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Abstract—In this paper, we describe how we extended the
Pegasus Workflow Management System to support edge-to-cloud
workflows in an automated fashion. We discuss how Pegasus
and HTCondor (its job scheduler) work together to enable this
automation. We use HTCondor to form heterogeneous pools
of compute resources and Pegasus to plan the workflow onto
these resources and manage containers and data movement for
executing workflows in hybrid edge-cloud environments. We then
show how Pegasus can be used to evaluate the execution of
workflows running on edge only, cloud only, and edge-cloud
hybrid environments. Using the Chameleon Cloud testbed to set
up and configure an edge-cloud environment, we use Pegasus
to benchmark the executions of one synthetic workflow and two
production workflows: CASA-Wind and the Ocean Observatories
Initiative Orcasound workflow, all of which derive their data
from edge devices. We present the performance impact on
workflow runs of job and data placement strategies employed
by Pegasus when configured to run in the above three execution
environments. Results show that the synthetic workflow performs
best in an edge only environment, while the CASA-Wind and
Orcasound workflows see significant improvements in overall
makespan when run in a cloud only environment. The results
demonstrate that Pegasus can be used to automate edge-to-cloud
science workflows and the workflow provenance data collection
capabilities of the Pegasus monitoring daemon enable computer
scientists to conduct edge-to-cloud research.

Index Terms—Pegasus, edge computing, workflows, workflow
management systems, clouds, distributed systems.

I. INTRODUCTION

Over the years, workflows have served as a useful abstrac-

tion for computational experiments in fields such as astron-

omy, physics, biology, and seismology. A workflow, which is

usually structured as a directed acyclic graph (DAG), is an

abstraction that encapsulates an experiment’s computational

tasks and the data or control dependencies between each

task [1]. Workflows have traditionally been executed using

workflow management system (WMS) software on campus

clusters, high performance computing (HPC) systems, or in

the cloud. The primary role of a WMS is to orchestrate the

distributed execution of workflow tasks on available resources

based on dependencies present in the workflow. Additional

features such as fault tolerance, handling of data movement

between tasks, and monitoring capabilities may be offered by

a WMS to provide robustness, debugging, and facilitate easy

experimentation. The most common types of applications for

which WMS have been used include data analysis, parameter

sweeps, and instrument data processing [2]. In this paper,

we focus on leveraging one WMS in particular, the Pegasus

workflow management system (Pegasus WMS or Pegasus) [3],

[4].

In recent years, the Internet of Things (IoT) has gained

tremendous popularity, leading to an increase in the use of

smaller, internet-enabled computing devices located at, or

along the path to the network edge. This is in contrast to

cloud resources, which are located at and beyond the network

core. This geographical diversity of where compute capable

devices reside has led to the emergence of edge computing as

a new computing paradigm and accordingly, the Edge provides

a new execution environment.

Edge computing, which has its roots in content delivery

networks, involves moving computations closer to the source

of data. These computations take place on edge devices that

are often equipped with sensors and serve as the source of

data for applications, which enable monitoring, data analytics,

and information sharing capabilities [5]. An edge device can

be loosely defined as any device along the network path

between the source of the data and any compute or storage

infrastructure [6]. In this paper, an edge device is defined as

a computing device, which is not part of the cloud and one

which serves as the source from which data is initially derived.

Edge computing provides four notable advantages over

cloud computing: reduced response times, potential for re-

duced cumulative ingress bandwidth for core cloud systems,

the ability to enforce data privacy constraints, and the capacity

to mask core cloud outages [7]. Through data-aware job

placement and measured consideration of the execution en-

vironment for storing intermediate workflow outputs, a WMS

can potentially orchestrate workflow runs in such a way that

edge computing is best utilized.

Hybrid edge-to-cloud computing environments comprise of

compute resources at both locations: the network edge and in
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the cloud. Such environments enable applications and systems

to utilize the advantages offered by both computing paradigms:

low latency, data locality and cost savings at the edge,

and scalability, high availability and reliability provided by

cloud systems. However, effectively utilizing both computing

paradigms within a complex execution environment poses

several key challenges in terms of scheduling, resource visibil-

ity, mitigating edge constraints, compute and data movement

costs, resource provisioning considerations, failure handling,

and overall automation of workflow executions that span the

edge-to-cloud continuum.

In this work, we address some of the above challenges.

