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Abstract

Modeling of diffusion of adsorbates through porous materials with atomistic molec-

ular dynamics (MD) can be a challenging task if the flexibility of the adsorbent needs

to be included. This is because potentials need to be developed that accurately account

for the motion of the adsorbent in response to the presence of adsorbate molecules. In

this work, we show that it is possible to use accurate machine learning atomistic poten-

tials for metal-organic frameworks in concert with classical potentials for adsorbates

to accurately compute diffusivities though a hybrid potential approach. As a proof-

of-concept, we have developed an accurate deep learning potential (DP) for UiO-66, a
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metal-organic framework, and used this DP to perform hybrid potential simulations,

modeling diffusion of neon and xenon through the crystal. The adsorbate-adsorbate in-

teractions were modeled with Lennard-Jones (LJ) potentials, the adsorbent-adsorbent

interactions were described by the DP, and the adsorbent-adsorbate interactions used

LJ cross-interactions. Thus, our hybrid potential allows for adsorbent-adsorbate in-

teractions with classical potentials, but models the response of the adsorbent to the

presence of the adsorbate through near-DFT accuracy DPs. This hybrid approach

does not require refitting the DP for new adsorbates. We calculated self-diffusion co-

efficients for Ne in UiO-66 from DFT-MD, our hybrid DP/LJ approach, and from two

different classical potentials for UiO-66. Our DP/LJ results are in excellent agreement

with DFT-MD. We modeled diffusion of Xe in UiO-66 with DP/LJ and a classical

potential. Diffusion of Xe in UiO-66 is about a factor of 30 slower than Ne, so it

is not computationally feasible to compute Xe diffusion with DFT-MD. Our hybrid

DP-classical potential approach can be applied to other MOFs and other adsorbates,

making it possible to use an accurate DP generated from DFT simulations of an empty

adsorbent in concert with existing classical potentials for adsorbates to model adsorp-

tion and diffusion within the porous material, including adsorbate-induced changes to

the framework.

Introduction

Metal-organic-frameworks (MOFs) are a class of crystalline materials of great scientific and

technological interest. They are highly versatile due to their permanent porosity and ability

to tune pore sizes and the chemical environment of the pores.1–5 Microporous and nanoporous

materials in general possess molecular scale porous character, making them unique in com-

parison to other industrially relevant materials. The advantage of MOFs is the extensive

customization that can be achieved using inorganic bricks or metal oxyhydroxide secondary

building units (SBUs) and organic ligands (linkers) to create highly porous three-dimensional
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structures with high pore volumes, large surface areas, and a tailorable chemical pore envi-

ronment.3–5 Thus, in principle, there are an almost unlimited number of possible MOFs that

can be designed.6,7 This makes it possible to use MOFs in a large variety of applications,

including catalysis, non-linear optics, gas separation, gas storage, and sensors.8–18

One important application for MOFs is the capture and destruction of toxic chemicals,

such as chemical warfare agents (CWAs). Zr-based MOFs, including UiO-66, UiO-67 and

their functionalized derivatives, have been studied for activity toward CWA and CWA sim-

ulant degradation.19–31 The exceptional mechanical stability and high porosity of UiO-66

makes it a popular choice for this application.32 However, the pores of UiO-66 are very

narrow, which means transport limitations may decrease its effectiveness, since diffusion of

the CWA could be much slower than the kinetics of reaction. Hence, there is a need to

understand the intrinsic diffusivity of molecules in UiO-66, and the effects caused by func-

tionalization and the presence of structural defects, like missing linkers or SBUs. Addressing

these issues is part of the motivation of this work.

UiO-66 is composed of SBUs consisting of 6 Zr atoms, 4 µ3-O atoms and 4 µ3-OH groups

coordinated by 12 benzene dicarboxylate moieties (each shared between two SBUs) [Zr6(µ3-

O)4(µ3-OH)4(C8H4O4)6]. We note that a dehydroxylated version of UiO-66 exists, which

is formed by heating the material in vacuum to high temperatures to eliminate the µ3-OH

groups.33,34 The hydroxylated form of UiO-66, which is the most suitable form of UiO-66 for

use in devices exposed to the atmosphere at moderate temperatures, will be considered in

this work.

Experimental characterization of materials will always be essential. However, atomistic

simulations can provide information and insight that complements and elucidates experi-

mental work. Hence, simulating the structural and dynamic properties of MOFs, includ-

ing diffusion of guest molecules within MOFs, is an active and complex field of research.

Density-functional theory (DFT) methods provide a highly accurate approach for modeling

MOFs, including periodic calculations, which mimic large-scale behavior, and cluster repre-
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Figure 1: Left: Isometric view of a primitive cell of UiO-66. The cell contains 114 atoms:
32 O (red), 6 Zr (cyan), 28 H (white) and 48 C (grey). Right: Cubic super cell of UiO-66
containing 32 SBUs (3648 atoms). This structure was used to study diffusion of guest species
in UiO-66.

sentations, which focus on the short-range local environment. Many DFT studies of MOFs

have been published recently, focusing on their electronic and vibrational properties,35,36

catalytic properties,37–39 and adsorption capabilities.40,41 Nevertheless, modeling MOFs us-

ing first-principles methods remains problematic, because of high computational cost and

unfavorable scaling, which limits DFT studies to small system sizes (of the order of a few

hundred atoms) and short time scales (typically picoseconds). These limitations are espe-

cially challenging for MOFs with large unit cells containing many hundreds to thousands

of atoms. Moreover, the study of diffusion of guest molecules within MOFs via DFT is

impractical for all but the smallest systems. Molecular dynamics (MD) simulations that use

parameterized force fields provide a convenient means to overcome some of the limitations of

DFT methods. These approaches involve fitting atomic interactions to empirical, ab initio,

or DFT data.42–50

The diffusion of molecular species in MOF cavities is an important issue that has been

addressed using parametrized force fields, with or without the explicit inclusion of the flexi-

bility of the MOF framework atoms.51–61 Although the use of rigid MOF force fields reduces

the complexity of the atomic interaction model, allowing simulations of larger systems and

longer times, the impact of this approximation on the description of the interactions between
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the MOF and the guest species has to be carefully assessed on a case-by-case basis.19,54,61–66

