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Abstract—Dynamic activation pruning of convolutional neural networks (CNNs) is a class of techniques that reduce both runtime and
memory usage in CNN implementations by skipping unnecessary or low-impact computations in convolutional layers. However, since
dynamic pruning results in different sequences of memory accesses depending on the input to the CNN, they potentially open the door
to inference-phase side-channel attacks that may leak private data with each input. We demonstrate a memory-based attack inferring a
dynamically-pruned CNN'’s outputs for various victim CNN models and datasets. We find that an attacker can train their own machine
learning model to learn to guess victim image classifications using the victim’s memory access patterns with significantly better than
random chance. Moreover, unlike previous related work, our attack: 1) continually leaks user data for each input and 2) does not

require adversarial presence during the victim training.

Index Terms—Side-channel attacks, Machine learning, Artificial neural networks.

1 INTRODUCTION

Deep learning has gained popularity in many appli-
cations, including image/video recognition, recommender
systems, self-driving vehicles, and more [1]. In particular,
convolutional neural networks (CNNs) are widely used for
many machine learning (ML) tasks on images and videos,
and many custom hardware accelerators have been pro-
posed to efficiently handle the large amount of computation
needed in complex CNNs.

We show that dynamic pruning techniques ( [2], [3], [4],
[5]) introduce a side-channel vulnerability that allows an
attacker to infer the outputs of each input. The presence
of this vulnerability is potentially alarming in light of the
demonstrated benefits of the dynamic pruning technique,
which has been shown to achieve several times reduction
in the inference-phase computations (e.g. upwards of 2x for
ResNet and 5x for VGG [2]).

Previous work has demonstrated a number of privacy
attacks on CNNs. We broadly distinguish two categories of
CNN privacy attacks: API attacks (which require access to a
victim CNN'’s API but are generally not used for pruning
attacks) and side-channel attacks. This work belongs to
the latter group, in which previous studies have shown
that memory access patterns can leak the victim model’s
structure and parameters [6] and that power side channels
can be used to reconstruct inputs [7], [8].

We investigate the side-channel attack through memory
access patterns of dynamically-pruned CNNs. We show
that, given only information on a CNN’s pruning decisions
and a set of labels, an adversary can train a supervised
ML model to predict the victim CNN'’s output labels for
individual inputs with much higher accuracy than a random
guess. Unlike the model/structure-stealing attacks [6] which
learn a single static secret by observing memory accesses
of multiple inputs, our output-stealing attack learns one
output per input. Moreover, our attack does not require
an adversarial presence during the victim training as in
the input-reconstruction attacks [7], [8], but instead only

requires black-box access to a copy of the victim’s model
and trained weights. Our findings suggest that dynamic
optimizations for CNNs need to carefully consider potential
side-channel attacks.

2 BACKGROUND
2.1 Convolutional Layers

Mathematically, a convolutional layer can be represented
as a series of 3D matrix operations. Figure 1 shows how
a single convolutional layer is computed for a single input.
The input feature map (IFM) consists of a 3D matrix of size
H; x W; x C;. Similarly, the output feature map (OFM) of
the layer is also a 3D matrix of size H, x W, x C,. Each 2D
slice of the IFM and of the OFM along their depth dimen-
sions are commonly referred to as input channels and output
channels, respectively. For convenience, we also distinguish
the feature maps from activations, in that the former refers to
the matrices as a whole while the latter refers the individual
scalar values that compose them.

Since a CNN consists of multiple convolutional layers
linked in sequence, the OFM of one convolutional layer will
become the IFM to the next layer. Finally, the weights can
be thought of as a 4D matrix of size C; x Hjy x Wy x C,,.
Each 3D slice of the weights along the fourth dimension is
commonly referred to as a kernel.

