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Abstract

Cognitive biases are hardwired behaviors that influence
developer actions and can set them on an incorrect course of
action, necessitating backtracking. Although researchers
have found that cognitive biases occur in development tasks
in controlled lab studies, we still do not know how these
biases affect developers’ everyday behavior. Without such an
understanding, development tools and practices remain
inadequate. To close this gap, we conducted a two-part field
study to examine the extent to which cognitive biases occur,
the consequences of these biases on developer behavior,
and the practices and tools that developers use to deal with
these biases. We found about 70% of observed actions were
associated with at least one cognitive bias. Even though
developers recognized that biases frequently occur, they are
forced to deal with such issues with ad hoc processes and
suboptimal tool support. As one participant (IP12) lamented:
There is no salvation!

1. INTRODUCTION
Cognitive biases are systematic deviations from optimal rea-
soning®’ that influence how we find, evaluate, and remem-
ber information. These “shortcuts” to potential solutions
can take several forms, and regularly occur in our everyday
behavior. For example, confirmation bias (tendency to pay
more attention to information that agrees with our preconcep-
tions) is demonstrated in some individuals’ characterization
of the COVID-19 virus as “just another u,” prompting them
to engage in social behavior contrary to experts’ and health
organizations’ advice. As with this example, the occurrence
of cognitive biases can cause significant impacts on society.
Software developers are not immune from such behavior,
and may exhibit biases for several reasons. For example,
some biases are a result of attempts to bypass our limited
cognitive capacity (for example, availability bias may prompt
developers to choose solutions based on examples they read-
ilyremember), whereas others are a result of prior experience
with a solution (for example, belief perseverance bias may
force developers to focus more on the code they believe has
the bug), or individual problem-solving styles (for example,
hyperbolic discounting bias may encourage developers to
choose a solution with smaller and quicker rewards).
Although these cognitive biases often result in desired
solutions, they may also cause significant negative conse-
quences. Controlled lab studies have identified the harm-
ful effects of specific cognitive biases on several aspects of
software development such as defect density,' require-
ments specification,® originality of design,'® and feature
design.* Mohanani et al. conducted a survey of 65 such

studies. However, despite these efforts, we still do not
understand how cognitive biases manifest in the real
world, and how they influence developer actions, behavior,
and decision-making in situ. Only by understanding real-
world behavior, we can begin to understand how to curtail
such nonoptimal behavior.

Here we present results from a two-part field study exam-
ining to what extent cognitive biases occur in a developer’s
daily work activities. We consider how frequently, and when,
certain biases occur. We also list some current practices and
tools that developers currently use to mitigate biases.

2. BACKGROUND

Cognitive biases were first introduced in 1974 by research-
ers Tversky and Kahneman.'” Researchers in software engi-
neering have been studying these biases in this domain
since 1990.' Mohanani et al. summarizes 65 articles that
characterize the current state of studying biases in soft-
ware engineering.’ These articles investigate 37 distinct
cognitive biases (out of more than 200 previously identified
in psychology, sociology, and management research). For
example, studies have found that confirmation bias leads
to higher defect rates and more postrelease defects when
testing; availability and representativeness biases lead to
developers misrepresenting code features; and overconfi-
dence caused insufficient efforts when performing require-
ments analysis.

Of the 65 papers examined, none describe the use of in
situ field studies as part of their research methodology. For
example, Calikli et al.> evaluate the effects of company cul-
ture, education, and experience on confirmation bias among
software developers and testers through user studies involv-
ing interactive and written tests. Although lab studies and
controlled experiments allow for control of confounding
factors, they do sacrifice the richness and spontaneity of
naturalistic observations.® Our study attempts to extend
these lab-based (or studies in nonnatural environment)
findings to actual development practice via the use of obser-
vational studies in a real-world setting.

3. METHODOLOGY
We observed 10 developers in situ for our field study. Our
participants were recruited from a U.S.-based software

The original version of this paper is entitled “A Tale
from the Trenches: Cognitive Biases and Software
Development” and was published in Proceedings of the
ACM/IEEE 42nd International Conference on Software
Engineering (pp- 654-665), June 2020.
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startup (company A) that specializes in the areas of distrib-
uted developer tools and services, such as program analysis,
user interface (UI) design, infrastructure support, and soft-
ware R&D. Due to the diversity of focus areas in the startup,
participants used a wide variety of programming languages,
tools, and working styles.