Yang and Sholl62 compared self-diffusion coefficients computed for 12 adsorbates in 17 dif-

ferent MOFs using both rigid and flexible models to characterize the impact of framework

flexibility on diffusion. As expected, they found that for adsorbates having sizes similar to

the window size, diffusion in the rigid MOFs can be orders of magnitude smaller than in

flexible MOFs. However, they also found that for flexible adsorbates, e.g., n-butane, there

are cases where the self-diffusion coefficient computed for a rigid MOF is orders of magni-

tude larger than in a flexible MOF. They found that the differences in diffusivities cannot

be accurately described using the size of the pore windows, even if the flexibility of empty

windows at the temperature of interest was taken into account. They conclude that the

adsorbate-loaded window size was a useful descriptor for capturing the impact of framework

flexibility.62

Generating classical force fields for MOFs that accurately account for framework flexi-

bility is an active and important area of research. There are two broad classes of classical

potentials for MOFs: (1) potentials that are derived for a specific MOF, usually based on

DFT calculations, and (2) general purpose potentials, applicable to many different MOFs.

The QuickFF formalism67,68 is an example of the former class of potentials designed for

specific MOFs. The original QuickFF program relied on cluster calculations,67 but has

since been extended to allow for calculations on periodic systems as input.68 MOF-FF46,69

is another example of a formalism for generating potentials for specific MOFs based on

quantum chemical calclulations. Generalized force fields include BTW-FF,43 ZIF-FF,70 and

UFF4MOF.44,45 BTW-FF uses periodic MOF structures and electron density from DFT

calculations to parametrize a classical potential which uses the functional form of the MM3

potential.43 Atoms-in-molecules theory71 is used to calculate point charges from the electron

density. This method was tested for a number of Zn, Cu and Zr based MOFs in an effort

to produce a transferable potential form for MOFs.43 ZIF-FF uses an existing reference po-

tential, and then optimizes selected parameters on the basis of periodic DFT data. In the
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calculations carried out with this potential, the bonded terms containing Zn were optimized

to reproduce DFT calculated strain energies, while the remaining linker bonded terms were

left unchanged with respect to the reference potential. ZIF-FF has been shown to predict

a number of properties more accurately than the initial reference potential, across a num-

ber of ZIFs.70 UFF4MOF is a modification of the original UFF force field,72 extended to

include transition metals, lanthanides, and additional oxygen parameters that give reliable

structures for a very wide range of MOFs.44,45

These methods all rely on empirical functional forms to represent bonded terms and these

generally do not allow for bond breaking and bond formation events. Moreover, many bonded

potentials only capture the harmonic behavior of bond stretching and bending. A better

approach is to directly use periodic DFT calculations covering a wide range of conditions

to generate a rich training set for an efficient and highly flexible model that can be used to

reproduce the chemical and physical properties of MOFs with near-DFT accuracy without

resorting to fixed empirical potential forms. Machine learning (ML) offers one approach to

accomplish this goal.

ML has been used for several applications related to MOFs. Zhang et al.73 used re-

current neural networks with Monte Carlo to design MOFs for desired target applications.

Moghadam et al.74 employed neural networks to predict the mechanical properties of existing

and hypothetical MOFs. Shi et al.75 used an ML assisted high-throughput computational

screening to identify promising MOFs for specific applications like methane storage, hydro-

gen storage and carbon dioxide separation. Chong et al.76 have discussed the role of ML

in predicting a variety of properties (gas adsorption and storage, mechanical and electrical

properties etc.) of MOFs. They have shown how to make use of various input descriptors

to store structural, positional, and chemical information. Gurnani et al.77 applied a compu-

tational pipeline that involved descriptor extraction, MOF fingerprinting, and deep learning

protocols to develop ML models of methane uptake using a rich methane uptake database.

None of the applications of ML to MOFs listed above involved developing atomistically
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detailed models that can replace the empirical MOF potentials for simulating the dynamical

and structural properties of MOFs, including diffusion of guest molecules. To the best of

our knowledge, only the work of Eckhoff and Behler78 deals with the development and use of

ML force fields to model the dynamical and structural properties of MOFs at an atomistic

level. This paucity of atomically-detailed ML potentials for MOFs can likely be attributed

to the large unit cell size and chemical complexity that characterize MOFs, compared to

other periodic materials for which ML potentials have been generated.

Currently available methods for generating ML-based inter-atomic potentials include the

Behler-Parrinello neural network (BPNN),79 the deep tensor neural network (DTNN),80

the Bonds-in-Molecules neural network method (BIM-NN),81 the gradient domain machine

learning (GDML)82 and the Deep potential-smooth edition used in the DeePMD-kit pack-

age.73,83–85

We here make use of the smooth version of the DeePMD formalism,84 which is an end-to-

end symmetry preserving inter-atomic potential energy model, to construct a deep-learning

potential (DP) for UiO-66. DeePMD is compatible with third-party software like the Large-

scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)86 and python tools, like

the atomic simulation environment (ASE),87 making it convenient to efficiently predict a

wide range of physical properties.

As stated above, the only atomistic ML potential for a MOF of which we are aware was

produced by Eckhoff and Behler,78 who used a BPNN to develop a neural network (NN)

potential for MOF-5. The resulting potential was used to predict the energies, forces, and

bulk properties (lattice parameters, elastic constants, bulk modulus, and negative thermal

expansion coefficient) of MOF-5. They compared their predictions to DFT calculations.

The approach of Eckhoff and Behler used DFT calculations of small molecular fragments

to train their NN potential for periodic bulk MOF-5. This approach is generally more

computationally efficient than using periodic DFT calculations to generate the training set.

Indeed, for MOFs having primitive cells containing on the order of a thousand atoms carrying
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out periodic calculations could be be computationally prohibitive. However, the molecular

fragment approach also has short-comings: (i) there is no universal way of choosing molecular

fragments for all MOFs; (ii) predicted energies are sensitive to the choice of fragments. A

poor choice of fragments may lead to inconsistencies in how the potential is built when

periodic boundary conditions are taken into account.

