Taylor & Francis
Taylor & Francis Group

International International Journal of Control

JOURNAL of
CONTROL

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tcon20

Safe control of nonlinear systems in LPV
framework using model-based reinforcement
learning

Yajie Bao & Javad Mohammadpour Velni

To cite this article: Yajie Bao & Javad Mohammadpour Velni (2022): Safe control of nonlinear
systems in LPV framework using model-based reinforcement learning, International Journal of
Control, DOI: 10.1080/00207179.2022.2029945

To link to this article: https://doi.org/10.1080/00207179.2022.2029945

@ Published online: 27 Jan 2022.

N
CJ/ Submit your article to this journal &

||I| Article views: 258

A
& View related articles &'

e

(&) View Crossmark data &

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=tcon20

https://www.tandfonline.com/action/journalInformation?journalCode=tcon20
https://www.tandfonline.com/loi/tcon20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00207179.2022.2029945
https://doi.org/10.1080/00207179.2022.2029945
https://www.tandfonline.com/action/authorSubmission?journalCode=tcon20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tcon20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00207179.2022.2029945
https://www.tandfonline.com/doi/mlt/10.1080/00207179.2022.2029945
http://crossmark.crossref.org/dialog/?doi=10.1080/00207179.2022.2029945&domain=pdf&date_stamp=2022-01-27
http://crossmark.crossref.org/dialog/?doi=10.1080/00207179.2022.2029945&domain=pdf&date_stamp=2022-01-27

INTERNATIONAL JOURNAL OF CONTROL
https://doi.org/10.1080/00207179.2022.2029945

Taylor & Francis
Taylor & Francis Group

W) Check for updates

Safe control of nonlinear systems in LPV framework using model-based

reinforcement learning

Yajie Bao and Javad Mohammadpour Velni

School of Electrical & Computer Engineering, The University of Georgia, Athens, GA, USA

ABSTRACT

This paper presents a safe model-based reinforcement learning (MBRL) approach to control nonlinear
systems described by linear parameter-varying (LPV) models. A variational Bayesian inference Neural Net-
work (BNN) approach is first employed to learn a state-space model with uncertainty quantification from
input-output data collected from the system; the model is then utilised for training MBRL to learn con-
trol actions for the system with safety guarantees. Specifically, MBRL employs the BNN model to generate
simulation environments for training, which avoids safety violations in the exploration stage. To adapt to

ARTICLE HISTORY
Received 21 February 2021
Accepted 11 January 2022

KEYWORDS

Safe nonlinear control;
model-based reinforcement
learning; LPV framework

dynamically varying environments, knowledge on the evolution of LPV model scheduling variables is incor-
porated in simulation to reduce the discrepancy between the transition distributions of simulation and real
environments. Experiments on a parameter-varying double integrator system and a control moment gyro-
scope (CMG) simulation model demonstrate that the proposed approach can safely achieve desired control

performance.

1. Introduction

Linear parameter-varying (LPV) models use a linear struc-
ture to capture time-varying and nonlinear dynamics of com-
plex systems; these models then facilitate the formulation of
computationally efficient control design algorithms for nonlin-
ear systems (Hanema, 2018). Additionally, the linear relation-
ship between control inputs and outputs depends on external
scheduling variables, known as LPV parameters. The future
evolution of the scheduling variables beyond the current time
instant is generally unknown, which introduces uncertainties to
the control design. Model predictive control (MPC) is widely
used for constrained control design problems (including for
LPV models). Minmax feedback control problem is formulated
over all the possible scheduling trajectories and knowledge on
possible future trajectories is exploited to reduce the uncer-
tainty in scheduling evolution. Hanema et al. (2020) proposed
a heterogeneously parameterised tube-based MPC approach
with recursive feasibility and closed-loop stability guarantees for
LPV systems without considering disturbance or uncertainty in
system models.

Available theoretical works on LPV control design using
MPC assume that representative LPV models are perfectly
known, which is not a practical assumption. Global identi-
fication of LPV models using data-driven methods has been
examined recently (see Bao, Velni, Basina et al., 2020).; Rizvi
etal., 2018 and references therein). Moreover, uncertainty quan-
tification in system identification has attracted increasing atten-
tion especially for safety-critical systems. Becker and Preci-
ado (2019) assumed linear parameterisation of matrix functions
and used the Gaussian process (GP) to estimate the poste-
rior distributions of system parameters and latent variables.

Moreover, Karl et al. (2016) proposed deep variational Bayesian
filters to extract informative latent state-space embedding. Fur-
thermore, Bao et al. (2021) developed a variational Bayesian
inference Neural Network (BNN) approach to quantify uncer-
tainty in state-space LPV model identification, which provides
a posterior density estimation of the system model parameters
given an input-output data set. Learning the system dynamics
for MPC design, also known as learning-based MPC, largely
focuses on closed-loop control performance and leaves poten-
tial for theoretical analysis due to the technical difficulties of
deriving theoretical properties for stochastic models (Hewing
et al., 2020).

Reinforcement Learning (RL) provides another paradigm for
control design, which learns a policy that maximises the (so-
called) cumulative reward by exploration and exploitation. RL
can be categorised into model-free and model-based learning.
Model-free RL can save efforts for a model identification but suf-
fers from low sampling efficiency while model-based RL reduces
sampling complexity by using a learned model of the system.
Janner et al. (2019) provided conditions under which model
usage can facilitate policy optimisation. Moreover, exploration
may result in the violation of safety constraints. Therefore,
methods have been developed for safe RL, such as constrained
RL (Yu et al., 2019), control barrier functions based compen-
sating control with model-free RL (Cheng et al., 2019), using
reachability analysis in (Akametalu et al., 2014) or Lyapunov sta-
bility verification in (Berkenkamp et al., 2017) to construct a safe
region, and combining RL and robust MPC in Gros et al. (2020)
and Gros and Zanon (2020). Compared with (learning-based)
MPC, MBRL is less restricted by the complexity of models, as
models are only used to generate transition data for MBRL but

CONTACT Yajie Bao @ yb18054@uga.edu

© 2022 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00207179.2022.2029945&domain=pdf&date_stamp=2022-01-27
mailto:yb18054@uga.edu

2 (& Y.BAOANDJ.M.VELNI

cannot be too complex for MPC to solve the online optimisation
problem in time. Additionally, there are works using ANNs to
approximate the MPC control laws, e.g. see Chen et al. (2018),
while RL policy gradient algorithms directly give the trained
policy network.

This paper aims to develop a model-based reinforcement
learning (MBRL) approach for control with safety guarantees
for nonlinear systems described by LPV models by employ-
ing uncertainty quantification provided by the identified BNN
model of the system. Time-varying property of systems of inter-
est poses challenges for RL which assumes a stationary environ-
ment model. Padakandla (2020) gives a survey of RL algorithms
for dynamically varying environments. In this paper, we assume
no true system model and instead use input-output data to
learn a crude model. We employ the BNN approach of Bao
et al. (2021) to identify an LPV model with uncertainty quan-
tification. Moreover, the uncertainties in the identified LPV
model and the future scheduling trajectory will be considered
simultaneously and approaches to incorporate the knowledge
of the evolution of the scheduling variables will be proposed. To
guarantee safety, inspired by the sim-to-real transfer of control
with dynamics randomisation (Peng et al., 2018), we train the
RL agents on the random dynamics from the identified BNN
model without interacting with the real system. The safety of
the learned policy is enforced by terminating an episode when
system constraints are violated for any one of the generated
dynamics. To learn an optimal control policy, we use Deep
Deterministic Policy Gradient (DDPG) in Lillicrap et al. (2015),
an actor-critic algorithm for environments with continuous
action spaces. Furthermore, the BNN model is updated using
new observations collected by applying learned policy to the real
system. The updated model is expected to better characterise
the uncertainty of the system, which in turn reduces the con-
servativeness required to ensure safety and improve the control
performance.