Table 1 presents demographic information about study
participants, such as development experience, code editor
usage, and preferred programming languages (the median
software development experience was two years, and the
mean was 5 years 9 months).*

We observed participants performing their routine devel-
opment tasks on a typical workday. During the observation
session, we asked participants to think aloud and verbalize
their thoughts and interactions.'> We recorded their screen,
audio, and physical workspace.

The total observation time per session was limited to 60
min to prevent participant burnout and respect time restric-
tions at the startup.

During each session, one researcher was positioned next
to the participant, taking notes. In a separate room, not vis-
ible to the participant, an additional researcher served as a
secondary field-note taker, and monitored the recordings of
the participant to ensure consistency. Members of the
research team alternated between serving as the primary
and secondary note takers.

At the end of each session, participants were asked to
complete a brief demographic survey (see results in
Table 1) although the two researchers compiled and
prepared follow-up questions to clarify in a 15-min ret-
rospective interview.

To understand how cognitive biases affect software devel-
opment, we first identified developer tasks (goals) and
actions—discrete steps performed by the developer to reach
the goal.? We identified and classified each individual action
taken by participants using qualitative coding methods.

a We could not study whether gender had any association with biases as
very few participants in our study were women.

Table 1. Study participant demographics.

Ptc.’ Gnd.i Exp.ii Language(s)" Editorv
P1 M 21 years 0 months Java Eclipse
P2 M 1 year 11 months Clojure Eclipse
P3 M 1 year 10 months Clojure, Java Emacs
P4 M 7 years 3 months Clojure, Python Emacs
P5 M 2 years 0 months Clojure, Java, Emacs
Haskell
P6 M 2 years 0 months TypeScript, VS Code
Clojure, Java
P7 M 5 years 0 months C/C++ Emacs
P8 F 15 years 0 months JavaScript, CSS VS Code
P9 M 0 years 9 months C, Prolog Sublime
P10 F 1 year 0 months Python PyCharm

' Ptc. = Participant.

iGnd. = Gender.

ii Exp. = Software development experience.

v Preferred language(s).
vEditor used in session.

To code the raw data, we first transcribed all data and
partitioned each unit to contain a quote and description of
the participant’s actions aligned with the timestamp.

To code the actions in our transcript data, we created five
sets of 94 (4.5%, total 22.5% over five sets) random instances
from the observations across all participants. Three authors
individually coded each action with the codes described in
Table 2. We achieved inter-rater reliability (IRR) measures
for three coders. We then examined each action to identify
any associated biases as described next.

3.1. Complementary interviews

We next conducted semistructured interviews with 16 devel-
opers to triangulate our findings from the initial field study.
We used semistructured interviews instead of surveys to:
(1) confirm that participants correctly understood the
biases, although allowing them to ask clarifying questions,
and (2) follow up on advice/practices that participants sug-
gested to address bias.

We recruited interview participants from three compa-
nies to examine debiasing practices across a variety of
organization sizes and cultures. First, we interviewed 11
developers from the original company in our field study
(Company A); from our observed 10 participants (see
Tablel), two employees had left and three others had
joined since our field study. Next, we interviewed one devel-
oper from another start-up of similar stature (Company B);
team sizes were similar with those at Company A. Finally,
we interviewed four developers from a Fortune 500 com-
pany (Company C); a multinational company with large
team size. These interviews helped to confirm that the
observed biases were not limited to a single company.
Table 3 provides demographic information for all of the
interview participants.

In the interviews, we defined 10 bias categories and pro-
vided examples based on instances observed in our field
study (see Section 4 for definitions). Using these generalized
examples, we asked two questions for each specific bias: (1)
“On a scale from 1 (low) to 5 (high), how often do you think
developers act under this bias?” and (2) “What standard
practices, guidelines, or tools would help to avoid this bias?”

Interview responses were categorized by two authors
using Pattern Coding®—the process of grouping categories
into smaller thematic sets. We identified 29 development
practices (for example, brainstorming, referencing). These
practices were abstracted into five categories that link spe-
cific biases with practices that directly address them (see
Table 6 for details).

Table 2. Action codes.

Action Definition

Read

Examining information from artifacts (for example,
code, documentation, terminal output)
Edit Any change made directly to code or artifacts

Navigate Moving within or among artifacts (for example, pulling files
from Git, opening files, scrolling through a file)

Execute Compiling and/or running code

Ideate Constructing mental model of future changes
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Table 3. Interview participant demographics.