Therefore, the approach we adopt in this work makes use of periodic DFT calculations

on the primitive cell of UiO-66 to generate the training and testing sets for the DP. In this

work we develop an optimized DP training technique that samples training data from a pool

of DFT-MD simulation frames of expanded and compressed UiO-66 primitive cells. We find

excellent agreement between structural properties such as bulk modulus and lattice constant

predicted by our DP and those obtained from DFT calculations and experiment. We also

show that our DP can predict dynamic properties, such as velocity autocorrelation functions,

with higher accuracy than classical potentials, like the one developed by Rogge et al.88

The most important and interesting applications of MOFs involve the interaction of guest

(adsorbate) molecules with the MOF, e.g., to study diffusion and adsorption of molecules

within the MOF. However, no ML potential has been developed that accounts for MOF-

adsorbate interactions. In principle, framework-adsorbate interactions could be included in

a straight-forward way by using DFT simulations of MOFs with adsorbates in the training

set. A NN potential or DP trained in this way must include MOF-adsorbate and adsorbate-

adsorbate interactions, effectively building a DP for the MOF and the adsorbate at the

same time. This means that one must construct a new DP for each MOF-adsorbate pair or

use a massive training set including DFT calculations with all adsorbates of interest in the

MOF, including their mixtures. An alternate approach is to make use of existing classical

potentials for adsorbate-adsorbate interactions, which have been shown to perform very well

for predicting properties of pure fluids and mixtures.89 Many of these empirical potentials

are coarse-grained at the level of the united atom model, making them very efficient. 90–92

However, one must still include framework-adsorbate interactions. These can be tackled in
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the same way as classical MOF potentials, i.e., through the use of combining rules to account

for nonbonded atom-atom (or atom-united atom) interactions.

Our hypothesis is that we can follow a similar approach by using our DP trained on an

empty MOF, a classical potential to describe adsorbate-adsorbate interactions, and combin-

ing rules to account for framework-adsorbate interactions. This is accomplished by assigning

nonbonded potentials to each atom in the MOF framework, e.g., from UFF72 or DREID-

ING.93 We thus use a hybrid DP-classical potential approach to carry out MD simulations

of adsorbates diffusing within UiO-66. Our approach allows for adsorbates to dynamically

interact with the framework, allowing the framework to respond to the adsorbate as it passes

through the window. Note that Yang and Sholl identified this feature as critical to accurately

accounting for the impact of framework flexibility.62 This is in contrast to earlier methods,

which used snapshots from DFT simulations of empty MOFs to estimate the diffusivities in

flexible MOFs.94 Our results provide a proof-of-concept showing the feasibility of a hybrid

approach to modeling the diffusion of molecules in MOFs, with near-DFT accuracy for the

description of the MOF and enhanced computational efficiency compared to ab initio MD

approaches.

Computational methods

DFT calculations

We used the DeePMD formalism84 to construct a DP for UiO-66. As demonstrated by Achar

et al.,95 DeePMD potentials trained on very small periodic cells can be used to simulate

much larger supercells with high accuracy and efficiency. In this work, we therefore used the

primitive cell of UiO-66 (Figure 1 left) to train the DP. The DFT-optimized cell parameters

for the primitive cell are a = b = c = 14.83 Å and α = β = γ = 60◦.96 The space group of

UiO-66 is Fm-3m.97 This cell was used for predicting structural and dynamic properties. A

larger cubic super-cell consisting of 32 primitive cells (Figure 1 right) was used for studying
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diffusion in UiO-66 from both our DP and two empirical potentials.

The primitive cell of UiO-66 was first structurally optimized using the Vienna ab ini-

tio simulation package (VASP).98–101 We employed the projector augmented-wave (PAW)

method102 to describe the electron-ion interactions. We used the generalized gradient ap-

proximation exchange-correlation functional of Perdew-Burke-Ernzerhof (PBE). 103,104 No

symmetry constraints were imposed during the structural optimization. Only the Γ-point

was included in the Brillouin zone sampling. We used the Methfessel-Paxton method to

determine partial occupancies with a smearing width of 0.05 eV. The cutoff energy for the

plane-wave basis set was set to 400 eV. The convergence criterion for electronic self-consistent

loop was set to 10−4 eV. The convergence criterion for the ionic relaxation loop was 10−3 eV.

The optimized structure was used to initialize the DFT-MD VASP simulations used to gen-

erate the training and testing data sets. DFT-MD simulations in the NV T ensemble were

carried out using a Nosé-Hoover thermostat105 with a frequency of temperature oscillations

set to 40 time steps (SMASS = 0). We used a time step of 0.5 fs to integrate the equations

of motion.

DP training

Our process for training and evaluating DPs involved creating several generations of different

DPs, employing two training phases. Each DP was fitted to training sets consisting of DFT

calculations on the periodic primitive cell of UiO-66. For each of the DPs generated, the

training configurations were distributed among several batches and a neural network was

used to predict the energies and forces using only the atomic coordinates and element types

of the training configurations as input. The total energy of the system was computed as the

sum of individual atomic energies. The energy of an atom i was calculated based on the

number of neighboring atoms within a cut-off radius Rc.

Since the structure of UiO-66 is highly porous and the unit cell contains empty regions

(pores), localizing the interaction of one atom with a small set of neighbors can reduce the
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generality of the potential. For this reason, we imposed a large cutoff radius of 8 Å with

a smoothing cut off of 1.5 Å. The atomic coordinates from the DFT-MD simulations were

used to build descriptors that contained radial and angular information about the system,

to ensure translational, rotational and permutational invariance. The advantage of using the

featurization in DeePMD as compared to other NN methods like BPNN is that it does not

use hand-crafted local symmetry functions, eliminating the need for human intervention.84

These descriptors were treated as input data for a three-layered feed-forward neural network.

We used cylindrical NNs for the first training phase, with three layers of 340 nodes per layer.