We target edge-to-cloud workflows that process potentially

large amounts of instrument data generated by networks of

sensors outside of a cloud environment. Because of their

data processing needs, these workflows can benefit from the

computational capacity provided by cloud environments. We

describe how we extended the Pegasus WMS to automatically

orchestrate edge-to-cloud workflows, and in particular a set of

target applications.

The paper makes the following contributions:

• Development of an automated hybrid edge-to-cloud

workflow management solution.

• Development of three edge-to-cloud workflows that can

be used for experimentation (synthetic [8], CASA-

Wind [9], [10], and the Ocean Observatories Initiative

(OOI) [11] Orcasound workflow).

• Evaluation of the ability of the system to orchestrate

workflows in three different execution environments:

cloud only, edge only, and hybrid edge-cloud.

• Performance evaluation of the target applications facil-

itated by the workflow system, taking into account job

placement and intermediate data placement.

The remainder of the paper is structured as follows. Sec-

tion II discusses challenges in edge-to-cloud hybrid environ-

ments, and introduces the Pegasus WMS and HTCondor [12],

the job scheduler used by Pegasus. In that section, we also

expand upon two key features of HTCondor: classads and

matchmaking, which enable different job placement strategies

to be employed by Pegasus, and then present our edge-to-

cloud workflow solution. Section III details our workflows

and experimental setup on the Chameleon Cloud [13], [14]

testbed. Section IV presents a detailed performance evaluation

of the experimental runs. Section V covers related works on

edge-cloud job scheduling strategies and existing systems that

facilitate running jobs on edge-cloud hybrid infrastructures.

Section VI concludes the paper.

II. ORCHESTRATING WORKFLOW RUNS ON RESOURCES

FROM EDGE TO CLOUD

A. Challenges of Edge-to-Cloud Execution

Edge-cloud computing environments make it possible for

applications and systems to capitalize on the desirable ad-

vantages offered by both computing paradigms: faster re-

sponse times, data locality, and cost savings at the edge, and

scalability, high availability and reliability provided by the

cloud. Effectively utilizing both computing paradigms within

such a complex execution environment for a given application

presents a number of challenges. First, available resources and

their states need to be visible in order to make scheduling

decisions. Some environments with IoT devices may expe-

rience churn due to limited power and network connection.

Second, scheduling decisions must be made. When running in

the cloud, both compute and data movement costs may need to

be considered. Incorporating the edge may involve taking into

consideration energy consumption, limited compute capacity,

and storage constraints. In addition to scheduling decisions,

there may be resource provisioning decisions which can be

made to better accommodate varying levels of expected load.

Such provisioning can happen at the edge, for example in a

cloudlet or on idle edge devices. Third, software systems must

be in place to execute computations at both ends and automat-

ically handle failures when they occur. Finally, the ability to

capture fine grained performance metrics, or provenance data,

is indispensable to optimizing executions on an edge-to-cloud

continuum.

B. Edge-to-Cloud Workflow System Design

In order to orchestrate workflows that span edge and cloud

resources, we have chosen Pegasus WMS as the basis of our

solution. Pegasus has a number of key features that make it a

particularly good candidate to provide the automation needed

to span the edge to cloud continuum. Most importantly, it has

the notion of an abstract workflow. This is a workflow descrip-

tion that is resource independent and captures the workflow at

the science level: the codes used for the computations, the data

needed and generated by the workflow tasks. Pegasus takes

this abstract workflow description and maps it to the available

resources, generating the necessary resource-dependent scripts

for job submission and adding the necessary data movement

between jobs by invoking appropriate data transfer protocols.

As a result, Pegasus generates an executable workflow that

HTCondor’s DAGMan [15] can execute. DAGMan takes the

Pegasus-generated scripts and submits them to HTCondor for

execution.

Pegasus’ architecture that includes the separation between

the abstract workflow and the executable workflow enabled

it to easily move from Grids to Clouds back in 2008 [16].

This architecture and the reliance on proven and versatile

technologies such as HTCondor allowed us now to extend to

the edge.