Conceptually, the convolution itself consists of a system-
atic series of inner products between submatrices of the IFM
and weight kernels, accumulated over the entire IFM and
all kernels. Note that CNNs are not usually implemented
directly this way, because doing so is inefficient in terms of
memory access order [9]. For example, im2col, a standard
vectorized implementation is commonly used instead in
ML frameworks [10], [11]. The precise order of memory
accesses within each layer can be further streamlined to
reduce memory accesses (dataflow implementations) [9]. While
dataflow implementations do affect the order of the victim’s
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Fig. 1: Matrix representation of a convolutional layer (batch size=1) and
example of one dot product producing a single output activation
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memory accesses, they do not prevent our attack as we
are concerned primarily with the addresses accessed dur-
ing each layer. We omit further details of vectorized and
dataflow implementations as these are considered standard
techniques in the field of CNN acceleration.

2.2 Dynamic Pruning

Broadly speaking, dynamic activation pruning is any tech-
nique that reduces per-layer computations and memory
accesses by zeroing out activations in either the IFM or
OFM. Since zeros in the IFM of a layer do not contribute to
the inner products that compose the OFM, multiplications
with those zeros can be skipped. In particular, only input-
dependent dynamic pruning techniques can leak informa-
tion about the inputs.

While dynamic pruning can theoretically be performed
on either the IFM or the OFM, most practical implementa-
tions operate on the OFM, since doing so allows for OFM
compression in order to reduce the total volume of memory
accesses. Thus, we will presume dynamic pruning of the
OFM in the rest of this paper.

In general, dynamic pruning is performed by deciding
whether individual activations (or groups of activations)
should be pruned or not pruned. Each of these single-bit
(prune/don’t prune) decisions are called pruning decisions,
and a CNN may make many pruning decisions for a sin-
gle input. We call a collection of pruning decision results
spawned from a single input, a pruning vector. We can
separate dynamic pruning into two categories (illustrated
in Figure 2), depending on how pruning decisions are
performed: fine-grained and coarse-grained.

Fine-grained dynamic pruning makes individual (not
necessarily independent) pruning decisions for each activa-
tion. One example of a simple fine-grained pruning method
is to use an activation function with a built-in threshold,
such as ReLU, wherein any output activation below the
threshold (in the case of ReLU, this threshold is 0) is
pruned [12]. Other simple fine-grained pruning techniques
generally make pruning decisions on each activation based
on the value of the activation itself, but more sophisticated
techniques do exist [13], [14], [15].

In each layer, the pruned OFM are typically compressed
to reduce the total number of memory accesses [16]. The
simplest compression method is to compress each output
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Fig. 2: Conceptual examples of fine-grained and coarse-grained (chan-
nel) pruning. Darkened activations represent pruned values.

channel individually, using a sparse matrix format such as
compressed sparse row format (CSR).

Coarse-grained pruning is a special case of fine-grained
pruning, in which pruning decisions are made on a per-
channel basis. Since coarse-grained pruning takes many
activations into account for each pruning decision, the deci-
sion logic is often more complex than fine-grained pruning,
and one common approach is to train/operate a decision
network in parallel with the CNN [2], [3], [5], [17]. Despite
the more complex implementation, the advantage of coarse-
grained over fine-grained pruning is that skipping memory
accesses and computations is easier to implement, since
channels are stored contiguously in memory.

3 THREAT MODEL

In this study, we perform ML-driven attacks on
dynamically-pruned CNNs used for image classification.
We consider a victim CNN that classifies input images using
a publically-known model. The victim’s input images, the
model weights, and all IFM/OFM intermediate values are
stored in off-chip DRAM memory and loaded into on-chip
memory as needed. We assume that the feature maps of
at least one of the convolutional layers are too large to fit
entirely in on-chip memory, and its accesses are exposed off-
chip?. The off-chip memory is also assumed to be encrypted,
or else the attack is trivial. Finally, the adversary has access
to a copy of the trained victim CNN that is used to run
offline experiments using its own input data, and they
can monitor the addresses of all victim off-chip memory
accesses (both reads and writes) via physical access to the
memory bus between on-chip and off-chip memory or by
other means (such as memory side channels). For instance,
this threat model may be applicable in CNN accelerators or
on cloud computing platforms shared by the adversary and
victim.