We used inverted pyramid NNs for the second training phase, with three layers (1020, 680,

340). These nodes contain a combination of linear and non-linear transformations (activation

functions). Each neural network was designed to output the individual atomic energies and

forces. The neural network parameters were optimized by enforcing the minimization of a

loss function given by,

L(pϵ, pf ) =
pϵ
N

∆E2 +
pf
3N

|∆Fi|2, (1)

where ∆E2 and |∆Fi|2 denote the RMSEs of the total energies and atomic forces. Initial

values of the prefactors pϵ and pf were set to 0.02 and 1,000 respectively. These prefactors

were automatically adjusted during training; pϵ was increased and pf was decreased during

the training epochs. This was done so that the force term dominates at the beginning, while

the energy term dominates at the end; an approach recommended by Zhang et al.83 The

training of the neural network was carried out for a total of 106 batches to achieve higher

accuracy and avoid overfitting. More details about the training hyperparameters used for

DeePMD are provided in the Supporting Information.

As noted above, we used two training phases to obtain the final DP for UiO-66. The first

phase consisted of an iterative training approach where each DP generated was evaluated

based on its ability to predict the energy-volume response, i.e., the equation of state, of

UiO-66. A schematic representation of the first training phase is shown in Figure 2. The use

of an energy-volume response criterion guarantees that the DP accurately accounts for the
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mechanical properties of UiO-66 under both expansion and compression. Once we obtained a

DP that was able to predict the equation of state with acceptable accuracy, we used that DP

as the starting point for the second training phase. The second training phase was designed

to explore framework flexibility by adding training data generated from high temperature

DFT-MD simulations and active learning.

For the first phase of training, we sampled a number of expanded and compressed prim-

itive cells of UiO-66. The atomic positions for each of these samples were optimized with

the same convergence criteria adopted for the equilibrium lattice. A base training set was

generated using the relaxed equilibrium lattice cell from an NV T simulation carried out at

T = 600 K for 5 ps (a total of 10,000 MD steps). The validity of the DP obtained from a set

of atomic configurations was assessed using the root mean squared errors (RMSE) of pre-

dicted energy per atom vs. volume data not included in the fitting of the DP. The test data

included the energy vs. volume response computed from VASP by considering expansion and

compression of the cell parameters within a range of ±6% with respect to the equilibrium

parameters. We set an arbitrary target RMSE value of 10−3 eV per atom for predicting the

entire set of expanded and compressed DFT configurations. If the RMSE for a given DP

was found to be larger than this value, additional expanded and compressed configurations

were included in the training. The details of this process are discussed below.

The final set of data generated in the first phase was used as the starting dataset for the

second phase of training. As stated above, the second phase was designed to improve the

ability of the DP to capture framework flexibility. We therefore added configurations from

NV T DFT-MD simulations at T = 1, 000 K and T = 1, 200 K. To further ensure that the

training data explored a significant part of the potential energy surface, we used the deep

generator (DP-GEN) package by Zhang et al.107 The DP-GEN scheme is designed to produce

accurate DPs using active learning and is distributed through the Deep Modeling software

ecosystem.106 This scheme uses successive iterations composed of exploration, labeling, and

training. The exploration step involves sampling of configuration space and transferring
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Figure 2: Schematic representation of the first training phase used to generate a DP for
UiO-66. (a) Atom positions in the equilibrium, compressed, and expanded primitive cells
were first relaxed at iteration i. (b) Selected relaxed structures were then used as starting
configurations for VASP NV T DFT-MD simulations; the output of the simulations were
stored in a data pool. (c) At a given iteration, energies, forces, atomic coordinates and their
element types were extracted using dpdata (from the deepmodeling package106) from the
data pool. (d) The extracted information was then used as data for training. (e) A trained
DP was obtained and its quality assessed based on the convergence of the energies as a
function of volume relative to VASP results. If the RMSE was below the predefined tolerance,
the DP training was considered complete. (f) If the RMSE was above the tolerance, the
training dataset was further expanded with additional NV T -MD simulation configurations
for compressed and expanded cells. Once converged, the final dataset was used for training
DPs in the second phase.
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these configurations to the labeling step. An ensemble of DPs is generated by training

from a single training set but with a difference in the initialization of the model parameters

(weights). Different parameter initialization can lead to training different potential energy

surfaces. With sufficient training data, the ensemble of DPs should all correspond to similar

potential energy surfaces and thus produce predictions that are close to each other.

In our implementation of DP-GEN we trained an ensemble of 4 DPs (DP-0 to DP-3).

We then performed DP-MD simulation for 50 ps using DP-0 from the ensemble. An error

indicator was generated by using the configurations from the DP-MD run to evaluate the

forces computed from each of the other members of the DP ensemble. The error indicator is

defined as the maximal standard deviation of the atomic forces predicted from the ensemble

of DPs. We then define upper and lower bound of this maximal standard deviation of

forces for each iteration. Configurations with maximal force deviations that fall within these

bounds will then be re-labeled using single-point DFT calculations and added to the training

dataset. This re-labeled dataset is then used to train the DPs as part of the training step

for a given iteration. These newly trained models are further used to generate and explore

larger configuration space as part of the next iteration. More details on the workings of

DP-GEN are reported by Zhang et al.107

Classical potentials

We used classical potentials for UiO-66 to compare with results from our DP calculations.