The main contribution of this paper lies in developing a safe
MBRL approach to control systems represented in LPV frame-
work with safety guarantees. The remainder of the paper is
organised as follows: Section 2 introduces the problem formu-
lation and preliminaries. Our proposed safe MBRL using the
identified BNN model is presented in Section 3. Section 4 shows
validation results using numerical experiments. Concluding
remarks are finally provided in Section 5.

2. Problem statement and preliminaries

We consider a constrained system represented by the following
discrete-time, state-space LPV model with the initial condition
xo = x(0):
x(k+1) = A (k) x(k) + B (0 (k)) u(k),
x(k)eX, uk)eU, keN,

(1)
(2)

where 6(k) € ©® € R™, u(k), and x(k), respectively, denote the
scheduling variables, inputs, and states at time k; X € R"* and
U C R™ are the state and input constraint sets; matrices A and
B are smooth matrix functions of 0(k); N denotes the set of
non-negative integers. Finally, x(k) and 6 (k) can be measured
at every time k. In the LPV model above, the future behaviour

of 6 is not known at k. Using the set ® to describe the future
scheduling variables for control design is too restrictive and thus
knowledge on the evolution of § has been explored. In practice,
0 generally varies within a bounded rate-of-variation (ROV), i.e.

VkeN, [0(k+1) —6(k)| < érov, 3)
which gives a ‘cone’ expanding outwards from the current 6 (k)
to describe the possible future trajectories of 6. Other instances
of the knowledge on the future 0 that have been explored in the
literature can be found in Hanema et al. (2020).

Givena controlactionw : X X ® x N — U, the closed-loop

system can be described by

x(k + 1) = A0 (k))x(k) + B0 (k))m (x(k), 6 (k), k)

£ O, (x(k),0(k), k). (4)
Additionally, we use x(k|0,xo) (resp. x(k|0,x0)) to denote the
solution x(k) (resp. x(k)) to (4) (resp. a data-driven model) given
a scheduling signal 6 : N — ® and the initial state xo.

Definition 2.1: System (1) is safe under a control policy 7 if

Vk e N: @ (x(k),00k),k) € X, m(x(k),0(k),k) e U. (5)

Moreover, system (1) is said to be §-safe under the control policy
mif

Pr[Vk € N: & (x(k),0(k), k) € X,
w(x(k),0(k),k) e U] > 1 -3,

where Pr[-] denotes the probability of an event.

In general, (5) cannot be enforced without additional
assumptions (Koller et al., 2018) especially when (1) is
unknown. Furthermore, §-safety relaxes the requirements of
safety to safety with a high probability. 1t is assumed that a
data set D = {(0 (i), x(i), u(i)), x(i + 1)}5151 has been collected,
but matrix functions A(-) and B(-) are unknown. The problem
addressed in this paper is to learn a BNN model (denoted as
") from D and apolicy 7 : X x ® x N — U in the simulation
environments generated by f", such that the system is steered
from some initial state xo to the origin by 7 while satisfying
constraints in (2) with a high probability at each time instant.
First, we briefly introduce the BNN approach to identify the
state-space LPV (LPV-SS) model of the system.

2.1 LPV-SS model identification using BNN

A BNN is composed of DenseVariational layers! which approx-
imate the posterior density of the parameters by variational
inference given a prior density. In particular, a scaled mixture
of two Gaussian densities (Blundell et al., 2015)

PW) = PmigN wj10,07) + (1 = pmix)N (wj10,07), (7)

with the tuning parameter pmixj is used as the prior den-
sity of the parameters w; (including the weights and bias if
exists) in the j-th layer. Equation (7) can represent both a heavy

tail by a large 0j; and concentration by a small oj,. Further-
more, Pmix,j» 0j,1, and 0j» are determined using cross-validation
(Hastie et al., 2009). Variational inference (VI) approximates
difficult-to-compute probability density functions by finding a
member from a family of densities that is closest to the target in
the sense of Kullback-Leibler (KL) divergence (Blei et al., 2017).
To approximate the posterior p(w;|D), VI solves

min KL(q0wj 2) [p(wI D) (8)
< min KL(q(Wj; o p(wj)) — E gy [logp(DIw))]
J
g Hll; (Eq(wj-;ﬁj) [log q(wj; 19;')] - Eq(Wj;ﬂj) [logP(Wj)]
J

= Bqowymy) [log p(Dlwy)]))

where q(wj; ;) denotes a family of densities with parame-
ters . The function in (9) is known as the evidence lower
bound (ELBO) (Blei et al., 2017). To solve (9) by Monte Carlo
(MC) methods and backpropagation, a reparameterisation trick
is used to parameterise q(wj; 9)), i.e. wj = py,; + oy, @2 Ewp>
where €, ~ N(0,1) and thus ¥; = (Kw;» Ow;) here. Compared
with a Dense layer (i.e. a fully connected layer with param-
eters wj), a DenseVariational layer (with parameters o, and
ow,) doubles the number of parameters and requires minimis-
ing ELBO in (9) for uncertainty quantification of w;. Similar
to ANNS, a BNN can be composed of multiple fully connected
DenseVariational layers.

Based on the LPV-SS model identification using artificial
neural networks in Bao, Velni, Basina et al. (2020).), Bao
et al. (2021) uses BNNs to represent matrix functions A(6) and
B(#) in (1), which provides quantification of the uncertainties of
the learned model. Figure 1 shows how a BNN is used to repre-
sent A(9), and B(0) is represented similarly by another BNN.
Using f,” and f3’ to denote the BNNs representing A and B,
respectively, the BNN model of the system is described by

x(k+ 1) = (0 (k), x(k), u(k))

= fa (0 ()x(k) + f5' (0 (k))u(k), (10)

where f* can be learned by minimising

Nmc
- [log gw®;9) — log p(w®) — log p(:/)|w<">)] (11)
Nmc ‘5
over ¥ using the data set D, where w(® is the ith sample gen-
erated by Monte Carlo (MC) for approximating the ELBO, and
Nyic is the MC sample size.

