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Abstract 
Background. Amorphous calcifications noted on mammograms (i.e., small and indistinct calcifications that are 
difficult to characterize) are associated with high diagnostic uncertainty, often leading to biopsies. Yet, only 20% 
of biopsied amorphous calcifications are cancer. We present a quantitative approach for distinguishing between 
benign and actionable (high-risk and malignant) amorphous calcifications using a combination of local textures, 
global spatial relationships, and interpretable handcrafted expert features.  
Method. Our approach was trained and validated on a set of 168 2D full-field digital mammography exams (248 
images) from 168 patients. Within these 248 images, we identified 276 image regions with segmented 
amorphous calcifications and a biopsy-confirmed diagnosis. A set of local (radiomic and region measurements) 
and global features (distribution and expert-defined) were extracted from each image. Local features were 
grouped using an unsupervised k-means clustering algorithm. All global features were concatenated with 
clustered local features and used to train a LightGBM classifier to distinguish benign from actionable cases.  
Results. On the held-out test set of 60 images, our approach achieved a sensitivity of 100%, specificity of 35%, 
and a positive predictive value of 38% when the decision threshold was set to 0.4. Given that all of the images 
in our test set resulted in a recommendation of a biopsy, the use of our algorithm would have identified 15 images 
(25%) that were benign, potentially reducing the number of breast biopsies. 
Conclusions. Quantitative analysis of full-field digital mammograms can extract subtle shape, texture, and 
distribution features that may help to distinguish between benign and actionable amorphous calcifications. 
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Introduction 
Calcifications are a common mammographic finding. Radiologists use Breast Imaging, Reporting & Data 
Systems (BI-RADS) to report standardized qualitative descriptors of shape (e.g., popcorn-like, rod-like, round) 
and distribution (e.g., diffuse, segmental) to determine which calcifications are suspicious for malignancy. This 
risk stratification guides management decisions such as whom to recommend short-term imaging follow-up or 
biopsy. Calcifications that are too small and indistinct to assign a distinct shape are considered amorphous1. 
Prior studies have reported that the malignancy rate of biopsied amorphous calcifications is 20%2. 
While millions of women are encouraged to undergo mammography screening each year, radiologists continue 
to be challenged in evaluating and deciding which calcifications to biopsy. Unnecessary callbacks and biopsies 
lead to increased medical costs, patient anxiety, and potential morbidity. Studies have suggested that multiple 
descriptors for amorphous calcifications can lead to a higher positive predictive value (PPV) of malignancy3. 
However, the dependence on qualitative descriptors given by the radiologists is a limitation, given that many 
calcifications do not fit clearly into one morphologic or distribution category and manifest as a combination of 
descriptors4. Moreover, there is known inter and intraobserver variability in analyzing these calcifications5. 
Machine learning (ML) algorithms can potentially help overcome these limitations. Prior work on processing 2D 
full-field digital mammography (FFDM) has shown that calcifications can be detected and segmented with high 
sensitivity and accuracy6–8. A number of quantitative (radiomic) features can be calculated from these segmented 
calcifications to characterize the morphology, distribution, and texture of the calcifications and their surrounding 
regions. Radiomic features are defined using explicit formulas and are computed consistently across different 
images. Moreover, these features capture the subtle patterns that are difficult to assess visually by radiologists. 
Previous work has established that subtle differences in texture (e.g., differences in breast density) correlate with 
increased cancer risk9. Given this existing work, we present an AI/ML approach for utilizing radiomic features to 
predict their malignancy risk and inform whether further diagnostic workup is warranted. We use a combination 



of radiomic and graph-theoretic features to distinguish between amorphous calcifications that are either benign 
(e.g., usually requiring only imaging follow-up) or actionable (e.g., requiring consideration of surgical intervention 
given the likelihood of having a high-risk/malignant lesion). We hypothesize that using more quantitative and 
precise descriptors of amorphous calcifications and the surrounding tissue can improve the PPV of identifying 
actionable (high-risk/malignant) lesions. Our contributions include 1) the characterization of amorphous 
calcifications using local textures, global spatial relationships, and other interpretable features; and 2) the use of 
unsupervised clustering to obtain a consistent set of local features independent of the number of calcifications 
across all images. We demonstrate how quantitative features generated from amorphous calcifications and their 
surrounding regions on 2D FFDM can help distinguish between women with benign findings versus those who 
require further workup (e.g., high-risk or malignant findings). 