Pt Gni Ciii Exp" Role’ Pt Gn Cc Exp Role

IP1 M A 23 years 0 months Dev IP9 M A 8y 0 months Dev

IP2 M A 2 years 11 months Dev IP10 M A 2 years 0 months Dev

IP3 M A 2 years 10 months Dev IP11 M A 1 year 9 months Dev

IP4 M A 8 years 3 months Dev IP12 M B 1 year O months Dev

IPS M A 3 years 0 months Dev IP13 M C 5 years 0 months Dev

IP6 F A 19 years 8 months QA IP14 F C 2 years 0 months Dev

IP7 M A 6 years 0 months Dev IP15 M C 2 years 0 months Dev

IP8 M A 19 years 0 months Dev IP16 M C 5 years 0 months Dev

i Pt. = Participant.
1 Gn. = Gender.
ii C. = Company.
¥ Exp. = Years/months of software development experience.
v]Job position in the company.
Table 4. Cognitive bias categories.
Bias category Bias(es) Example

CB1  Preconceptions Confirmation, selective perception P1 continually added hashmaps when other data structures were more

suited for data query APIs.

CB2  Ownership IKEA effect, endowment effect P8 decided to reuse her old CSS file instead of the premade CSS files

from the Bootstrap project.

CB3  Fixation Anchoring and adjustment, belief preserva- P9 fixated on changing the function definitions when the environment just
tion, Semmelweis reflex, fixation needed to be reloaded.

CB4  Resort to Default Default, status-quo, sunk cost P2 opened a new code file and kept unused template code at the top of

the file.

CB5  Optimism Valence effect, invincibility, wishful thinking, P4 was proud of his new aggregating map code, but it got an error after
overoptimism, overconfidence it was printed.

CB6  Convenience Hyperbolic discounting, time-based P2 created simple overly-verbose code that addressed his current needs,
bias, miserly information processing, but became spaghetti code that slowed future progress.
representativeness

CB7  Subconscious action Misleading information, validity effect P6 focused on fixing the files listed in error messages instead of the core

dependency file causing errors throughout the system.

CB8  Blissful ignorance Normalcy effect P10 disregarded all compiler warnings out of habit and failed to notice a

new exception detailing the cause of his build failure.

CB9  Superficial selection Contrast effect, framing effect, halo effect P4 copied and pasted a function from his documentation directly into his

syntax without examining it first.

CB10 Memory bias Primacy and recency, availability P1 reused a design pattern that worked well on recent tasks, because he

could easily recall the structure of the code.

4. BIAS CATEGORIZATIONS

A description of individual biases can be found in our sup-
plemental site,” which provides anonymized supplemental
artifacts used for data analysis. We cannot release raw data
due to participant privacy concerns.

4.1. Bias categories

We grouped the 28 observed biases into 10 categories based
on their effect on developer behavior (see Table 4); we did
notobserve the remaining nine biases reported by Mohanani
et al., likely because of our study design—an hour-long
observational study with think aloud protocol.

The bias categories were created through the process
of negotiated agreement to ensure the validity of the
bias coding. Two authors individually categorized the
28 biases using the following: (1) the definitions of cogni-
tive biases in the context of software engineering (per

b https://epiclab.github.io/ICSE20-CogBias/

Mohanani et al.), (2) the definitions of biases in cognitive
science literature, and (3) the observed effects of biases on
participants’ development behavior (through direct observa-
tion and participants’ verbalization). In the first round, the
authors agreed on the categorization of 24 out of 28 biases
(85.7% agreement), into a set of 11 categories. In the second
round, the authors disagreed on one bias categorization
(96.4% agreement) and decided to merge the 1% and 11" cat-
egories. Table 4 shows the final list of 10 categories (CB1-
CB10), and their mapping to individual cognitive biases.

The Preconceptions (CB1) category refers to the tendency
to select actions based on preconceived mental models for
the task at hand. Biases within this category cause develop-
ers to discount the degree of solution space exploration
required to take action.

Ownership (CB2) occurs when developers give undue
weight to artifacts that they themselves create or already
possess, thereby reducing the potential for other options to
be objectively evaluated. Preference for one’s own artifacts
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prevents developers from exploring the solution space
completely.

Fixation (CB3) refers to anchoring problem-solving
efforts on initial assumptions, and not modifying said
anchor sufficiently in light of added information or contra-
dictory evidence. This leads to reduced awareness of task
context.

