity of their project’s infrastructure will need

three capabilities. (1) First, they need to find “inclusivity failures”

(analogous to testing [1]). Since the failure is about inclusivity (not

90

2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Society (ICSE-SEIS)
20

22
 IE

EE
/A

CM
 4

4t
h 

In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 S

of
tw

ar
e 

En
gi

ne
er

in
g:

 S
of

tw
ar

e 
En

gi
ne

er
in

g 
in

 S
oc

ie
ty

 (I
CS

E-
SE

IS
) |

 9
78

-1
-6

65
4-

95
94

-3
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
IC

SE
-S

EI
S5

53
04

.2
02

2.
97

94
00

9

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on September 25,2022 at 23:53:17 UTC from IEEE Xplore.  Restrictions apply. 



ICSE-SEIS’22, May 21–29, 2022, Pittsburgh, PA, USA Guizani et al.

about producing a wrong output), OSS practitioners will also need

to be able to discern why the observed phenomenon is considered an

inclusivity failure. (2) Second, the practitioners will need to tie an

inclusivity failure to where the “inclusivity fault(s)” occur (analogous

to fault localization [3]); so that (3) the inclusivity faults can be fixed
to stop the associated inclusivity failure from occurring. In this paper,

we term the inclusivity debugging capabilities as “Why/Where/Fix”

(Fig. 1), and investigate its efficacy at debugging inclusivity bugs.

Debugging requires a definition of a bug. We derive our definition

from the testing community’s notion of a software failure. Ammann

and Offutt define a “failure” as “...external, incorrect behavior with

respect to the requirements or ... expected behavior” [1]. Our anal-

ogous requirement/expected behavior is inclusivity across diverse

cognitive styles, so we define inclusivity failures/bugs as user-visible

features or workflows that do not equitably support users with diverse

cognitive styles. As with Ammann/Offutt’s definition, an inclusivity

bug is a barrier but not necessarily a “show-stopper”. That is, if

groups of users eventually complete their tasks but disproportion-

ately experience barriers along the way (e.g., confusion, missteps,

workarounds), these too are inclusivity bugs.

To find such inclusivity bugs and their “Why”s, we used Gender-

Mag [11], an empirically validated method [9, 25, 43, 65] with a dual

gender/cognitive focus. GenderMag integrates finding an inclusivity

bug with its “Why”, because using GenderMag includes identifying

cognitive mismatches that pinpoint which users disproportionately

run into barriers using a system. In this paper, an OSS team used

GenderMag to find inclusivity bugs in their OSS project.

After finding a bug, the next step in debugging is to figure out

what and where a bug’s causes are, referred to as “faults” in SE

literature. According to Avizienis et al. [3] a fault is the underlying

cause of an error, a condition that may lead to a failure; and fault

localization is the act of identifying the locations of faults. Building

upon these definitions, we define an inclusivity fault as the user-

facing components (e.g., UI elements, user-facing documentation,

workflow) of the system that produced an inclusivity bug; and inclu-
sivity fault localization as the process of identifying the locations of

these faults in these user facing components.

Thus, for Why/Where/Fix’s “Where”, we devised a systematic

inclusivity fault localization approach that harnesses Information

Architecture (IA) [38]. IA is the “blueprint” for the structure, arrange-

ment, labeling, and search affordances of information content, and is

especially pertinent to information-rich environments [55]. Although

substantial research exists on how Information Architectures can sup-

port usability, navigation, and understandability [17, 22, 29, 36, 52],

Figure 1: The Why-Where-Fix process. The Why is to produce
the inclusivity bugs and the cognitive styles behind them; the
Where is to localize the faults behind the bugs to the user-facing
IA elements; and the Fix is to change the IA elements to ex-
pand the software’s inclusivity. The grey roundtangle highlights
Why/Where/Fix’s new contributions.

research has not considered how different Information Architectures

do or do not support populations with diverse cognitive styles, or

how IA can be used for inclusivity fault localization.

To use IA to tie together the above “Why” and “Where” founda-

tions to point to the fixes, we supplemented the GenderMag process

for finding inclusivity bugs with a mechanism by which evaluators

specified any IA elements (the faults) implicated in the inclusivity

bugs found along the way. Thus, the Why/Where/Fix process in

Figure 1, is: find the bugs using cognitive styles, which contribute

the Why (using GenderMag), enumerate the implicated IA elements

involved in the bug (Where), and change those IA elements (Fix).

1.2 Can IA Squash the Inclusivity Bugs?
We have pointed out that the Why capability (finding inclusivity

bugs) is already possible using GenderMag. But debugging requires

getting from finding to fixing, and this capability of Why/Where/Fix

rests on IA.

Thus, to empirically investigate IA’s effectiveness in the Why/

Where/Fix debugging process, we used a three-stage combination of

field work (Stage One and Stage Two) and lab work (Stage Three),

as follows:

In Stage One (Why −→ Where), we worked in the field with an

OSS team who used GenderMag to detect cognitive inclusivity bugs

in their project’s infrastructure, to investigate RQ1: Is IA implicated
in inclusivity bugs? If so, how? In Stage Two (Where −→ Fix), the

OSS team worked alone to change the project infrastructure’s IA

using what they had learned in Stage One, which enabled us to

investigate RQ2: Can practitioners use IA to fix inclusivity bugs? If
so, how? In Stage Three (Lab), we brought OSS newcomers into the

lab to investigate whether the team’s IA-localized faults and fixes

decreased the inclusivity bugs those newcomers experienced.

Our primary contributions in this paper are:

(1) Presents and empirically investigates the first inclusivity debug-

ging process, including systematic fault localization.

(2) Empirically investigates whether Information Architecture can

itself be the cause of inclusivity bugs.

(3) Reveals ways OSS projects can improve their infrastructures’

Information Architecture to improve their project’s inclusivity.

2 BACKGROUND AND RELATED WORK
2.1 Information Architecture
The term “Information Architecture” was coined in the mid-70’s as

a way of “making the complex clear” [66]. This paper follows the

definition of Morville and Rosenfeld [38], referred to as the “bible”

of IA, that defines IA as a set of four component systems (Figure 2).

The first is the Organization System (Org), analogous to the archi-

tectural arrangement of a building’s “rooms”, which has an organi-

zation scheme OrgScheme and an organization structure OrgStruct.
The organization scheme is the way content is arranged or grouped

(e.g., alphabetical or by task). An architect chooses the scheme ac-

cording to the situations they want the Information Architecture to

support, such as alphabetical (OrgScheme-Alpha) to support exact

look-ups, or task-based (OrgScheme-Task) to facilitate high priority

tasks. The organization structure defines the relationship between

content groups (e.g., hierarchical (OrgStruct-Hierarchy)).

91

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on September 25,2022 at 23:53:17 UTC from IEEE Xplore.  Restrictions apply. 



How to Debug Inclusivity Bugs? A Debugging Process with Information Architecture ICSE-SEIS’22, May 21–29, 2022, Pittsburgh, PA, USA

Second, the Navigation System (Nav), analogous to adding doors

and windows to a building, enables users to traverse the information

groupings and structure. Some of the navigation system is embed-

ded in the content (e.g., contextual links (Nav-ContextualLink)),
while others are supplemental (e.g., site maps). Third, the Labeling
System (Label) adds signposts (also known as “cues” in Informa-

tion Foraging literature [47]) to the “doors”, such as the labels on

contextual links (Label-ContextualLink), headers (Label-Header),
cues/keywords (Label-IndexTerm), etc. Fourth, the Search System,

when provided, supplements the rest of the IA, to enable users to

retrieve information using a particular term or phrase.

The majority of IA research has focused on the design and evalua-

tion of websites, but some has explored other domains. For example,

IA has been used in the design of usable security tools [14], as the

basis of a semantic web structuring tool [7, 8, 15], to investigate

the accessibility, use and reuse of information across multiple de-

vices [40], to evaluate different information visualization tools [33],

and for mobile applications screen-reader navigation [19, 67]. One

body of research has compared IA to other attributes of information

sites. For example, Aranyi et al.’s empirical evaluation of a news web-

site showed that the content and its IA were the main problems [2].

Petri and Power’s study likewise found prominent IA problems when

evaluating six government websites, with IA accounting for about

9% of user-reported bugs [45].

Other IA research has evaluated the usability of different subsets

(organizational vs. labeling schemes) of IA. For example, Gullikson

et al. evaluated the IA of an academic website and reported that

although participants were satisfied with the content of the site, they

found its (IA) labeling to be confusing [23], and were especially

dissatisfied with the IA’s organization system. Resnick and Sanchez

found that user-centric labels significantly improved user perfor-

mance and satisfaction as compared to user-centric organization,

which only improved performance if labels were of low quality [50].