Using the trained BNN, the density of the matrix functions
at a given scheduling variable can be evaluated by drawing sam-
ples from the posteriors of weights and calculating the possible
matrices with each set of sampled weights. Rather than directly
estimating the density from samples, we calculate the statistics
such as the mean and standard deviation of each element of
the matrices, which is efficient and sufficient for constructing
a confidence interval of x(k + 1) to check (6). The number of
samples is determined to guarantee a stable estimation. In order

INTERNATIONAL JOURNAL OF CONTROL e 3

A11(0)- - - Ap,n, (0)

(@) Q)

Huw, + Ouw, @6 » — Wy
Reparameterization |sampling
N(0,1)

QR0

L, + Ow, @ €y, - i e
Reparameterization | sampling
N, D) 0, - O

Figure 1. Using a BNN composed of multiple (two) DenseVariational layers to rep-
resent A(-) with reparameterisation trick. The input to the BNN is 6 and the output
is the vectorised A(6). We reshape the output to restore matrix A. BNNs use data to
learn the parameters u,, and oy, of the posterior density function.

bias

to ensure safety, we need a reliable estimation of the system
model, which is formally described in the following assumption:

Assumption 2.2: For a confidence level § € (0, 1], there exists a
scaling factor B such that with probability greater than 1 — 6,

Vke N:|xik+ 1) — pyksnl < Bioxx+n < IXil,

i=1,2,...,00 (12)

given (x(k), 0 (k), u(k)), where [Ly,(k+1) and Oy, k+1), respectively,
denote the estimated mean and standard deviation of the ith
entry of x(k + 1) using the learned BNN model with Monte Carlo
methods, and |X|| is used to denote the range of valid x;.

It is noted that a larger B;oy,k+1) means larger uncertain-
ties of the model and gives a more conservative estimate of
xi(k + 1) which overestimates the probability of constraints vio-
lation, reduces the feasible region of control inputs, and thus
degrades control performance. If B;oy; (x+1) > X/, the estimate
is worse than the random guess of x;(k + 1), which is not useful
for control. The above assumption can be enforced by a proper
BNN and empirically verified on the testing set® after model
training. Moreover, § can be estimated as the relative frequency
of the testing data that violates (12) given .

Lemma 2.3: Given xo, a scheduling signal 6, and a BNN model
that fulfils Assumption 2.2, there exists an Nyc and a confidence
level § such that

Pr [Vk € N : x;(k|0, x0)
€ [mmﬁ;”(kw,xo),maxf(;")(kw,xo)ﬂ >1-35,
1 1

i=1...,Nucj=1,2...,n, (13)

where Nyic is the number of models drawn from the BNN model
using MC methods.

Proof: When k =0, Xy = xp, as xp and 6(0) are known.
Then, using Assumption 2.2, there exists an Nyc(0) such that

x;(1]x0,(0)) € [miny <iznyc(o) X (11x0, 8(0), maxi <i<nyc(0)

ﬁ;i)(l|xo,9(0))] almost surely A j=1,...,n, Using induc-
tion, (13) is obtained using Nyic = maxy Nvc (k). [|

Lemma 2.3 guarantees that, with a high probability, the real
system state trajectory is always contained in the multiple tra-
jectories simulated by the BNN model. The uncertainties in the
evolution of scheduling variables will be addressed in Section 3.

4 (&) Y.BAOANDJ.M.VELNI

2.2 RL and policy gradient

RL in Markov Decision Processes (MDP) is generally described
by a set of environment and agent states s, a set of actions a of the
agent, a state transition model p(s;41]s, a;) (at time) from s; to
s¢+1 under action a4, and a reward function r(s, a), and aims to
learn a policy functiona = 7* (s)° such that the expected sum of
discounted rewards 7 () within a horizon T is maximised, i.e.

7" = argmax o ()
T

T—-1

= arg mnaXErNP(rlso,n) |:Z Vtr(5t>77(5t)):| > (14)

t=0

where E denotes the expectation, y € (0, 1] is the discount fac-
tor and p(t|sg,) represents the probability of a trajectory t =

(50> a0, 515 - - . »aT—1, ST) that starts from sp under policy 7 and
T—1
p(zlso,) = plso) [| plseralse, w(s0)).
t=0

In the case of control design for LPV systems, the state is
s; = [x(1),0(t)], the immediate reward can be r, = —(xT (t +
DOx(t+ 1)+ uT (H)Ru(t)), where Q,R > 0 are tuning parame-
ters, and action is a; = u(t). For model-free RL, p(s¢y1 (st ar) is
unknown and ©’s are generated for learning by interacting with
the real system. Instead, model-based RL first learns a model
from data and then uses the model to generate trajectories 7’s
(Deisenroth et al., 2013). Therefore, the performance of the
model-based RL depends on the discrepancy between the 7’s
and T’s.

Deterministic policy gradient algorithms (Silver et al., 2014)
for RL use a parameterised function with respect to ¥ (e.g.
a neural network), that we denote by my, (s), as action. More-
over, action-value function Q7 (s,a) = E[Gg|sg = s,a9 = a; 7]
is used to assess the expected return of a pair of state and action
(s,a) following = where G; = Y 52 y* (s, ax) is the total
discounted reward from time step ¢t onwards. The update law of
the model is based on the deterministic policy gradient theorem

V() = /S P ($)VaQ" (s, @)Vy 1y (9)la=r, 9ds, (15)

where J(y) = /. s PT($)Q" (s, 7wy (s))ds denotes the perfor-
mance objective and p” (s) represents the stationary distribu-
tion of s under m. Furthermore, actor-critic methods use a
parameterised function Qg (s, a) (a.k.a. critic) with respect to ¢
to learn the value function where the actor refers to 7y, (s).

Off-policy policy gradient uses a known behaviour policy
7p to collect samples and estimate Q(s, a) with regard to the
target policy 7y . In this way, policy improvement is achieved.
Moreover, off-policy approaches do not require full trajecto-
ries, and experience replay (Mnih et al., 2013) can be used to
improve sample efficiency by randomly drawing samples from
the replay memory which consists of all the episode steps dur-
ing Q-learning updates. Deterministic policy gradient makes
deterministic decision but is hard to guarantee enough explo-
ration unless there is sufficient noise in the environment (Silver
et al., 2014). Either adding noise to the deterministic policy or
using stochastic behaviour policies can help the exploration for
training.

3. Model-based RL using the BNN model

Model-based RL employs a model learned from the interactions
with the real environment to simulate further episodes and uses
the simulated episodes to train the agent, rather than directly
learning from the experiences as model-free RL does. Conse-
quently, the interactions with the real system are reduced, which
speeds up the learning process by saving the waiting time for the
system to respond or reset. Moreover, by learning in the simu-
lated environments instead of interacting with the real system,
model-based RL can avoid harm to the system, as the control
inputs given by the policy network of deep RL might result in
the violation of the system constraints in the exploration phase.

The performance of model-based RL depends on the accu-
racy of the model it employs. When there is a large model-plant
mismatch, the agent trained in the simulation environments
would fail to work in the real environment. Stochastic mod-
els can better capture the true system dynamics than deter-
ministic models but increase the difficulty in optimising the
RL algorithms. Deisenroth and Rasmussen (2011) proposed
PILCO which uses Gaussian process (GP) models and analyt-
ical policy gradients for policy improvement. Gal et al. (2016)
further improve the computational efficiency and uncertainty
estimation of PILCO using BNN dynamic models to sample
dynamic function realisations via particle methods. Further-
more, Higuera et al. (2018) proposed to use fixed random num-
bers, clipping gradients, and BNNs with multiplicative param-
eter noise to extend the approach of Gal et al. (2016). In this
work, we also use BNNs to model the system dynamics. Given
a bounded generalisation error of the model, the following
theorem gives a sufficient condition for improving the true
returns 7 (1), i.e. the improvement of n(;) is guaranteed when
the return (7) under the BNN model is improved by more than
Clem, €x).