The dynamic properties of the empty MOF were computed with the Rogge et al. potential.88

The atomic charges in this potential were calculated using the minimal basis iterative stock-

holder partitioning scheme,108 while covalent parameters were developed using QuickFF.67

The atomic point charges were replaced by Gaussian functions centered on each respective

atom. We computed diffusion of Ne in UiO-66 with both the Rogge et al. potential and

the UFF based potential of Boyd et al.,109 combined with atomic point charges found from

electron density calculations using the DDEC6 approach.63 The Rogge et al. potential was
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shown to give a more robust and physical representation of UiO-66 than the UFF based

Boyd et al. potential.63 Moreover, guest-MOF binding energies were estimated and found

to be in excellent agreement with ab initio results.63

Results and discussion

DP training and validation

We first discuss the validation of the DPs that were generated in the first training phase

shown in Fig. 2. DPs at each iteration (i = 0, 1, ...) in the first phase of training were

obtained by standard training to the loss function, eq. 1. Then, the DP was validated by

comparison with the energy vs. volume dependence obtained with VASP. These results are

plotted as individual energy vs. volume diagrams in Figure 3. Each version of DP used the

same neural network architecture as described in the methods section, with varying training

samples. For Figure 3 the light green circles are the starting configurations of the NV T

DFT-MD simulations from which the DPs were trained. We label individual DP versions

“DP-vi”. DP-v0 (Figure 3a) was trained using a base training set consisting of 10,000 DFT-

MD configurations with the equilibrium cell parameters of UiO-66. The RMSE in energy per

atom calculated for this base DP was 8.5 × 10−3 eV/atom, which was well above the preset

threshold of 10−3 eV/atom. DP-v1 was therefore generated using 3 sets of DFT-MD training

data (2i+1). Two of the three DFT-MD simulations (the left and right green circles in Figure

3b) used a crystal cell whose lattice constants were reduced by 2.5% and increased by 2.5%,

respectively. These structures were optimized with VASP and DFT-MD simulations of 0.5

ps (1,000 steps long) were run for each starting configuration. Thus, DP-v1 was trained using

a total of 12,000 atomic configurations. The RMSE in energy per atom calculated for DP-v1

was found to be 2.4× 10−3 eV/atom, which was still above the acceptable threshold. A new

potential, DP-v2, was generated next, using additional NV T DFT-MD simulation data with

different starting configurations. From Figure 3c, the leftmost and the rightmost training
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samples had lattice constants that were reduced by 5% and increased by 5%, respectively.

This resulted in a total of 14,000 training configurations. The RMSE in energy per atom

calculated for this potential was 7.2 × 10−4 eV/atom, which was below the 10−3 eV/atom

threshold. Thus, DP-v2 was adopted as the final DP from the first phase training and no

further iterations were run. Figure 3d summarizes the trend in RMSE for each version of DP,

and it shows that the quality of each subsequent version improves with additional training

data. More details are provided in the Supporting Information.

For the second phase of training, we started with the DP-v2 dataset and pruned it to

reduce redundant configurations that were correlated and to reduce the training time. We

validated that pruning the dataset did not lead to a decrease in energy vs. volume prediction

accuracy of our DP. High temperature DFT-MD simulations at T = 1, 000 K and T = 1200 K

composed of 2,000 configurations each from 5 ps long simulations were added to the dataset.

This dataset was used for the first iteration of active learning using DP-GEN. During the

first DP-GEN iteration, we identified 1,000 additional configurations for re-labeling. We

then ran a second iteration of DP-GEN with the new dataset that included single-point

DFT calculations of the re-labeled data. The final dataset consisted of 7,800 configurations

from a diverse set of calculations. The final DP was taken from the second DP-GEN iteration.

Details of this procedure are given in the Supporting Information.

Energy and force prediction

It is critical to perform a validation of the potential; we did this by evaluating the predicted

atomic forces and total energies of UiO-66 for unseen configurations. We used a total of

6,000 testing configurations from four different DFT-MD simulations. Each simulation used

the five final configurations from the DFT-MD simulations used for training this DP (as in

Figure 3c) as the starting point for each set of 5 ps (10,000 steps) DFT-MD simulations.

The simulations were performed at different temperatures, T = 350, 600, and 1, 000 K. The

test data frames were collected every 50 steps from each simulation, for a total of 6,000
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Figure 3: Energy vs. volume dependence prediction for different versions (vi) of DP (red
triangles), in which each version uses training samples with different volumes (light green
circles). The predictions of the DPs are compared to their corresponding VASP results (blue
stars). (a) DP-v0 has an RMSE of 8.5×10−3 eV/atom. (b) DP-v1 has an RMSE of 2.4×10−3

eV/atom. (c) DP-v2 has an RMSE of 7.2 × 10−4 eV/atom. The blue and red lines are the
Birch-Murnaghan110,111 equation of state fits for the VASP and DP data, respectively. (d)
A bar plot comparing the RMSE from these three versions of the DP and a dashed red line
representing the threshold (10−3 eV/atom) at which a DP is considered acceptable.
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configurations. Testing the DP using configurations from much longer simulation times is

essential to assess the robustness of the DP. The results are shown as a parity plot in Figure

4a, where we compare the energies per atom from VASP and DP. The RMSE of the prediction

was found to be 9.76 × 10−4 eV/atom.

We also computed RMS errors in atomic forces from these testing data. We show in

Figure 4b a parity plot of the forces predicted by DP and those computed with VASP. The

forces in the three spatial directions (x, y and z) are plotted in the same figure. The RMSE

calculated for the force prediction was found to be 0.055 eV/Å. Compared to the results

reported by Eckhoff and Behler,78 we obtain better accuracy in our predicted RMSE values.

For the periodic bulk structures of MOF-5, Eckhoff and Behler78 achieved an RMSE of

6.5 × 10−3 eV/atom for energies and 0.13 eV/Å for forces. It is important to note that this

comparison is based on two different types of neural network potentials and two different

MOF structures. We therefore cannot definitively ascribe the increase in accuracy of our DP

relative to that of Eckhoff and Behler to our use of periodic DFT in the training sets.