An architecture for such a system can be seen in Figure 3,
and the attack objective is to use the victim’s memory access
patterns to infer the victim’s classifications.

1. While not discussed here, we also found that cache side channels
can be used to obtain feature map access patterns even without off-chip
accesses.
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4 ATTACK METHODOLOGY

To perform the attack (summarized in Figure 4), the attacker
first uses the victim copy to classify their own input dataset
and collects memory access patterns for each input. Using
these memory access patterns, they extract the pruning
decisions made in all convolutional layers (as a fixed-format
pruning vector) in order to obtain a training set of pruning
vectors and labels. The attacker then trains a supervised
ML model to infer labels from pruning vectors, which they
use on the victim’s memory access patterns. The attack is
considered successful if the attacker’s ML model can predict
victim classifications with accuracy significantly exceeding
a random guess.

4.1 Attacker Models

Naturally, a key step in this attack is choosing an appropri-
ate attacker ML model. From the attacker’s point of view,
they are dealing with a classification learning problem with
the following properties.

First, the attacker is free to generate an arbitrarily large
amount of training data. Second, the pruning vector size
will typically be much smaller than the input size(s) used
by the victim, so the attacker model does not need to be as
complex as the victim model. Third, pruning vectors may
or may not have strong internal spatial correlations but are
generally sectioned-off by layer, so the best attacker model
may change depending on the pruning technique used by
the victim.

For this study, we use two types of attacker models:
multilayer perceptrons (MLPs) and gradient boosting. Since
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CNNs are generally thought to be effective on applications
where the input data has strong spatial relationships (they
are used for image classification for this very reason), it is
not clear that they would be effective in general for this
attack where such relationships do not necessarily exist.
Thus, MLPs may be used since they thrive on abundant
training data and do not require spatial correlations within
the pruning vector to work.

Alternatively, since the pruning vectors are fixed-format,
specific locations within the vectors may hold individual
significance. Gradient boosting and random decision forest
models excel at identifying these decision points within
the input vector. The ensemble decision tree model of XG-
Boost [18], for example, is a quick and easy general-purpose
model for this attack.

5 EVALUATION

To demonstrate our attack, we simulated attacks on ReLU-
based (fine-grained) pruning using AlexNet, Resnet20, and
Resnetl8 as victims, and we simulated software-based at-
tacks on coarse-grained pruning using the Feature-Boosting
and Suppression (FBS) [2] technique. In order to generate
the attacker’s training dataset, we used mutually exclusive
attack training/test sets (extracted using ImageNet and
CIFAR10/100 test sets). Note that we chose not to use the
ImageNet or CIFAR training sets to ensure that the attacker
model does not gain any advantage from training with the
same dataset as the victim itself. All victim models are
quantized as 32-bit floating point numbers. For the attacker
model, we used both a 3-layer MLP and XGBoost [18],
either of which were sufficient to recover classifications with
significant accuracy. In this section, we discuss our experi-
mental procedures and results for fine-grained pruning and
coarse-grained pruning separately.

5.1 Experimental Procedure

For our attacks on fine-grained pruning, we used the pre-
viously described ReLU-based pruning technique. It is per-
formed by allowing ReLU’s built-in threshold to determine
which activations to skip. Then, for each output channel, we
counted the number of positive activations (number of nonze-
ros or NNZs). The pruning vector is an array of NNZs where
each element corresponds to a different output channel for
a different layer. This pruning vector format represents the
CSR-compressed size of each output channel, inferred from
the number of victim memory accesses per channel.

For an attack on coarse-grained pruning, we used
the FBS channel-pruning technique, which uses per-layer
trained networks to infer which channels are most impor-
tant. The pruning vector is a binary array, where each bit
indicates whether FBS decided to prune a particular channel
in a particular layer.