Lemma 3.1 (Janner et al., 2019): Let the expected total varia-
tion distance (TV-distance)® Eg~rp [DTv (p(ss 115, @) [pw (s 71s,
a))] between two transition distributions be bounded at each time
step by €, and the policy divergence Dty [r ||mp] be bounded by
€x. Then the true returns n(w) and model returns 7() of the
policy are bounded as

n(r) = i) — [2”‘*‘*"‘(6’” +26n) | Himaxén }
1-=v) 1—vy
Clem»€x)
Dry(-||-) denotes the total variation distance, p(s,

rls, a) denotes the unknown transition distribution of the system
while p,, (s, r|s, a) denotes the learned transition distribution by
the BNN model with parameters w, 7 is the target policy while
7 denotes the data-collecting policy at time step k, y is the
discount factor, and rmax represents an upper bound on rewards.

In practice, €, can be estimated using the loss of the model
on the time-dependent state distribution of the validation data
set and €, can be evaluated using KL divergence and Pinsker’s
inequality (Reid & Williamson, 2009). For LPV systems of inter-
est in this work, both the imprecise knowledge of the future
scheduling signals and the epistemic uncertainties of the learned

system model can result in a discrepancy between the transition
distributions of the simulation environments and real environ-
ments, which in turn degrades the performance of the learned
policy when applied to the real system. Therefore, either the
uncertainties in the evolution of the scheduling variables should
decrease or the accuracy of the BNN model should increase
to minimise C(€, €;) and achieve guaranteed improvement of
the true returns. This paper investigates employing both domain
knowledge of scheduling variables and fine-tuning of the BNN
model using closed-loop data to reduce the discrepancy €,, and
thus C(e, €7).

To ensure safety, different from prior work (Gal et al., 2016;
Higuera et al., 2018), we explicitly consider the system con-
straints in the learning process. Specifically, we check the safety
constraints when a valid control input given by the policy net-
work is applied to the dynamic functions sampled from the
BNN model and terminate an episode when any predicted states
violate the constraints.

Theorem 3.2: Let w be the policy that is learned via DDPG
using the data generated by Algorithm 1 with the conditions
of Lemma 2.3 satisfied and 1() is improved by more than
C(eéms€x). If

dK < Kierm : Vk > K, 0 € Ogle,i = 1,..., NMmc,

€ > 0,[%7 k0, x0)| < e, (16)
where Kierm = arg ming XD (k) ¢ X, Ogele represents the set of
selected scheduling signals which contains the scheduling trajec-
tory of the system, and € denotes the error tolerance under 1, then
the system is §-safe and stabilised by the policy 7.

Proof: Since an episode is terminated at Kerm, then for k =
0,...,Kerm — 1, X(k|0, x9) € X and thus x(k|0, x9) € X with a
high probability by (13) from Lemma 2.3. Furthermore, if (16)
holds (i.e. m can stabilise all the models sampled from the
BNN model without violating state constraints), then for a given
scheduling signal of the system 6 € Ogele, IK < Kierm, Yk > K
and € > 0, [x(k|6,x0)| < € and (6) holds by (13). Therefore, the
system is §-safe and stabilised by the policy 7. |

Additionally, we incorporate the knowledge of scheduling
variables into the generation of simulation environments to
reduce the discrepancy between simulations and applications.
Instances of knowledge in Hanema et al. (2020) can be easily
integrated into simulations as Step 10 in the Algorithm 1 which
presents the procedure of generating an episode using the BNN
model. When the transition distribution p(6(k + 1)|6(k)) of 6
is known, we can generate 6 (k + 1) from the transition distri-
bution; otherwise, if only the ROV is known, we can obtain the
range of 6 (k + 1) given 6 (k) and generate 6 (k + 1) from a uni-
form distribution over the range; else if only ® is known, we can
generate 6 (k + 1) from a uniform distribution over ©.

For policy optimisation in the simulated environments, we
use an off-policy actor-critic algorithm called deep determin-
istic policy gradient (DDPG). DDPG learns both a Q-function
and a deterministic policy. For Q-learning of the critic that aims
to minimise the difference between the Q-function represented
by a network Qg and the target Q value, DDPG uses another

INTERNATIONAL JOURNAL OF CONTROL e 5

Algorithm 1 An episode using the BNN model

Require the current policy network
Define the maximal length of an episode K.
Reset the simulation environment.
while k < K do
fori =1to Nyc do

Evaluate u(k) using with x(k) and 6 (k)

Sample w® from the BNN model

Evaluate A®(6(k)) and B (0(k)) with £ and

0 .
f ", respectively

*® NIk

9 Calculate x? (k + 1) by (10) with AD (8(k)), x(k),

BP0 (k)), and u(k)

10: Generate 0 (k + 1) using the knowledge (p(6(k +
1)|6(k)), ROV, or ®)

11: if xP(k+ 1) ¢ X then

12: Break and jump to 4.

13: end if

14: end for

15; Calculate x(k+ 1) = N;MC ZfiMlc xD(k+1) and k =
k+1
16: end while

network Qd)targ to evaluate the target Q value r(s,a) + y (1 —
d) max, Q(s',a’), where s’ is the next state and a’ is the next
action. Furthermore, to simplify the evaluation of the target
Q value, DDPG uses a target policy network my,, to com-
pute an action which approximately maximises Qg,,,, rather
than directly calculating the action that maximises the target.
In addition, the target policy network (resp. target Q network)
shares the same architecture and parameter initialisation with
the policy network (resp. Q network). Specifically, the critic
is trained by minimising the following mean-squared Bellman
error (MSBE) loss with stochastic gradient descent:

L Drept) = Esar Dy | (Qp(5:0) = (r + 7(1 =)

X Qg s g2, (17)
where ¢ is the Q network parameters, ¥ is the policy parame-
ters, and ¢rarg and Yriarg are target parameters. The target net-
works are updated once per main network update by Polyak
averaging, i.e.

Prarg < PPtarg + (1 — p),

wtarg <~ pwtarg + (1 - P)W, (18)

where p is a hyperparameter. In this way, the target network
values are constrained to change slowly, which greatly improves
stability in learning. Experience replay is used to improve data
efficiency, remove correlations in the observation sequences,
and smooth over changes in the data distribution for Q-learning
(Mnih et al., 2013). Dyep in (17) is the reply buffers of transi-
tions (s, a, 1, 5, d), where d indicates whether state s’ is terminal.
It is noted that Dyep| can contain previous experiences that are
obtained using an outdated policy, as Q-learning is not related
to the distribution of transitions and the optimal Q-function
that minimises MSBE should satisfy the Bellman equation for all

6 (& Y.BAOANDJ.M.VELNI

possible transitions. Importance sampling is used to correct the
mismatch between behaviour and target policies for off-policy
policy gradient algorithms with stochastic policies but avoided
for DDPG, as the deterministic policy gradient removes the
integral over actions by deterministic policy gradient theorem
(Silver et al., 2014). For policy learning of the actor, a determin-
istic policy 7y (s) is learned to provide the action that maximises
Qg (s, a). Specifically,

max B D, [Qp (5, 7y ()],

in which Q-function parameters ¢ are fixed, is solved using gra-
dient ascent with respect to policy parameters only. Since the
policy function is deterministic, the agent may not be able to
explore a sufficient variety of policies at the training time to
find the optimal policy. To help with the exploration, noise is
added to actions at training time, i.e. the exploration policy
Texpl(s) = 7y (s) + N, where N denotes the selected noise. N/
can be an Ornstein-Uhlenbeck process’ (Uhlenbeck & Orn-
stein, 1930) to generate temporally correlated exploration (Lil-
licrap et al., 2015) or uncorrelated mean-zero Gaussian noise.
When exploiting the learned policy, 7y (s) is evaluated with-
out adding noise. To enforce the control input constraints, the
outputs of the policy network are projected onto U. In partic-
ular, given U = [amin, dmax])> @ = clip(y (s) + N, Gmin, dmax)
for exploration and a = clip(77}} (), @min> dmax) for exploitation
where 7*(s) = 7*(x,0) denotes the learned policy (i.e. the
control law).