Predicting structural characteristics of UiO-66

We have used our DP to predict the mechanical properties of UiO-66. The bulk modulus

and the equilibrium lattice constant for the primitive cell of UiO-66 can be derived by fitting

the energy-volume data to an equation of state. We calculated these structural properties

from the Birch-Murnaghan (B-M) equation of state110,111 given by,

E(V ) = E0 +
9V0K

16

{[
(V0/V )

2
3 − 1

]3
K ′ +

[
(V0/V )

2
3 − 1

]2 [
6 − 4(V0/V )

2
3

]}
(2)

where E(V ) is the internal energy for the cell volume V , E0 is the internal energy at the

equilibrium volume V0, K is the bulk modulus, and K ′ is the first derivative of the bulk

modulus with respect to the pressure. Fitting of the B-M equation was carried out using

ASE.87 The blue and red lines in Figure 3c are the B-M fits using the VASP and DP-v2
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Figure 4: Parity plots of DP predicted (a) energies and (b) forces, compared with values
computed from DFT. The RMSE in prediction for energies is 9.76× 10−4 eV/atom and that
for the forces is 0.055 eV/Å . Test data sets were sampled from NV T VASP simulations at
T = 600 K.
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results, respectively. The B-M fits using the final DP visually looked the same as the red

line in Figure 3c. The RMSE in energy per atom vs. volume calculated for the final DP

was slightly above that of DP-v2 with a value of 9.2× 10−4 eV/atom while still being under

the threshold of 10−3 eV/atom. The agreement between the bulk modulus computed from

DP (31.88 GPa) and from VASP (32.11 GPa) is excellent. An experimental value for bulk

modulus of 37.90 GPa for UiO-66 has been reported by Redfern et al.112 The VASP (PBE)

bulk modulus prediction has an error of 15% relative to the value reported by Redfern et

al. The difference could be due to either experimental limitations in characterizing bulk

properties of MOFs (as reported by Redfern et al.) or due to inaccuracies in the level of

DFT theory we used for our calculations. The bulk modulus prediction error from DP is

similar to that of VASP since the DP was trained using VASP data. We also performed

similar equation of state calculations for the cubic supercell of UiO-66 at 0 K using the

classical potential of Rogge et al.,88 as implemented in LAMMPS. A plot of the B-M fit is

shown in Figure S6. This potential yields a bulk modulus of 16.37 GPa, which is significantly

lower than the experimental value and values predicted by DP or DFT. A possible reason

for the differences observed using the potential of Rogge et al. and DP can be related to

the DFT approximations used in the parameterization of the force field. For the former,

isolated cluster models were used in the parametrization, whose structure was optimized

using the B3LYP exchange-correlation functional,113,114 as implemented in Gaussian 09.115

By contrast, our DP for UiO-66 was constructed with DFT data generated using the PBE

functional in VASP using fully periodic MOF structures.

We calculated the equilibrium lattice constant of a conventional cubic cell (ac) from the

calculated volume of the elementary primitive cell,

ac = (4V0)
1
3 . (3)

Our DP yields a value of ac = 21.012 Å, which is in good agreement with the experimental

20

Page 20 of 45

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



value of 20.755 Å,116 and the value from our VASP calculations of 21.008 Å. The Rogge et

al. potential gives a lattice constant constant of 21.463 Å.

We examined the influence of semi-empirical dispersion corrections in the DFT calcula-

tions by using the D3 correction of Grimme et al. with Becke-Johnson damping117 (PBE-D3).

This gave rise to a reduction of roughly 4.2% in V0 and a reduction of 0.3% in the bulk mod-

ulus, K. Details are provided in the Supporting Information. The good agreement between

PBE and PBE-D3 results indicate that the properties of empty UiO-66 are dominated by

short-ranged bonded interactions rather than long-range dispersion forces.

Dynamic Properties: Velocity autocorrelation function

In this section we describe dynamic properties computed from DFT (VASP), DP, and the

Rogge et al. potential. We computed the velocity autocorrelation function (VACF) from

NV T MD simulations at T = 350 K for UiO-66. The system was thermally equilibrated at

350 K with a Nosé-Hoover thermostat for 3 ps and the VACF was then calculated over 0.5

ps from an NV T production run. We used the primitive cell of UiO-66 for calculations with

VASP. The VACF was computed with DP using both a primitive cell and a cubic 2 × 2 × 2

supercell. We computed the VACF from the Rogge et al. potential only with the cubic

2 × 2 × 2 supercell. The VACFs computed with DP for the primitive cell and the cubic

supercell were found to be virtually identical. The results are plotted as a function of the

autocorrelation length in Figure 5. We observe that DP predicts a VACF that is in good

agreement with the VASP VACF. The VACF computed using the Rogge et al. potential,

on the other hand, exhibits larger deviations in amplitudes and peak locations from the

VASP VACF compared with DP. It appears that the VACF computed from the Rogge et

al. potential goes out of phase with the VASP results around 0.08 ps. The differences in

the VACF computed from the Rogge et al. potential and VASP may be due to the cluster-

based approach used in developing the Rogge et al. potential. The VACFs from 0.3 to 0.5

ps are plotted in Figure S8. We see from this figure that the VACFs from VASP and DP
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remain nearly in phase over the entire 0.5 ps range, although the amplitudes from DP are

generally larger than those from VASP. The VACFs decay to zero at about 0.5 ps for all

three calculations.

Figure 5: The velocity autocorrelation function at 350 K for UiO-66 computed from VASP,
DP, and the potential of Rogge et al.88 as a function of the autocorrelation length.

Diffusion of Ne and Xe in UiO-66

In this section we present results for diffusion calculations using a hybrid DP-classical poten-

tial approach to describing the framework-adsorbate interactions. We simulated diffusion of

Ne as a test case because the mobility is fast enough to allow accurate diffusion calculations

from DFT-MD. Moreover, although the diameter of Ne is small compared with the window

size of UiO-66, Wardzala et al. showed that the self-diffusion coefficient of Ne in rigid UiO-

66 is significantly slower than in flexible UiO-66.63 We also computed diffusivity of Xe in

UiO-66 because the Xe atom is much larger in diameter than Ne. We know from classical

simulations that the self-diffusion coefficient of Xe in UiO-66 is almost 30 times smaller than

that of Ne, due to a much larger barrier to diffusion (vide infra). This increased barrier is

due to steric interactions between Xe and the UiO-66 pore window, as illustrated in Figure

S10 of the Supporting Information. The slower diffusivity of Xe in UiO-66 prevents us from

obtaining reliable estimates using DFT-MD simulations. We use the DP, trained only for C,

H, O and Zr atoms within the MOF, to account for the intra-framework forces and energies.
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The Ne-Ne and the Xe-Xe interactions were modeled with the Lennard-Jones (LJ) potential,

uij = 4ϵij

[(
σij

rij

)12

−
(
σij

rij

)6
]
, (4)

where uij is the potential, ϵij is the potential well depth, σij is the diameter, and rij is the

distance between a pair of LJ atoms of type i and j. The framework-adsorbate interactions

were computed by assigning LJ parameters for each atom in the framework from UFF 72 and

then using the Lorentz-Berthelot combining rules,

ϵij =
√
ϵiϵj, (5)

σij =
1

2
(σi + σj), (6)

to compute the framework-adsorbate interactions. The LJ parameters for the hybrid DP-

classical calculations are given in Table 1.