Materials and Methods 

Data Collection 
Following an Institutional Review Board-approved protocol, we collected a retrospective dataset with 1462 2D 
FFDM diagnostic exams performed at UCLA between 2017-2019. All cases had identified calcifications noted 
on the mammogram and underwent core breast biopsy. The presence of calcifications was identified using our 
breast screening registry (MagView, Fulton, MD). From this list, we selected the 359 exams with “amorphous 
calcification” findings mentioned in the radiology report and retrieved their corresponding images (n=2137) from 
our picture archive and communications system (PACS). A diagnostic exam may consist of images 
corresponding to different views (e.g., craniocaudal, mediolateral, exaggerated views). For this analysis, 
magnification views and images acquired using digital breast tomosynthesis were excluded, reducing the dataset 
by 71 exams. 87 exams with multiple pathology results (e.g., a case with malignant and high-risk lesions in the 
same breast) or non-amorphous calcifications upon re-review were omitted. After applying the exclusion criteria, 
a dataset with 178 diagnostic exams was generated consisting of 261 images with amorphous calcifications. 
Using the final radiology report, a trained researcher (CM), under the supervision of a fellowship-trained 
radiologist (BL), specified regions of interest (ROIs) on the FFDM pertaining to where the grouped amorphous 
calcifications were identified and ultimately biopsied. In total, 290 ROIs were annotated and matched with core-
needle biopsy results. The breakdown of regions is as follows: 207 benign, 42 high-risk, 41 malignant. All images 
were acquired using a Hologic Selenia device at 0.07 mm per pixel resolution and 12-bit grayscale, with ~8.5 
million pixels in each image. 

 
 Figure 1: Cohort selection 



Data Preparation 
The input to our classification algorithm is a suspicious ROI showing amorphous microcalcifications that have 
been segmented. We executed the Hessian Difference of Gaussians Regression (HDoGReg) method to 
segment individual microcalcifications, a technique developed by Marasinou et al10, on the entire 2D FFDM. The 
method consists of two stages: (1) bright candidate objects were delineated using difference-of-Gaussians blob 
detection with Hessian analysis for shape extraction, and (2) a convolutional regression model was applied to 
choose the candidate objects corresponding to microcalcifications. The resulting segmentation mask overlaps 
with the identified ROIs is used for classification analysis. 14 ROIs (13 images, 10 exams) did not overlap with 
any segmented calcifications and were omitted from our analysis. In total, 276 ROIs (248 images, 168 exams) 
were utilized for classification analysis. We split exams into two parts: 75% were assigned for training and 25% 
for testing. Figure 1 summarizes the process for selecting and excluding exams. A breakdown of the dataset 
used to train and test our classifier is presented in Table 1. 

 

Labels – (pathology outcome from 
breast biopsy) 

Train 
# ROIs (# images) 

Test 
# ROIs (# images) 

Benign 154 (131 images) 46 (43 images) 

Actionable (High-risk/DCIS/invasive) 57 (57 images) 19 (17 images) 

Total 211 (188 images) 65 (60 images) 

Table 1: Breakdown in the training and testing set reported as # of ROIs (# of images) 

Overall approach 
An overview of the classification pipeline is shown in Figure 2. Three types of binary masks were generated 
using the inputted ROIs with segmented microcalcifications: foreground, background, and dilated foreground, as 
explained below. From each of these masks, local and global features were extracted. Local features quantify 
the shape and texture of individual microcalcifications and their immediate surrounding regions. These local 
features are then aggregated using a k-means clustering algorithm to create a fixed-dimensional feature vector 
per image to characterize their distributions.  
 
Global (distribution and expert-defined) features, calculated from the foreground and dilated foreground masks, 
characterize the overall distribution of the microcalcifications within an ROI. All global features were 
concatenated with clustered local features and utilized to train a LightGBM classifier to distinguish benign from 
actionable cases. The model was tuned to achieve high sensitivity given the clinical importance of catching all 
potential high-risk and malignant lesions. Classification metrics of the final model were reported. 