Only when the agent learns a policy that can ensure safety for
all the simulation environments generated by the BNN model,
interaction with the real system will be allowed. Moreover, using
the new observations of the system from the interactions can
update the BNN model, which can in turn reduce the conser-
vativeness introduced for safety and improve the policy search.
Also, instead of retraining the BNN model from scratch, we
can use fine-tuning, a transfer learning technique discussed
in Bao et al. (2020) for neural networks to update the BNN.
Fine-tuning decreases the number of trainable parameters of
the network by fixing parameters in the first few layers and
retraining the rest of the parameters to increase computational
efficiency and generalisation ability. The number of parameters
to fix decreases when the change in the data distribution is more
significant.

Furthermore, the generalisation of the RL depends on
the discrepancy between the simulation environments and
the real environments while the environments (i.e. the true
LPV models of nonlinear systems under study) depend on
the scheduling variables. When the real evolution pattern
of the LPV model changes, the performance of the RL
agent trained for the previous scheduling trajectories can
degrade even to failure. In this case, we can still use fine-
tuning to update the actor and critic network to improve the
performance.

4. Numerical experiments and results

In this section, the proposed methods are validated using a
numerical example and a complex physical system model.

4.1 Parameter-varying double integrator

In this subsection, the proposed methods are validated using a
parameter-varying double integrator model. The LPV-SS repre-
sentation of the system is as follows:

1 17 Jo1 o 0.5 05
x(k+1)=<[0 1}{0 0_1}91(k)+[0 0}92(10

+ [g 0(_)2} 05 (k)) (k) + [Of } (k)

with constraints and scheduling sets as

(19)

X = {x € R¥||xlloc <6},

©={0 e R0l < 1}.

U={ueRlu <1},

As observed, matrix A(-) is an affine function of the scheduling
variables and matrix B is constant.

4.1.1 System identification and results

We use slowly varying trajectories in Figure 2(a) for the schedul-
ing variables to collect observations D = {(8 (i), x(7), u(i)), x(i +
1)}#%) for system identification. Pseudo-random binary sequ-
ences (PRBS) of the inputs with an amplitude of 0.01 in
Figure 2(b) are used to excite the system and the gener-
ated state sequence with initial state xo = [2.7;0] is shown in
Figure 2(c,d). A total of 500 samples are collected and split into
training and testing sets with a ratio of 80%/20%.

We use a DenseVariational layer with 4 hidden units to rep-
resent A(-) and a Dense layer with 2 hidden units to represent
B. Neither of the layers use activation functions and the Dense
layer further does not use bias, which aims to exactly represent
the class of models to which (19) belongs. However, the input
to the DenseVariational layer is & while the input to the Dense
layer is u to compute Bu, as Bis constant. Adam optimiser is used
with a learning rate set to 0.01 and the other hyper-parameters
as default. We trained the BNN model for 1000 epochs and
the validation results are shown in Figure 3. Only 2% of sam-
ples are out of 20 (x;) and 6% of samples are out of 20 (x3). By
increasing B, the true states are guaranteed to lie in the interval
[u — Bo, u + Bo] almost surely.

4.1.2 Validation of safe MBRL using theBNN model
First, we tested the model-fee RL for 1000 steps. As shown in
Figure 4, the system resets 62 times due to the violation of the
constraints and most of the episodes last less than 40 steps,
which shows the necessity of using model-based RL.

Technical details of DDPG: For the actor-network, a 5-layer
fully-connected neural network is used. Each of the 3 hidden
layers has 16 units and uses ReLU as the activation function
while the output layer uses linear activation function. The critic
network shares the same structure as the actor-network but
each hidden layer has 32 units. The agent takes actions sam-
pled from a uniform distribution over the action space for the
first 100 steps to warm up the networks. Moreover, the Orn-
stein-Uhlenbeck process (see Uhlenbeck & Ornstein, 1930) is
added to the action during training for exploration. The dis-
count factor is set to y = 0.99 and p = 0.001 for target network
update. The maximal length of a roll-out is set to 200 and the

7 P I I I SRR R
0 100 200 300 400 500 600
t [samples]

(©)

INTERNATIONAL JOURNAL OF CONTROL 7

P PR raral B S R PR
200 300 400 500 600
t [samples]

(b)

sl
0 100

PERFEN NPT M IR
200 300 400
t [samples]

()

500 600

Figure 2. Data generated for model identification. (a) Scheduling trajectories 67; (b) inputs to the system; (c) sequence of x; and (d) sequence of x,.

t [samples]

@

3 F T T T T =1]
2: LB = (x,)*+20(x,)
F v —X =
P n ,' \ = E
1F ‘\ ra,) 3
~N 4
x 0 LT _:/IaMé)ﬁ‘;(xz)_:
b - === N ~ 7 ==]
[I, IR 7]
1F 7 ., Vg —
E ‘i
i, S I EUI R B -
0 20 40 60 80 100
t [samples]

(b)

Figure 3. Validation results of system identification. The area between the two dashed lines is within two estimated standard deviations of the estimated mean, which is
about 95% confidence interval. (a) Validation results of x; and (b) validation results of x;.

O
N b O ©®
o O O o
T T T T

Number of Steps in An Episode
P [=2] o 3
o o o o

n
o
T

o

0 10 20 30 40 50 60
Sequence Number of Episodes

Figure 4. Number of time steps in episodes for the first 1000 interactions with the
real system.

number of steps per epoch is 10, 000 . We trained the agent for
2 epochs with a limit of the sequential memory as 100,000 and
a batch size as 32 using Adam optimiser with a learning rate set
as 0.001. Moreover, 10 dynamic functions are sampled from the
BNN model at each time instant to evaluate the next state.

Results and discussion: First, we assume the scheduling tra-
jectories are known, which indicates that the true scheduling
signals of the system can be used for simulation. We tested
the control performance for both the scheduling signal 6 in
Figure 2(a) and 6 in Figure 5(b) using the same BNN model
identified in Section 4.1.1. From (19), 6 in Figure 5(b) is easier
to cause constraint violation than 6 in Figure 2(a) at training.
As shown in Figure 5(a,c), the constraints are satisfied but the
control performance of the RL agent degrades as the schedul-
ing signals change. This performance degradation results from
the accuracy drop of the BNN model which is identified for
the 6 in Figure 2(a) and the difficulty for the agent to adapt
to environments with 8% in Figure 5(b).