Table 1: Values for the LJ parameters for the various elements in the system. The Ne and
Xe parameters were taken from the literature.118,119 The other parameters were taken from

UFF.72

Atom ϵ (kcal/mol) σ (Å)
Ne 0.073 2.79
Xe 0.438 4.10
C 0.105 3.43
O 0.06 3.12
H 0.044 2.57
Zr 0.069 2.78

We performed finite loading simulations of Ne diffusing within UiO-66 using our hybrid

DP-classical potential, which we denote as DP/LJ. For comparison, we performed diffusion

calculations using DFT-MD at the PBE-D3 level of theory, and also using the two classical

UiO-66 potentials: the Rogge et al. potential,88 which we denote as Classical Potential

1/LJ (CP1/LJ), and the UFF Boyd et al. potential,109 denoted as Classical Potential 2/LJ

(CP2/LJ). The reason for using PBE-D3 for the DFT-MD Ne diffusion calculations is that
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the Ne-framework interactions are dominated by dispersion forces. We also performed zero

loading Ne diffusion simulations with DP/LJ and CP1/LJ as a function of temperature in

order to calculate the diffusion activation energies.

We used a version of LAMMPS locally modified to include DP in addition to standard pair

potentials in MD simulations. A cutoff of 15 Å was imposed on all classical LJ interactions.

Sample LAMMPS input files are provided in the Supporting Information.

MD simulations of Ne diffusion in UiO-66 were carried out with LAMMPS for the three

potentials: DP/LJ, CP1/LJ, and CP2/LJ. We used a composite system consisting of the

periodic cubic 2 × 2 × 2 supercell of UiO-66 (32 primitive cells, see Figure 1 right) and 160

Ne atoms. This corresponds to 5 Ne atoms per primitive cell, which is the average absolute

loading at an external pressure of about 100 bar at 300 K, as computed from our grand

canonical Monte Carlo simulations using the RASPA software package.120 See Supporting

Information for details. Multiple independent runs (at least 5) were used to achieve satis-

factory statistics. The system was equilibrated for 50 ps in the canonical (NV T ) ensemble

using a Nosé-Hoover thermostat105 at 300 K. Data were then collected from long (up to 25

ns) microcanonical (NV E) simulations for the classical potentials. Use of the microcanon-

ical ensemble eliminates the possibility of thermostat bias in the dynamics. We compared

results from NV T and NV E production runs and found no impact of the thermostat on the

dynamics (see Supporting Information). Therefore, DP/LJ simulations were carried out in

the NV T ensemble. Since it was impractical to run DFT-MD on such large systems, we used

the primitive cell of UiO-66 (Figure 1 Left) with 5 Ne atoms added for our VASP PBE-D3

diffusion calculations. The DFT-MD systems were first thermally equilibrated at 300 K for

0.1 ps in the NV T ensemble using the Andersen thermostat121 with a collision probability

of 0.75 (to generate randomized starting points for independent runs), followed by an ad-

ditional equilibration for 0.5 ps using a Nosé-Hoover thermostat at the same temperature.

We continued the NV T simulation with the Nosé-Hoover thermostat for the production run

for 20 ps. A total of 40 independent runs were used to due to the shorter simulation times
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and smaller system size in the DFT-MD calculations. We used multiple time origins to cal-

culate mean-squared displacement (MSD). For each simulation, self-diffusivities (DS) were

calculated from the production runs using Einstein’s relation,

DS =
1

2td
⟨
∑

|ri(t) − ri(0)|2⟩ (7)

where t is the time, d = 3 is the dimensionality of the system, ri is the position of the ith Ne

atom at time t and the sum is over all diffusing atoms. Diffusion coefficients from the four

different types of calculations are compared in Table 2. The value of DS from each simulation

was calculated by analyzing the final third of the MD simulation run to ensure that the MSD

data were in the linear regime. The uncertainties in the values of DS were computed as twice

the standard deviation of the independent values. In order to estimate system size effects,

we computed DS using DP/LJ with a single primitive cell as well as the 2 × 2 × 2 cubic

supercell. We see that DS increases by about 13.4% as the system size increases from 1 to

32 primitive cells. The PBE-D3 and DP/LJ results both computed for a single primitive

cell agree within the estimated uncertainties of the simulations, although the uncertainties

are large because of the small system sizes involved. We note that the properties of Ne

computed from PBE-D3 and its interactions with the framework at that level of theory

are not expected to exactly correspond to the hybrid DP/LJ approach. Nevertheless, the

agreement between DFT-MD and DP/LJ-MD provides a proof-of-principle that the hybrid

approach is able to accurately reproduce DFT diffusion results at a very small fraction of the

cost. The times required for 1 MD time step for PBE-D3 and DP/LJ were 2,765 and 0.0083

core-seconds, respectively. The DFT calculations were carried out on two Xeon E5 nodes

(56 total cores) and DP/LJ simulations were performed on NVIDIA A100 GPUs. While

this speed-up of over 300,000 is significant, it is more important to note that the DP/LJ

simulations scale linearly with system size, making it possible to carry out simulations 32

times larger with reasonable computational effort, while DFT calculations on a system of
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that size are infeasible.

Table 2: Diffusion coefficients of neon in UiO-66 at 300 K at a loading of 5 Ne per primitive
cell computed from VASP (PBE-D3), hybrid DP (DP/LJ), Rogge et al. (CP1/LJ), and
Boyd et al. (CP2/LJ). Cells is the system size in terms of the number of primitive cells.