Resort to default (CB4) occurs when developers choose
readily available options based solely on their status as the
default, or the tendency to prefer current conditions without
regard to applicability or fitness. This causes lost context of
the overall task.

Optimism (CB5) reflects the set of biases that lead to false
assumptions and premature conclusions regarding effi-
ciency or correctness of a chosen solution. This occurs when
people over-trust their abilities, or when the likelihood of a
favorable outcome is overestimated.

Convenience (CB6) encompasses the assumption that
simple causes exist for every problem, and the predisposi-
tion to take the seemingly quicker or more simplistic routes
to solution. This reduces the effort developers invest in rea-
soning and making sense of information.

Subconscious action (CB7) refers to the offloading of eval-
uation and sense-making to external resources (such as
IDEs or online resources) without regard to the actual merits
of such information.

Blissful ignorance (CB8) refers to the assumption that
everything is nominal and working, even in the face of infor-
mation indicating otherwise. Because of this, developers do
not pay attention to their surroundings.

Superficial selection (CB9) represents a range of actions
and information being unduly valued based on superficial
criteria. As a result, developers decide on a solution without
thoroughly reasoning through it.

Memory bias (CB10) affects how developers remember
information from a series of alternates, prefer to use the pri-
mary or most recent information encountered, or react as a
result of information most readily available in the memory.

5. RESULTS

5.1. Presence of biases in developer actions

The field study included 2084 distinct developer actions; of
these we classified 953 actions that contained at least one
bias category. Thus, approximately half of developer actions
(45.72%) were associated with some form of bias. Note, the
large number of biased actions (953 out of 2084) in our
observation may likely be due to cognitive biases being
inherent in decision-making actions, which are a key part of
software development.

However, not all cognitive biases necessarily result in a
negative outcome. Biases can lead to positive effects—par-
ticipants taking fewer actions than anticipated. However, in
a noncontrolled environment, we cannot differentiate
between the “baseline” (no-bias) or “optimized” (positive
outcomes of bias) number of actions. Thus, here we focused
only on reversed actions (negative bias).

To identify biases that resulted in a negative outcome, we
use the notion of Reversal Actions.We define Reversal
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Actions as the actions that developers need to undo, redo,
or discard at a later time. Reversal actions are thus indicative
of nonoptimal solution paths.

Figure 1a shows the distribution of developer actions
(biased or nonbiased), and whether it led to a negative out-
come. There were 953 actions with biases, and 1131 without.
Similarly, there were 1104 reversal actions and 980 nonre-
versal actions. Reversal actions were more likely to occur
with a bias—68.75% (759/1104 cases), and biased actions
were more likely to be reversed—79.64% (759/953 cases).

To verify this association, we conducted a chi-square test
of independence with a Bonferroni correction (to account
for multiple comparisons®). The chi-square test is signifi-
cant (x*[4, N = 2084] = 499.35, p-value < 2.2e - 16, with
Bonferroni correction) showing biased actions were highly
associated with reversals.

To evaluate the strength of this association, we estimated
the Cramer’s V measure that signifies a strong association
between the presence of bias and actions that need to be
reversed (V= 0.5, large when min. number of variables is 24).

However, if the time spent on reversing actions is not
substantial, the number of reversal actions alone does not
provide an accurate estimate of the negative outcomes of
biases. We analyzed the time spent during each action,
captured in Figure 1b. Each cell presents the time (in sec-
ond) spent in each type of action.

In total, developers spent 34.51% (7839/21407) of their
time reversing-biased actions. When focusing only on the
time spent in reversal actions, 70.07% (7839/11187) of these
involved biases. Therefore, biased actions lead to significant
negative outcomes as participants lost approximately 25% of
their entire working time. A chi-square test of independence
supports this hypothesis, x*[4, N=21407] = 5850.2, p-value <
2.2e - 16 showing time spent reversing actions is not inde-
pendent of biased actions (with Bonferroni correction and
large effect size with Cramer’s V).

Not only are biases frequent in software development
(45.72%), but also biased actions are significantly more
likely to be reversed. Also, developers spend a significant
amount of time reversing these biased actions.

Figure 1. Distribution of presence of bias and reversal actions. Size of
circles represent (a) the number of actions or (b) time (in seconds).
Totals are shown along the bottom and right edges, with overall
totals shown in the lower right-hand corners.