Similarly, others have found that navigation success depends more

on the quality of labels than the structure of a page [37, 56].

Of particular interest is IA research on supporting diverse popula-

tions. Lachner et al. used IA to promote cultural diversity and used

Hofstede et al. power distance cultural dimension [26] to design

and evaluate culturally-specific collaborative Q&A websites [30].

Accessibility and IA has been studied by others. Swierenga et al.

showed that IA’s organization and labeling system create barriers for

visually impaired and low-vision individuals [62]. A multitude of

Figure 2: IA’s four component systems [38]. The organization
and navigation systems have subsystems (underlined). *s mark
IA (sub)systems and elements used in this paper.

research [4, 16, 53, 54, 64, 67] has investigated IA auditory systems

for designing and evaluating accessible websites for low-vision users.

Ghahari et al., for example, showed how topic- and list-based aural

navigation strategies can enhance user’s navigation effectiveness and

efficiency [53]. However, we cannot locate any research on how IA

can support cognitive diversity.

2.2 Diversity and the GenderMag Method
GenderMag, a method used to find and fix inclusivity bugs, provides

a dual lens—gender- and cognitive-diversity—to evaluate work-

flows. It considers five dimensions (“facets” in GenderMag) of cog-

nitive styles (Table 1), each backed by extensive foundational re-

search [11, 61]. Each facet has a range of possible values. A few

values within each facet’s range are brought to life by the three

GenderMag personas: “Abi”, “Pat”, and “Tim.” Abi’s facets are sta-

tistically more common among women than other people, Tim’s

are statistically more common among men, and Pat has a mix of

Abi’s/Tim’s facets plus a few unique ones.

Each persona is a “multi-”persona [25]—their demographics can

be customized to match those of the system’s target audience. For

example, any gender, any photo, any educational background, or any

pronoun can be integrated (e.g., she/her, he/him, they, ze, etc.). Their

cognitive facets, however, remain fixed. Figure 3 shows portions of

the OSS team’s customization of Abi, which they used in Stage One.)

Evaluation teams, such as the OSS team in this paper, use Gender-

Mag to walk through a use-case in the project they are evaluating us-

ing Abi, Pat, or Tim. At each step of the walkthrough, the team writes

down the answers to three questions: (1) whether <Persona> would

have the subgoal the project owners hoped for and why, (2) whether

<Persona> would take the action the project owners hoped for and

why, and (3) if <Persona> did take the hoped-for action, would they

know they did the right thing and were making progress toward their

goal, and why. When the answer to any of these questions is nega-

tive, it identifies a potential bug; if the “why” relates to a particular

cognitive style, this shows a disportionate effect on people who have

that cognitive style—i.e., an inclusivity bug. Thus, a team’s answers

to these questions become their inclusivity bug report, which they

can then process and prioritize in the same way they would do with

any other type of bug report.

Figure 3: Portions of the OSS team’s Abi persona. The photo(s)
and blue text are customizable; the black text is not. Abi’s facets
(gray block) are as per Table 1. (The supplemental document
[21] includes the full Abi persona used in Stage One.)

92

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on September 25,2022 at 23:53:17 UTC from IEEE Xplore.  Restrictions apply. 



ICSE-SEIS’22, May 21–29, 2022, Pittsburgh, PA, USA Guizani et al.

The method and its derivatives have been used in a variety of

domains, such educational software, digital libraries, search engines,

and software tools [11, 13, 18, 24, 35, 57, 65]. Particularly pertinent

to this paper, in a study of OSS professionals, over 80% of the

barriers they found in OSS projects were gender inclusivity bugs,

which were later confirmed by OSS newcomers [43].

However, prior work has left largely to the practitioners’ judgment

how exactly to fix such inclusivity bugs (e.g., [65]). This paper aims

to pave a path from finding to fixing with an IA-based process to

systematically localize inclusivity faults.

3 METHODOLOGY
We conducted a multi-stage (in-the-field and in-the-lab) empirical

investigation to analyze whether changing the IA of an OSS project

infrastructure would help support newcomers across a range of di-

verse cognitive styles.1

Table 1: The GenderMag cognitive facet values for each persona.
The research behind each facet is enumerated in [11].

Facet Cognitive facet value for each persona

M
o
ti

v
at

io
n
s

Uses technology... Abi: Only as needed for the task at

hand. Prefers familiar and comfortable features to keep

focused on the primary task.

Tim: To learn what the newest features can help

accomplish.

Pat: Like Abi in some situations and like Tim in others.

S
el

f-

E
ffi

ca
cy

Abi: Lower self-efficacy than their peers about

unfamiliar computing tasks. If tech problems arise, often

blames self, and might give up as a result.

Tim: Higher self-efficacy than their peers with

technology. If tech problems arise, usually blames the

technology. Sometimes tries numerous approaches

before giving up.

Pat: Medium self-efficacy with technology. If tech

problems arise, keeps on trying for quite awhile.

A
tt

it
u
d
e

T
o
w

ar
d

R
is

k

Abi and Pat: Risk-averse, little spare time; like familiar

features because these are predictable about the benefits

and costs of using them.

Tim: Risk tolerant; ok with exploring new features, and

sometimes enjoys it.

In
fo

rm
at

io
n

P
ro

ce
ss

in
g

Abi and Pat: Gather and read everything

comprehensively before acting on the information.

Tim: Pursues the first relevant option, backtracking if

needed.

L
ea

rn
in

g

S
ty

le

Abi: Learns best through process-oriented learning; (e.g.,

processes/algorithms, not just individual features).

Tim: Learns by tinkering (i.e., trying out new features),

but sometimes tinkers addictively and gets distracted.

Pat: Learns by trying out new features, but does so

mindfully, reflecting on each step.

1We did not recruit participants with any particular cognitive style as a criterion;
rather, we collected cognitive style data as part of the investigation.

For the field aspect, we gathered in-the-field data from an OSS

project team (Team F) that was interested in increasing diverse

newcomers’ participation in their project (Project F). The empirical

investigation had three stages:

• Stage One (Why −→ Where), in the field: We worked with Team F

to detect IA-based inclusivity bugs. Team F then worked alone

to select which of these bugs to fix.

• Stage Two (Where −→ Fix), in the field: Team F worked alone to

derive IA-based cognitive diversity-inspired fixes to Project F’s

Information Architecture.

• Stage Three, in the lab: We brought OSS newcomers into the

lab to evaluate the inclusivity bugs they encountered with the

original Project F vs. the new version of Project F.

3.1 Stage 1, Team F, RQ1 (in the field):
Why −→ Where

Stage One had two purposes. First, for ecological validity, we wanted

to avoid artificially creating inclusivity bugs; thus, Stage One pro-

vided a way to harvest them from a real OSS project. For this pur-

pose, we used the GenderMag method (Section 2.2). To facilitate

IA-based fault localization, we then added the following IA-based

Where question to the GenderMag question set: “What in the UI

helped/confused <Persona> in this step?” Both the original and IA-

supplemented GenderMag forms, and all our study materials, are

provided in the supplemental document [21].

Note that Stage One’s purpose was not to investigate whether an

OSS team can use GenderMag to point out inclusivity bugs, because

its validity with OSS project teams has already been validated [43].

The GenderMag method has also been empirically validated in other

lab [11, 25, 65] and field [9] studies. As with other cognitive walk-

through (CW) methods, its reliability (precision) is very high: CW

methods tend to have false-positive rates of 5%-10%, and Gender-

Mag’s false-positive rates have been 5% or lower [11, 43, 65].

For Stage One’s bug harnessing purpose, Team F worked with two

researchers using the IA-supplemented GenderMag method to find

inclusivity bugs in four use-cases (Table 2). Team F selected these

use-cases for their importance for Project F newcomers. Analyzing

these use-cases produced both a list of likely inclusivity bugs with

the facets that caused them (Why), and IA-localized faults that may

have produced these bugs (Where).

The second purpose of Stage One was the beginning of our RQ1

investigation into whether some IA elements are indeed implicated

in such real-world inclusivity bugs. For this purpose, Team F worked

alone, without our help.

Team F began by deciding which of the bugs to take forward into

the next stage of the investigation. They selected these bugs using

the criteria that the bug (1) had at least one cognitive facet that the

Information Architecture did not support; and (2) was associated

with the project itself and not the UI of the hosting platform (e.g.,

GitLab, GitHub). These criteria produced 6 bugs (Table 2).

Along the way, Team F had noticed some general usability bugs

not related to any cognitive facet. To prevent these from influencing

Stage Three, Team F fixed these bugs and brought the project up

to GitHub’s recommended content standards [41], resulting in the

prototype we call the Original version.