C. HTCondor

HTCondor [12] is a job management and execution sys-

tem that aggregates computing resources into a single pool,

referred to as a "condorpool", of nodes suited for distributed

high throughput computing (HTC) workloads. A condorpool

may comprise of heterogeneous resources such as desktop

machines, cloud resources, and high performance computing

(HPC) resources. Resources within a given pool are assigned

one or more of the following three roles: submit, execute,
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and central manager. Jobs are submitted through a machine

assigned with the submit role. The central manager negotiates

between compute resources (machines assigned the execute

role) and resource requests (jobs submitted through machines

assigned the submit role) to ensure that each job is placed on

a machine with the required hardware and software configu-

rations (e.g. at least 2 GB of RAM, 512 MB disk space, the

latest Java runtime, etc.).

The negotiation process handled by the central manager,

referred to as matchmaking [17], serves as the underlying

mechanism by which HTCondor can be used to employ job

placement strategies. Within a condorpool, resources advertise

their characteristics, while queued jobs advertise their require-

ments. The central manager opportunistically matches jobs

with resources as they become available, and once a match

is made, a job may run on the matched resource.

In the context of data intensive workloads that are to be

executed in an edge-cloud hybrid infrastructure where the

majority of data is initially produced at the edge, HTCondor’s

matchmaking can be used to leverage data locality, minimize

data movement between edge and cloud, and improve overall

execution time. This can be accomplished by setting up a

condorpool incorporating both edge and cloud resources. Next,

job requirements for each compute task need to include a target

host on which the job is to be run. Workflow execution can

be done through a higher level workflow management system

such as Pegasus [3], [4].

D. Pegasus WMS

Pegasus is a workflow management system (WMS) which

allows researchers to develop, run, monitor, and debug large

scale scientific workflows. Researchers can develop work-

flows, which are represented as directed acyclic graphs (DAG),

using the Python Pegasus API. Once developed, a workflow

is planned into an executable one, specific to the underlying

execution environment on which it will be executed. Pegasus

is built upon HTCondor DAGMan, and heavily utilizes it as

the execution engine. During Pegasus’s workflow planning

process, the abstract workflow is translated into a format

readable by DAGMan. Additional jobs for staging data in

and out of storage resources, file cleanup, and registration

jobs (used for tracking files throughout the lifespan of the

workflow) are added into the planned workflow by Pegasus.

Once the workflow is executing, DAGMan submits jobs from

the workflow description to be run according to its topological

ordering. Workflow provenance information is collected by

Pegasus through the pegasus-monitord daemon [18], allowing

users to monitor the workflow execution as it unfolds. In

the event that job or file transfer failures occur, automatic

retries are attempted. Data movements are handled by pegasus-

transfer, a tool that supports a host of transfer protocols like

HTTP, S3, GridFTP, SCP, etc.

Pegasus can be used to run jobs on any system compatible

with HTCondor. Historically this has been on HPC systems

such as campus clusters and DOE or NSF funded national cy-

berinfrastructures, in the cloud on Amazon Web Services [19]

and Google Cloud Platform [20], and on grids like the Open

Science Grid [21], [22]. Almost all internet enabled devices at

the network edge can be used as an HTCondor execute node,

making Pegasus a potential WMS for executing workflows on

edge-cloud infrastructures. Up until now, Pegasus has not been

used in such an environment.

E. Architecting the Edge-to-Cloud Workflow Solution

HTCondor can run on any edge or cloud resource running

Linux, macOS, or Windows. For example, given a set of small

devices such as Raspberry Pis, desktop machines, and cloud

instances, one can create a hybrid edge-cloud infrastructure.

In order to match jobs specifically with edge or cloud

resources, we added an additional attribute,

MACHINE_RESOURCE_TYPE = {edge,cloud}, to the ma-

chine classad of each HTCondor worker, which indicated

whether or not that resource was an edge or cloud resource.

When creating the Pegasus workflows for each of the three

execution environments, we indicated which type of resource

the job should be matched to using the Python API for

describing Pegasus workflows. Internally, HTCondor takes into

account this requirement in addition to other job requirements

such as required number of CPUs, RAM, disk space, etc.

Data movement operations for each workflow used HTTP,

SCP, and local file system operations. These were managed

by the pegasus-transfer utility. Pegasus-transfer is invoked for

each job to handle staging in necessary input data and staging

out generated data products. For jobs that are scheduled on

locations where input data already resides, symlinks are used

by pegasus-transfer to avoid unnecessary data movements and

reduce overall disk usage. One notable advantage of pegasus-
transfer is that data movement operations are decoupled from

the jobs themselves. For each of these workflows, no additional

code for the jobs were written to pull from or push to data

stores. A change in the locations of initial input files would

only require a workflow specific configuration change with

Pegasus.