Method DS × 108 (m2/s) Cells
PBE-D3 1.52 ± 0.58 1
DP/LJ 1.49 ± 0.48 1
DP/LJ 1.69 ± 0.15 32
CP1/LJ 2.10 ± 0.09 32
CP2/LJ 1.71 ± 0.14 32

Diffusion through porous materials is typically an activated process and the activation

energy for diffusion is a quantity of fundamental interest. Knowledge of the activation

energy for diffusion allows one to estimate the diffusion coefficient at any (reasonably close)

temperature. The diffusion activation energy can be estimated from the Arrhenius equation,

D = D0e
−EA

RT , (8)

where EA may be calculated from the slope of a plot of ln(DS) vs. 1/T , as in Figure 6. This

approach requires that DS be computed for at least three different temperatures (to obtain

statistically meaningful results) and is therefore computationally prohibitive for DFT-MD,

but easily achievable for DP/LJ and classical potentials. We computed EA for Ne in UiO-

66 at zero loading from DP/LJ and CP1/LJ. We used the periodic cubic UiO-66 supercell

loaded with 500 noninteracting (i.e., zero loading) Ne atoms. The Ne-Ne interactions were

explicitly excluded in these simulations, with Ne-framework and framework-framework in-

teractions included in the same way as in the finite-loading simulations. The same workflow

(equilibration, simulation times, etc.) used for the finite-loading simulations was used for the

zero loading simulations. A sample input file is provided in the Supporting Information. We

examined three different thermostat temperatures: 300, 350 and 400 K. The diffusion coeffi-

cients from these simulations are reported in Table 3 and the fits to the Arrhenius equation

are shown in Figure 6. The value of EA for DP is 2.91 ± 0.26 kJ/mol, which is in agree-
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ment with the prediction obtained from analogous simulations carried out using CP1/LJ

(2.85 ± 0.65 kJ/mol). We would expect CP2/LJ to predict a value of EA similar to that of

the DP/LJ and the CP1/LJ potentials based on the results of finite-loading calculations.

Table 3: Diffusion coefficients, DS × 108, (m2/s) for Ne in UiO-66 at zero loading computed
from CP1/LJ and DP/LJ.

T (K) CP1/LJ DP/LJ
300 2.12 ± 0.12 2.07 ± 0.04
350 2.43 ± 0.15 2.44 ± 0.11
400 2.83 ± 0.16 2.78 ± 0.07

Figure 6: Arrhenius plot of diffusion coefficients for Ne in flexible UiO-66 using DP/LJ and
CP1/LJ.

Diffusion of Ne within UiO-66 is not a stringent test of the ability of our DP to model

framework flexibility as Ne has a very small van der Waals radius. We therefore carried

out simulations of Xe diffusion in UiO-66, since Xe is much larger than Ne and is a logical

choice, given that both are noble gases, having the same types of interactions with the

framework. We computed diffusivities of Xe in UiO-66 with DP/LJ and CP1/LJ using the

2 × 2 × 2 supercell of UiO-66 and 100 Xe atoms, excluding Xe-Xe interactions to model

zero loading. We chose to simulate zero loading conditions to focus on adsorbate-adsorbent
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interactions, without the complications due to adsorbate-adsorbate interactions. The system

was first equilibrated for 50 ps in the canonical ensemble at 400 K. We used long (25 ns)

microcanonical simulations for CP1/LJ and canonical simulations at 400 K of 1 ns for DP/LJ

to generate production data. We used a total of 10 independent simulations for CP1/LJ

and 25 independent simulations for DP/LJ to calculate the self-diffusivity of Xe. Diffusion

coefficients from the two potentials are compared in Table 4. We see that the DS computed

from DP/LJ is slightly larger than that computed from CP1/LJ. Although the values agree

within the combined uncertainties, we believe that the difference between these estimates is

significant and is related to the different flexibility of the linkers described by DP and CP1,

and that the DP description of the linker flexibility is more realistic.

Table 4: Diffusion coefficients of xenon in UiO-66 at 400 K at zero loading computed from
hybrid DP (DP/LJ) and the classical potential of Rogge et al.88 (CP1/LJ).

Method DS × 109 (m2/s)
DP/LJ 1.31 ± 0.27
CP1/LJ 0.997 ± 0.16

Conclusions

We have generated the first neural network atomistic potential for UiO-66, using the DeePMD

formalism. The DP was generated using a training technique that iteratively explored com-

pressed and expanded starting structures and employed DFT-MD simulations at high tem-

peratures and active learning. The DP generated using our technique is capable of accurately

predicting the cell parameters, bulk modulus and VACF of UiO-66. We have demonstrated

how this DP can be interfaced with classical force fields to simulate MOFs loaded with guest

molecules without the need to generate a new DP for each new adsorbate. This hybrid

approach of combining a DP with classical pairwise empirical potentials provides an efficient

path for producing highly accurate potentials for pristine and defective MOFs based on rel-

atively small DFT training sets and using these potentials to explore properties of MOFs

28

Page 28 of 45

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



containing a variety of guest molecules. This approach is useful for studying phenomena such

as adsorption, diffusion, and loading-dependent thermal conductivity. However, it may not

necessarily be suitable for modeling chemical reactions involving the MOF host and guest

molecules. We showed that our hybrid DP/LJ potential predicts a diffusion coefficient for

Ne in UiO-66 in excellent agreement with DFT-MD simulations, at a very small fraction of

the DFT-MD computational cost. More importantly, the DP/LJ approach allows calcula-

tions with system sizes containing many thousands of atoms, which cannot be carried out

efficiently using standard DFT methods. We also computed the self-diffusion coefficient for

Xe in UiO-66 and we estimated a diffusivity that is more than one order of magnitude lower

than Ne, indicating significant steric hindrance for Xe traversing the pore windows. Finally,

we note that our DP could be trained to include bond-breaking and bond-forming events

within the MOF creating open metal sites that can spontaneously form when a linker-SBU

metal-oxygen bond breaks. The description of these phenomena may however require a much

more extensive set of configurations for the DP training and is beyond the scope of this work.
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