93

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on September 25,2022 at 23:53:17 UTC from IEEE Xplore.  Restrictions apply. 



How to Debug Inclusivity Bugs? A Debugging Process with Information Architecture ICSE-SEIS’22, May 21–29, 2022, Pittsburgh, PA, USA

3.2 Stage 2, Team F, RQ2 (in the field):
Where −→ Fix

Team F then worked alone to derive fixes for each of these 6 bugs

by changing the IA elements they had identified as the probable

causes of the bugs, so as to better support the previously unsupported

cognitive facets without loss of support for the supported facets. We

refer to the “fixed” version of Project F as the DiversityEnhanced
version.

3.3 Stage 3, OSS Newcomers, RQ1+RQ2 (in the
lab)

We then brought OSS newcomers into the lab to investigate:

(1) whether OSS newcomers trying to use the Original version would

run into the bugs Team F had found in the Original version, and

(2) whether the IA fixes Team F had derived for the DiversityEn-

hanced version would actually improve support for cognitively di-

verse OSS newcomers.

We recruited the OSS newcomers from a large US university. Our

recruiting criteria were people with no prior experience contributing

to OSS projects. All 31 respondents came from a variety of science

and engineering majors. Because the investigation focuses only

on cognitive diversity (not on disabilities), we did not seek out

participants with any particular cognitive style or with a disability.

Because none of the experimental tasks required programming, we

did not collect their programming experience.

Participants filled out a cognitive facet questionnaire [9, 18, 65]

(provided in our supplemental document [21]) in which participants

answered Likert-scale items about their cognitive styles. Using their

responses and genders, we selected 18 respondents to gender-balance

and to include a wide range of cognitive styles (Figure 4). Of the 18

selected participants, 8 identified as women, 9 identified as men, and

one participant declined to specify their gender.

We assigned participants to the Original or DiversityEnhanced

treatments, balancing the cognitive styles between the treatments

based on the participants’ cognitive facet questionnaire responses.

Table 2: The four use-cases and associated bugs. Team F pro-
vided these use-cases, which were important to their project.

Use-Case Descriptions Bugs
U1-Find Finding an issue to work on Bug 1 & 2

U2-Document Contribute to the documentation Bug 3

U3-FileIssue File an issue Bug 4

U4-Setup Set up the environment Bug 5 & 6

Abi 5
0

4
1

3
2

2
3

1
4

0
5 Tim

Figure 4: Number of participants with more Abi facets (left half,
orange) or more Tim (right half, blue). For example: the first
column says that 1 participant had 5 Abi facets and no Tim
facets. Table 1 explains Abi, Tim, and their facets.

Because facet values are relative to one’s peer group, the median re-

sponse for each facet served to divide closer-to-Abi facet values from

closer-to-Tim facet values. This produced identical facet distribu-

tions (Figure 5) for both groups. We audio-recorded each participant

as they talked-aloud while working on the use-cases presented ear-

lier in Table 2. We transcribed the recordings, and counted how

often the participants encountered one of the 6 bugs that Team F had

attempted to fix.

We qualitatively coded cognitive facets that participants verbal-

ized when they encountered one of these bugs, which enabled us to

compare participants’ in-situ reactions to their cognitive facet ques-

tionnaire responses. For example, we coded P2-O’s verbalization

“...this leads me to a page with the bare minimum of instructions...
I have no idea where to go from here” as “learning style: process-

oriented”, which aligned with their questionnaire response. To ensure

reliability of the coding, two researchers independently coded 20%

of the data and calculated IRR using the Jaccard index. Jaccard, a

measure of “consensus” interrater reliability [60], is useful when

multiple codes per segment are used, as in our case. The consensus

level was 90.2%. Given this level of consensus, the researchers split

up coding the remainder of the data.

At session end, participants filled out a subset of the System

Usability Scale (SUS) survey [6] (supplemental document [21]).

4 RESULTS
We begin with “whether” answers to both research questions—for

RQ1, whether Information Architecture was implicated in the in-

clusivity bugs, and for RQ2, whether Team F’s IA fixes increased

inclusivity for OSS newcomers.

As Table 3 shows, both answers were yes. Regarding RQ1, with

the Original version, OSS newcomers ran into inclusivity bugs in

the Information Architecture 20 times. Regarding RQ2, Team F’s

inclusivity fixes to the IA reduced the number of inclusivity bug

experiences in the DiversityEnhanced version to only 2. In total,

Team F’s IA fixes cut the number of bugs participants experienced

by 90% (Table 3).

To answer the how aspects of our RQs, Table 4 summarizes, for

each bug, Team F’s Why analyses (first column) of the cognitive

facets involved in the bug, their Where analyses to localize the faults

to IA elements (second column), and how they implemented their IA

Fixes (third column). The following sections discuss them in depth.

4.1 Bug 1 & 2 in Depth: Issues with the “issue list”
The first two rows in Table 4 show how Team F addressed Bug 1 &

2, the IA-based inclusivity bugs that Team F identified in Stage One

Figure 5: Number of participants with Abi (bottom, orange) vs.
Tim (top, blue) facets who used the Original (columns 1-5) vs.
DiversityEnhanced (columns 6-10) versions of the OSS project.
(The two distributions are identical.)

94

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on September 25,2022 at 23:53:17 UTC from IEEE Xplore.  Restrictions apply. 



ICSE-SEIS’22, May 21–29, 2022, Pittsburgh, PA, USA Guizani et al.

in the context of use-case U1-Find (finding a task to work on).

As Table 4 shows, for Bug 1, Team F predicted that Abi-like

newcomers would face problems in understanding the process of

finding an issue. Their why analysis (Table 4 row 1 col. 1) pointed

out that the lack of information about finding an issue could be

problematic to comprehensive information processors, risk averse,

or process-oriented newcomers. As Stage Three Participant 1 using

the Original version later put it:
P1-O: “I just feel like I wouldn’t have enough to go on.”
Team F localized the fault (wheres, Table 4’s row 1 col. 2) to

the IA’s link labeling (Label-ContextualLink) and to the absence

of keywords (Label-IndexTerm), which could lead newcomers to

follow wrong link(s) and never obtain the kind of information they

were seeking.

Once a newcomer was past Bug 1, Team F predicted that the

Issue List provided too little information to enable some newcomers

to select an issue appropriate to their skills (Bug 2). Team F’s why
analysis showed that this bug would be particularly pertinent to

newcomers with a comprehensive information processing style, low

self-efficacy, or risk aversion.

Team F localized the fault behind Bug 2 (IA wheres) to the issue

list’s nondescript titles, uninformative descriptions, and limited la-

beling. Team F realized that, with this IA, the Issue List gave little

indication as to whether an issue would fit a newcomer’s skill level

(Label-IndexTerm, Label-Header). Stage Three proved Team F to be

right: Bug 1 & 2 did affect several participants (Figure 6):
P1-O: “...I don’t really know...I would say if I had to fix [an issue from
the issue list], I’d probably just ask someone for help.”
To fix Bug 1 (Table 4 rol 1 col. 3), Team F made several changes

to the IA. They created better cues for the link to the contribution

guidelines by changing its label (Label-ContextualLink) from the file

name (“contributing.md”) to “contributing guidelines” and includ-

ing additional keywords about what to expect from the link. They

also modified the IA of the “contributing.md” to point out specific

task-oriented instructions for finding an issue (OrgScheme-Task)
including a header (Label-Header)–“Find an issue” (Fig 7), a link

to the “issue list”(Nav-ContextualLink, Label-ContextualLink), and

additional keywords (Label-IndexTerm) to add support for process-

oriented and risk-averse newcomers.

Team F fixed Bug 2 (Table 4 row 2 col. 3) with improved issue

headers and labels (Label-Header, Label-IndexTerm). The labels

signaled attributes of the open issues in the project (Figure 8). Team F

also rewrote some issue descriptions to support newcomers with a

comprehensive information processing style.

In Stage Three, the OSS newcomer participants showed that Bug

1 & 2 were pervasive; all participants using the Original version

faced problems related to Bug 1 and/or 2 (Figure 6). But were these

Table 3: The number of participants who ran into the bug(s), out
of the 18 participants (9/ group).