III. EXPERIMENTAL SETUP

A. Workflows

Synthetic. The synthetic workflow [8], (see Fig. 1), was

developed to represent data aggregation and analytics ap-

plications, which run in edge-cloud environments. For such

applications, initial input data is derived at the edge from

multiple instruments such as a cameras and sensors. Each input

goes through preprocessing steps before being aggregated by

a single job that outputs the final result. This workflow is

modeled after a video analytics application which can search

for and trace the route of a missing object or person using

surveillance footage aggregated from security cameras and

other IoT devices geographically scattered across an urban area

[6], [7].

Each of the 32 initial input files in this workflow is 1024

MB. There are 3 levels of jobs. Jobs at levels 1, 2 and 3 are

labeled keg_1, keg_2, and keg_merge respectively. Output files
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keg_1 keg_1 keg_1

1_1.txt

input_1.txt input_2.txt

1_2.txt 1_32.txt

. . .

input_32.txt

keg_merge

merge.txt

Input  File
Intermediate File
Output File
Compute Job

keg_2 keg_2 keg_2

2_1.txt 2_2.txt 2_32.txt

. . .

Figure 1. Synthetic Workflow.

from jobs at level 1, 2, and 3 are 500 MB, 250 MB, and 250

MB for the final output file. Workflow jobs are implemented

using the pegasus-keg executable, a stand-in for a typical

executable which can be configured to simulate computation

and IO. In total, there are 86 jobs in this workflow. Job

runtimes vary based on their level in the workflow. Jobs at

level 2 run 50% faster than jobs at level 1. The final job at

level 3, keg_merge, runs 50% slower than jobs at level 1.

CASA-Wind. The CASA Wind workflow [9], [10], as depicted

in Fig. 2, is designed to identify areas of maximum observed

wind magnitudes from a network of overlapping Doppler

weather radars. Seven radars contribute to this product, asyn-

chronously sending NetCDF formatted data files containing a

360 degree azimuthal sweep at a fixed antenna tilt above the

horizon. Single radar files are stored in a polarimetric relative

coordinate system and must be regridded into a common

coordinate system. At a centralized location, the workflow

periodically takes any available scans collected over a given in-

terval, and creates a new file in a World Geodetic System 1984

(WGS 84) latitude/longitude projection representing highest

winds that have been observed in the time period. Because this

information is of importance to users of the system, additional

steps are required as part of the workflow to communicate risk.

PNG images are created from the resultant grid and sent to a

webserver for map overlay and display. Contoured geofences

are extracted from the grid, representing polygonal areas where

observed winds are exceeding thresholds of importance, for

example where winds are severe and likely to cause damage.

Finally, comparisons of the geofenced thresholds with GIS

information provided by users are performed, for example

denoting when the thresholded wind contours overlap or

approach areas of critical infrastructure or population centers.

These trigger email alerts and app notifications that the CASA

system sends out to users for situational awareness. With its

basis of sensors deployed in the field, a centralized, asyn-

chronous data ingest process from multiple sources, and series

unzip unzip unzip

radar_1.netcdf

radar_1.netcdf.gz radar_2.netcdf.gz

radar_2.netcdf radar_N.netcdf

max_velocity

MaxVelocity.netcdf

max_wind.png

merged_netcdf2png

MaxVelocity.png

mvt pointAlert_config.txt

locations.geojson

MaxVelocity.geojson
pointalert

alert.geojson

. . .

Input  File
Intermediate File
Output File
Compute Job

radar_2.netcdf.gz

Figure 2. Casa Wind Workflow.

of operations that must be performed in sequence, the CASA

wind workflow is appropriate for the evaluation of edge-to-

cloud workflow orchestration.