BNN model update: Since the trained RL agent can interact
with the system safely, we collect new observations to update
the BNN model and improve the control performance. Using
the learned policy, we collected 5000 observations and fine-
tuned the BNN model for 1000 epochs using the same hyper-
parameters as in Section 4.1.1. Then, the agent updated the
policy by learning in the simulation environments that are
created by the updated BNN. The control result is shown in
Figure 5(d). As observed, the overshooting is moderated and the

8 Y. BAO AND J. M. VELNI

_1:....|....|....
0 50 100 150

t [samples]

@

_2:....|....|

0 50 100 150
t [samples]

(©

N

o
w»

f
[l
i
I
f
i
i
[

o

. o
- &)
O s

_1‘....1....|....‘
0 50 100 150

t [samples]

(d)

Figure 5. Control results using model-based RL with known scheduling trajectories. (a) When the scheduling signals of the system are the same as the trajectory for
model identification; (b) scheduling signals Y that are different from the trajectory for model identification; (c) when the scheduling signals of the system are 6% in (b);
(d) when the scheduling signals of the system are 6% in (b) and the updated BNN model is used.

oscillation around the origin is in a smaller range, compared to
Figure 5(c).

4.1.3 Uncertainties in the evolution of scheduling variables
When the scheduling signals are unknown, we randomly gen-
erate scheduling variables and sample dynamic functions from
the updated BNN to estimate the next states at each time instant.
The scheduling signal for training is shown in Figure 6(a). We
trained the agent for 4 epochs. Figure 6(b,c) shows that the
control performance for Figure 2 degrades and the agent can-
not regulate (stabilise) the system with 6% in Figure 5(b), as
the joint uncertainty of scheduling variables and system models
caused significant discrepancy between the transition distribu-
tions of the training environments and the real environment. To
reduce the joint uncertainty, we use the knowledge of the ROV
of the scheduling variables and droy = 0.5 in (3) for both 6% in
Figure 2(a) and #? in Figure 5(b). Specifically, for every 20 time
steps, we randomly generate a 6, and then, we use the ROV to
calculate the range of the next 6 and randomly select one from
the linear space of the range with 20 elements. The agent was
trained for 2 epochs. Figure 7 shows that the usage of the ROV
knowledge significantly improves the control performance.

4.1.4 Adaptation to new scheduling signals

Since LPV models depend on the scheduling variables, the
environments change as the scheduling trajectory changes and
the RL agent trained in the previous environments can per-
form worse in the new environment and even fail to work. As
shown in Figure 8(a,b), the control performance degrades when
the agent transfers from slowly varying environments to fast-
varying environments while the performance improves when
the agent transfers from fast-varying environments to slowly
varying environments, which is even better than the perfor-
mance of the agent specially trained in the slowly varying envi-
ronments as shown in Figure 5(a). This motivated us to use a

scheduling trajectory that varies faster than the true scheduling
trajectory in practice to guarantee performance.

4.2 Control moment gyroscope

In this section, we validate the proposed methods using exper-
iments on a complex 4 degree-of-freedom control moment
gyroscope (CMG) simulation model from Parks (1999). The
detailed plant description can be found in Abbas et al. (2014)
and the coordinate frames are shown in Figure 9. The states of
the simulation model consist of angles g; and angular speeds
wi,i = 1,2,3,4 of the 4 gimbals, and it is generally required to
control g3 and q4 using torques 77 and 1, provided by two dc
motors. Moreover, the authors in Abbas et al. (2014) show that
the nonlinear model of CMG can be linearised around a moving
operating point w; and converted into an LPV state-space repre-
sentation, which proves to be accurate and suitable for control
design. The states, inputs, outputs and scheduling variables of
the obtained LPV model are

x = [q3 quw, @3 @4]7,
u=[t],

6 =lga]". (20)
Additionally, the controller is designed to be in the static state-
feedback form with parameter-varying gain, i.e. u = K(6)x,
where K is a smooth nonlinear matrix function represented by
NN as Bao and Velni (2021).

4.2.1 System identification and results

Band-Limited White Noise (BLWN) with noise power [0.09;
0.7] is used to excite the system. A total of 95,000 samples are
collected with a sampling frequency of 0.1 kHz. The first 65,000
samples are used as the training data and the rest for testing.

INTERNATIONAL JOURNAL OF CONTROL 9

'1..||I..-|I..|.I. PR ST T T
0 50 100 150 200 250
t [samples]
(a)
T T =]
2 ;
10 :
of i
e i
2F]
E L 1 L L 1 1 L 4 1 1 L 1 1 L 1 L
0 50 100 150 0 50 100 150
t [samples] t [samples]
(b) (©)

Figure 6. Control results using model-based RL with unknown scheduling signals. (a) Random scheduling signals for simulation when the evolution of the scheduling
variables of the system is unknown; (b) when the scheduling signals are 8¢ in Figure 2(a) and (c) when the scheduling signals are 6% in Figure 5(b).

100

t [samples]

@

A
0 50 100

150
t [samples]

(b)

Figure 7. Control results using model-based RL and prior knowledge on the ROV of the scheduling signals. (a) Control results of using the knowledge of ROV when the
scheduling signals are 8¢ in Figure 2(a) and (b) control results of using the knowledge of ROV when the scheduling signals are 6° in Figure 5(b).

We use a BNN composed of 3 DenseVariational layers with
respective hidden units {4,16,25} to represent A(-) and an
ANN composed of 3 Dense layers with respective hidden units
{4, 16,10} to represent B(-). It is noted that both A and B can be
represented by BNNs. However, as discussed in Bao et al. (2021),
using BNNs to represent both A and B increases not only the

1 E o o™ 5 s ow w50 g
0 50 100

150
t [samples]

(@)

expressiveness of the LPV model but also the computational
cost and the convergence efficiency of BNN training. It is more
reasonable to only represent A with BNNs, as A has a larger
impact on the system description than other matrix functions.
Therefore, in this example, we consider using BNNs only to rep-
resent A. The first two hidden layers of both the BNN and ANN

1 E e o o ¢ ¢ v ooz og o

0 50 100 150

t [samples]

(b)

Figure 8. Control results of adaptation to new scheduling signals using model-based RL. (a) Applying the policy learned for scheduling signals in 2(a) to the environments
with the signals in Figure 5(b) and (b) applying the policy learned for scheduling signals in 5(b) to the environments with the signals in Figure 2(a).

10 Y.BAO AND J. M.

VELNI

AXi bs
b O~
b
.
g
3 &
Axis 3 €
C;
Wy .
C[D/* d ds D Axis4
d

Figure 9. Coordinate frames of CMG (Parks, 1999).

3 [radians]

o

-386 RN T I & T T -]
E . = =ild)*20(qy) A
-388 . o —a, .
2390 F =-=(d,) b
- - (ay)-20(q,)
302} ¥
-394 | 3
P,
396k o0 .
0 200 400 600 800
t [samples]
(a)

use Exponential Linear Units® (ELU) first introduced in Clevert
etal. (2015) as activation functions and the output layers do not
use activation function. Adam optimiser is used with a learn-
ing rate set to 0.001 and the other hyper-parameters as default.
We trained the BNN model for 5000 epochs and the validation
results are shown in Figure 10. No samples are out of 20 of g3
and g4, which shows that the models sampled from the learned
BNN model contain the real model.