Bias No Bias Bias No Bias
L5 759 345 1104 8% 7839 3348 11187
x< g<
2 2
2 194 786 980 % 1837 8383 10220
< <
953 1131 2084 9676 11731 21407

(a) Distribution of Actions (b) Distribution of Time (sec)




5.2. Consequences of biases

To identify the consequences of these biases on develop-
ment, we investigated the effects of bias categories on par-
ticipants’ decision-making and problem-solving.

Two authors categorized the effects of the bias categories
into four consequence groups by analyzing the biases and
using negotiated agreement. Table 5 shows the consequences
of biases on development and the associated categories.

We identified the effect of each bias category on four
orthogonal problem-solving activities in programming: (1)
gathering information,' (2) making sense of the informa-
tion," (3) maintaining information (context) that is relevant
to tasks and goals,® and (4) maintaining and focusing atten-
tion in the necessary places.*

Inadequate exploration. Exploring or foraging differ-
ent pieces of information'® and evaluating alternate solu-
tions’” form a key part of development. Cognitive biases
sometimes inhibited participants from investing in
proper exploration.

Reduced explorations often led to participants creat-
ing suboptimal solutions. For example, P4 needed a sub-
set of data from a hashmap which required him to query
the hashmap. As he was not familiar with the query inter-
face and did not know how to construct the query, he
decided that an easy-fix (CB6) was to instead manually
collect the data.

[14:26]“Easiest thing to do would be to collect all input
statements and instead of using the query, do this myself.”

P4 then began implementing this functionality under the
preconception (CB1) than manual data collection is easy.
However, after trying this for the next 18 min, he realized
that the implementation was far more difficult than what he
had expected, at which point he decided to learn how to
query a hashmap.

Reduced sense-making. Sense-making is the process of
cognitively engaging with information to construct a rele-
vant mental model, which can then be used to understand a
given situation.!' We identify reduced sense-making through
participants’ verbalization indicating that previous actions
(and assumptions) were incorrect.

For example, P10 was testing modifications to data pipe-
lines (used to aggregate and monitor data) and found that
her tests failed after she added new input data files to the
pipeline. She subconsciously (CB7) followed the error loca-
tion suggested in the message without reasoning about the
error. Eventually, she found that she was using older input
files which caused the error; her tests worked after she
updated these files.

Table 5. Consequences of biases.

Consequence Bias categories (CB)

Inadequate exploration
Reduced sense-making 56,7
Preserving context 3,58
Misplaced attention 3,4,8

[13:25]“.. So that one [file]wasn’t there to begin with ...”

Context loss. When navigating and making sense of dif-
ferent sets of information, developers must retain a mental
model of the problem space and relevant information to
complete a task.® A reduction in context can be seen when
participants repeatedly backtrack or verbalize confusion
regarding the current task or goal (for example, losing track
of their current actions).

This is shown when P3 fixates (CB3) on trying to solve an
error and gets sidetracked, thus losing the larger context of
their task. We also observed that when participants were
optimistic (CB8) about an implementation, they would
suspend the related context and move on with their task.
These participants struggled to recall the context at a later
time when their implementation failed.

Misplaced attention. Attention is a critical element of our
cognitive system, and affects what information developers
perceive as relevant, how developers interpret error mes-
sages, and so forth. Biases can cause developers to misplace
their attention causing them to spend time working on
issues that are irrelevant to the current task.

When P4 tried to debug his query function which was
returning nil, he thought the problem could be an incor-
rect query syntax.[26:28]“This is the API for Clojure and I'm
looking for something that tells me how to check if a list con-
tains a vect.” He became so focused on changing his syn-
tax (CB3) that he did not notice the syntax highlighting was
no longer working and his environment had failed (CB8).

Biases affect multiple aspects of problem-solving during
development. Specifically, biases affect how adequately
developers explore the solution space, how thoroughly they
engage in sense-making, how effectively they retain context,
and how efficiently they invest their attention.

5.3. Dealing with biases
To add further evidence that biases occur frequently in prac-
tice, we interviewed 16 developers asking them: “how often

Figure 2. Perceived frequency of biases from interviews ranging
from “Almost Never” to “Always.” Bias categories are ordered in
descending order from most to least frequent (shown in %).

CB10 | 0% 25% B -
cBs | 0% 25% - 75%
el | 0% 25% R
ce3 | 38% 12% B 50%
ces | 12% 44% B 44%
cB5 | 25% 31% B 44%
CB4 | 25% a [N 44%
cB7 | 19% 43% B 38%
cB9 | 38% 31% | 31%
B2 | 6% 63% 31%
0
Percentage

Response Almost Never Rarely Sometimes

Often . Always
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do you think developers act under [bias category]?”