Orcasound Workflow. The Ocean Observatories Initiative

(OOI) [23], through a network of sensors, supports critical

research in ocean science and marine life. Orcasound [24] is a

community driven project that leverages hydrophone sensors

deployed in three locations in the state of Washington (San

Juan Island, Point Bush, and Port Townsend) in order to

study Orca whales in the Pacific Northwest region. Throughout

the course of this project, code to process and analyze the

hydrophone data has been developed, and machine learning

models have been trained to automatically identify the whistles

of the Orcas. All of the code is available publicly on GitHub,

and the hydrophone data are free to access, stored in an

AWS bucket. In this paper, we have developed an Orca-

sound workflow using Pegasus. This version of the pipeline

is based on the GitHub Actions Orcasound workflow [25],

and incorporates inference components of the OrcaHello AI

notification system [26]. The Orcasound Pegasus workflow

(Fig. 3) processes the hydrophone data of one or more sensors

in batches for each timestamp, and converts them to a WAV

format. Using the WAV output it creates spectrogram images

that are stored in the final output location. Furthermore, using

the pretrained Orcasound model, the workflow scans the WAV

files to identify potential sounds produced by the orcas. These

predictions are merged into a JSON file for each sensor, and

if data from more than one sensor are being processed, the

workflow will create a final merged JSON output for all.

In our experiments, we used data from a single hydrophone

sensor over the span of a day. The workflow consumed 8641

recordings with a total size of 1.5GBs and median size of

181KBs.

B. Testbed Setup

We used the Chameleon Cloud testbed [13], [14] for our ex-

periments. Chameleon is a large, deeply programmable testbed
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convert2wav

wav/sensor_1/ts/{batch_1}

convert2spectrogram

png/sensor_1/ts

merge_predictions

predictions_sensor_1.json

inference

predictions_all.json

. . .

Input  File
Intermediate File
Output File
Compute Job

sensor_1/hls/ts/{batch_1}

predictions_sensor_1_ts_batch_1.json

orca_model

merge_predictions

convert2wav

wav/sensor_1/ts/{batch_K}

convert2spectrogram

png/sensor_1/ts

inference

sensor_1/hls/ts/{batch_K}

predictions_sensor_1_ts_batch_K.json

orca_model

. . .

convert2wav

wav/sensor_N/ts/{batch_1}

convert2spectrogram

png/sensor_N/ts

inference

sensor_N/hls/ts/{batch_1}

predictions_sensor_N_ts_batch_1.json

orca_model

merge_predictions

convert2wav

wav/sensor_N/ts/{batch_K}

convert2spectrogram

png/sensor_N/ts

inference

sensor_N/hls/ts/{batch_K}

predictions_sensor_N_ts_batch_K.json

orca_model

. . .

. . .

predictions_sensor_N.json

. . .

. . .

Figure 3. Orcasound Workflow.

designed for systems and networking research. It leverages

OpenStack to deploy isolated slices of cloud resources for

user experiments. Chameleon provides over 15K cores and 5

PB storage, hosted across two sites, the University of Chicago

(UC) and Texas Advanced Computing Center (TACC). Users

can provision bare metal compute nodes or VMs with custom

system configuration connected to user-controlled OpenFlow

switches operating at up to 100 Gbps. In addition, Chameleon

networks can be stitched to external resources.

For our experiments, we emulated an edge-to-cloud sce-

nario, and provisioned nodes from both Chameleon sites as

shown in Fig. 4. In TACC, we deployed our cloud site,

where we assumed we could get unlimited resources. There

we created our workflow submit node and two worker nodes

(48 cores and 192GB of RAM each), which were connected

using a 10Gbps network. In UC, we deployed our edge host

(24 cores and 192GB of RAM), which was hosting all the

data and was offering compute capability via compute slots

that were dynamically provisioned using Docker containers.

The data was attached to the compute slots using volumes

and the produced outputs were sent back to the submit node

using SCP. In case input data was needed for computations

by the cloud worker nodes, they were served directly via

HTTP. The two sites were connected using a 1Gbps network.

To execute our workflow scenarios we used Pegasus v5.0

and we created an HTCondor pool to manage the resources.

Additionally, because we wanted to emulate a less powerful

machine on the Edge, we used Docker to throttle the CPU

usage of the compute slots to 67%. Finally, to maintain a

Figure 4. Experimental Setup on Chameleon.

consistent environment across all nodes, we used the more

lightweight Singularity containers to create the environment

for the workflow jobs.

IV. EVALUATION

A. Workflow Performance

The synthetic, CASA-Wind, and Orcasound workflows were

each run 10 times for each of the three execution scenarios:

edge only, edge-cloud, and cloud only. The following metrics

were averaged over 10 runs for each workflow: makespan

(Fig.5), cumulative job walltime (Fig.6), cumulative job wall-

time including queuing delays (Fig.8), cumulative time spent

transferring data between edge and cloud (Fig.7), and total

amount of data transferred between edge and cloud (Fig.9).