4.2.2 Network architecture and hyperparameters

An MLP with two hidden layers is used to model K (). Each of
the hidden layers contains 512 units, uses ReLU as the activa-
tion function and is followed by a batch normalisation layer® to
normalise different physical units of features. The output layer
uses a linear activation function and the output of this MLP
is multiplied by x to constitute the policy network. For Q net-
work, the state s is transformed by an MLP with one 16-unit
layer followed by one 32-unit layer and action a is transformed
by an MLP with one 32-unit hidden layer. The transformed s
and a are concatenated and then transformed by an MLP with

- - ilap20(q)]
Cmila) T
- —ma,)-20(q,) A

q, [radians]

600 800

400
t [samples]

(b)

Figure 10. Validation results of system identification. For the sake of clarity, only 500 of the testing data points are shown here. The area between the two dashed lines
is within 2 estimated standard deviations of the estimated mean, which is about 95% confidence interval. (a) Validation results of g3 and (b) validation results of g4.

7, INm]

15 ¥ T T T LI B -
[—A3]
[9]
@ 1 —reference-|
| = 4
o F E
el 4
@ i
=05 1
0 . i L e o]

0 100 200 300 400 500

t [samples]
(@

100

200 300
t [samples]

(b)

400 500

7, [Nm]

300

500

200
t [samples]

(©

400

Figure 11. Control results for the CMG platform. (a) State trajectory of the controlled CMG platform; (b) control input 77 to the CMG platform and (c) control input 7, to

the CMG platform.

two 512-unit hidden layers to estimate Q value. All the hid-
den layers are followed by a batch normalisation layer. Gaussian
noise A (0,0.03u(k)) is added to an initial control sequence
{u(k) }IZ=1 from an MPC at time k for the first 40,000 steps to help
with the exploration which is used in Bao and Velni (2021) to
improve learning efficiency. Moreover, an Ornstein—Uhlenbeck
process with initial standard deviation o = [0.1 0.4]T is added
to the action at training time for exploration. Also considered
are the discount factor y = 0.99 and p = 0.001 for target net-
work update. The maximum length of an episode is 400. We
trained the agent for 2800 episodes with a limit of the sequential
memory as 50,000 and batch size as 64 using Adam optimiser
with a learning rate as 10~ for the Q network and 10~° for the
policy network. Additionally, the policy was applied to the simu-
lation model every 100 training episodes to test the performance
of the controller and determine whether to stop training.

4.2.3 Experimental settings, results and discussion

The state of environment s; consists of {u(t + k — I),0(t + k —
Dyx(t+k—1D,e(t+k— l)}§<:1’ where | = 4 denotes the mem-
ory length and is used for the agent to implicitly build the
process model (Spielberg et al., 2019). The immediate reward
is chosen as r; = —|le(t + 1)||; and the control objective is to
track reference g3 = g4 = 0.

Figure 11 shows the control results using the proposed MBRL
design approach in the LPV framework. Despite the CMG plat-
form being far more complex than the numerical example dis-
cussed earlier, very precise tracking performance was achieved
in moderate training episodes. Additionally, the control inputs
are shown in Figure 11(b,c).

5. Concluding remarks

In this paper, a safe model-based reinforcement learning
(MBRL) approach was proposed to control nonlinear systems
described using LPV models. BNNs were used to learn, from
input-output data, an LPV-SS model with epistemic uncertainty
quantification. Then, the epistemic uncertainty from the system
identification and imprecise knowledge of the future schedul-
ing variables were jointly considered for control design with
safety guarantees. Model-based RL was proposed to learn pol-
icy in the simulation environments that are created by the BNN
model rather than directly interacting with the real system.
Knowledge on the evolution of the scheduling variables was
incorporated into the simulation environments to reduce the
joint uncertainty and adapt to varying environments. Numer-
ical experiments show that the proposed approach can ensure
safety and achieve desired control performance.

Notes

1. Refer to Tran et al.,, 2018 for the implementation of the DenseVaria-
tional layer.

2. (O denotes element-wise multiplication.

3. The data set D is randomly split into a training set for training a model
and a testing set for testing the generalisation of the trained model.

4. Almost surely is used to avoid the analysis of Pr in (13) which involves
the analysis of the closed-loop system and BNN models and is unnec-
essary for the proposed approach, although using the confidence level
can decrease Nyjc.

5. Itis noted that, here, we only consider deterministic policies for control.

INTERNATIONAL JOURNAL OF CONTROL 1

6. The total variation distance between two probability measures P and
Q on a o-algebra F of subsets of the sample space Q is defined via
Dry(P|Q) = supye r [P(A) — Q(A).

7. The Ornstein—-Uhlenbeck process is a stationary Gauss—-Markov pro-
cess which tends to drift towards its mean function over time.

X if x >0,
fo = {a(e" —1) ifx<o.
9. We refer to DDPG in Keras (Chollet, 2015) for implementing the
proposed method.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was financially supported by The United States National Science
Foundation under award #1762595.

References

Abbas, H. S., Ali, A., Hashemi, S. M., & Werner, H. (2014). LPV state-
feedback control of a control moment gyroscope. Control Engineer-
ing Practice, 24(1), 129-137. https://doi.org/10.1016/j.conengprac.2013.
05.008

Akametalu, A. K, Fisac, J. E, Gillula, J. H., Kaynama, S., Zeilinger, M. N., &
Tomlin C. J. (2014). Reachability-based safe learning with Gaussian pro-
cesses. 53rd IEEE Conference on Decision and Control (pp. 1424-1431).
IEEE. https://doi.org/10.1109/CDC.2014.7039601

Bao, Y., & Velni, J. M. (2021). Model-free control design using policy gra-
dient reinforcement learning in LPV framework. 2021 European Con-
trol Conference (ECC) (pp. 150-155). IEEE. https://doi.org/10.23919/
ECC54610.2021.9655004

Bao, Y., Velni, J. M., Basina, A., & Shahbakhti, M. (2020). IFAC-
PapersOnLine (Vol. 53.2, pp. 5286-5291). IFAC.

Bao, Y., Velni, J. M., & Shahbakhti, M. (2020). An online transfer learning
approach for identification and predictive control design with application
to RCCI engines. Dynamic Systems and Control Conference (Vol. 84270,
p- V001T21A003). American Society of Mechanical Engineers.

Bao, Y, Velni, J. M., & Shahbakhti, M. (2021). Epistemic uncertainty quanti-
fication in state-space LPV model identification using Bayesian neural
networks. IEEE Control Systems Letters, 5(2), 719-724. https://doi.org/
10.1109/LCSYS.7782633

Becker, C. O., & Preciado, V. M. (2019). Variational inference for linear sys-
tems with latent parameter space. In 2019 American Control Conference
(ACC) (pp. 5662-5667). IEEE.

Berkenkamp, E, Turchetta, M., Schoellig, A., & Krause, A. (2017). Safe
model-based reinforcement learning with stability guarantees. Advances
in Neural Information Processing Systems (pp. 908-918). NeurIPS.

Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational inference:
A review for statisticians. Journal of the American Statistical Association,
112(518), 859-877. https://doi.org/10.1080/01621459.2017.1285773
http://dx.doi.org/10.1080/01621459.2017.1285773 .

Blundell, C., Cornebise, J., Kavukcuoglu, K., & Wierstra, D. (2015). Weight
uncertainty in neural network. International Conference on Machine
Learning (pp. 1613-1622). ICML.

Chen, S., Saulnier, K., Atanasov, N., Lee, D. D., Kumar, V., Pappas, G.
J., & Morari, M. (2018). Approximating explicit model predictive con-
trol using constrained neural networks. 2018 Annual American Control
Conference (ACC) (p. 1520-1527). IEEE.