Figure 2 shows the perceived frequency of occurrences
for each bias; ranging from “Almost never” to “Always.” The
frequencies are indicated by hues of red. Dark red bars
denote high frequencies (Often, Always), with their per-
centages reported far right (for example, 81% of interview-
ees considered CB10 to be frequently occurring). Light red
bars denote low frequencies (Almost Never, Rarely), with
percentages reported far left (for example, 6% found CB10
to be infrequent). Grey bars in the center reflect the fre-
quency of “sometimes” responses, which is considered
neutral within subsequent analysis.

Overall, interviewees perceived biases to occur frequently
in software development (Figure 2), matching our observa-
tions. For example, when talking about Convenience bias
(CB®6), IP12 said:[32:12] “It happens all the time! ... It’s the
story behind why technical debt happens! Three months and
then you go and ask why on earth is this failing? And when you
look back and somebody overwrote something because it was
easier. And it screwed up everything!”

Memory (CB10), Convenience (CB6), and Preconception
(CB1) bias were ranked highest in perceived frequency.
These ratings are, at least, partial confirmation of our empir-
ical findings, as Convenience (CB6), Fixation (CB3), and
Preconception (CB1) were likewise in the top five most
observed biases. However, for Memory bias (CB10) and
Subconscious Action (CB7), the actual frequencies do not
match with developers’ perceived frequency.

Practices that help. Although current development prac-
tices and tools are not designed to avoid cognitive biases,
developers might still be using them to do so. Therefore, dur-
ing our interviews, we asked participants to identify practices
and tools that could help them/coworkers avoid or recover

from biases. There were 246 unique suggestions in the inter-
views. Two authors categorized these suggestions using
Pattern Coding®—the process of grouping categories into
smaller sets of themes. Three themes emerged—Development
Practices, Who performs these practices, and When.

Table 6 displays these categories and themes, along with
the biases that these practices can help with. The last col-
umn lists the tools that participants found useful to help
with these practices. The “Categories” column indicates the
category of the practice, and the “Subcategories” column
describes helpful practices within the category. The “Who”
column indicates whether the team (T) needs engage in the
practice or the individual (I) can do it themselves. The
“When” column specifies whether the practice needs to be
done Before (B), During (D), or After (A) a task. The “Biases”
column indicates the biases each practice can help with.

The five categories of suggestions are as follows.

Stepping back: Taking a break from one’s own develop-
ment pattern can help developers become aware of benefi-
cial practices (such as clean code), which can avoid biases
such as Preconception (CB1) and Memory (CB10). For exam-
ple, IP13 described Documentation days and Test Fests, as:
[20:01] “.. documentation days are where we say, ‘Today, we’re
not going to be writing code. We’re going to focus on checking the
documentation, updating documentation ...” You might run
into some of the new methods ... and then you are more bound to
use them next time.”

Similarly, learning through focused and incentivized
training can help ingrain “good” practices that will help
developers avoid biases such as Convenience (CB6). For
example, IP14 mentioned how “clean code” workshops
were: [20:06] “really instilled in all of us—oh, it really matters
to build the highest quality code!”

Table 6. Helpful practices.