Makespan is the wall clock time of the entire workflow run.

Cumulative job walltime is the sum of all compute times for

each job not including queuing delays and time to stage input

and output files. Fig.8 includes queuing delays and data staging

times. Cumulative time spent transferring data between edge

and cloud is the sum of all time spent transferring data between

the edge host (CHI@UChicago) and the cloud (CHI@TACC).

Note that for the edge only case, final output files generated

from the workflow are transferred back to the cloud. For the

cloud only case, all initial input files to the jobs are transferred

from the edge to the cloud.
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Each metric uses the edge only scenario as a baseline. In

our experiments, we analyze each metric on a per workflow

basis with respect to the execution scenario, as each workflow

has varying characteristics: number of jobs, job runtimes,

dependency structure, and amount of data moved.

Synthetic. The synthetic workflow has the shortest makespan

when run in an edge only environment, despite having the

longest cumulative job walltime among the other execution

environments. In the edge only scenario, only 250 MB needs

to be transferred between edge and cloud as opposed to the 16

GB and 32 GB when run in edge-cloud and cloud respectively.

When run using edge-cloud the makespan is 17% slower,

stemming from the almost 6300% increase in the amount of

data which needs to be transferred between the edge and the

cloud. The workflow was configured for this environment such

that all initial workflow jobs, denoted as keg_1 in Fig. 1, were

scheduled on the edge host where the initial input files are

already stored. All subsequent jobs (keg_2 and keg_merge)

were scheduled to run in the cloud requiring all keg_1 outputs

to be sent over the WAN.

CASA-Wind. The CASA-Wind workflow exhibited best per-

formance in terms of makespan when run only in the cloud,

yielding a 31% improvement over running at the edge. Both

edge-cloud and cloud only see a decrease in cumulative

job walltime by about 46%, due some or all jobs running

in the faster cloud. When factoring in queuing delays and

time to stage data (Fig. 8), we see that edge-cloud performs
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Figure 9. Total data transferred over WAN (yaxis in logscale(2)).

the best with a 34% improvement over edge-only and 24%

improvement over cloud only due to the amount of data that

needs to be transferred over the slower WAN. 5914.80 MB

must be transferred between the edge and the cloud when

only cloud compute resources are used in contrast to 13.60

MB when both edge and cloud are utilized.

Orcasound. When run in a cloud only environment, the Orca-

sound workflow runs about 43% faster compared to running

in edge only and edge-cloud environments. Compute jobs

performing inference, which make up a significant amount

of computation required by the Orcasound workflow, take an

average of 36.29 seconds on the cloud compared to 82.26

seconds when run on the edge. Additionally, running in an

edge-cloud environment requires roughly 10 times more data

to be moved between the edge and the cloud. In terms of

cumulative time spent performing data movement over the

WAN, there was only a 7% difference between the edge-

cloud and cloud only environment runs relative to the edge

only environment, indicating that the 43% improvement in

makespan was likely due to the 49% decrease in cumulative

job walltime when running in the cloud.

B. Discussion

The CASA-Wind and Orcasound workflows both perform

the best in regards to makespan when run in a cloud only

environment while the synthetic workflow runs the fastest

at the edge. When data movement and queuing delays are

factored into cumulative job walltimes (Fig. 8) it is evident
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that these factors can heavily impact the performance im-

provements realized by running on faster hardware (illustrated

in Fig. 6). Furthermore, the amount of data moved between

the edge and the cloud varies vastly depending on the exe-

cution environment and job placement. Parallelism must also

be considered when identifying the impact of a particular

execution environment. Fig. 10 illustrates HTCondor worker

utilization over time for the Orcasound workflow when run in

each scenario. Because the cloud is assumed to be scalable,

the cloud only environment provided maximal parallelism,

thus vastly contributing to improved makespan. In contrast,

the edge only and edge-cloud environments provided a fixed

set of edge resources (24 compute slots in this case), therefore

resulting in roughly a 2 times slowdown with respect to the

cloud only case. In our experiments, we see that computing

strictly at the edge resulted in a minimal amount of data

being moved between the two sites while computing in the

cloud resulted in the most amount of data being moved

between the two sites for two out of the three workflows.