Cheng, R., Orosz, G., Murray, R. M., & Burdick, J. W. (2019). End-to-end
safe reinforcement learning through barrier functions for safety-critical
continuous control tasks. Proceedings of the AAAI Conference on Arti-
ficial Intelligence (Vol. 33, pp. 3387-3395). AAAI Press.

Chollet, F. (2015). Keras. https://keras.io.

Clevert, D. A., Unterthiner, T., & Hochreiter, S. (2015). Fast and accu-
rate deep network learning by exponential linear units (ELUS). arXiv
preprint arXiv:1511.07289.

https://doi.org/10.1016/j.conengprac.2013.05.008
https://doi.org/10.1109/CDC.2014.7039601
https://doi.org/10.23919/ECC54610.2021.9655004
https://doi.org/10.1109/LCSYS.7782633
https://doi.org/10.1080/01621459.2017.1285773
https://doi.org/http://dx.doi.org/10.1080/01621459.2017.1285773
https://keras.io

12 (&) Y.BAOANDJ.M.VELNI

Deisenroth, M., & Rasmussen, C. E. (2011). PILCO: A model-based
and data-efficient approach to policy search. Proceedings of the
28th International Conference on Machine Learning (ICML-11) (pp.
465-472). ICML.

Deisenroth, M. P, Neumann, G., & Peters, J. (2013). A survey on policy
search for robotics. Now Publishers.

Gal, Y,, McAllister, R., & Rasmussen, C. E. (2016). Improving PILCO
with Bayesian neural network dynamics models. Data-Efficient Machine
Learning Workshop, ICML (Vol. 4, p. 34). ICML.

Gros, S., & Zanon, M. (2020). Safe reinforcement learning with stability &
safety guarantees using robust MPC. arXiv preprint arXiv:2012.07369.

Gros, S., Zanon, M., & Bemporad, A. (2020). Safe reinforcement learn-
ing via projection on a safe set: How to achieve optimality? IFAC-
PapersOnLine, 53(2), 8076-8081. https://doi.org/10.1016/j.ifacol.2020.
12.2276

Hanema, J. (2018). Anticipative model predictive control for linear
parameter-varying systems [Unpublished doctoral dissertation]. Tech-
nische Universiteit Eindhoven.

Hanema, J.,, Lazar, M., & Toth, R. (2020). Heterogeneously parame-
terized tube model predictive control for LPV systems. Automatica,
111(2020) 108622. https://doi.org/10.1016/j.automatica.2019.108622

Hastie, T., Tibshirani, R., & Friedman, J. (2009). Model Assessment and
Selection. In: The Elements of Statistical Learning. Springer Series in
Statistics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-
84858-7_7

Hewing, L., Wabersich, K. P, Menner, M., & Zeilinger, M. N. (2020).
Learning-based model predictive control: Toward safe learning in con-
trol. Annual Review of Control, Robotics, and Autonomous Systems, 3(1),
269-296. https://doi.org/10.1146/control.2020.3.issue-1

Higuera, J. C. G., Meger, D., & Dudek, G. (2018). Synthesizing neural
network controllers with probabilistic model-based reinforcement learn-
ing. 2018 IEEE/RS] International Conference on Intelligent Robots and
Systems (IROS) (pp. 2538-2544). IEEE.

Janner, M., Fu, J., Zhang, M., & Levine, S. (2019). When to trust your model:
Model-based policy optimization. Advances in Neural Information Pro-
cessing Systems (pp. 12519-12530). NeurIPS.

Karl, M., Soelch, M., Bayer, J., & van der Smagt, P. (2016). Deep variational
Bayes filters: Unsupervised learning of state space models from raw data.
arXiv preprint arXiv:1605.06432.

Koller, T., Berkenkamp, E, Turchetta, M., & Krause, A. (2018). Learning-
based model predictive control for safe exploration. 2018 IEEE Conference
on Decision and Control (CDC) (pp. 6059-6066). IEEE.

Lillicrap, T. P, Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver,
D., & Wierstra, D. (2015). Continuous control with deep reinforcement
learning. arXiv preprint arXiv:1509.02971.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, L., Wier-
stra, D., & Riedmiller, M. (2013). Playing Atari with deep reinforcement
learning. arXiv preprint arXiv:1312.5602.

Padakandla, S. (2020). A survey of reinforcement learning algorithms for
dynamically varying environments. arXiv preprint arXiv:2005.10619.
Parks, T. R. (1999). Manual for model 750: Control moment gyroscope.

Educational Control Products.

Peng, X. B., Andrychowicz, M., Zaremba, W., & Abbeel, P. (2018). Sim-
to-real transfer of robotic control with dynamics randomization. 2018
IEEE International Conference on Robotics and Automation (ICRA)
(pp. 1-8). IEEE.

Reid, M. D., & Williamson, R. C. (2009). Generalised Pinsker inequalities.
arXiv preprint arXiv:0906.1244.

Rizvi, S. Z., Mohammadpour Velni, J., Abbasi, E, Téth, R., & Meskin, N.
(2018). State-space LPV model identification using kernelized machine
learning. Automatica, 88(9), 38-47. https://doi.org/10.1016/j.automatic
a.2017.11.004

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., & Riedmiller, M.
(2014). Deterministic policy gradient algorithms. International Confer-
ence on Machine Learning (pp. 387-395). ICML.

Spielberg, N. A., Brown, M., Kapania, N. R., Kegelman, J. C., & Gerdes, J. C.
(2019). Neural network vehicle models for high-performance automated
driving. Science Robotics, 4(28), 425. https://doi.org/10.1126/scirobotics
.aaw1975

Tran, D., Dusenberry, M. W, van der Wilk, M., & Hafner, D. (2018).
Bayesian layers: A module for neural network uncertainty. CoRR
abs/1812.03973. http://arxiv.org/abs/1812.03973

Uhlenbeck, G. E., & Ornstein, L. S. (1930). On the theory of the Brow-
nian motion. Physical Review, 36(5), 823-841. https://doi.org/10.1
103/PhysRev.36.823

Yu, M., Yang, Z., Kolar, M., & Wang, Z. (2019). Convergent policy optimiza-
tion for safe reinforcement learning. Advances in Neural Information
Processing Systems (pp. 3127-3139). NeurIPS.

https://doi.org/10.1016/j.ifacol.2020.12.2276
https://doi.org/10.1016/j.automatica.2019.108622
https://doi.org/10.1007/978-0-387-84858-7_7
https://doi.org/10.1146/control.2020.3.issue-1
https://doi.org/10.1016/j.automatica.2017.11.004
https://doi.org/10.1126/scirobotics.aaw1975
http://arxiv.org/abs/1812.03973
https://doi.org/10.1103/PhysRev.36.823

	1. Introduction
	2. Problem statement and preliminaries
	2.1. LPV-SS model identification using BNN
	2.2. RL and policy gradient

	3. Model-based RL using the BNN model
	4. Numerical experiments and results
	4.1. Parameter-varying double integrator
	4.1.1. System identification and results
	4.1.2. Validation of safe MBRL using theBNN model
	4.1.3. Uncertainties in the evolution of scheduling variables
	4.1.4. Adaptation to new scheduling signals

	4.2. Control moment gyroscope
	4.2.1. System identification and results
	4.2.2. Network architecture and hyperparameters
	4.2.3. Experimental settings, results and discussion

	5. Concluding remarks
	Notes
	Funding
	References