 
Figure 2: Classification pipeline 



Mask Generation 
We applied the microcalcification segmentation algorithm10 to generate three different types of segmentation 
masks, resulting in 10 masks per ROI: 

● 1 x foreground mask, individual microcalcifications are identified in the foreground mask. An example 
is shown in Figure 3(b). 

● 1 x background mask, a 25-pixel band surrounding each microcalcification to capture the surrounding 
tissue. Figure 3(c) provides an example. The thickness of the layer was determined based on feedback 
from expert radiologists on the relevance of surrounding breast tissue in informing the diagnosis. 

● 65x dilated foreground masks, a morphological dilation of the foreground mask at eight different scales 
(e.g., 1x-65x). Dilated mask examples at two different scales are shown in Figure 4. These dilated masks 
are used to determine the spatial relationships among groups of calcifications when computing the 
topological features. 

 

(a)  (b)                                                                 (c) 

Figure 3: (a) An example ROI, (b) the foreground mask, and (c) the background mask. 
 

 
Figure 4: Visualizations of dilated foreground masks at two representative scales 



Local Features 
Using the generated foreground and background masks, radiomic features (e.g., intensity, shape, texture) and 
region properties (e.g., area, intensity) of each labeled region were then extracted to create three sets of features, 
which are enumerated in the Supplementary Materials. From the foreground mask, which consists of 
individually segmented microcalcifications, 90 radiomic features (using pyradiomics11) and 13 region 
measurements (using regionprops module of scikit-image12) were generated. From the background mask, which 
corresponds to the breast parenchyma immediately surrounding the calcification group, 87 radiomic features 
(using pyradiomics11) were computed. 

Global Features 
Region-level features were extracted using the foreground mask and the eight dilated foreground masks. The 
features characterize the distribution of microcalcifications and their topological structure. In total, 67 global 
features per ROI were extracted as described below. 
Multiscale topological features: Following the work of Chen et al13, we computed eight features describing the 
distribution of microcalcifications at 65 different scales, zero to 64 dilation scales, resulting in a total of 520 
features. Then using feature importance, 122 features were selected. In the next stage, first, the connectivity 
graphs between individual calcifications were constructed. Each calcification in the foreground mask represents 
a node in the graph. For each of the dilated foreground masks, overlapping objects due to the dilation operation 
were considered connected, and a graph vertex was drawn between them, leading to the generation of 8 graphs 
per ROI.  Then, for each graph, eight topological features were extracted: 1) number of subgraphs, 2) average 
vertex degree, 3) maximum vertex degree, 4) average vertex eccentricity, 5) diameter, 6) average clustering 
coefficient, 7) giant connected component ratio, and 8) the percentage of isolated points. The formulae for 
computing these features are given in the Supplementary Materials. 
Handcrafted features: Based on input from a fellowship-trained breast radiologist (BL) and comparison with 
deep learning-based feature extractors, we considered three additional types of features: 

1. Standard Deviation of Area: the microcalcifications that vary in size and shape tend to be considered 
highly suspicious for malignancy14. To quantify the variability, we calculate the standard deviation of the 
areas of individual microcalcifications within ROIs of each image. 

2. Correlation Coefficient: the microcalcifications’ patterns are crucial in determining whether they are 
suspicious or not. Since most malignancies are ductal, the linear distribution patterns of 
microcalcifications suggest that the patient needs further follow-up15. Therefore, we calculated the 
correlation coefficient of the x and y coordinates of the centroids of microcalcifications from ROIs of each 
image to quantify the extent of their linear distribution. 

3. Pairwise distances: calcifications that are spread over a large volume or over the entire breast are more 
likely to be benign14. To quantify the spread, we computed the pairwise mean distance of the 
microcalcifications in ROIs. 