Bug ID Original DiversityEnhanced
Bug 1 & 2 9/9 1/9

Bug 3 2/9 0/9

Bug 4 0/9 0/9

Bug 5 & 6 9/9 1/9

Total bugs encountered 20 2

Motiv SE* Risk* Info* Learn* Motiv SE* Risk* Info* Learn*
P1 - - - - - P10
P2 - - - - - P11
P3 - - - - - P12
P4 - - - - - P13
P5 - - - - - P14
P6 P15
P7 - - - - - P16
P8 - - - - - P17
P9 - - - - - P18

Original DiversityEnhanced

Figure 6: In Bug 1 & 2, all Original participants ran into bugs
(left), but only 1 DiversityEnhanced participant (right). Par-
ticipant ID numbering is from the most Abi-like to the most
Tim-like.
*: facet the fix(es) targeted; circles | squares: the facet values
from the participants facet questionnaire for Abi-like and Tim-
like facet values respectively; square outline | square outline:
Abi-like | Tim-like facet values participants expressed when they
ran into a bug.

Figure 7: Bug 1 before the fix, the screen appeared as shown
without the call-out, giving little guidance on how to find a suit-
able issue. The fix added the “Find an issue” process description.

Figure 8: Top: Bug 2 before the fix had only one label (“Bug”).
Bottom: The fix added multiple descriptive labels.

bugs inclusivity bugs, i.e., disproportionately affecting people with

particular cognitive styles?

95

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on September 25,2022 at 23:53:17 UTC from IEEE Xplore.  Restrictions apply. 



How to Debug Inclusivity Bugs? A Debugging Process with Information Architecture ICSE-SEIS’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 4: For each use-case’s bug(s), excerpts from Team F’s Stage One analysis, the Bug’s Why’s (facets impacted), Where’s (IA
involved), and their Stage Two IA fixes.

Bug’s Why: Facets Bug’s Where: IA involved Bug’s Fixes and IA elements changed 

__
__

__
__

__
__

U
1-

F
in

d_
__

__
__

__
__

__
B

ug
 1

“[referring to the issue list] 
...would want to read a bit more
about issues to be certain 
of what to do next” 
Facets: Info, Risk, Learn

“... may click [the wrong link]... ” 
IA: Label-ContextualLink, 
Label-IndexTerm

In README.md:
- Label-IndexTerm: added cue/keyword to guide to “contributing guidelines” for
finding an issue.

- Label-ContextualLink: changed a link label to clarify what it leads to.
In contributing.md:

- Nav-ContextualLink, Label-ContextualLink: added a link to the “issue list”.
- Label-IndexTerm: added cues/keywords to guide issue choice.
- OrgScheme-Task, Label-Header: added a header following a task-based 
organization scheme. 

- Other: added more information.

B
ug

 2

“...just from the titles she is 
not getting as much info as she 
wants...not a good enough 
description, might  think of 
giving up” 
Facets: Info, SE, Risk 

“...labels will help, but there aren’t 
labels for every issue...like ‘good for 
newcomer’. Headings are missing info, 
should be a bit more detailed” 
IA: Label-IndexTerm, 
Label-Header 

In the issue list:
- Label-IndexTerm: added labels to aid issue selection.
- Label-Header: improved issue headers to be more descriptive.
- Other: improved issues’ descriptions. 

__
U

2-
D

oc
um

en
t_

_
B

ug
 3

“[The instructions are] all about 
technical contributions, nothing 
about documentation changes... 
[So] she may think that she 
needs to do all the technical 
setup before editing the 
README (which is a lot)” 
Facets: Motiv, Learn, 
SE, Risk 

“README and contribute files may 
confuse her. The README is here 
but there is no clear indication [cue/ 
keyword] of what she needs to do to 
change the file.” 
IA: Label-IndexTerms

In README.md:
- Label-IndexTerms: added cue/keyword to guide to “contributing guidelines” for 

documentation contributions.
In  contributing.md:

- Label-IndexTerm: added cues/keywords to guide a documentation contribution.
- Nav-ContextualLink: linked to additional information.  
- OrgScheme-Task, Label-Header: added a header that followed a task based

organization scheme. 
- Other: added more information.

__
_U

3-
F

ile
Is

su
e_

__
_

B
ug

 4

“...nothing clearly says that filing 
an issue is part of contributions. 
No clear instruction about what 
she needs to do... it doesn’t say 
where to find the issue list” 
Facets: Info, SE, Risk 

“...doesn’t say where to find the issue 
list...Maybe adding an indication [cue/ 
keyword] or a link would be helpful. ” 
IA: Label-IndexTerm, 
Nav-ContextualLink, 
Label-ContextualLink 

In README.md:
- Label-IndexTerm: added cue/keyword to “contributing guidelines” for filing 
an issue.

In  contributing.md:
- Label-IndexTerm: added cues/keywords about filing an issue. 
- Nav-ContextualLink, Label-ContextualLink: added link to the “issue list”. 
- OrgScheme-Task: reformatted instructions while 
maintaining a task-based organization scheme.

__
__

__
__

__
U

4-
Se

tu
p_

__
__

__
__

__
B

ug
 5

“... nothing that explicitly says 
set up the env...She would read 
through step 0 and think it’s not 
for mac [OS].” 
Facets: Info, SE, Risk 

“...no hint [cue/ keyword] about how 
to set up the environment in the 
readme... More about Ubuntu and 
Linux and not about Windows and 
Mac...maybe this file needs to be more 
high level.” 
IA: Label-IndexTerm, 
OrgScheme,
OrgStruct

In README.md:
- Label-IndexTerm: added cue/keyword to “contributing guidelines” for setting

up the environment.
In  contributing.md section "Help us with code": 

- OrgStruct-Hierarchy: restructured section with an extra layer of abstraction.
- Nav-ContextualLink, Label-ContextualLink: added links to instructions per OS. 
- OrgScheme-Topic: reorganized the section to follow 

a topic-based organization scheme. 

B
ug

 6

“... No explanation about 
the different things to install and 
where to install them”. 
Facets: Info, Motiv, Learn, 
SE, Risk 

“sees all this code and does not know 
where and how to run it. Maybe a hint 
about using the terminal [cue/ 
keyword]  and copying and pasting the 
code would be helpful.” 
IA: Label-IndexTerm

In OS instruction sub-pages:
- Label-IndexTerm: added cues/ keywords about where to execute commands. 
- Other: added additional explanation about each command. 

Figure 6 answers this question. Counting up the colored outlines,

which show the facets Stage Three participants verbalized when
they ran into those bugs, shows that Bug 1 & 2 disproportionately

impacted Abi-like facet values: 74% (14/19) of the facets participants

verbalized with Bug 1 & 2 were Abi-like facet values (orange square

outlines in Figure 6, left).

Although Bug 1 & 2 disproportionately affected participants with

Abi-like facet values, targeting these facets helped participants across

the entire cognitive style spectrum, both for Abi-like and Tim-like
newcomers (Figure 6, right). Further, only one participant of the

DiversityEnhanced treatment (P15-D, Figure 6) ran into these bugs—

compared to all 9 participants in the Original treatment (Table 3).

Even when participants veered off track, the label fixes (Label-
IndexTerm) (Figure 8) helped them find their way back. For example,

P17-D initially chose an issue labeled “good for newcomers” and

“technical”, but soon found that they would have needed more cod-

ing experience. P17-D realized that issues that did not include the

“technical” label would be a better fit.
P17-D: “...and in fear of not making the same mistake, I’m just going to go
with a [issue], which only says good for newcomers and documentation.”

96

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on September 25,2022 at 23:53:17 UTC from IEEE Xplore.  Restrictions apply. 



ICSE-SEIS’22, May 21–29, 2022, Pittsburgh, PA, USA Guizani et al.

4.2 Bug 3: “I would expect something linear”
When evaluating the documentation contribution use-case (U2-Doc-

ument), Team F predicted that newcomers might think that they have

to go through all the technical setup in order to make any contri-

bution, even a documentation contribution (Bug 3). Team F’s why
analysis (Table 4’s third row) pointed to four of Abi’s cognitive

styles: task-oriented motivations, process-oriented learning, rela-

tively low self efficacy, and risk aversion. Team F localized Bug 3’s

fault in the IA (wheres) to point to the absence of keywords that

could guide newcomers in contributing documentation.

In Stage Three, Team F’s prediction was borne out: two lab par-

ticipants did run into Bug 3 (Figure 9). For example:
P2-O (risk-averse as per facet questionnaire responses): “Should I be
doing this? Like, should I be coding just to change an N to an M? Seems
a little unnecessary?...I’m stuck.”
The lack of a task-centric organization scheme for the instructions

also impacted P2-O, a process-oriented learner according to their

facet questionnaire responses:
P2-O: “I would expect something linear.”
As Table 4 row 3 col. 3 summarizes, Team F fixed the IA by

mentioning “contributions with documentation” in the README.md
(Label-IndexTerm), and by organizing contributing.md informa-

tion with a header (Label-Header) that followed a task-based or-

ganization scheme (OrgScheme-Task), to support people with Abi-

like motivations. Team F also added step-by-step instructions, key-

words (Label-IndexTerm) and links to detailed information (Nav-
ContextualLink), to support diverse learning and information pro-

cessing styles.