Categories Subcategories Time Who Biases Tools
Stepping Back Incentivized training: discussion of clean code benefits, long-term goals B/D T/I 26,7 NA
Noncode days: documentation days, test fest, familiarize with concepts D T 1,6,10
Meaningful configurations, updating configurations, meaningful defaults B T 4,10
Different Confer with developers: pair programming, collaborative brainstorming B/D T 1,2,3,6,9,10 Slack, Hipchat
Perspectives (code/design/tool), verify global changes, designated tool guy D T 2567
Open communication: encourage communication, communicate early with e
teams such as QA. Promote focus on functionality and need
Systematic Systematic exploration: prior research on tools, compare and contrast B I 1,2,3,4,5,6,7,8,9 Dev Tools, Sonarlint
Approach solutions, problem decomposition
Big picture in mind: reusability of code, backward compatibility D I 1,2,6,10
Consistent early feedback: reviews (design, expert, peer), sprint meetings ~ D/A T 1,2,3,4,56
RTFM Reference doc.: req/API/design doc, code comments, online sources B T 1,4,5 IDE Suggestion
Journal options/alternatives: playbook, team diary B T/T 1,2,10
Meaningful and relevant specifications: standard specs, severity/ B/D T 24,78
relevant levels for warnings, protocol for resolution of warnings,
descriptive errors
Processes SE concepts: agile, code review, shared artifacts, reduced ownership, design  B/D/A  T/I 1,3,4,5,6,7,89,10 ZenHub, Gerrit,
first, UML diagrams, user story, TDD, BDD, constant debugging, data flows Debugger, IDE,
Standardization: corporate/coding/package standards, right arch. and A T 1,2,5,6,7,8,9,10 JIRA, JaCoCo
microservices, clean code, performance test, impact analysis
Problem-solving strategies: divergence and convergence thinking, defen-  B/D/A I 1,356,789
sive programming, negative hypothesis testing, timebox, note todos in code
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Different perspectives: Appreciating a different per-
spective, coupled with associated relevant feedback, can
help avoid biases such as Preconception (CB1), Fixation
(CB3), and Superficial selection (CB9). Being exposed to
different methods can help break developers out of cog-
nitive “boot loops” by forcing them to reconsider, evalu-
ate, and justify any subsequent action. For example, pair
programming can help with Superficial selection (CB9)
as the navigator can point out any errors in reasoning
when programming.

Systematic approach: To avoid falling victim to biases or
other errors, individuals should systematically approach
the problem space and explore available solutions and
tools. Such systematic review of different task parameters
can help in avoiding biases such as Preconception (CB1),
Memory (CB10), and Fixation (CB3) as developers will be
both better aware of potential pitfalls, and also can con-
sider alternate solutions ahead of time. As IP7 explained
the practice of paying attention to documentation:
[14:49]%.. [when choosing a tool] one of our criteria was
[researching] how well is it documented? And I think it [good
documentation]is very important.”

In addition to alternate solutions, systematic exploration
helps developers keep the “big picture” in mind. In other
words, it forces developers to more explicitly appreciate and
acknowledge the larger goal, hopefully minimizing the like-
lihood that they will be distracted when in situ. This can pre-
vent biases such as Ownership (CB2), by promoting the use
of existing relevant code (that does not necessarily just
belong to a single developer), which helps keep the larger
code base backwards compatible.

RTFM: Consulting documentation before starting a task
can avoid biases such as, Preconception (CB1), Memory
(CB10), and Ownership (CB2), as developers can become
aware of the multiple ways to problem solve and the pitfalls
of each solution. For example, Team diaries and playbooks
are journals where developers record guidelines for libraries
and packages that specify how to use any code artifacts and
avoid pitfalls.

Standardized, descriptive documentation of how to han-
dle errors (or warnings) along with their severity levels can
also help overcome biases such as Blissful ignorance (CB8)
and Optimism (CB5) by helping developers locate faults
more quickly.

Processes: Good software engineering practices such as
designing and testing early and frequently, agile software
development, etc. can help avoid biases in all categories to
some extent. Developers can avoid biases such as Ownership
(CB2) and Resort to Default (CB4) through coding standards
and the use of standard libraries. This also helps developers
to locate appropriate code to reuse.

Finally, effective problem-solving strategies can also
help avoid biases such as Fixation (CB3), Convenience
(CB6), and Subconscious Actions (CB7). For example, con-
vergent thinking exercises—identifying a concrete solution
to a problem—can help developers reach a (specific) solu-
tion quickly, whereas divergent thinking exercises—explor-
ing multiple solutions to problems—can help developers
identify an optimal solution from a set of alternatives.

These prevent developers from fixating (CB3) on a single
solution.

Tool wishlist. Participants felt that tool support to help
overcome biases was lacking, and had difficulty naming any
tools that they would use. They recommended the following
tools that they wished existed to help deal with each of the
listed biases:

Fixation (CB3): bias can be reduced by IDEs that track
developer actions and detect situations where a developer is
“fixated.” It can then prompt different actions. IP12
explained, [12:44] “..The IDE-if you change [code] and you
always get the same error, it can say, hey, you have been do the
same thing 5 times. But you always get the same error, maybe
try something different?”

Resort to default (CB4): It is a bias that developers will
succumb to because it is a path of least resistance; as IP12
mentioned, “If there are default options, they’ll just use it,”
and the way to overcome this problem would be via tool per-
sonalization and specification. He felt that tools’ defaults
should better match the current work context. For example,
implementation of a high-level “intention” wizard that
allows developers to “feed their intentions” into the wizard,
which in turn then creates correct defaults and parameters
relevant to the task.