Clustering and concatenation 
The three local feature sets (foreground radiomics, foreground region properties, and background radiomics) are 
used as inputs into the classifier but are proportional to the number of objects (microcalcifications and 
background regions) in each image, which varies. To obtain a consistent set of features for each image, we 
apply an unsupervised approach for aggregating local features in each feature set to represent their distribution 
as a fixed-dimensional vector. An unsupervised K-means clustering was utilized to group individual 
microcalcifications or background regions with similar characteristics. All objects within an ROI were labeled 
using an integer representing their K-means cluster for each image. After counting the number of 



microcalcifications and background regions in each cluster, a K-dimensional feature vector is then constructed 
where each element represents the percentage of objects belonging to a particular cluster. This process was 
carried out for each of the three local feature sets. The K-means clustering model was fitted on the training data. 
As an alternative to K-means clustering, we represented the distribution of local features by computing the mean 
and standard deviation of each feature value across all objects. 
The three vectors representing local feature sets were then concatenated with the global features (distribution 
and handcrafted features) to form an image’s final feature vector. An illustration of the aggregation method of 
one feature set is shown in Figure 5. 

 
Figure 5: K means clustering-based feature aggregation pipeline. During training, we generated clusters using 
the features extracted from the objects of training ROIs. During testing, we utilized the clusters created during 
the training phase to predict the clusters of the objects from the testing ROIs. The process was repeated to 
generate three local feature sets followed by their concatenation with global features.    

Model training and evaluation 
The LightGBM classifier15 was used to perform a grid search with five-fold cross-validation on the training data 
to identify the best hyperparameters for this classification task. To address the issue of class imbalance, SMOTE 
+ Edited Nearest Neighbor resampling technique was used before training16. Along with the hyperparameters 
(regularization, number of trees, learning rate, number of leaves, max depth), the probability threshold, and the 
optimal number of clusters, K was also tuned on the training set to obtain the best possible sensitivity to ensure 
that we do not miss any cancerous cases. The optimal number of clusters, K, was determined using five-fold 
cross-validation to maximize the classification sensitivity, yielding K=15 and a decision threshold of 0.4. The 
model was retrained using the chosen hyperparameters on the entire training set, and the images in the test set 
were classified. Metrics such as accuracy, sensitivity, specificity, F1, PPV, and receiver operating characteristic 
(ROC) curve area under the curve (AUC) are reported. 
We also compared our radiomics-based clustering approach against three alternatives: 1) transfer learning by 
fine-tuning a ResNet-50 model pre-trained using ImageNet with weighted cross-entropy loss; 2) a LightGBM 
classifier with features extracted from the fine-tuned ResNet-50 model, and 3) a radiomic feature-based 
approach with statistical features (i.e., mean and standard deviation) computed across all microcalcifications 
instead of clustering.  
For fine-tuning the ResNet-50 pre-trained with ImageNet, we split the training exams into 80% training and 20 
% validation. The model that gave the best F-1 on the validation data was used for evaluation. To address the 
problem of class imbalance, we used weighted cross-entropy loss as an objective function and data 
augmentations to avoid overfitting. However, during the process of fine-tuning, the ROC AUC of the training data 
showed an increasing trend while the ROC AUC of the validation data did not improve. This observation 
demonstrated that the model was overfitted to our training data and failed to perform well in a data-scarce 
scenario such as this. 
To estimate an unbiased generalization performance of our algorithm, we performed nested cross-validation on 
the entire dataset. The outer loop of the nested cross-validation estimates the model performance, while the 



inner loop is used for hyperparameter tuning using grid search. For the outer loop, in addition to the results of 
the single 75% training-25% testing split reported previously, we re-ran our entire analysis on the remaining three 
stratified splits. For the inner loop, the training data was further divided into five stratified folds (80% training, 
20% testing), out of which one fold was used for validation, and the rest of the folds were used for training. The 
best parameters obtained from the grid search were then used to train the final model on the training data and 
then evaluated on the test data. This procedure was carried out on all four splits, and the averaged results were 
calculated, assessing whether the clustering approach consistently outperforms the alternative methods. 

Results 

Sensitivity and specificity 
On the held-out test set of 60 images, we obtained 100% sensitivity when the decision threshold was 0.4 (Table 
2). The PPV was 38% due to the high number of false positives. Specificity can be improved by increasing the 
decision threshold. The values of accuracy, f1, and specificity for alternative decision thresholds are shown in 
Supplemental Materials. Compared to using the mean and standard deviation of the amorphous calcification 
features, the clustering approach is superior, though both methods achieve a sensitivity of 100%. 
 