The results of Stage 3 showed that the changes had positive effects.

As Figure 9 shows, although two participants ran into Bug 3 with the

Original version, nobody did using the DiversityEnhanced version.

4.3 Bug 4: Where to go to file an issue
For Bug 4 Team F decided that, in trying to file an issue (use-case

U3-FileIssue), newcomers might not know where to go, especially

those who are risk-averse, those with comprehensive information

processing styles or relatively low self-efficacy (Table 4 row 4 col.

1). The elements of IA where the team found these problems were in

Nav-ContextualLink, Label-IndexTerm, and Label-ContextualLink
elements.

Motiv* SE* Risk* Info Learn* Motiv* SE* Risk* Info Learn*
P1 - - - - - - - - - - P10
P2 - - - - - P11
P3 - - - - - - - - - - P12
P4 - - - - - - - - - - P13
P5 - - - - - P14
P6 - - - - - - - - - - P15
P7 - - - - - - - - - - P16
P8 - - - - - - - - - - P17
P9 - - - - - - - - - - P18

Original DiversityEnhanced

Figure 9: Two Original treatment participants ran into Bug 3,
but nobody using the DiversityEnhanced version did. *, circles,
squares: see Figure 6.

However, Team F was wrong—in Stage Three, none of the Origi-

nal version lab participants ran into Bug 4. The reason was a flaw

in Team F’s analysis of this use-case as it related to newcomers’

prior experience. In the Stage Three task sequence, participants had

already been to the “issue list” in context of an earlier use-case

(U1-Find). Thus, as P5-O put it:
P5-O: “Since I already spent some time on that issue page [issue list].
That part [filing an issue] was not too hard.”
Still, Stage Three had not yet occurred, and Team F made the

IA fixes in Stage Two to fix the bug (Table 4 row 4 col. 3). The

Stage Three participants who then used the DiversityEnhanced ver-

sion experienced no problems. Thus, the question of whether new-

comers would have run into these problems if they had not previously

learned the features remains unanswered. However, the question of

whether newcomers ran into problems in the changed version is

answered: nobody ran into any problems in the DiversityEnhanced

version (Table 3).

4.4 Bug 5 & 6: What, where, and how to set up
In use-case U4-Setup, Team F’s analysis revealed Bug 5 (Table 4’s

fifth row), namely that newcomers with comprehensive information

processing style, low self-efficacy, or risk aversion could run into

problems finding the setup instructions for their particular operating

system (OS). Team F identifed the underlying faults to be the Label-
IndexTerm, OrgScheme and OrgStruct, none of which were pointing

out where different OSs’ setup instructions might be.

Even if a newcomer overcame Bug 5 and found the right instruc-

tions, Team F realized that an OSS newcomer might not necessarily

“just know” what each command in the instructions actually did

or exactly where to run them (Bug 6: Table 4’s sixth row). As the

table shows, Team F’s why analysis suggested that this inclusivity

bug could particularly affect a newcomer with any of Abi’s cogni-

tive style values, due in part to the absence of hints with clarifying

keywords (e.g., “command line terminal...”) (Label-IndexTerm).
Stage Three’s results confirmed Team F’s predictions: all Original

participants ran into one or both of these bugs (Figure 10). Also

as per Team F’s prediction, when participants ran into the bugs,

they verbalized mostly Abi-like facet values: for Bug 5 & 6, 81%

(17/21) were Abi-like facet values (orange square outlines left half

Figure 10). For example:
P1-O (low-self-efficacy): “I feel like they [the OSS developers] put up
barriers because they would want people that really knew what they were
doing...”
P1-O (continues): “I’d probably just, like, not work on it.”
The lab participants also pointed out mismatches for cognitive

styles like process-oriented learning, comprehensive information

processing, and risk-aversion to using commands they did not com-

pletely understand:
P1-O: “These instructions aren’t working super good for me ... if there
was explanations a little more.”
P3-O: “I don’t completely understand ... where to move it [a command]
or where to put it.”
To address Bug 5, Team F restructured the “Help us with code”

section by adding a layer of hierarchy to structurally identify general

information about code contributions (OrgStruct-Hierarchy). They

also reorganized the section topically by OS type (OrgScheme-Topic)
(Figure 11). Moreover, they added keywords (Label-IndexTerm)

97

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on September 25,2022 at 23:53:17 UTC from IEEE Xplore.  Restrictions apply. 



How to Debug Inclusivity Bugs? A Debugging Process with Information Architecture ICSE-SEIS’22, May 21–29, 2022, Pittsburgh, PA, USA

in the README.md similar to Bug 3’s fix, to more clearly guide

newcomers to the right setup instructions for their OS. To fix Bug 6,

Team F added explanations to each step in the instructions, in which

they made explicit the reason for each step and the need to use a

command line terminal for the commands (Label-IndexTerm).
Team F’s IA fixes paid off: both Abi-like and Tim-like participants

improved and the number of participants who ran into problems de-

creased from 9 to 1, an 89% improvement (Figure 10). Further,

although none of the Original participants completed the task suc-

cessfully, all participants using the DiversityEnhanced version were

able to complete the task—even P14-D, who at first ran into a prob-

lem, but overcame it and eventually succeeded.

5 DISCUSSION
5.1 The IA Fixes: Equity and Inclusion
As the results sections have shown, the IA fixes that differentiated

the DiversityEnhanced version from the Original version led to a

90% reduction in the bugs that Team F had found to be inclusivity

bugs (Section 4’s Table 3). However, this leaves unanswered whether

these fixes actually contributed to the goals of making the project’s

Motiv* SE* Risk* Info* Learn* Motiv* SE* Risk* Info* Learn*
P1 - - - - - P10
P2 - - - - - P11
P3 - - - - - P12
P4 - - - - - P13
P5 P14
P6 - - - - - P15
P7 - - - - - P16
P8 - - - - - P17
P9 - - - - - P18

Original DiversityEnhanced

Figure 10: All Original participants but only 1 DiversityEn-
hanced participant ran into Bug 5 & 6. *, circles, squares: see
Figure 6.

Figure 11: Top: Bug 5 before the fix: no scheme or cues/keywords
to enable finding instructions for different OS’s. Bottom: Bug 5’s
fix added topic-based scheme and linked to instructions for each
OS.

infrastructure (1) more equitable and (2) more inclusive. For ex-

ample, equitability could be achieved by helping one group at the

expense of another, but that would not achieve inclusivity. Team F’s

goal was to do both.

First we consider equity. A dictionary definition of equity is

“the quality of being fair and impartial” [48]. We measured equity

analyzing the lab participants’ data, because the participants covered

an almost equal number of Abi and Tim facets (recall Figure 5: 22

Abi facet values and 23 Tim facet values in each treatment). Thus, if

the lab participants’ number of “Abi facets” affected by a bug was

greater than the number of “Tim facets”, or vice-versa, we conclude

that the bug was inequitable in the ways it affected the participants.

By this measure, Bugs 1 & 2 in the Original version were in-

equitable: together they affected 14 of participants’ Abi facets (or-

ange outlines for Figure 6’s Original version), compared to only 5

Tim facets (blue outlines). Applying the same measure to the Diver-

sityEnhanced version shows that, although the DiversityEnhanced

version was still slightly inequitable—two of participants’ Abi facet

inequities (2 orange outlines), and zero Tim facet inequities—it was

less inequitable than the Original version. Applying the same mea-

sures to Bug 3 (Figure 9 - Original: 5 Abi/1 Tim; DiversityEnhanced:

0 Abi/0 Tim) and to Bugs 5 & 6 (Figure 10 - Original: 17 Abi/4 Tim;

DiversityEnhanced 2 Abi/1 Tim) also show that the IA fixes likewise

reduced the inequities. Thus, we can conclude that the IA fixes did

make Project F’s infrastructure more equitable.

Inclusion can be computed using a different measure on the same

data. According to the dictionary, inclusion is “the action or state

of including or of being included within a group or structure” [48].

Applying this definition to being included by a bug fix, we will

conclude that the bug fix was inclusive if the number of lab partici-

pants’ facets affected by a bug decreased from the Original version

to the DiversityEnhanced version for participants’ Abi facets and
for participants’ Tim facets.