Optimism (CB5): Tools that continuously run tests
(and build scripts) in the background can counter this
bias by identifying faulty changes that the developer
might not have verified. IP12 recommended [12:44] “[the
tool] could figure out, ‘hey! this is [code area] where I could
run the tests’ and it’d run the tests for you without you having
to doing anything.

However, he warned that such tools can become intrusive
and distracting to the developer if they continuously notify
developers of failing tests.

Convenience (CB6): bias can be prevented by a tool that
can identify suboptimal code changes and recommend
“clean” or “non-smelly” code. Not having “quick fix” changes
can also help maintain backward compatibility and reduce
technical debt. As IP1 explained, [14:36] “some tools that
could identify a quick fix ...And then point out some of the prob-
lems that this particular fix will cause.

Subconscious actions (CB7): based on misleading and
recurrent environmental cues can be prevented by annotat-
ing the severity of failures, exceptions, or results of flaky
tests. IP12 mentioned annotating flaky tests, [42:45] “updat-
ing the cues to say, well, it’s not a red, it’s a blood red! Because
there is a test that we know shouldn’t fail is failing. A test that
has never failed in the past 20 builds, did now!”

Blissful ignorance (CB8): can be avoided by tools that
highlight a problem that appears similar to what the devel-
oper has experienced before and would otherwise ignore.
Both IP15 and IP12 described a tool that allows developers
to mark certain expected failures, such that the tool can
notify them of other related failures.

Memory (CB10): bias can be avoided by a tool that auto-
matically identifies deprecated methods and recommends
the relevant updated API functions, instead of the function
that the developer remembered. IP13 mentioned:[12:44]
“API code is evolving very frequently...and you don’t know [the
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updated]methods...so one way to tell you like, hey, there’s prob-
ably a better way of doing this.”

6. DISCUSSION

Our results indicate that cognitive biases frequently disrupt
development, and compromise developers’ problem-solv-
ing abilities both in terms of task performance and time
invested. Although developers currently deal with biases
using a combination of standard and impromptu practices,
there isalack of tools that prevent or help developers recover
from biases. Our findings have the following implications:

Implication for developers. Developers should be made
aware that biases pose a significant threat to productive
development, and perhaps are more pervasive than they
realize. We synthesized a list of helpful practices (Table 6)
that are expected to reduce the effect of cognitive biases.
Some of these biases require an organizational level initiative.
However, there are many practices that developers can indi-
vidually employ on their own (for example, divergence think-
ing, defensive programming, and so forth). Interviewees
often discussed that such practices have long-term benefits.

Implications for tool builders. Our interviews revealed
that developers perceived a lack of tool support for dealing
with biases. In Section 5.3, we identified various tool fea-
tures that developers envisioned might help deal with
biases. Further, as developers currently rely on a combina-
tion of standard and improvised practices to deal with
biases, these practices need better tool support for effective
implementation. Our results represent an initial starting
point for tool builders to actualize tools that help prevent
and deal with frequently demonstrated cognitive biases.

Limitations. Such as any field study, certain threats exist
in our study that might challenge our findings. We describe
some of these threats and steps taken to mitigate them.

Although our observational findings are derived from a
small number of participants from a single software devel-
opment company, the startup nature of the company ensure
variation among the participants in terms of tasks and tools.
Our primary units of analysis were the 2084 participants’
actions (as opposed to the individual participants). To bol-
ster these observations, we subsequently used a more
diverse interview sample, which included participants from
both large and small employers.

Observational studies are prone to confounds such as
response bias, which can influence participant responses
during our study. We mitigate this threat by having only one
researcher directly observe a participant during our study,
but supported behind the scenes by a second observer.

7. CONCLUSION

In this paper, through a field study of 10 developers, we
investigated both how often cognitive biases occur in the
workplace, and how these biases impact development. Our
results indicate that cognitive biases frequently disrupt
development, and compromise developers’ problem-solv-
ing abilities such as exploration, sense-making, and contex-
tual awareness. We compiled an initial set of practices and
tools that developers currently use (or desire) to deal with
cognitive biases.
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The current findings provide a useful starting point for
future investigations, and future efforts at developing a
deeper understanding of cognitive biases will help develop-
ers and researchers to implement more effective preventive
practices, and guide tool builders in creating curated support.
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