For the victim models, we experimented with AlexNet
trained on ImageNet and ResNet trained on CIFAR10/100
for the fine-grained attacks, and CifarNet trained on CI-
FARI1O0 for the coarse-grained attacks.

We used two different attacker models for all of these
experiments. First, we used a 3-layer MLP (i.e. input layer,
hidden layer, and output layer), where the hidden layer has
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an input size of 256 and output size of 512. The activation
function used is negative log-likelihood, and the training
algorithm used is gradient descent (50 epochs for all ex-
periments). For XGBoost experiments, we simply used the
toolbox’s default gradient boost training algorithm, with a
max tree depth of 6 with 10 boosting rounds.

Finally, we also studied the impact on the attack success
rate by implementing a basic granularity reduction protec-
tion scheme in which the activations of each channel are
grouped together in fixed-size groups and then the number
of nonzero groups (NNGs) of each channel are shown
to the attacker. This style of protection simulates natural
cache behavior in which multiple activations fit on a single
cacheline and the attacker is only able to count the number
of cachelines accessed per channel. Our experimental results
can be seen in Tables 1 and 2.

5.2 Experiment Observations

We observe that, if left unmitigated, the attacker is able to
predict the victim’s classifications from these pruning vec-
tors, both in the fine-grained and coarse-grained cases, with
significantly better-than-random accuracy. In addition, sim-
ple grouping-based protection based on cache behavior does
not sufficiently mitigate our attack. From these experiments
we conclude that the pruning vectors are information-rich
and that simple protections are not enough to prevent such
attacks to any reasonable degree. Moreover, since informa-
tion embedded in the pruning vectors is not restricted to
the victim’s classifications only, the potential for further
privacy-violating attacks is high.

[ Victim/Data/Attack [ topI % [ top3 % [ top5 % |

AlexNet/ImageNet/MLP 24.36% | 39.38% | 46.67%
AlexNet/ImageNet/MLP/RG-8 19.71% | 33.38% | 40.16%
ResNet20/CIFAR10/MLP 77.37% | 93.33% | 97.57%
ResNet20/CIFAR10/MLP/RG-8 51.46% | 81.17% | 92.17%
ResNet20/CIFAR100/MLP 64.10% | 89.47% | 95.8%
ResNet20/CIFARTI00/MLP/RG-8 | 40.63% | 72.87% | 87.47%
ResNet18/CIFAR100/XGB 40.03% | 63.13% [ 74.00%
ResNet18/CIFARF100/XGB/RG-16 | 31.50% | 54.30% | 65.53%

TABLE 1: Test accuracy of attacks on fine-grained pruning. Used
AlexNet and ResNet as experimental victim models trained on Ima-
geNet or CIFAR datasets. Attacker model is either a 3-layer MLP with
hidden layer size 256 x 512 or XGBoost (XGB) with a max depth of 6
and 10 boosting rounds. Where noted, RG-N is a granularity reduction
scheme that groups activations into groups of N

[ Model/Dataset [ topl % [ top3 % [ top5 % |
FBS-CifarNet/CIFAR10/MLP | 61.63% | 86.8% | 94.47%
FBS-CifarNet/CIFAR10/XGB | 61.63% | 85.57% | 94.77%

TABLE 2: Test accuracy results of attacks on coarse-grained pruning.
Used CifarNet with Feature Boosting and Suppression (FBS) pruning
as victim model, trained on CIFAR10 (CF10).

6 CONCLUSION AND FUTURE WORK

In this study, we showed that dynamically-pruned CNNs
give rise to a concerning side-channel attack in which an
adversary is able to violate privacy guarantees of a victim
implementation a publically-known CNN model by using
their memory accesses. In particular, our results open up a

4

number of critical questions that must be answered with fu-
ture work, such as whether these attacks are indeed possible
on real systems, whether any principled analysis of a given
victim CNN can be performed to quantify the threat posed
by these attacks, and which method(s) of protection are best
suited to mitigate these attacks.
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