Applying this measure to Bugs 1 & 2 (Figure 6) reveals that,

after the fix, participants’ Abi facets affected decreased by 12 (from

14 facets affected to 2). Likewise, participants’ Tim facets affected

decreased by 5 (from 5 facets affected to 0). Since the number of

participants’ facets affected decreased for participants’ Abi facets

and for participants’ Tim facets, we conclude that the fixes improved

inclusivity. Applying the same measures to Bug 3 (Figure 9 - Abi:

Table 5: Inclusivity summary: Team F’s IA fixes’ effects on the
Abi-like facet values (top) and the Tim-like facet values (bottom)
were all positive, showing that the IA fixes increased the inclu-
sivity of the prototype across all cognitive styles.
+:More successes in Version DE; -:fewer (zero occurrences).
Grayed out: nobody with these facets ran into this bug.

Bug ID Motiv SE Risk Info Learn
Bug 1 & 2 + + + + +

Bug 3 + + + +

Bug 4

Bug 5 & 6 + + + + +

Bug 1 & 2 + + + + +

Bug 3 + +

Bug 4

Bug 5 & 6 + + + + +

98

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on September 25,2022 at 23:53:17 UTC from IEEE Xplore.  Restrictions apply. 



ICSE-SEIS’22, May 21–29, 2022, Pittsburgh, PA, USA Guizani et al.

Table 6: Participants’ SUS rating scores. (Maximum possible for
the subset we used: 32.)

Original DiversityEnhanced
Men’s Average 12 (6 Men) 19 (3 Men)

Women’s Average 12 (3 Women) 22 (5 Women)

Gender-not-stated N/A 32

Overall Average 12 22

5 Original/0 DiversityEnhanced, Tim: 1 Original/0 DivEnhanced)

and Bugs 5 & 6 (Figure 10 - Abi: 17 Orig/2 DivEnhanced, Tim:

4 Orig/1 DivEnhanced) shows that they also improved inclusivity.

As Table 5 shows, for every bug and every facet value, participants’

Abi-facets and Tim-facets all ran into fewer barriers in the Diversi-

tyEnhanced version.

5.2 What about gender?
In some prior literature (e.g., [65]), analyses of these cognitive styles

have revealed gender differences. That was also the case for our

Stage Three participants’ cognitive styles. The participants displayed

a range of facet values, but as in other studies, women’s facet values

tended more “Abi-wards” than the other participants’ (Figure 12).

These results agree with previous literature that explain how these

facets tend to cluster by gender [11]. These results also, when taken

together with Figure 6, Figure 9, and Figure 10, show that most of

the facets affected by the bugs were those of the women participants.

However, the SUS usability ratings did not differ much by gender.

First, as Table 6 shows, the SUS scores of participants who used

the Original project were equally low across gender, which may

suggest that the Original had a long way to go from everyone’s

perspective. Second, the SUS scores for participants who used the

DiversityEnhanced project were much higher across gender, adding

to the body of evidence (e.g., [34, 65]) that designing for often-

overlooked populations (here, Abi) can benefit everyone.

5.3 The Facet Questionnaire’s Validity
As a few other researchers have also done [18, 24, 65], we used the

cognitive facet questionnaire (Section 3.3) to collect the participants’

facet values. However, we also collected facet values from a second

source: participants’ verbalization during their tasks. These two

sources enabled us to consider the consistency of the questionnaire’s

responses with the facets that actually arose among the participants.

Figure 12: # of women (orange), men (black), and decline-to-
specify (gray) with each combination of facets (from facet ques-
tionnaire), using the same x-axis scheme (from 5 Abi facets to
5 Tim facets) as Figure 4. Note that the right half of the graph
contains only 1 of the 8 women participants.

The data comparing participants’ facet questionnaire responses

with their actual in-situ facet occurrences were detailed earlier in

Figure 6, Figure 9, and Figure 10. Outline colors depict the in-
situ facet occurrences that arose; the shape’s fill color depicts the

participant’s questionnaire response for that facet. (No outline color

simply means no evidence arose in-situ about that facet.) Thus,

when an outline color matches the shape’s fill color (questionnaire

response), then the questionnaire captured that participant’s facet

value correctly for the situation.

Overall, 78% of participants’ in-situ facet verbalizations aligned

with their facet questionnaire responses which suggests that the facet

questionnaire was a reasonable measure of participants’ facet values.

6 THREATS TO VALIDITY
As with any empirical research, our investigation has threats to

validity. In this section, we explain threats related to our investigation

and ways we guarded against them.

During Stage One, Team F reported the issues found in their

project from the perspective of one type of newcomer based on Gen-

derMag’s Abi persona. Past research has suggested using the Abi

persona first [24], since Abi’s facet values tend to be more under-

supported in software than those of the other personas (e.g., [10]).

However, fixing problems from only this persona’s perspectives

could leave non-Abi-like newcomers less supported than before. We

mitigated this risk by empirically evaluating the fixes with both Abi-

like and Tim-like newcomers. That said, some cognitive facets are

not considered at all by GenderMag personas, such as memory or

attention span, which could be particularly pertinent to people with

even mild cognitive disorders. Our investigation did not account for

those types of cognitive facets.

As with any investigation with a lab study component, we needed

to choose a setting, and our setting (OSS Project F) may not general-

ize to other OSS projects. The relatively small number of participants

(18 in total), which was necessary for tractability of qualitative anal-

ysis, also threatens generalizability. In addition, our Stage Three

investigation could have uncontrolled differences between the two

participant groups. To partially mitigate this threat, we used partic-

ipants’ facet questionnaire responses to assign them to treatments

with identical facet distributions (recall Fig 5).

In Stage Three, the identical sequence of the tasks (use-cases),

which reflects a workflow common for OSS contributions [59], may

have created learning effects that could have influenced the results.

Finally, our comparison of facet questionnaire results against ver-

balizations had only partial data available, since we coded facets

from only participants’ verbalizations when they encountered a bug,

and P5-O’s audio for Bug 1 & 2 were corrupted, so we only had

observation notes for that participant.

Threats like these can be addressed only by additional studies

across a spectrum of empirical methods that isolate particular vari-

ables and establish the generality of findings over different types of

OSS projects, populations, and other information rich-environments.

7 CONCLUSION
This paper has presented Why/Where/Fix, a systematic inclusivity

debugging process. Why/Where/Fix harnesses information archi-

tecture, so we also investigated how IA can create inclusivity bugs.

99

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on September 25,2022 at 23:53:17 UTC from IEEE Xplore.  Restrictions apply. 



How to Debug Inclusivity Bugs? A Debugging Process with Information Architecture ICSE-SEIS’22, May 21–29, 2022, Pittsburgh, PA, USA

Our setting was an OSS project’s technology infrastructure. The

“whether” aspects of our RQ1 results revealed that IA can indeed

cause inclusivity bugs. In our investigation, the OSS newcomer par-

ticipants ran into IA-related inclusivity bugs 20 times (Table 3). Our

RQ2 “whether” results also revealed that IA can be part of the solu-

tion. In our investigation, Team-F’s IA fixes reduced the number of

inclusivity bugs the participants experienced by 90% (Table 3).

Team F’s hows of the above results lay in the fault localization

capabilities IA brought to Why-Where-Fix:

• IA and where’s: In Stage One, Team F localized the IA where’s

behind the inclusivity bugs (Section 4 and Table 4), all but one

which the OSS newcomers verified.

• IA and fixes: In Stage Two, Team F fixed the faults, by changing

the IA in the ways detailed in Section 4 and summarized in Ta-

ble 4. The participants in Stage Three showed that Team F’s IA

fixes helped across the cognitive diversity range of the newcom-

ers in our investigation (Tables 3 and 5).

Key to these results is that these inclusivity fixes lay not in sup-

porting one population at the expense of another, and not in “compro-

mising” to give each population a little less than they need. Rather, as

Table 5 illustrated, the fixes produced positive effects across diverse

cognitive styles. These results provide encouraging evidence that the

Why-Where-Fix process may provide an effective way to increase

the equity and inclusion of information-rich environments like OSS

projects.

ACKNOWLEDGMENTS
We thank all the study participants for their time and insight. This

work is partially supported by the National Science Foundation

grants 1901031, 2042324, and 2008089; DARPA grant N66001-

17-2-4030; USDA-NIFA/NSF grant 2021-67021-35344; and CNPq

grant #313067/2020-1.

REFERENCES
[1] Paul Ammann and Jeff Offutt. 2016. Introduction to software testing. Cambridge

University Press.
[2] Gabor Aranyi, Paul Van Schaik, and Philip Barker. 2012. Using think-aloud and

psychometrics to explore users’ experience with a news Web site. Interacting with
Computers 24, 2 (2012), 69–77.