 Clustering Approach 
(K = 15 and probability threshold = 
0.4) 

Approach using Mean and 
Standard Deviation of 
amorphous calcification features 
(Probability threshold = 0.4) 

Accuracy 0.53 0.31 

Sensitivity 1.0 1.0 

Specificity 0.35 0.04 

 F1 0.51 0.08 

PPV  0.38 0.29 

ROC AUC 0.73 0.55 

Table 2: Classification results - Clustering approach versus using mean and standard deviation 
 

ROC analysis 
Evaluating using the independent test set, the area under the ROC curve (shown in Figure 6) is 0.73 classifying 
an ROI as either benign or actionable using the clustering approach. The clustering approach outperformed the 
approach using local features’ mean and standard deviation to create global features (ROC AUC = 0.55). 
Recent advances in machine learning have yielded deep feature extractors capable of automatically learning 
informative features from the data rather than handcrafted features. To compare the performance of a model 
using deep features, we conducted three experiments in which we ran our classification pipeline using (a) our 
local and global features and (b) the 2048 features from the last layer of the fine-tuned ResNet-50 model. (c) the 



4096 features from the last layer of the fine-tuned VGG-16 model. While the specificity of the ResNet-50-based 
approach was comparable to our clustering approach (0.35 for the clustering approach versus 0.37 for the fine-
tuned ResNet), the sensitivity (1.0) and ROC AUC (0.73) achieved by our clustering approach were superior 
compared to the sensitivity (0.89) and ROC AUC (0.58) that was obtained using fine-tuned ResNet-50 features 
at the probability threshold of 0.4. We note that the ResNet model was overfitted during training and performed 
poorly during testing, even with data augmentation, early stopping, and other regularization methods like weight 
decay having been applied. The VGG-16 based features also followed a similar pattern and achieved a sensitivity 
of 0.95 and ROC AUC of 0.52, which is lower than our clustering approach. The specificity of 0.12 compared to 
0.35 (achieved using our clustering approach). 

 
      
 
Figure 6: ROC curve of the classification using (a) K-means clustering-based aggregation of local textural 
features and global features with LightGBM classifier (b) Features extracted from fine-tuned VGG-16 using 
weighted cross-entropy loss+ LightGBM classifier (c) Features extracted from fine-tuned ResNet-50 using 
weighted cross-entropy loss + LightGBM classifier (d) Mean and standard deviation aggregation of local 
features + LightGBM classifier 



Confusion matrix 
The confusion matrices are shown in Table 3, comparing the clustering and mean and standard deviation 
approaches. For the clustering approach, all 17 images were correctly classified as actionable and 15 classified 
as benign for probability threshold = 0.4 with our clustering approach. We chose a threshold that emphasized 
higher sensitivity (e.g., not missing any potential cancers) at the cost of an increased number of false positives 
(e.g., obtaining biopsies on benign findings). 
 
 
 
 

 Clustering approach Approach using Mean and standard 
deviation 

 Benign (Predicted) Actionable 
(Predicted) 

Benign (Predicted) Actionable 
(Predicted) 

Benign 15 28 2 41 

Actionable 0 17 0 17 

Table 3: Confusion matrix for clustering approach and probability threshold of 0.4 and approach using mean and 
standard deviation.  
 

Generalization performance of our approach 
Reporting results from the full nested cross-validation, our clustering approach remained the best performing 
approach, a mean ROC AUC of 0.71±0.12 compared to: 1) a pre-trained VGG-16 (not fine-tuned) + LightGBM 
approach, resulting in an ROC AUC of 0.54 ± 0.1, 2) a finetuned VGG-16 model resulting in an ROC AUC of 
0.48 ± 0.04, 3) a finetuned VGG-16 + LightGBM approach  0.52 ± 0.03 4) a pre-trained ResNet-50 (not fine-
tuned) + LightGBM approach resulting in an ROC AUC of  0.47 ± 0.07, 5) a fine-tuned ResNet-50 model, resulting 
in an ROC AUC of 0.42±0.07, 6) a ResNet-50 + LightGBM approach, resulting in an ROC AUC of 0.48±0.07, 
and 7) a radiomic feature-based approach with statistical features, resulting in an ROC AUC of 0.53±0.06. 