Moreover, the slowest compute times are expected to be at

the edge versus fastest in the cloud. Lastly, assuming a highly

available and scalable cloud, shorter queuing times and greater

levels of parallelism can be expected when running on the

cloud as opposed to the edge with fixed resources. Together,

these characteristics bring into perspective three of the many

trade offs which need to be taken into consideration when

developing a scheduling heuristic.

Impact. This work demonstrates that Pegasus can enable

domain scientists to efficiently automate their workflows in

an edge-cloud environment and to utilize the power of edge

computing. Our results also show that Pegasus can be used to

explore different tradeoffs in managing and executing these

edge-to-cloud workloads. Hence, this will also enable new

computer systems research in scheduling, monitoring, perfor-

mance analysis, etc. For example, it will enable research in

the area of scheduling, typically performed through modeling

and simulation, by allowing the exploration of job placement

and scheduling strategies through HTCondor’s matchmaking

functionality. By using the monitoring and performance data

capture features in Pegasus, rich workflow execution traces

from experiments run in these hybrid edge-cloud environments

can be collected and used by other researchers.

V. RELATED WORKS

There have been various software systems and frameworks

which have been developed to facilitate application deploy-

ment and job execution specifically in edge-cloud environ-

ments. KubeEdge [27] is one such framework. Built as an

add on to Kubernetes, KubeEdge extends native containerized

application orchestration and device management to hosts at

the Edge. KubeEdge also facilitates point to point communi-

cation between edge nodes through a virtual private network.

AWS IoT Greengrass [28] is an edge runtime and cloud

service for building, deploying, and managing IoT devices.

The edge runtime allows AWS Lambda functions to be run

on target edge devices in addition to the cloud. Similarly,

Azure IoT Edge [6] also provides an edge runtime that allows

application containers to be deployed to edge devices. Steel

[29] is a system that automates deployment across edge-cloud

environments and provides monitoring capabilities. RACE [30]

is an edge-cloud framework that allows cloud-edge applica-

tions to continuously correlate or join data from multiple edge

devices by means of a novel cost-based optimizer developed

to minimize communication time.

In contrast to Pegasus, these frameworks focus on gen-

eral purpose deployment rather than large scale scientific

workflows. Systems like KubeEdge (and Kubernetes) share

similarities with HTCondor in terms of managing resources,

but differ in that HTCondor can execute jobs as well as

facilitate data movements through HTCondor’s built in file

transfer protocol. Vendor provided IoT services such as AWS

Greengrass and Azure IoT Edge provide great functionality

out of the box, however do not provide cloud agnostic solu-

tions for developing edge-cloud hybrid compute infrastuctures

as HTCondor or KubeEdge does. Furthermore, while these

frameworks monitor the state of each resource being used,

they do not expose fine-grained performance metrics of in-

dividual jobs to the extent that Pegasus can. More recently,

GPU monitoring extensions have been developed in pegasus-

kickstart to provide researchers with better insights into the

performance of workflows incorporating machine learning

components [31].

VI. CONCLUSIONS AND FUTURE WORK

With edge computing being increasingly used for data

intensive applications, our work presents how we extended

Pegasus to automate the execution of scientific workflows in

hybrid edge-to-cloud execution environments by leveraging

the matchmaking feature of HTCondor. This enables domain

scientists to use Pegasus to efficiently execute their workflows

in the entire edge-to-cloud continuum.

We also analyzed three representative edge-to-cloud work-

flows, synthetic, CASA-Wind and Orcasound, using three

computing environments, edge only, edge-cloud, and cloud

only. Results show that data movement times, placements of

jobs, relative computational capabilities at the edge and the

cloud, and other factors have significant impact on the overall
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performance of our representative edge-to-cloud workflows.

Pegasus can now be used to explore many of these tradeoffs

and enable new systems research in the areas of scheduling and

performance analysis. The workflows developed and workflow

execution traces are made publicly available, and can be used

by the research community.

Given the inherent tradeoffs between compute time, time

spent peforming data movement, and queing delays, in our

future work, we will implement new scheduling heuristics in

Pegasus such that one or more of the above factors can be

optimized. Additionally, factors such as energy consumption

and cloud costs were not addressed in our experiments. We

will consider energy consumption in future work for systems

which utilize edge devices, particularly those with limited

power reserves. Finally, we will investigate job placement

strategies that take into account costs that can be incurred

for using cloud resources and storage services.
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