[3] Algirdas Avizienis, J-C Laprie, Brian Randell, and Carl Landwehr. 2004. Basic
concepts and taxonomy of dependable and secure computing. IEEE transactions
on dependable and secure computing 1, 1 (2004), 11–33.

[4] Davide Bolchini, Sebastiano Colazzo, Paolo Paolini, and Daniele Vitali. 2006.
Designing aural information architectures. In ACM international conference on
Design of Communication. 51–58.

[5] Amiangshu Bosu and Kazi Zakia Sultana. 2019. Diversity and inclusion in
open source software (OSS) projects: Where do we stand?. In 2019 ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement
(ESEM). IEEE, 1–11.

[6] John Brooke. 1996. SUS - Quick and Dirty Usability Scale. Usability Evaluation
in Industry 189, 194 (1996), 4–7.

[7] Josep Maria Brunetti. 2013. Design and evaluation of overview components for ef-
fective semantic data exploration. In International Conference on Web Intelligence,
Mining and Semantics. 1–8.

[8] Josep Maria Brunetti, Rosa Gil, Juan Manuel Gimeno, and Roberto García. 2012.
Improved linked data interaction through an automatic information architecture.
International Journal of Software Engineering and Knowledge Engineering 22,
03 (2012), 325–343.

[9] Margaret Burnett, Robin Counts, Ronette Lawrence, and Hannah Hanson. 2017.
Gender HCI and Microsoft: Highlights from a Longitudinal Study. In IEEE Sym-
posium on Visual Languages and Human-Centric Computing. IEEE, 139–143.

[10] Margaret Burnett, Anicia Peters, Charles Hill, and Noha Elarief. 2016. Finding
Gender-inclusiveness Software Issues with GenderMag: A Field Investigation.
In ACM Conference on Human Factors in Computing Systems (Santa Clara,
California, USA) (CHI ’16). ACM, 2586–2598.

[11] Margaret Burnett, Simone Stumpf, Jamie Macbeth, Stephann Makri, Laura Beck-
with, Irwin Kwan, Anicia Peters, and William Jernigan. 2016. GenderMag: A
Method for Evaluating Software’s Gender Inclusiveness. Interacting with Com-
puters 28, 6 (2016), 760–787.

[12] Gemma Catolino, Fabio Palomba, Damian A. Tamburri, Alexander Serebrenik, and
Filomena Ferrucci. 2019. Gender Diversity and Women in Software Teams: How
Do They Affect Community Smells?. In ACM/IEEE International Conference
on Software Engineering: Software Engineering in Society (Montreal, Quebec,
Canada). IEEE Press, 11–20.

[13] Sally Jo Cunningham, Annika Hinze, and David M Nichols. 2016. Supporting
gender-neutral digital library creation: A case study using the GenderMag Toolkit.
In International Conference on Asian Digital Libraries. Springer, 45–50.

[14] André de Lima Salgado, Felipe Silva Dias, João Pedro Rodrigues Mattos, Re-
nata Pontin de Mattos Fortes, and Patrick CK Hung. 2019. Smart toys and
children’s privacy: usable privacy policy insights from a card sorting experiment.
In ACM International Conference on the Design of Communication. 1–8.

[15] Roberto García, Josep Maria Brunetti, Antonio López-Muzás, Juan Manuel Gi-
meno, and Rosa Gil. 2011. Publishing and interacting with linked data. In Interna-
tional Conference on Web Intelligence, Mining and Semantics. 1–12.

[16] Chrysoula Gatsou, Anastasios Politis, and Dimitrios Zevgolis. 2012. Novice User
involvement in information architecture for a mobile tablet application through
card sorting. In IEEE Federated Conference on Computer Science and Information
Systems (FedCSIS). IEEE, 711–718.

[17] Asif Qumer Gill, Nathan Phennel, Dean Lane, and Vinh Loc Phung. 2016. IoT-
Enabled Emergency Information Supply Chain Architecture for Elderly People:
The Australian Context. Information Systems 58 (2016), 75–86.

[18] Catarina Gralha, Miguel Goulao, and Joao Araujo. 2019. Analysing Gender Differ-
ences in Building Social Goal Models: A Quasi-experiment. In IEEE International
Requirements Engineering Conference (RE 2019). 12 pages.

[19] Mikaylah Gross, Joe Dara, Christopher Meyer, and Davide Bolchini. 2018. Ex-
ploring Aural Navigation by Screenless Access. In Internet of Accessible Things.
1–10.

[20] Mariam Guizani, Amreeta Chatterjee, Bianca Trinkenreich, Mary Evelyn May,
Geraldine J. Noa-Guevara, Liam James Russell, Griselda G. Cuevas Zambrano,
Daniel Izquierdo-Cortazar, Igor Steinmacher, Marco A. Gerosa, and Anita Sarma.
2021. The Long Road Ahead: Ongoing Challenges in Contributing to Large OSS
Organizations and What to Do. Proc. ACM Hum.-Comput. Interact. 5, CSCW2,
Article 407 (Oct. 2021), 30 pages. https://doi.org/10.1145/3479551

[21] Mariam Guizani, Igor Steinmacher, Jillian Emard, Abrar Fallatah, Margaret Bur-
nett, and Anita Sarma. Feb, 2022. Supplemental Document for How to Debug
Inclusivity Bugs? A Debugging Process with Information Architecture. Available
at https://figshare.com/s/36e3d2ca390863402790.

[22] Shelley Gullikson, Ruth Blades, Marc Bragdon, Shelley McKibbon, Marnie Spar-
ling, and Elaine G. Toms. 1999. The Impact of Information Architecture on
Academic Web Site Usability. The Electronic Library 17, 5 (1999), 293–304.

[23] Shelley Gullikson, Ruth Blades, Marc Bragdon, Shelley McKibbon, Marnie Spar-
ling, and Elaine G Toms. 1999. The impact of information architecture on aca-
demic web site usability. The Electronic Library (1999).

[24] Claudia Hilderbrand, Christopher Perdriau, Lara Letaw, Jillian Emard, Zoe
Steine-Hanson, Margaret Burnett, and Anita Sarma. 2020. Engineering Gender-
Inclusivity into Software: Ten Teams’ Tales from the Trenches. In ACM/IEEE
International Conference on Software Engineering.

[25] Charles G Hill, Maren Haag, Alannah Oleson, Chris Mendez, Nicola Marsden,
Anita Sarma, and Margaret Burnett. 2017. Gender-Inclusiveness Personas vs.
Stereotyping: Can We Have It Both Ways?. In ACM Conference on Human Factors
in Computing Systems (CHI 17). ACM, 6658–6671.

[26] Geert Hofstede. 2011. Dimensionalizing cultures: The Hofstede model in context.
Online readings in psychology and culture 2, 1 (2011), 8.

[27] Daniel Izquierdo, Nicole Huesman, Alexander Serebrenik, and Gregorio Robles.
2019. Openstack Gender Diversity Report. IEEE Software 36, 1 (Jan 2019),
28–33.

[28] Carlos Jensen, Scott King, and Victor Kuechler. 2011. Joining Free/Open Source
Software Communities: An Analysis of Newbies’ First Interactions on Project
Mailing Lists. In Proceedings of the 2011 44th Hawaii International Conference
on System Sciences (Kauai, HI, USA – 4-7 January 2011) (HICSS ’11). IEEE
Computer Society, Washington, DC, USA, 1–10. https://doi.org/10.1109/HICSS.
2011.264

[29] Flávia Lacerda, Mamede Lima-Marques, and Andrea Resmini. 2017. An Informa-
tion Architecture Framework for the Internet of Things. Philosophy & Technology
(2017), 1–18.

[30] Florian Lachner, Mai-Anh Nguyen, and Andreas Butz. 2018. Culturally sensitive
user interface design: a case study with German and Vietnamese users. In Second
African Conference for Human Computer Interaction: Thriving Communities.
ACM, 1.

[31] Meredith B Larkin. 2020. Board gender diversity, corporate reputation and market
performance. International Journal of Banking and Finance 9, 1 (2020), 1–26.

[32] Amanda Lee, Jeffrey C Carver, and Amiangshu Bosu. 2017. Understanding the
impressions, motivations, and barriers of one time code contributors to FLOSS

100

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on September 25,2022 at 23:53:17 UTC from IEEE Xplore.  Restrictions apply. 



ICSE-SEIS’22, May 21–29, 2022, Pittsburgh, PA, USA Guizani et al.

projects: a survey. In 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE). IEEE, 187–197.

[33] Mingran Li, Ruimin Gao, Xinghe Hu, and Yingjie Chen. 2017. Comparing
infovis designs with different information architecture for communicating complex
information. Communication Design Quarterly Review 5, 1 (2017), 43–56.