Discussion 
Amorphous microcalcifications on mammography images are challenging for radiologists to assess and lead to 
a high number of biopsies of benign findings. Quantitative analysis of the morphology and distribution of 
amorphous microcalcifications has the potential to better distinguish between benign and actionable findings. In 
this analysis, we demonstrate that in a challenging subset of cases that were all referred for biopsy, the algorithm 
correctly identified 15/60 (25%) benign images, potentially saving these women from undergoing unnecessary 
breast biopsies. Moreover, the algorithm using unsupervised clustering achieved a 38% PPV compared to a 
PPV of 28% that radiologists achieved on these images. In our test set, perfect sensitivity was achieved in 
identifying all actionable findings, but at the continued cost of many false positives despite the improvement in 
PPV. 
Several related studies on classifying different calcifications have been previously published, but none focused 
on developing and testing algorithms for challenging amorphous calcifications. Fanizzi et al17 utilized SURF 



(Speeded Up Robust Features) to detect a range of calcifications and extract wavelet decomposition features 
from the surrounding regions on screening digital mammograms. Trained on 130 ROIs (75 benign, 55 malignant) 
and tested on another 130 ROIs, they reported 0.92 ROC AUC, 88% accuracy, 87% sensitivity, and 88% 
specificity to classify microcalcifications that are associated with benign/malignant lesions. Karahaliou et al18 
utilized 85 full-field digitized screen-film images originating from the Digital Database for Screening 
Mammography (DDSM) and extracted 128 x 128 ROIs centered around detected microcalcification clusters. 
They reported a ROC AUC of 0.84, and given a threshold that optimizes sensitivity, they achieved 94.4% 
sensitivity but with a high false positive rate (20% specificity). We achieve a similar sensitivity but much higher 
specificity in our work on the subset of more challenging smaller amorphous microcalcifications. Finally, Stelzer 
et al19 manually segmented various calcifications from magnification views of diagnostic FFDMs and extracted 
249 features from 235 cases with stereotactic biopsy-proven diagnoses. They showed that 37–46% of biopsies 
could be avoided per reader at the cost of one false-negative. Focusing on the clinically challenging amorphous 
calcifications, our method could avoid biopsying 25% of the images with no false negatives. 
To identify the most informative features for this classification task, we examined the most represented features 
in the trees used to build the classifier. These features include 1) region property distributions of foreground 
regions (i.e., area, perimeter, axes lengths, the solidity of the microcalcification regions); 2) graph-based feature 
clusters (i.e., calcification distribution); 3) pairwise mean distance (i.e., the spread of the microcalcifications); and 
4) standard deviation of calcification size (i.e., variation in the calcification size). 
Several limitations of our work are noted. First, the input dataset consists of 261 annotated images, which is 
limited but similar to previously reported studies17–19. The number of images is also constrained due to our focus 
on amorphous calcifications. This subset of calcifications is associated with the greatest diagnostic uncertainty 
and a high false positive rate of breast biopsies. Second, our analysis only included cases where the 
segmentation algorithm generated a result: images in which the segmentation algorithm detected no objects or 
only outputted a single object were excluded. This assumption may introduce a source of bias. Third, given the 
small and hazy nature of amorphous calcifications, the segmentation algorithm could identify false positive 
objects that may impact the accuracy of the classifier.  
Further analysis involving a larger number of images and data from external institutions and mammography 
devices is needed to investigate the robustness and generalizability of the pipeline. Fourth, the pre-trained VGG 
and fine-tuned ResNet models' performance was suboptimal due to overfitting. While a more diverse training set 
could improve their performance, our clustering approach achieves consistently better performance despite the 
limited sample size. 
In summary, this work provides initial evidence that a quantitative approach to characterizing amorphous 
microcalcifications noted on mammography examinations, generating information about the shape and 
distribution of each calcification, can improve the ability to distinguish between benign and actionable findings. 
Our algorithm identified as benign 25% of microcalcifications that were originally deemed suspicious by the 
radiologists (and leading to a breast biopsy), potentially decreasing the number of false positive biopsies. 
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