[34] Sara Ljungblad and Lars Erik Holmquist. 2007. Transfer scenarios: grounding
innovation with marginal practices. In ACM Conference on Human Factors in
Computing Systems. ACM, 737–746.

[35] Christopher Mendez, Hema Susmita Padala, Zoe Steine-Hanson, Claudia Hilder-
brand, Amber Horvath, Charles Hill, Logan Simpson, Nupoor Patil, Anita Sarma,
and Margaret Burnett. 2018. Open source barriers to entry, revisited: A sociotech-
nical perspective. In Proceedings of the 40th International conference on software
engineering. 1004–1015.

[36] Craig S. Miller and Roger W. Remington. 2004. Modeling Information Navigation:
Implications for Information Architecture. Human–Computer Interaction 19, 3
(2004), 225–271.

[37] Craig S Miller and Roger W Remington. 2004. Modeling information navigation:
Implications for information architecture. Human-computer interaction 19, 3
(2004), 225–271.

[38] Peter Morville and Louis Rosenfeld. 2006. Information architecture for the World
Wide Web: Designing large-scale web sites. O’Reilly Media, Inc.

[39] Dawn Nafus. 2012. “Patches Don’t Have Gender”: What Is Not Open in Open
Source Software. New Media & Society 14, 4 (2012), 669–683.

[40] Gerard Oleksik, Hans-Christian Jetter, Jens Gerken, Natasa Milic-Frayling, and
Rachel Jones. 2013. Towards an information architecture for flexible reuse of
digital media. In International Conference on Mobile and Ubiquitous Multimedia.
1–10.

[41] Open Source Guides. 2019. Retrieved September 12, 2019 from https://opensour
ce.guide/. Accessed on: Sept-3-2019.

[42] Susmita Hema Padala, Christopher John Mendez, Luiz Felipe Dias, Igor Stein-
macher, Zoe Steine Hanson, Claudia Hilderbrand, Amber Horvath, Charles Hill,
Logan Dale Simpson, Margaret Burnett, et al. 2020. How gender-biased tools
shape newcomer experiences in oss projects. IEEE Transactions on Software
Engineering (2020).

[43] Susmita Hema Padala, Christopher John Mendez, Luiz Felipe Dias, Igor Stein-
macher, Zoe Steine Hanson, Claudia Hilderbrand, Amber Horvath, Charles Hill,
Logan Dale Simpson, Margaret Burnett, et al. 2020. How Gender-Biased Tools
Shape Newcomer Experiences in OSS Projects. IEEE Transactions on Software
Engineering (2020).

[44] Scott E Page. 2019. The diversity bonus: How great teams pay off in the knowledge
economy. Princeton University Press.

[45] Helen Petrie and Christopher Power. 2012. What do users really care about? A
comparison of usability problems found by users and experts on highly interactive
websites. In ACM Conference on Human Factors in Computing Systems. 2107–
2116.

[46] Katherine W Phillips, Douglas Medin, Carol D Lee, Megan Bang, Steven Bishop,
and DN Lee. 2014. How diversity works. Scientific American 311, 4 (2014),
42–47.

[47] Peter Pirolli. 2007. Information Foraging Theory: Adaptive Interaction with
Information. Oxford University Press.

[48] Oxford University Press. 2019. Lexico US Dictionary. https://www.lexico.com/
[49] Huilian Sophie Qiu, Alexander Nolte, Anita Brown, Alexander Serebrenik, and

Bogdan Vasilescu. 2019. Going Farther Together: The Impact of Social Capital on
Sustained Participation in Open Source. In ACM/IEEE International Conference
on Software Engineering (Montreal, Quebec, Canada) (ICSE ’19). IEEE Press,
Piscataway, NJ, USA, 688–699.

[50] Marc L Resnick and Julian Sanchez. 2004. Effects of organizational scheme and
labeling on task performance in product-centered and user-centered retail web
sites. Human factors 46, 1 (2004), 104–117.

[51] Gregorio Robles, Laura Arjona Reina, Alexander Serebrenik, Bogdan Vasilescu,
and Jesús M González-Barahona. 2014. Floss 2013: A Survey Dataset about Free
Software Contributors: Challenges for Curating, Sharing, and Combining. In ACM
11th Working Conference on Mining Software Repositories (MSR 2014). ACM,
396–399.

[52] Álvaro Rocha and Jorge Freixo. 2015. Information Architecture for Quality
Management Support in Hospitals. Journal of Medical Systems 39, 10 (2015),
125.

[53] Romisa Rohani Ghahari, Mexhid Ferati, Tao Yang, and Davide Bolchini. 2012.
Back navigation shortcuts for screen reader users. In ACM International Confer-
ence on Computers and Accessibility. 1–8.

[54] Romisa Rohani Ghahari, Jennifer George-Palilonis, and Davide Bolchini. 2013.
Mobile web browsing with aural flows: an exploratory study. International Journal
of Human-Computer Interaction 29, 11 (2013), 717–742.

[55] Louis Rosenfeld, Peter Morville, and Jorge Arango. 2015. Information Architec-
ture: For the Web and Beyond. O’Reilly Media, Inc.

[56] Paul Van Schaik, Raza Habib Muzahir, and Mike Lockyer. 2015. Automated
computational cognitive-modeling: goal-specific analysis for large websites. ACM
Transactions on Computer-Human Interaction (TOCHI) 22, 3 (2015), 1–29.

[57] Arun Shekhar and Nicola Marsden. 2018. Cognitive Walkthrough of a learning
management system with gendered personas. In 4th Conference on Gender & IT.
191–198.

[58] Igor Steinmacher, Tayana Conte, Marco Aurélio Gerosa, and David Redmiles.
2015. Social barriers faced by newcomers placing their first contribution in open
source software projects. In Proceedings of the 18th ACM conference on Computer
supported cooperative work & social computing. 1379–1392.

[59] Igor Steinmacher, Tayana Uchoa Conte, Christoph Treude, and Marco Aurélio
Gerosa. 2016. Overcoming Open Source Project Entry Barriers with a Portal for
Newcomers. In ACM/IEEE International Conference on Software Engineering
(ICSE’16). ACM, 273–284.

[60] Steven E Stemler. 2004. A Comparison of Consensus, Consistency, and Mea-
surement Approaches to Estimating Interrater Reliability. Practical Assessment,
Research & Evaluation 9, 4 (2004), 1–19.

[61] Simone Stumpf, Anicia Peters, Shaowen Bardzell, Margaret Burnett, Daniela
Busse, Jessica Cauchard, and Elizabeth Churchill. 2020. Gender-Inclusive HCI
Research and Design: A Conceptual Review. Foundations and Trends in Human-
Computer Interaction 13, 1 (2020), 1–69.

[62] Sarah J Swierenga, Jieun Sung, Graham L Pierce, and Dennis B Propst. 2011.
Website design and usability assessment implications from a usability study with
visually impaired users. In International Conference on Universal Access in
Human-Computer Interaction. Springer, 382–389.

[63] Bogdan Vasilescu, Daryl Posnett, Baishakhi Ray, Mark GJ van den Brand, Alexan-
der Serebrenik, Premkumar Devanbu, and Vladimir Filkov. 2015. Gender and
Tenure Diversity in Github Teams. In ACM Conference on Human Factors in
Computing Systems (Seoul, Republic of Korea) (CHI ’15). ACM, ACM, New
York, NY, USA, 3789–3798.

[64] Markel Vigo and Simon Harper. 2013. Challenging information foraging theory:
screen reader users are not always driven by information scent. In ACM Conference
on Hypertext and Social Media. 60–68.

[65] Mihaela Vorvoreanu, Lingyi Zhang, Yun-Han Huang, Claudia Hilderbrand, Zoe
Steine-Hanson, and Margaret Burnett. 2019. From Gender Biases to Gender-
inclusive Design: An Empirical Investigation. In ACM Conference on Human
Factors in Computing Systems (Glasgow, Scotland Uk) (CHI ’19). ACM, New
York, NY, USA, Article 53, 14 pages.

[66] Richard Saul Wurman and Joel Katz. 1975. Beyond graphics: The architecture of
information. AIA Journal 10 (1975), 40–45.

[67] Tao Yang, Mexhid Ferati, Yikun Liu, Romisa Rohani Ghahari, and Davide Bol-
chini. 2012. Aural browsing on-the-go: listening-based back navigation in large
web architectures. In ACM Conference on Human Factors in Computing Systems.
277–286.

101

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on September 25,2022 at 23:53:17 UTC from IEEE Xplore.  Restrictions apply. 


